
1. Generating functions

Ex. 1.1 : Check the form of generating functions for following most important discrete
distributions:

• Alternative . . . P(x) = q + px
• Binomial . . . P(x) = (q + px)n

• Poisson . . . P(x) = exp{−λ + λx}
• Geometrical . . . P(x) = p/(1− qx)

resp. = px/(1− qx)
• Negative binomial . . . P(x) =

(

p/(1− qx)
)r

resp. =
(

px/(1− qx)
)r

• Discrete uniform . . . P(x) = (1− xn+1)/
(

(n+ 1)(1− x)
)

resp. =
(

x(1 − xn)
)

/
(

n(1− x)
)

Using these generating functions calculate corresponding expectations and variances.

2. Gambler’s ruining problem

Ex. 2.1 : Consider a gambler who in each game is equally likely either to win or lose one
unit, independent of the results from earlier games. Let Pi denote the probability that,
starting with a fortune of i, the gambler’s fortune reaches n before 0. Starting with a
fortune of i:

• Find Pi, i = 0, 1, . . . , n.
• Calculate mi, the mean number of games until the gambler’s fortune is either 0
or n, where 0 ≤ i ≤ n.

How the situation will change if (instead of a fair game) we assume that the gambler
wins each game with a probability p, 0 < p < 1, and looses with a probability q = 1−p.

Ex. 2.2 : Consider a gambler who on each bet either wins one unit with probability 18/38
or loses one unit with probability 20/38. These are the probabilities if the bet is that
an americane roulette wheel will land on a specified color. The gambler will quit either
when he/she is winning a total of 5 units or after 100 plays. What is the probability
he/she will play exactly 15 times?

Ex. 2.3 : Consider the gambler’s ruin problem where on each bet the gambler either wins
one unit with probability p or loses one unit with probability 1 − p. The gambler will
continue to play until his winnings are either n − i or −i. That is, starting with i the
gambler will quit when his fortune reaches either n or 0. Let T denotes the number of bets
made before the gambler stops. Use Wald’s equation, along with the known probability
that the gambler’s final winnings are n− i, to find E T .

Hint: Let Xj be the gambler’s winnings on bet j, j ≥ 1. What are the possible values of
∑T

j=1
Xj? What is E

∑T

j=1
Xj?

Ex. 2.4 : Suppose that X1, X2, . . . is a sequence of independent and identically distributed
random variables with P

(

Xi = 1
)

= 1/2 = 1−P
(

Xi = −1
)

. If N = min
{

n : X1+ . . .+

Xn = 1
}

, then N is so called stopping time for the sequence
{

Xi

}

i
. Random variable N

can be regarded as the stopping time for a gambler who on each play is equally likely to
win or lose one unit, and who is going to stop the first time he is winning money. Show
that P

(

N < ∞
)

= 1 and calculate E N .
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3. Reccurent events and random walks

Ex. 3.1 : Assume a sequence of independent trials with dichotomous (alternative) response
as, e.g., flips of the coin with P (success) = p. We say that recurrent event ξ occurred in
time n, if number of successes and failures after n trials are equal.

• Verify that ξ is periodic null reccurent (trvalý nulový) event.

Notice that it can be representing by a particle moving on grid points of the line.

Ex. 3.2 : Assume a sequence of independent trials with dichotomous (yes/no) response,
where P (yes) = p. We say that recurrent event ξ occurred in time n if the number
of positive trials is equal to the number of negative trials. Show that it is a periodical
recurrent event for which it holds:

• If p = 1/2 then ξ is null recurrent (trvalý nulový) event.
• If p 6= 1/2 then ξ is transient (přechodný) event.
• Calculate probabilities un and fn and their approximations.
• U(x) =

∑

∞

n=0

(

2n

n

)(

pqx2
)n

= 1√
1−4pqx2

.

• F (x) = 1−
√

1− 4pqx2

• Show that f2n−1 = 0 and f2n = 2

n

(

2n−2

n−1

)

pnqn, n = 1, 2, . . ..

