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Main goals of the lecture

Main goal of this lecture is study of Markov chains and Markov

processes, their generalizations and applications.

Notion of recurrence in theory of probability

Random walks

Markov chains with discrete states and discrete time

Markov chains and beginning of theory of information

Ising model and denoising of pictures

Markov Chain Monte Carlo simulations

Durbin – Watson process

Markov processes with discrete states and continuous time

Birth and death process

Basics of queuing models, connection to birth and death process

Poisson process (homogeneous and non homogeneous)
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Graham, R., Knuth, D., Patashnik, O. Concrete Mathematics:
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Thousand Exercises in Probability, Oxford Univ. Press
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Ross, S.M. Introduction to Probability Models, 12th ed. Academic

Press, Elsevier
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Events to be considered

Assume a sequence of repeated (not necessarily independent) 1

trials, each of them having the same finite or countable set of

possible outcomes
{
Ej

}
j∈J , where usually J ⊆ Z, and let

{
Ej1 ,Ej2 , . . . ,Ejn

}
(1)

denotes event that first trial finished with the result Ej1 , second trial

finished with the result Ej2 , . . . , n-th trial finished with the result Ejn .

Let for all finite sequences it holds that

P
(
Ej1 , . . . ,Ejn−1

)
=

∑∞
k=0

P
(
Ej1 , . . . ,Ejn−1

,Ek

)
, 1 < n < ∞,

i.e. probability is defined consistently for all finite sequences.

1Recall that if the events
{
Ej1 ,Ej2 , . . . ,Ejn

}
are mutually independent, then

P
({

Ej1 ,Ej2 , . . . ,Ejn

})
=

n∏

k=1

P
(
Ejk

)
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Recurrent events (definition)

Def. 1: The attribute ξ defines a recurrent event if:

1 In order that ξ occurred at the n-th and n + m-th place of the

sequence
{
Ej1 ,Ej2 , . . . ,Ejn+m

}
it is necessary and sufficient that ξ

occurs at the last place of each of the subsequences{
Ej1 ,Ej2 , . . . ,Ejn

}
and

{
Ejn+1
,Ej2 , . . . ,Ejn+1m

}
.

By the other words, both the sequence
{
Ej1 , . . . ,Ejn

}
and the

sequence
{
Ejn+1
, . . . ,Ejn+m

}
have property ξ.

2 If ξ occurs at the nth place then identically

P
( A︷       ︸︸       ︷
Ej1 , . . . ,Ejn︸       ︷︷       ︸

ξ

,

B︷             ︸︸             ︷
Ejn+1
, . . . ,Ejn+m︸             ︷︷             ︸
ξ

)
= P

( A︷       ︸︸       ︷
Ej1 , . . . ,Ejn︸       ︷︷       ︸

ξ

)
·P

( B︷             ︸︸             ︷
Ejn+1
, . . . ,Ejn+m︸             ︷︷             ︸
ξ

)



J. ANTOCH MARKOV CHAINS AND PROCESSES – REMARKS AND EXAMPLES January 6, 2025, 9:48, 6/110

Recurrent events (cont.)

Let ξ be an attribute of finite sequences; that is, we suppose that it is

uniquely determined whether a sequence
{
Ej1 ,Ej2 , . . . ,Ejn

}
has, or

has not, a characteristic ξ.

We agree that the expression ξ occurs at the n-th place of (finite or

infinite) sequence
{
Ej1 ,Ej2 , . . .

}
means that the sequence{

Ej1 ,Ej2 , . . . ,Ejn

}
has the property ξ is an abbreviation for the

statement that the sequence
{
Ej1 ,Ej2 , . . . ,Ejn

}
has the attribute ξ.

This convention also implies, that the occurrence of ξ at nth place

depends solely on the outcome of the first n trials.

It is also understood that when speaking of a recurrent event ξ, we

are really referring to a class of events defined by the property that

ξ occurs.
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Examples of recurrent events

Ex. 1: Assume a sequence of independent trials with dichotomous

(alternative) response as, e.g., flips of the coin with P(success) = p.

We say that recurrent event ξ occurred in time n, if number of successes

and failures after n trials are equal.

Ex. 2: Consider particle moving on grid points of the plane. In each step

particle moves up, down, left or right randomly and independently from

previous steps. Assume, moreover, that different directions do not arrive

necessarily with the same probability.

We say that recurrent event ξ occurred in time n if we are back in the

starting point after n steps.

Ex. 3: Consider a particle moving on grid points of the space. In each

step particle moves up, down, left, right, backwards or forward randomly

and independently from previous steps. Assume, moreover, that different

directions do not arrive necessarily with the same probability.

We say that recurrent event ξ occurred in time n if we are back in the

starting point after n steps.
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Probabilities {un}, {fn} and their interrelation

Def. 2: To each recurrent event ξ we assign two sequences of numbers

un = P
(
ξ occurred in the nth trial

)
1 ≤ n < ∞

fn = P
(
ξ occurred in the nth trial for the first time

)
1 ≤ n < ∞

We define formally u0 = 1, f0 = 0 and introduce generating functions

F(x) =
∑∞

n=0 fnxn and U(x) =
∑∞

n=0 unxn.

Thm. 1: Between probabilities {un} and {fn}, respectively between

corresponding generating functions F(x) and U(x), following relations

hold

un = f0un + f1un−1 + . . .+ fnu0 ∀ n ≥ 1

U(x) − 1 = F(x)U(x) − 1 < x < 1
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Examples of recurrent events (cont.)

Ex. 4: Assume Rubik’s cube, i.e. mechanical puzzle composed of

smaller sub-cubes. An internal pivot mechanism enables each face to

turn independently, thus mixing up the colors. Most typical model is

3 × 3 × 3, for which we have 43 252 003 274 489 856 000 ≈ 43.25 × 1018

possible combinations (https://en.wikipedia.org/wiki/Rubik’s Cube).

Generally, for the puzzle to be solved, each face must be returned to

have only one color.

We say that recurrent event ξ occurred in time n if we are back in starting

position after n steps.

Ex. 5: Assume a sequence of independent trials with dichotomous

response (T,F). We say that recurrent event ξ occurred in time n if some

prescribed pattern as, e.g., TTT or TTFTF , occurred at the end of

n trials. In the case of an event TTT it means that nth , (n − 1)st and

(n − 2)nd trial ended with a result T . Moreover, after observing

prescribed sequence we start to count from the beginning.
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Examples of recurrent events (cont.)

Assume a sequence of independent trials with dichotomous response

(T,F). We say that recurrent event ξ occurred in time n if some prescribed

pattern as, e.g., TTT or TTFTF , occurred at the end of n trials and we

start from scratch every time a pattern is completed.

