

Aproximácia zovšeobecneného konfidenčného intervalu pre σ_1^2

Barbora Arendacká barendacka@gmail.com Ústav merania, Slovenská akadémia vied, Dúbravská cesta 9, 841 04 Bratislava

Model: zmiešaný lineárny model s dvomi varian- **Postačujúce štatistiky:** navzájom nezávislé čnými komponentmi →

 $Y = X\beta + Zu + \epsilon$ $Y: n \times 1, \quad X: n \times p, \quad Z: n \times q$ $u \sim N_q(0, \sigma_1^2 I_q), \ \epsilon \sim N_n(0, \sigma^2 I_n), \ \text{nezávislé}$ $Y \sim N_n(X\beta, \sigma_1^2 Z Z^T + \sigma^2 I_n)$

variančné komponenty: σ_1^2, σ^2

 $U_i = Y^T B F_i B^T Y \sim (\lambda_i \sigma_1^2 + \sigma^2) \chi^2_{\nu_i}$

i = 1, ..., r, kde $\lambda_1 > > \lambda_r = 0$ sú vlastné čísla $B^T Z Z^T B$, ν_i ich násobnosti a pre každé *i*, F_i je ortogonálny projektor na podpriestor generovaný vlastnými vektomi patriacimi k λ_i

 $B^T Y \sim N_{n-rank(X)}(0, \sigma_1^2 B^T Z Z^T B + \sigma^2 I)$

Príklad: vyvážený model jednoduchého triedenia s náhodným efektom:

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}$$

 $i = 1, ..., I > 1, \quad j = 1, ..., J > 1, \quad \alpha_i \sim N(0, \sigma_1^2)$
 $r = 2, \ \lambda_1 = J, \ \lambda_2 = 0, \ \nu_1 = I - 1, \ \nu_2 = I(J - 1),$
 $U_1 = \sum_{i=1}^{I} J(\overline{Y}_{i\cdot} - \overline{Y}_{\cdot\cdot})^2, \quad U_2 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - \overline{Y}_{i\cdot})^2$

Približný konfidenčný interval pre σ_1^2 "stredné sumy štvorcov": $S_i = U_i/\nu_i, s = \sum_{i=1}^{r-1} \nu_i, \alpha_u - \alpha_l = 1 - \alpha$ El-Bassiouniho-Williamsov-Tukeyho interval (vid' [3], [7], [1]) Int₁ : presný interval pre σ_1^2 pri da- $\sigma_1^{2'}$ nom σ^2 založený na $\sum_{i=1}^{r-1} \frac{\nu_i S_i}{\lambda_i \sigma_1^2 + \sigma^2} \sim \chi_s^2$ **Int**₂ : presný interval pre σ_1^2 pri danom σ^2 získaný z presného intervalu pre σ_1^2/σ^2 vynásobením jeho hraníc

Zovšeobecnený konfidenčný interval pre σ_1^2 "stredné sumy štvorcov": $S_i = U_i/\nu_i, s = \sum_{i=1}^{r-1} \nu_i, \alpha_u - \alpha_l = 1 - \alpha$ Parkov-Burdickov zovšeobecnený pivot (viď [5], tiež [4], [6])

Pre dané pozorovania je zovšeobecnený interval tvorený kvantilmi $[q_{\alpha_l}, q_{\alpha_u}]$ rozdelenia zovšeobecneného pivota R, ktorý je pre dané dáta definovaný ako nezáporné riešenie alebo nula, ak nezáporné rie-

$$\sum_{i=1}^{r-1} \frac{\nu_i S_i}{\lambda_i \sigma_1^2 + \sigma^2} = E_1 \sim Q_1$$

 $\nu_r S_r / \sigma^2 = E_2 \sim Q_2$

Obrázok pre r = 2

hodnotou σ^2

 Int_{EBWT} obsahuje $Int_1 \cap Int_2$ bez ohľadu na σ^2

 B_1 , B_u sú nezáporné riešenia alebo nuly, ak nezáporné riešenia neexistujú:

$$\sum_{i=1}^{r-1} \frac{\nu_i S_i}{\lambda_i \mathbf{B}_{\mathbf{l}} + S_r \frac{sF_{s,\nu_r;\alpha_u}}{\chi_{s;\alpha_u}^2}} = \chi_{s;\alpha_u}^2 \qquad \sum_{i=1}^{r-1} \frac{\nu_i S_i}{\lambda_i \mathbf{B}_{\mathbf{u}} + S_r \frac{sF_{s,\nu_r;\alpha_l}}{\chi_{s;\alpha_l}^2}} = \chi_{s;\alpha_l}^2$$