• If p = 1/2 then un ≈ 1/
√
πn.

• Simulate couple of random walks of a length at least 105 for different values of p
(including p = 1/2).

• Plot graphs of corresponding simulated random walks.

Ex. 3.3 : Consider particle moving on grid points of the plane. In each step particle
moves up, down, left or right randomly and independently from previous steps. Assume,
moreover, that different directions do not arrive necessarily with the same probability.
We say that recurrent event ξ occurred in time n if we are back in the starting point after
n steps.

• Verify that it is periodic null reccurent (trvalý nulový) event.
• Calculate probabilities un and their approximations.

Hint. Recall multinomial distribution and Law of total probability.

Ex. 3.4 : Consider a particle moving on grid points of the space. In each step particle
moves up, down, left, right, backwards or forward randomly and independently from
previous steps. Assume, moreover, that different directions do not arrive necessarily with
the same probability. We say that recurrent event ξ occurred in time n if we are back in
the starting point after n steps.

• Verify that ξ is periodic transient (přechodný) event.
• Calculate probabilities un and their approximations.

Hint. Recall multinomial distribution and Law of total probability.

Ex. 3.5 : Assume a sequence of independent trials with dichotomous response (T,F ). We
say that recurrent event ξ occurred in time n if some prescribed pattern as, e.g., TTT or
TTFTF , occurred at the end of n trials and we start from scratch every time a pattern
is completed.

The term “success run of length r” has been defined in the literature in several different
ways. It is largely matter of convention and convenience whether a sequence of three
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consecutive successes is said to contain 0, 1, or 2 runs of length 2, and for different
purposes different definitions have been adapted. However, if we are to use the theory
of reccurent events, then the notion of runs of length r must be defined so that we start
from scratch every time a run is completed. This means adapting a following definition:

A sequence of n leeters T and F as many runs of length r as there are nonoverlapping

uninterupted successions of exacty r letters T . In a sequence of Bernoulli trials a run of

length r occurs at the nth trial, if the nth trial adds a new run to the sequence.

Thus in SSSSFSSSSSS we have thre runs of length 3, and they occur at trials 3, 8,
11; there are five runs of the length 2, and they occur at trials 2, 4, 7, 9, 11.

• Calculate probabilities un and fn and their approximations.

Ex. 3.6 : Let qn be probability that in the sequence of n independent trials with dichoto-
mous response (T,F ) a subsequence FFF will not occur. Verify that the corresponding
generating function has the form Q(x) =

(

8+4x+2x2
)

/
(

8−4x−2x2−x3
)

and calculate
probabilities qn both precisely and using the approximations.
Ex. 3.7 : Consider a particle that moves along a set of m + 1 nodes, labeled 0, 1, . . . , m,
that are arranged around a circle. At each step the particle is equally likely to move
one position in either the clockwise or counterclockwise direction. That is, if Xn is the
position of the particle after its nth step, then

P
(

Xn+1 = i+ 1 |Xn = i
)

= P
(

Xn+1 = i− 1 |Xn = i
)

= 1/2,

where i+ 1 ≡ 0 when i = m, and i − 1 ≡ m when i = 0. Suppose now that the particle
starts at 0 and continues to move around according to the preceding rules until all the
nodes 1, 2, . . . , m have been visited. What is the probability that node i, i = 1, . . . , m,
is the last one visited?

Ex. 3.8 : As we will see, random walks on vertexes of graphs, vertexes of multidimensional
cubes, etc., can be often described using the theory of recurrent events.

Ex. 3.9 : Assume Rubik’s cube, i.e. mechanical puzzle composed of smaller sub-cubes.
An internal pivot mechanism enables each face to turn independently, thus mixing up the
colors. Most typical model is 3 × 3 × 3, for which we have 43 252 003 274 489 856 000 ≈
43.25× 1018 possible combinations (https://en.wikipedia.org/wiki/Rubik’s Cube). Gen-
erally, for the puzzle to be solved, each face must be returned to have only one color.
We say that recurrent event ξ occurred in time n if we are back in starting position after
n steps.
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