• The term “success run of length r” has been defined in the literature in

several different ways. It is largely matter of convention and convenience

whether a sequence of three consecutive successes is said to

contain 0, 1, or 2 runs of length 2, and for different purposes different

definitions have been adapted. However, if we are to use the theory of

reccurent events, then the notion of runs of length r must be defined so

that we start from scratch every time a run is completed. This means

adapting a following definition:

• A sequence of n letters T and F as many runs of length r as there are

nonoverlapping uninterupted successions of exacty r letters T. In a

sequence of Bernoulli trials a run of length r occurs at the nth trial, if the

nth trial adds a new run to the sequence.

• Thus in a series SSSSFSSSSSS we have thre runs of length 3, and

they occur at trials 3, 8, 11; there are five runs of the length 2, and they

occur at trials 2, 4, 7, 9, 11.
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Examples of recurrent events (cont.)

Ex. 6: “Random walks” on vertexes of graphs, vertexes of

multidimensional cubes, etc., can be often described using the theory of

recurrent events.
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Repeated occurrences of recurrent events

Rem. 1:

If f =
∑

n fn = 1, then {fn} correspond to a random variable T1

describing waiting time of the first occurrence of ξ.

If f < 1, then waiting time T1 is so called improper random variable,

which with the positive probability (= 1− f ) attains improper value∞,

being interpreted as the recurrent event that ξ did not came up.
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Repeated occurrences of recurrent events

Rem. 2:

If f =
∑

n fn = 1, then {fn} correspond to a random variable T1

describing waiting time of the first occurrence of ξ.

If f < 1, then waiting time T1 is so called improper random variable,

which with the positive probability (= 1− f ) attains improper value∞,

being interpreted as the recurrent event that ξ did not came up.

Thm. 2: Denote by f
(r)
n , 1 ≤ n < ∞, probability of the event that ξ

occurred for the r th time in time n, and denote f
(r)
0

= 0. Then it holds

{
f
(r)
n

}
=

{
fn
}r⋆
,

where
{
f
(r)
n

}
denote r-th convolution of

{
fn
}
.

Thm. 3: Probability that event ξ will occurred in infinitely long sequence

of trials at least r-times is equal to f r , where f =
∑

n fn.
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Another approach to introducing recurrent events

Let Ti , 1 ≤ i ≤ r , are independent integer valued rv’s with the same

distribution {fn}, where Ti is interpreted as the time between (i − 1)-st and

i-th occurrence of ξ (so called return time). Then

T (r) = T1 + . . .+ Tr

can be interpreted as the waiting time to the r-th occurrence of ξ.

Notion of recurrent event can be introduced in the following way.

Def. 3: Let T1,T2, . . . be independent integer valued random variables

with the same distribution {fn}. Then:

We match the statement recurrent event ξ occurred in time n with

the statement there exists r such that T1 + T2 + . . .+ Tr = n.

We match the statement recurrent event occurred in time n for the

r-th time with the statement T1 + T2 + . . .+ Tr = n.
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Classification of recurrent events

Def. 4: Event ξ is called persistent if f = 1, respectively transient if f < 1,

where f =
∑

n fn.

Thm. 4: Probability, that an event ξ will occurred infinitely many times in

infinitely long series of trials is one for persistent events and zero for a

transient events.

Thm. 5: An event ξ is transient if and only if
∑∞

n=0 un < +∞. In such a

case f = (u − 1)/u, where u =
∑∞

n=0 un.

Def. 5: If f = 1, then we denote µ = E T1 =
∑∞

n=0 nfn and interpret is as

the mean renewal (return) time of ξ.

Def. 6:

An event ξ is called positive recurrent if µ < +∞.

An event ξ is called null recurrent if µ = +∞.

Def. 7: An event ξ is called periodical if there exists natural λ > 1 such

that un = 0 ∀n which are not divisible by λ. Largest λ with this property is

called a period of ξ.
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Examples of recurrent events

Ex. 7: Assume a sequence of independent trials with dichotomous

(yes/no) response, where P(yes) = p. We say that recurrent event ξ

occurred in time n if the number of positive trials is equal to the number

of negative trials. Show that it is a periodical recurrent event for which it

holds:

if p = 1/2 then ξ is null recurrent

if p , 1/2 then ξ is transient

calculate probabilities un and fn and their approximations

U(x) =
∑∞

n=0

(
2n
n

)(
pqx2

)n
= 1√

1−4pqx2

F(x) = 1 −
√

1 − 4pqx2

f2n−1 = 0, f2n = 2
n

(
2n−2
n−1

)
pnqn, n = 1, 2, . . .

if p = 1/2 then u2n ≈ 1/
√
πn

simulate couple of random walks of a length at least 105 for different

values of p (including p = 1/2)

plot corresponding graphs of simulated random walks
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Examples of recurrent events

Ex. 8: Return to the Examples 2 and 3. Calculate probabilities un and

their approximations.

Hint. Recall multinomial distribution and Law of total probability.
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Limit theorem

Thm. 6: Let an event ξ is recurrent and non periodical. Then it holds:

lim
n→∞

un =


1
µ

µ < ∞
0 µ = ∞

Thm. 7: Let an event ξ is recurrent and periodical with period λ. Then it

holds:

lim
n→∞

unλ =


λ
µ

µ < ∞
0 µ = ∞

Proof: Follows from Thm. 55 and Rmk 57.
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Asymptotic distribution of frequencies of recurrent

events

Thm. 8: Let ξ be a positive recurrent event. DenoteNn number of

occurrences of ξ up to the time n and T (r) waiting time till the r th

occurrence of ξ. Then the events [Nn ≥ r ] and [T (r) ≤ n], 1 ≤ r ≤ n < ∞,

are equivalent. Assume, moreover, that E T1 = µ and

var T1 = σ2 < +∞. Then it holds:

Nn
D∼ N

(
n
µ
, nσ2

µ3

)
and T (r) D∼ N

(
rµ, rσ2

)
, i.e.

lim
n→∞

P


Nn − n/µ√

nσ2/µ3
≤ x

 = Φ(x) ∀x ∈ R1

lim
r→∞

P

(
T (r) − rµ
√

rσ2
≤ x

)
= Φ(x) ∀x ∈ R1

where

Φ(x) =

∫ x

−∞

1
√

2π
e−t2/2 dt
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Asymptotic distribution of frequencies of recurrent

events

Thm. 9: Let ξ be a positive recurrent event. Then E Nn ≈ n/µ as n → ∞,

where µ = E T1 is the mean renewal (return) time of ξ.

Rem. 3: Let ξ be a null recurrent. Then E Nn is not generally of the order

n1. An example has been described in Ex. 7. Show that in such a case

E N2n ≈ 2
√

n/π.
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Recurrent events with delay

Recurrent events with delay can be introduced in the same way as

indicated above.

