

# ZONE CONTROL CHART

Eliška Cézová

eliskacqr@email.cz

Center for Quality and Reliability of Production, Czech Technical University in Prague



### **SUMMARY**

A special type of control chart, called a zone control chart, has been proposed recently as a simple alternative to the  $\bar{X}$  and R chart which respects supplementary run rules. The average run length (ARL) for this new type of zone control chart can be calculated using phase-type distribution. The chart limits are computed to optimize statistical properties of the chart. As optimization algorithm was used Nelder-Mead simplex method.

## **INTRODUCTION**

The basic Shewhart control chart is a common tool used in monitoring the mean of a process to ensure that it remains in control. This chart has a center line at the in-control mean value and three-sigma limits on either side of the center line. The chart signals an out-of-control condition if any observed sample mean falls beyond the three-sigma limits.

Jaehn (1987) has developed a chart which he implies will signal at roughly the same time as a Shewhart chart with the common runs rules. Like the similar chart proposed by Reynolds (1971), this chart is meant to be simplex for personnel to apply.

## MARKOV MODEL

Consider a Markov chain with the states  $\{0, 1, 2, 3, 4, 5, 6, 7, 8+\}$ . All the states are transient, but the  $\{8+\}$  which is absorbing.

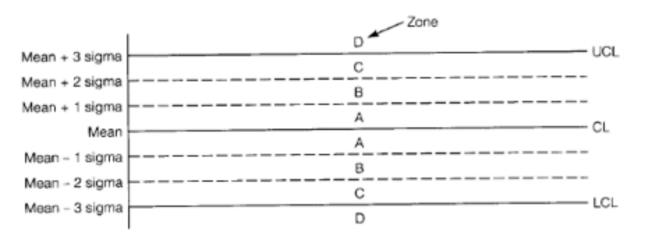
The number of transition until absorption X can be described using discrete PH-distribution with representation  $(\vec{\pi}, \mathbf{P})$ , where  $\vec{\pi}$  is an initial probability distribution and  $\mathbf{P}$  is the transient probability matrix of transient states  $(8 \times 8)$ .

The mean value of X is given by the formula  $E(X) = \vec{\pi} (\mathbf{I} - \mathbf{P})^{-1} \vec{1}$ ,

# ZONE CONTROL CHARTS

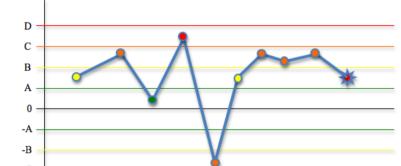
The concept behind the zone control chart is to allow for automatic signaling of the following out-of-control indicators in the Shewart chart:

- a point falling outside the  $3\sigma$  limits,
- two of three successive points falling outside the  $2\sigma$  limits on the same side of the center line,
- four of five successive points falling outside the  $1\sigma$  limits on one side of the center line, and
- eight consecutive points falling on the same side of the center line.



## THE PROPOSAL OF NEW CONTROL CHARTS

Consider improved zone chart with eight limits -D, -C, -B, -A, A, B, C, D and the centerline dividing chart into 10 zones:



Scores are assigned according to the right column in the picture. The significant change consists in enlargement of "zero-zone", i.e. the zone between -Aand A. Moreover, the limits are given as a result of an optimization algorithm which where **I** is unity matrix,  $\vec{1}$  is a vector of ones.

Let us denote Z the observed characteristic. For arbitrarily shift s we are able to evaluate the following probabilities (using a cumulative distribution function F(z) of Z):

 $\begin{array}{ll} p_{-0} = \mathrm{P}(-A-s < Z < -s), & p_{+0} = \mathrm{P}(-s < Z < A-s), \\ p_{-A} = \mathrm{P}(-B-s < Z < -A-s), & p_{+A} = \mathrm{P}(A-s < Z < B-s), \\ p_{-B} = \mathrm{P}(-C-s < Z < -B-s), & p_{+B} = \mathrm{P}(B-s < Z < C-s), \\ p_{-C} = \mathrm{P}(-D-s < Z < -C-s), & p_{+C} = \mathrm{P}(C-s < Z < D-s), \\ p_{-D} = \mathrm{P}(Z < -D-s), & p_{+D} = \mathrm{P}(D-s < Z), \end{array}$ 

The matrix  $\mathbf{P}$  can be evaluated by means of these probabilities.

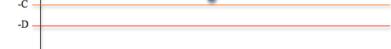
## EXAMPLE

We compare ARL for the following control charts:

- $\mathbf{CUSUM} \mathbf{CUSUM}$  control chart
- $Z_1$  "Shewhart" type control chart with one UCL and LCL (not necessary in  $\pm 3\sigma$ )
- $Z_3$  the control chart which signals assignable cause after "four succeeding observations of Z fall above the limit B"

 $Z_{1234}$  = proposed zone control chart

| shift | CUSUM  | Z1     | Z <sub>3</sub> | Z <sub>1234</sub> |
|-------|--------|--------|----------------|-------------------|
| 0     | 400,96 | 400    | 400,75         | 400,44            |
| 0,3   | 92,87  | 272,04 | 168,4          | 164,36            |
| 0,6   | 24,09  | 127,64 | 51,77          | 50,4              |
| 0,9   | 11,19  | 59,15  | 21,67          | 20,02             |
| 1,2   | 7,1    | 29,29  | 11,3           | 10,08             |
| 1,5   | 5,16   | 15,66  | 7,46           | 6,45              |
| 1,8   | 4,09   | 9,04   | 5,5            | 4,53              |
| 2,1   | 3,41   | 5,62   | 4,58           | 3,49              |
| 2,4   | 2,93   | 3,75   | 4,14           | 2,79              |
| 2,7   | 2,58   | 2,68   | 3,91           | 2,31              |
| 3     | 2,32   | 2,04   | 3,79           | 1,92              |



minimize the probability of Error type II for some shift value  $\delta_u$  (undistinguish the shift) preserving the given probability of Error type I (false alarm). The MATLAB program for application of the Nelder - Mead simplex algorithm was used to evaluate statistically optimal limits.

# AVERAGE RUN LENGTH

Average run length (ARL) – average number of samples until an alert signal occurs. This is a good measure of chart suitability. ARL(0) = average run length when process is under control

 $ARL(\delta)$  = average run length when the process mean shift is equal to  $\delta$ 

The objective is the following: maximal ARL(0) and minimal  $ARL(\delta_u)$  for some given  $\delta_u$ .

 $\begin{array}{l} ARL(shift) \text{ were evaluated under conditions:} \\ ARL(0) = 400, \text{ sample size } n = 1. \\ \text{Results of optimization:} \\ \text{CUSUM } (k = 0.5, h = 5), \, Z_1(C = 3.03), Z_3(B = 1.06), \\ Z_{1234}(A = 0.34, B = 1.24, C = 2.24, D = 3.37) \end{array}$ 

**Acknowledgement.** The poster was supported by grant 1M06047 of the Ministry of Education, Youth and Sports of the Czech Republic.

#### References.

- [1] Davis R. B., Homer A., Woodall W. H. (1990). Performance of the zone control chart. Commun. Statist.-Theory Meth. 19(5), 1581-1587.
- [2] Dohnal G. (2008). Control chart, but which? (in Czech) Proceedings of the conference REQUEST 2008, in print.
- [3] Zhang S., Wu Z. (2005). Designs of control charts with supplementary runs rules. Computers & Industrial Engineering 49, 76-97.