šenie neexistuje:

$$\sum_{i=1}^{r-1} \frac{\nu_i s_i}{\lambda_i \mathbf{R} + \nu_r s_r / Q_2} = Q_1,$$

kde $s_1, ..., s_r$ sú napozorované hodnoty $S_1, ..., S_r$, $Q_1 \sim \chi^2_s, Q_2 \sim \chi^2_{
u_r}$ sú navzájom nezávislé.

 S_1, \ldots, S_r pozorujeme, E_1, E_2 generujeme \rightarrow získavané riešenia systému pre σ_1^2, σ^2 (obmedzené na parametrický priestor) určujú rozdelenie (σ_1^2, σ^2) pri daných dátach. Interval pre σ_1^2 potom prirodzene tvorí dolný a horný kvantil rozdelenia tohto parametra.

Kvantily q_{α_l} , q_{α_u} môžme nájsť simulačne, či numerickým výpočtom. Oba spôsoby sú pomerne zdĺhavé. Pre praktické účely by však možno stačilo nájsť aproximáciu q_{α_l} , q_{α_u} . Tieto kvantily vieme presne vyjadriť v špeciálnych situáciách, pozri tiež [2], čo nás usmerňuje pri hľadaní približných formúl:

$$\Rightarrow$$
 pre $\alpha_l = \alpha/2, \, \alpha_u = 1 - \alpha/2, \,$ môžme položiť $q_{\alpha/2} \approx B_l, \, q_{1-\alpha/2} \approx B_l$

Simulačné porovnanie. $1 - \alpha = 0.95$, 5000 realizácií Y pre každú dvojicu skutočných hodnôt σ_1^2 , σ^2 ($\sigma^2 = 1 - \sigma_1^2$) Vl'avo: $[q_{\alpha/2}, q_{1-\alpha/2}] \approx [B_l, B_u]$ Efekt nahradenia jedného intervalu druhým. Pravdepodobnosti pokrytia a dĺžky zovšeobecneného intervalu a jeho aproximácie. Zobrazené sú priemery (o,*), mediány (bodky) a 5. a 95. percentily dĺžok (spojené čiarou).

Vpravo: $q_{\alpha/2} \approx B_l, q_{1-\alpha/2} \approx B_u$

Presnost' aproximácie. Boxploty relatívnych rozdielov : $(B_l - q_{\alpha/2})/q_{\alpha/2}$, (L); $(B_u - q_{1-\alpha/2})/q_{1-\alpha/2}$, (U); pre dvojice dolných (horných) hraníc s absolútnym rozdielom viac ako $0.5 * 10^{-3}$, čo je chyba, s ktorou boli $q_{\alpha/2}$, $q_{1-\alpha/2}$ spočítané metódou bisekcie. Počet uvažovaných dvojíc udávajú čísla pod boxplotmi. (Pozn. v Dizajne 3 je veľa nulových hraníc, v prípade ktorých je aproximácia presná.)

Aproximácia je najhoršia pre dizajn, kde $s > \nu_r$, a podľa očakávania sa zlepšuje s rastúcim ν_r .

Poďakovanie. Práca bola podporená grantmi VEGA 1/3016/06 a APVV RPEU-0008-06.

Referencie.

[1] Arendacká, B. (2007) - A modification of the Hartung-Knapp interval on the variance component in two-variance component models, Kybernetika, 43, 471-480 [2] Bross, I. (1950) - Fiducial intervals for variance components, *Biometrics*, 6, 136–144

[3] El-Bassiouni, M.Y. (1994) - Short confidence intervals for variance components, Commun. in Stat. Theory and Methods, 23, 1951-1933

[4] Hannig, J. (2008) - On generalized fiducial inference, Statistica Sinica, to appear

[5] Park, D.J., Burdick, R.K. (2003) - Performance of confidence in-

tervals in regression models with unbalanced one-fold nested error structures, Commun. in Stat. Simul. and Comp., 32, 717–732 [6] Weerahandi, S. (1995) - Exact Statistical Methods for Data Analysis, Springer-Verlag, New York [7] Williams, J.S. (1962) - A confidence interval for variance components, Biometrika, 49, 278-281