Def. 8: Assume independent integer valued random variables T1,T2, . . .,

where T1 has distribution
{
bn

}
, while T2,T3, . . . have distribution

{
fn
}
. We

say that recurrent event with delay ξ occurred in time n for the r-th time, if

T1 + T2 + . . .+ Tr = n (2)

Analogously, recurrent event with delay ξ occurred in time n if there

exists r such that (2) holds.

Rem. 4: In Def. 8 is random variable T1 interpreted as time to the first

arrival of ξ, while T2,T3, . . . as renewal (return) times.

Ex. 9: Assume again Rubik’s cube from Example 4, which is at the

beginning arbitrarily scrambled. Then delay T1 describes time to the first

arrival when each face have only one color (initial position). Return times

T2,T3, . . . correspond to the returns to the initial position.
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Recurrent events with delay (cont.)

Thm. 10: Let un denotes probability of the event that ξ occurred at

time n. Let u0 = f0 = b0 = 0. Then

un = bn + f0un + . . .+ fnu0, i.e.
{
un

}
=

{
bn

}
+

{
fn
}
⋆

{
un

}
.

Rem. 5: Recall equivalence between following events

[
ξ occurred at time n

]
≡

n−1⋃

k=1

[
ξ occurred at time n and the last occurrence

before that event at time k
]

∪
[
ξ occurred at time n for the first time

]
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Renewal equation

Rem. 6: Limit theorems of the previous paragraphs can be considered as

a special case of a general theorem, which can be formulated analytically

without the use of probability. However, under appropriate assumptions

about the sequences which enter, it can have also a probability meaning.

Def. 9: Let a0, a1, a2, . . . and b0, b1, b2, . . . be two sequences of real

numbers such that

a0 = 0, 0 ≤ an ≤ 1, bn ≥ 0, n = 0, 1, 2, . . . ,
∑∞

i=n bn < ∞. Put

un = bn + a0un + a1un−1 . . .+ anu0, n = 0, 1, 2, . . ., i.e.
{
un

}
=

{
bn

}
+

{
an

}
⋆

{
un

}
(3)

Relation (3) is in the literature usually called renewal equation.

Rem. 7: For generating functions of sequences introduced in Def. 9

it holds

U(x) = B(x) + A(x)U(x) ≡ U(x) =
B(x)

1 − A(x)
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Renewal equation (cont.)

Def. 10: We call sequence {an} periodic if there exist λ > 1 such that

an = 0 ∀ n not divisible by λ. Largest λ with this property is called period.

Thm. 11: Let sequence {an} is aperiodic. Then it holds:

1 If
∑∞

n=1 an < 1 then
∑∞

n=1 un < ∞.

2 If
∑∞

n=1 an = 1, i.e. we can consider {an} to be distribution of some

rv describing return time of some aperiodic recurrent event ξ, then

lim
n→∞

un =



∑∞
n=0 bn

/∑∞
n=1 nan,

∑∞
n=1 nan < ∞,

0,
∑∞

n=1 nan = ∞.

3 If
∑∞

n=1 an > 1 then it holds for n → ∞

un ≈
B(x)

xn+1A ′(x)

∣∣∣∣∣∣∣
x=1

,

where x < 1 is the only root of equation A(x) = 1.
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Renewal equation (cont.)

Thm. 12: Let sequence {an} is periodical with period λ. Then it holds:

1 If
∑∞

n=1 an < 1 then
∑∞

n=1 un < ∞.

2 If µ = ∞ then limn→∞ un = 0.

3 If µ < ∞ and
∑∞

n=1 an = 1, i.e. if {an} describes distribution of return

time of some periodic recurrent event ξ, then it holds for any

0 ≤ j < λ:

lim
n→∞

unλ+j =
λ
∑∞

k=0 bkλ+j

µ
& lim

n→∞
1

n

∑n

j=1
uj =

∑∞
k=0 bk

µ
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Markov chains

Def. 11: A sequence of trials, each of them having the same finite or

infinite set of possible outcomes, will be called a Markov chain (MC), if

probability of each finite sequence of results is given by

P
(
Ej0 ,Ej1 , . . . ,Ejn

)
= aj0pj0j1 . . . pjn−1jn , (4)

where ak , k = 1, 2, . . . are probabilities of the starting outcome (zero’s

trial) and pjk , 1 ≤ j, k < +∞, is (for all trials the same) conditional

probability of the outcome Ek given the outcome Ej in previous trial.

Rem. 8: A sequence {ak } is called an initial distribution and probabilities

pjk are called transition probabilities. Recall that for independent events it

is enough to know just probabilities pi , while for a description of MC we

need top know a ≡ {ak } and P ≡
{
pjk

}
. Notice that

∑
j pij = 1 ∀i ∈ N.
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More general definition of Markov chain

Assume MC with states S1,S2, . . ., initial distribution {aj} and matrix of

transition probabilities P ≡
{
pij

}
. Introduce integer valued random

variables (ivrv’s) Xn, 0 ≤ n < ∞, using the equivalence

Xn has value j ⇔ MC is in time n in state Sj

Then it holds ∀i0, i1, . . . , in−1, i, j and ∀n ∈ N0

P
(
X0 = j

)
= aj

P
(
Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = x1,X0 = i0

)
= pij

Rem. 9: MC is then usually identified with a sequence of ivrv’s

constructed above. If we require fulfillment of the second equation only,

we get:

Def. 12: Sequence of ivrv’s Xn, n ∈ N0, is called Markov chain, if

∀i0, i1, . . . , in−1, i, j and ∀n ∈ N0 it holds

P
(
Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = x1,X0 = i0

)

= P
(
Xn+1 = j |Xn = i

)
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More general definition of Markov chain (cont.)

Rem. 10: Markov chains considered up to now had the property that pij

do not depend on n. Such MC are called homogeneous.

If P
(
Xn+1 = j |Xn = i

)
depends on n, we will denote it pij(n, n + 1) and to

call them non homogeneous Markov chains.

Rem. 11: Probabilities

P
(
X0 = j0,X1 = j1, . . . ,Xn = jn

)
= aj0pj0 j1 . . .pjn−1 jn

change

P
(
X0 = j0,X1 = j1, . . . ,Xn = jn

)
= aj0(0, 1)pj0 j1(1, 2) . . . pjn−1 jn(n − 1, n)

Ex. 10: Let Yk , 1 ≤ k < ∞, are independent ivrv’s and Xn =
∑n

k=1 Yk .

Then sequence
{
Xn

}
, 1 ≤ n < ∞ forms Markov chain. Prove it.

Ex. 11: Let Yk , 1 ≤ k < ∞, are independent ivrv’s and assume a

sequence of moving sums X⋆n =
∑r

k=1 Yn+k , r being fixed. Then a

sequence
{
X⋆n , 1 ≤ n < ∞

}
generally does not form Markov chain.
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Examples of Markov chains

1 Random walk on line.

2 Random walk on line with reflecting barriers.

3 Random walk on line with absorbing barriers.

4 Ehrenfest’s imaginary model. Let a distinguishable molecules are

randomly placed into two containers denoted A and B . In each step

we select randomly one molecule with the probability 1/a and move

it to the other container. State of the system is number of molecules

in container A .

5 Modified Ehrenfest’s imaginary model. Let a non distinguishable

molecules are randomly placed into two containers denoted

A and B . In each step we select randomly one container with the

probability 1/2 and move one randomly selected molecule from this

container to the other one. State of the system is number of

molecules in container A .

6 Sequence of independent random trials.

7 Gambler’s ruin problem. Rubick’s cube. Etc.
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Higher order probabilities

Thm. 13: Transition probability from state Sj to the state Sk after n-steps,

denoted p
(n)
jk

, is (j, k)-th element of matrix Pn. We define P0 = I.

Rem. 12: Matrix Pn can be calculated using, e.g.

“Sequential” power raising of transition matrix P .

Directly from principle.

Using Perron’s formula that uses eigenvalues of P. Etc.

Def. 13: Aside conditional probabilities p
(n)
jk

we introduce non conditional

(absolute) probability a
(n)
k

as probability of event describing that system

is in time n at state Sk .

Rem. 13: Evidently it holds:

a
(0)
k

= ak , a
(n)
k

=
∑

j
ajp

(n)
jk

and a
(n+m)
k

=
∑

j
a
(m)
j

p
(n)
jk

If there exists limn→∞ p
(n)
jk

independent on j, then there exists also

limn→∞ a
(n)
k

and are equal each to other.
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Notation

f
(n)
jj

. . . probability of the first return to state Sj in time n,

provided in time 0 we were in state Sj

f
(n)
ij

. . . probability of the first return to state Sj in time n,

provided in time 0 we were in state Si

p
(n)
jj
. . . probability of the event that system is in time n

at state Sj, provided at time 0 has been at state Sj

p
(n)
ij
. . . probability of the event that system is in time n

at state Sj, provided at time 0 has been at state Si

Thm. 14: Put f
(0)
jj

= 0, f
(0)
ij

= 0, p
(0)
jj

= 1, p
(0)
ij

= 0, p
(1)
jj

= pjj . Then it

holds

p
(n)
jj

= f
(0)
jj

p
(n)
jj

+ f
(1)
jj

p
(n−1)
jj

+ . . .+ f
(n−1)
jj

pjj + f
(n)
jj

p
(0)
jj
, 1 ≤ n < ∞

{
p
(n)
ij

}
=

{
f
(n)
ij

}
+

{
f
(n)
jj

}
⋆

{
p
(n)
ij

}
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Classification of states of MC

Thm. 15: Let us fix in a MC a state Sj.

a If the system is at the beginning at state Sj, then each visit to

state Sj is recurrent event.

b If the system is at the beginning at state Si, then each visit to

state Sj is recurrent event with delay.
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Classification of states of MC

Thm. 15: Let us fix in a MC a state Sj.

a If the system is at the beginning at state Sj, then each visit to

state Sj is recurrent event.

b If the system is at the beginning at state Si, then each visit to

state Sj is recurrent event with delay.

Theory of Markov chains is in principle theory of recurrent events.

New is the fact that we study many recurrent events in parallel !!!
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Classification of states of MC

Thm. 15: Let us fix in a MC a state Sj.

a If the system is at the beginning at state Sj, then each visit to

state Sj is recurrent event.

b If the system is at the beginning at state Si, then each visit to

state Sj is recurrent event with delay.

Theory of Markov chains is in principle theory of recurrent events.

New is the fact that we study many recurrent events in parallel !!!

Notions concerning classification of recurrent events naturally

transfer to the states of MC.

Thm. 16: Let us fix in a Markov chain state Sj.

State Sj is transient⇔ ∑∞
n=1 p

(n)
jj
< ∞. In such a case

∑∞
n=1 p

(n)
ij
< ∞ ∀i.

State Sj is null recurrent⇔ ∑∞
n=1 p

(n)
jj

= ∞ and limn→∞ p
(n)
jj

= 0. In

such a case limn→∞ p
(n)
ij

= 0 ∀i.
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Classification of states of MC (cont.)

Thm. 17: Let us fix in a Markov chain state Sj.

If state Sj is positive recurrent, then

lim
n→∞

p
(n)
jj

=
1

µj

, lim
n→∞

p
(n)
ij

=
fij

µj

, i , j, where fij =
∑∞

n=1
f
(n)
ij

If state Sj is positive recurrent with period λ, then

lim
n→∞

p
(nλ)
jj

=
λ

µj

and for all i , j and 0 ≤ ν ≤ λ − 1

lim
n→∞

p
(nλ+ν)
ij

=
λ
∑∞

k=0 f
(kλ+ν)
ij

µj

Further, it holds:

lim
n→∞

p
(n)
ij

=
fij

µj
, where p

(n)
ij

=
1

n

∑∞
k=1

p
(k )
ij
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Reducible and irreducible MC

Def. 14: We say that state Sk is accessible from state Sj, if there

exists n ≥ 0 such that p
(n)
jk
> 0.

Rem. 14: In the sense of Def. 14 is each state accessible from itself,

because p0
jj
= 1.

Def. 15: Nonempty set of events C is called closed, if no state outside

of C is accessible from any state inside C. Smallest closed set

containing given set of states is called its closure.

Thm. 18: Set of states C is closed⇔ pjk = 0 for all Sj ∈ C and Sk < C.

Def. 16: If a set with one point {Sj} is closed, i.e. if pjj = 1, then state Sj is

called absorbing state.

Rem. 15: If we omit in a matrix of transitional probabilities P of given

Markov chain all rows and columns corresponding to the states outside

closed set C, we obtain again stochastic matrix. Thus, C correspond

also to some markov chains, usually called subchain of the original

Markov chain.
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Reducible and irreducible MC (cont.)

Def. 17: MC is called irreducible if is does not contain aside the set of all

states another closed set of states. Otherwise it is called reducible.

Thm. 19: MC is irreducible⇔ each of its states is accessible from any

other state.

Thm. 20: Markov chain with finitely many states is reducible⇔
corresponding matrix of transitional probabilities P can be, after eventual

renumeration of states, written in the form

P =

(
P1 0

A B

)

where on diagonal we have square matrices.

Rem. 16: We say that states Sj and Sk are of the same type, if both are

transient, or both are null recurrent or positive recurrent, and in parallel

are both either periodical or non periodical with the same period λ.



J. ANTOCH MARKOV CHAINS AND PROCESSES – REMARKS AND EXAMPLES January 6, 2025, 9:48, 35/110

Reducible and irreducible MC (cont.)

Thm. 21: If state Sk is accessible from state Sj and state Sj is accessible

from state Sk , then they are of the same type.

Thm. 22: In the irreducible MC all the states are of the same type.

Thm. 23: In MC with finitely many states there does not exist null states

and it is not possible, that all states are transient ones.
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Stationary distribution

Def. 18: Assume irreducible MC described by a matrix of transitional

probabilities P. A distribution {vj} is called stationary distribution of this

chain if ∀j

vj =
∑

i
vipij (5)

This relation can be written in the matrix form as v = P⊤v, where

P⊤ denotes transposed matrix P .

Thm. 24: In irreducible MC there exists a stationary distribution⇔ all

states are positive recurrent. This stationary distribution v is unique and

∀ i, j it holds:

vj = lim
n→∞

p
(n)
ij
> 0 in non periodical case

vj = lim
n→∞

1

n

∑n

k=1
p
(k )
ij
> 0 in periodical case
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Stationary distribution (cont.)

Rem. 17: In an irreducible MC with finitely many states stationary

distribution exits, compare Thm. 23.

Def. 19: Matrix with non negative elements such that all row’s and

column’s sums are equal to one is called doubly stochastic.

Thm. 25: Assume irreducible MC with doubly stochastic matrix P. If

number of states n if finite, then stationary distribution {vj} is discrete

uniform, i.e. vi = 1/n for 1 ≤ i ≤ n. If number of states is infinite, then

stationary distribution does not exists.

Ex. 12:

Find stationary distribution for a random walk with two reflecting

barriers.

Decide for which values of p there exists a stationary distribution for

a random walk with one reflecting barrier in zero.
Find stationary distribution for Ehrenfest’s imaginary models.



J. ANTOCH MARKOV CHAINS AND PROCESSES – REMARKS AND EXAMPLES January 6, 2025, 9:48, 38/110

Reversible Markov chains

Def. 20: Assume irreducible MC (P , a). If there exist positive numbers πi

such that πipij = πjpji ∀i, j, we say that this MC is reversible.

Rem. 18: Assume irreducible reversible MC (P , a) with
∑
πi = 1. Then it

holds:

P(X0 = i,X1 = j,X2 = k) = P(X0 = k ,X1 = j,X2 = i) ∀ i, j, k

Thm. 26: If MC (P,A) is reversible, then corresponding vector π is its

stationary distribution if
∑
πi = 1.

Rem. 19: Thm. 26 does not hold in opposite direction, i.e., existence of

the stationary distribution does not imply that corresponding MC is

reversible.
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Reducible Markov chains

Rem. 20: Recall that nonempty set of states C is called closed, if no one

of states outside C is accessible from any state in C. Smallest closed set

containing a given set of states is called its closure.

Thm. 27: Assume reducible MC with finitely many states. Then

probability that chain will be absorbed in any closed subset of states

converges to 1 for n → ∞, and it does not matter in which state we

started.

Rem. 21: Assume irreducible MC with finitely many states described by

matrix of transitional probabilities P, and construct sequentially matrices

P2, P3, . . .
(
S 0

R Q

)

︸   ︷︷   ︸
P

(
S2 0

RS + QR Q2

)

︸                 ︷︷                 ︸
P2

(
S3 0

. . . Q3

)

︸      ︷︷      ︸
P3

. . .

Then limn→∞QN = 0 and pn
ij
→ 0 exponentially fast for each two

states Si and Sj which are transient.
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Reducible Markov chains (cont.)

Rem. 22: For each reducible MC described by matrix of transitional

probabilities P =

(
S 0

R Q

)
corresponding matrix I − Q has inversion and it

holds

I + Q + Q2 + . . . =
∞∑

k=0

Qk =
(
I − Q

)−1

Matrix
(
I − Q

)−1
is called fundamental matrix.

Thm. 28: Assume reducible MC with finitely many states and denote by

T subset of temporary states. Let uij be expected number of time periods

MC will spend in state Sj ∈ T given that it starts in state Si ∈ T . Then it

holds:

uij = I[i=j] +
∑

k∈T
pik ukj +

∑
k<T

pik ukj ≡ U = I + QU

so that

U =
(
I − Q

)−1
= N
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Reducible Markov chains (cont.)

Rem. 23: Analogously, let wij be variance of time periods MC will spend

in state Sj ∈ T given that it starts in state Si ∈ T , and W =
(
wi,j

)
i,j

. It

holds

W = N
(
2diag(N) − I

)
− N.2
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Transient states

Assume MC containing both transient and recurrent states. Let T

denotes a set of all transient states and C is any irreducible closed set of

recurrent states.

Let us fix state Sj ∈ T and denote:

xj = P
(
Sj → C

)
probability of absorption in C provided we started in

transient state Sj

1 − xj is probability of event that system, which is at the beginning at

state Sj ∈ T , either stay forever in T or will be absorbed in some

other closed set of states

x
(1)
j

=
∑

k∈C pjk is probability of absorption (in C) in the first step

yj is probability of the event that system, which is at the beginning at

state Sj ∈ T , will stay in T forever
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Transient states (cont.)

Thm. 29: Probabilities xj , j ∈ T , satisfy a set of equations

ξj −
∑
ν∈T

pjνξν = x
(1)
j

(6)

Thm. 30: Probabilities yj , j ∈ T , satisfy a set of equations

ηj =
∑
ν∈T

pjνην (7)

Thm. 31: Set of equations (6) has unique bounded solution⇔ set of

equations (7) does not have other bounded solution than the trivial one.

Thm. 32: Probabilities yj are equal to zero ∀ j ∈ T ⇔ a set of

equations (7) does not have other solution than the trivial one.

Thm. 33: In a chain with finitely many states all yj = 0 and xj form unique

solution of set of equations (6).
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Transient states (cont.)

Thm. 34: In a chain with states S0,S1,S2, . . . are all states transient⇔
set of equations

ηj =
∑∞
ν=1

pjνην, 1 ≤ j < ∞, (8)

has nontrivial bounded solution.
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Ising model – Notation

G . . . graph

V . . . vertexes of given graph

|V | = card(V)

E . . . edges of given graph

[i ↔ j] . . . indicator of edge between vertices i and j

Simplest situation : Each vertex i has two states σi ∈ {−1,+1} (black

and white)

Generally we assume states {1, . . . ,K } which can describe levels of

gray or colors, |V | = card(V), etc.

σ =
(
σ1, . . . , σ|V |

)
describes states of the system

State space S is {−1,+1}|V |, respectively {1, . . . ,K }|V |, etc.
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Ising model

Def. 21: Ising model is probability distribution π(σ; β) on state space

S = {−1,+1}|V |, where

π(σ; β) =
e−βH(σ)

Cβ
, (9)

H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
and Cβ =

∑
σ⋆∈S

e−βH(σ⋆)

Rem. 24: Function H(σ) is called (in physics) Hamiltonian and

represents “energy” of system’s configuration σ.

Rem. 25: For β > 0 are less probable those configurations σ having

H(σ) small, being a case that many neighbors have the same value

(spin). We often say that they have small energy (small information).

Def. 22: Mean spin (mean energy) of the configuration σ is

M(σ) =
1

|V |
∑

i∈V
σi
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Modifications of Ising model

Classical Ising model:

S = {−1,+1}|V | a H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
.


1 1 1

0 1 0

1 0 1

⇒


1 0 1

3 3 3

2 3 2




1 1 1

0 0 0

1 0 1

⇒


1 1 1

2 1 2

2 2 2



S H(S) S H(S)

Ising model with outside field:

S = {−1,+1}|V | a H(σ, h) =
∑

[i↔j]∈E
I
[
σi , σj

]
− h

∑

i∈V
σi .

For all β > 0 and h > 0 are the values of +1 preferred to the

values −1.
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Modifications of Ising model (cont.)

Pot’s model for “random patching” of images:

S = {1, . . . ,K }|V | a H(σ) =
∑

[i↔j]∈E
I
[
σi , σj

]
.

Ising model for gray-scale images:

S = {1, . . . ,K }|V | a H(σ) =
∑

[i↔j]∈E
f
(
σi , σj

)
,

a f(.) is any suitable distance, e.g.:

f(σi , σj) =
∣∣∣σi − σj

∣∣∣p , p ≥ 1.

Vertexes typically represent pixels and, unlike as in Pot’s model,

desire is that neighboring pixels have similar value of “gray”, not

being identical.
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Application in image analysis

Problem:

Assume image represented by a matrix of pixels of size L1 × L2

Vertexes correspond to pixels

Edges connect neighboring pixels

States {1, . . . ,K } represent grey levels

State space S = {1, . . . ,K }V

Image is represented by configuration σ =
(
σ1, . . . , σ|V |

)
∈ S

We observe image Y including noise, i.e.

Y = σ+ ε, where ε1, . . . , ε|V | ∼ N
(
0, δ2

)

Problem: To reconstruct true image σ provided we observe Y and

assume that σ has prior distribution C−1
β

e−βH(σ).

Basic tool: Bayesian statistics and Markov chains including random

walk on graph(s).
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Application in image analysis (cont.)

Joint distribution of the vector (σ,Y) is

L(σ,Y) ∼
e−βH(σ) ·∏i∈V exp

{
− (Yi − σi)

2/2δ2
}

constant that depends on (σ,Y)

Posterior distribution is

L(σ |Y) ∼
exp

[
− βH(σ) +

(
2δ2)−1 ∑

i∈V
(
2Yiσi − σ2

i

)]

function depending on (σ, β,Y)

What can we do:

To generate from a posterior distribution (σ |Y). Large enough

sample representing configurations that can be considered likely

representations of image.

An alternative is to find the most likely image, i.e. to find the

configuration σ̂ that maximizes P(σ |Y).
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Metropolis algorithm

Goal To generate reversible Markov chain with prescribed stationary

distribution π, πi > 0 ∀i, corresponding to the countable state space S
Q be any symmetric matrix of transition probabilities qij on S
a be any probability vector (ai ≥ 0,

∑
i ai = 1) on S

Alg. 1: Metropolis algorithm

State Sinit is randomly selected using a
[
Y0 = Sinit

]

In each of the following steps, say step i when we are in state Scur

First, select new candidate state Scan using Q

Second, accept Scan as the next state with probability

α = min
(
1, πcan/πcur

) [
Yi = Scan

]
; otherwise stay at Scur

[
Yi = Scur

]

Rem. 26: Markov chain constructed in this way, so called Metropolis

Markov chain for π with proposal matrix Q, has transition probabilities

pij =


qij min

(
1, πj/πi

)
j , i

1 −∑
k,i qik min

(
1, πk/πi

)
j = i
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Metropolis– Hastins algorithm

Thm. 35: Assume that Q is an irreducible Markov chain on S, and π is

strictly positive probability distribution on S. Then the Metropolis chain

generated by the Metropolis algorithm is irreducible and reversible with

respect to π.
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Metropolis– Hastins algorithm

Thm. 35: Assume that Q is an irreducible Markov chain on S, and π is

strictly positive probability distribution on S. Then the Metropolis chain

generated by the Metropolis algorithm is irreducible and reversible with

respect to π.

If proposal matrix Q is not symmetric, we can use, among others, so

called Metropolis – Hastings algorithm

Alg. 3: Metropolis – Hastings algorithm Let π, πi > 0 ∀i, be a “target”

distribution on the discrete state space S. Let Q be any transition

probability matrix on S and define for any i, j, i , j,

tij = πjqji/πiqij

Let A : [0,∞]→ [0, 1] be any function such that

A(z) = zA(1/z) ∀z ∈ [0,∞]. Finally, define

pij =


qijA

(
tij
)

j , i

1 −∑
j,i qijA

(
tij
)

j = i
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Metropolis– Hastins algorithm cont.

Show:

Assume qij > 0 ∀i, j. Then P is transition matrix of a Markov chain

and is reversible with respect to π.

If Q is irreducible then P is also irreducible.

Assume that qij = 0 for some (i, j). Then P is still well defined and

reversible with respect to π. However, P may not be irreducible in

this case even if Q is irreducible.

Show that min{1, z} can be used for A(z), and that this leads to the

classical Metropolis algorithm when Q is symmetric. In what sense

is this the “maximal” choice of A(z)? Intuitively, why this is

important?

What functions A(z) = za/
(
1 + zb

)
can be used?
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Exponential distribution – repetition

Def. 23: We say that random variable (rv) X follows exponential

distribution (X ∼ Exp(λ)), if corresponding density has the form

f(x; λ) =


λe−λx x > 0, λ > 0

0 otherwise

Thm. 36: Let X ∼ Exp(λ). Then F(x) = 1 − e−λx , E X = λ−1 and

var X = λ−2.

Thm. 37: No memory property. Let X ∼ Exp(λ). We interpret X as

description of (random) life time of some unit. Then probability of the

event that unit will survive time y(> 0) conditioned by the event that

survived time x(> 0), does not depend on x, i.e.

P(X > x + y |X > x) = P(X > y), ∀ x , y > 0 (10)

Rem. 27: Exponential distribution is the only continuous distribution for

which (10) holds. Among discrete distributions the only one with the

same property is geometric distribution.
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Intensity function

Def. 24: Let rv X has density f(x) and df F(x). Then the function

Λ(x) =
f(x)

1 − F(x)
, x ∈ R1.

is called intensity function.

Rem. 28: Let rv X , which we interpret as a survival time of some

process, has density f(x) and distribution function F(x). Then it holds:

P
(
x < X ≤ x +∆ |X > x

)
=

P(x < X ≤ x +∆)

P(X > x)
=

F(x +∆) − F(x)

1 − F(x)

=
F(x +∆) − F(x)

1 − F(x)

∆

∆

∆→0≈ ∆
f(x)

1 − F(x)

Rem. 29: Let rv X ∼ Exp(λ). Then Λ(x) = λ. Exponential distribution is

the only continuous distribution with constant intensity.
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Linear process of birth and death

Assume a system with finitely or countably many states. Assume,

moreover, that from a given state Sn we can move with non negligible

probability only to the neighboring states, i.e.

Sn → Sn+1 . . . birth

Sn → Sn−1 . . . death

As concerns other neighbors, we can move to them only with

probability infinitesimally small.

Let the transitional probabilities in a small time interval (t , t + h) are

P
(
Sn → Sn+1

)
= λnh + o(h)

P
(
Sn → Sn−1

)
= µnh + o(h)

P
(
Sn → Sn±j , j > 1

)
= o(h)
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Linear process of birth and death (cont.)

Denote Pn(t) probability of the event that system is in time t in state Sn.

Goal is to determine Pn(t + h) and to find pn = limt→∞ Pn(t).

Probabilities Pn(t) satisfy following system of differential equations:

P′0(t) = −λ0P0(t) + µ1P1(t) (11)

P′n(t) = −
(
λn + µn

)
Pn(t) + µn+1Pn+1(t) + λn−1Pn−1(t), n ≥ 1

If system is at time 0 at state Si, then following initial conditions hold:

Pi(0) = 1 and Pn(0) = 0 for n , i.

Probabilities pn exist, do not depend on initial conditions and satisfy

system of linear equations

0 = −λ0p0 + µ1p1 (12)

0 = −
(
λn + µn

)
pn + µn+1pn+1 + λn−1pn−1 n ≥ 1

which we receive if we set in (11) P′n(t) = 0, n ≥ 0, and replace

Pn(∞) by pn
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Linear process of growth and death (cont.)

Model

P
(
Sn → Sn+1

)
= λnh + o(h)

P
(
Sn → Sn−1

)
= µnh + o(h)

P
(
Sn → Sn±j , j > 1

)
= o(h)

Q S0 S1 S2 S3 . . .

S0 · λ0 · · ·
S1 µ1 · λ1 · ·
S2 · µ2 · λ2 ·
S3 · · µ3 · λ3

Add diagonal element to Q so that rows sums to zero

Q⋆ S0 S1 S2 S3 S4 . . .
∑

S0 −λ0 λ0 0 0 . . . . . . 0

S1 µ1 −(λ1 + µ1) λ1 0 0 . . . 0

S2 0 µ2 −(λ2 + µ2) λ2 0 . . . 0

S3 0 0 µ3 −(λ3 + µ3) λ3 . . . 0
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Linear process of growth and death (cont.)

Pn(t) probability of the event thate system is at time t at state Sn

P′
0
(t) = −λ0P0(t) + µ1P1(t)

P′n(t) = −
(
λn + µn

)
Pn(t) + µn+1Pn+1(t) + λn−1Pn−1(t)

Q⋆⊤ S0 S1 S2 S3 S4

S0 −λ0 µ1 0 0 0 . . .

S1 λ0 −(λ1 + µ1) µ2 0 0 . . .

S2 0 λ1 −(λ2 + µ2) µ3 0 . . .

S3 0 0 λ2 −(λ3 + µ3) µ3 . . .

. . . . . . . . . . . . . . . . . . . . .∑
0 0 0 0 0 . . .

System of retrospective Kolmogorov’s differencial equations has (matrix)

form

P′(t) = Q⋆⊤ P(t)

kde P ′(t) =
(
P′

0
(t),P′

1
(t), . . .

)⊤
a P(t) =

(
P0(t),P1(t), . . .

)⊤
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Linear process of birth and death (cont.)

Model. Assume system composed of elements which can both split and

vanish. Assume that in a small time interval of the length h probability of

the event, that one element will split into two is equal to λh + o(h), and

probability that will vanish (die) is equal to µh + o(h), where λ and µ are

constants characterizing behavior of the elements of considered system.

Rem. 30: When behavior of individuals (elements) of system is

independent each from other, we have model of birth and death with

parameters λn = nλ, µn = nµ.

Thm. 38: System of equations (11) for considered process has solution

P0(t) = A(t)

Pn(t) =
(
1 − A(t)

)(
1 − B(t)

)(
B(t)

)n−1
, n ≥ 1

A(t) =
µ
(
e(λ−µ)t − 1

)

λe(λ−µ)t − µ
and B(t) =

λ
(
e(λ−µ)t − 1

)

λe(λ−µ)t − µ
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Telephone central with infinitely many lines

Ex. 13: Assume telephone central with infinitely many lines. We say that

system is in state Sn if exactly n lines are occupied.

Assume moreover that:

Probability of event that one telephone call will terminate during the

interval (t , t + h) is equal to µh + o(h).

Lengths of calls are mutually independent.

Probability of event that in time interval (t , t + h) new line will be

occupied is equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that limit probabilities pn follow Poisson distribution with

parameter λ/µ.
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Telephone double-booth with unlimited queue

Ex. 14: Assume system that can serve at one moment at most two

clients as, e.g., telephone double-booth. Clients that cannot be served

form one unlimited queue. We say that the system is in state Sn if

number of clients being served and in a queue is exactly n.

Moreover, we assume that:

Probability of event that client which is served at time t will terminate

call in interval (t , t + h) is equal to µh + o(h).

Lengths of service times are independent.

Probability that during interval (t , t + h) will arrive new customer is

equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Provided λ < 2µ, show that for limit probabilities pn holds

pn = p0

(
λ

µ

)n
1

2n−1
, kde p0 =

2µ − λ
2µ+ λ

.
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Model of car park without a queue

Ex. 15: Assume car park with finite capacity N. State of the system is

number of cars in car park. Queue is not formed.

Moreover, we assume that:

Probability that car, which in time t parks, will depart in interval

(t , t + h) is equal to µh + o(h).

Lengths of staying at car park are independent.

Probability that during interval (t , t + h) will arrive new car is equal

to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that limit probabilities pn follow truncated Poisson distribution

with parameter λ/µ.
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Telephone booth with limited queue

Ex. 16: Assume system that can serve at one moment at most one client

as, e.g., telephone booth. Clients that cannot be served form one queue

of limited length N. We say that the system is in state Sn if number of

clients being served and in a queue is exactly n.

Moreover, we assume that:

Probability that client which is calling at time t will terminate in

interval (t , t + h) is equal to µh + o(h).

Lengths of calls are independent.

Probability that during interval (t , t + h) will arrive new customer is

equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that for limit probabilities pn it holds

pn =

(
λ

µ

)n

p0, kde p0 = µN+1 λ − µ
λN+2 − µN+2

.
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Problem of one repairman and many machines

Ex. 17: Assume M machines serviced by one repairman. We say that

system is in state Sn if exactly n machines are not working.

Moreover, we assume that:

Probability that machine which is in time t repaired will start to work

in interval (t , t + h) is equal to µh + o(h).

Lengths of service times (repairs) are independent.

Probability that machine, which is in time t working will break in

interval (t , t + h), is equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).

Show that limit probabilities pn follow truncated Poisson distribution

with parameter µ/λ, i.e. for k = 1, . . . ,M it holds

pM−k =
1

k !

(
µ

λ

)k

pM , kde pM =

[
1 +

∑M

k=1

1

k !

(
µ

λ

)k
]−1



J. ANTOCH MARKOV CHAINS AND PROCESSES – REMARKS AND EXAMPLES January 6, 2025, 9:48, 66/110

Model describing work of several welders

Ex. 18: Assume N welders which, independently each of other, take a

current in random time intervals. We say that system is in state Sn if

exactlyn welders are working.

Moreover, we assume that:

Probability that welder, which is in time t working, will stop welding

in interval (t , t + h) is equal to µh + o(h).
Lengths of service times (weldings) are independent.

Probability that welder, which in time t does not work, will start

working in interval (t , t + h) is equal to λh + o(h).

Tasks:

Form system of differential equations for probabilities Pn(t).
Show that limit probabilities pn follow binomial distribution

Bi
(
N, µ/(µ+ λ)

)
, i.e.

pn =

(
N

n

) (
µ

µ+ λ

)N−n (
λ

µ+ λ

)n

, n = 0, 1, . . . ,N.
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Model of kinetics of irreversible chemical reaction

Ex. 19: Assume reagent A , molecules of which irreversibly change in

molecules of product B (product). Speed of reaction is described by

constant κ > 0. Let concentration of reagent A in time t is described by rv

X(t) and X(0) = n0.

From physical principle assume that:

Probability that one molecule will change in during (t , t + h)
provided n0 − n molecules changed up to time t , i.e. during

interval (0, t ], is equal to nκh + o(h)

Probability of change of more than one molecule during interval

(t , t + h) is equal to zero.

Reagent A and product B are statistically independent.

Inverse reaction B → A arise with probability zero.

Tasks:

Form system of differential equations for probabilities Pn(t).
Show that limit probabilities pn follow binomial distribution

Bi
(
n0, e

−κt
)
.
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Counting process

Def. 25: Stochastic process N(t), t ≥ 0 is called counting process if it

represents overall number of “events” that occurred up to time t .

Rem. 31: For counting process must always hold that

N(t) ≥ 0.

N(t) is integer valued.

If s < t , then N(s) ≤ N(t).

For s < t N(t) − N(s) equals to the number of events that occur in

the interval (s, t ].

Def. 26: Counting process N(t), t ≥ 0, is called process with

independent increments if number of events observed in

nonintersecting intervals are independent random variables.

Def. 27: Counting process N(t), t ≥ 0, is called process with

stationary increments if distribution of number of events in any interval

depends only on its length and not on its placement.
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Counting process

t

N(t)

t0 t1 t2 t3

1

2

3

Course of counting process N(t).
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Counting process

t

N(t)

t0 t1 t2 t3

1

2

3

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
X1 X2 X3

Times between arrivals of clients and corresponding counting process N(t).
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Counting process

t

t

N⋆(t)

t0 t11 t21 t12 t31 t32 t22

Y1

Y2

Y3

ti1 time of opening ith process

ti2 time of closing ith process

Yi duration of the ith process

t0 t11 t21 t12 t31 t32 t22

Service times Yi and course of the counting process describing occupacy of the system
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Homogeneous Poisson process

Def. 28: Counting process N(t), t ≥ 0, is called homogeneous Poisson

process with intensity λ, λ > 0 if:

i N(0) = 0

ii Process has independent increments.

iii Number of events in any interval of length t follows Poisson

distributin with mean λt , i.e.

P
(
N(t + s) − N(s) = n

)
= e−λt

(λt)n

n!
, n = 0, 1, . . .

Def. 29: Counting process N(t), t ≥ 0, is called homogeneous Poisson

process with intensity λ, λ > 0, if:

i N(0) = 0

ii Process has stationary and independent increments.

iii P
(
N(h) = 1

)
= λh + o(h)

iv P
(
N(h) ≥ 2

)
= o(h)
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Homogeneous Poisson process – properties

Thm. 39: Definitions 28 and 29 of Poisson process are equivalent.

Rem. 32: Conditions (ii) – (iv) can be replaced by the following set of

equivalent conditions:

iii) Process has independent increments.

iv) P
(
N(t + h) − N(t) = 1

)
= λh + o(h)

v) P
(
N(t + h) − N(t) ≥ 2

)
= o(h)

Rem. 33: Poisson process has stationary increments and EN(t) = λt .

Rem. 34: The fact that N(t) follow Poisson distribution is a consequence

of the approximation of binomial distribution by the Poisson one.
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HPP – times between events

Def. 30: Assume Poisson process with intensity λ. Denote by

Tn, n = 1, 2, . . . time between n-th and (n − 1)-st event, where T0 = 0.

Sequence
{
Tn

}
is called sequence of times between the events.

Thm. 40: Sequence of times between the events follow exponential

distribution with intensity λ.

Thm. 41: Assume sequence of times between events
{
Tn

}
. let

Sn =
∑n

i=1 Ti. Then Sn follows gamma distribution Γ(n, λ) with density

fSn
(t ; n; λ) =

λn

(n − 1)!
tn−1e−λt = λ · e−λt (λt)

n−1

(n − 1)!

Hint. Recall renewal process (9), from where

N(t) ≥ n ⇐⇒ Sn ≤ t

and differentiate corresponding distribution function.
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HPP as process of birth and death

Ex. 20: Assume system which changes according to some random

influences as, e.g., telephone calls, radiation, etc. Denote Pn(t)
probability of event that during time interval of the length t we observed

exactly n changes.

Assume, moreover:

We observe stationary process, i.e. observed situation depend

neither on placement on time horizon nor on its length.

Not taking into account the number of events in interval (0, t ] let

probability of one change in interval (t , t + h) be λh + o(h), and

probability of more than one event be o(h).

Rem. 35: Notice that changes in intervals (0, t ] and (t , t + h) are

independent.

Tasks:

Form differential equations for probabilities Pn(t).

Show that probabilities Pn(t) follow Poisson distribution with

parameter λt .
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Nonhomogenous Poisson process (NHPP)

Def. 31: Counting process N(t), t ≥ 0 is called homogeneous Poisson

process with intensity λ, λ > 0, if:

i) N(0) = 0

ii) Process has stacionary and independent increments

iii) P
(
N(h) = 1

)
= λh + o(h)

iv) P
(
N(h) ≥ 2

)
= o(h)

Def. 32: Counting process N(t), t ≥ 0 is called nonhomogeneous

Poisson process with intensity function λ(t) > 0, t > 0, if:

i) N(0) = 0.

ii) Process N(t), t ≥ 0 has independent increments

iii) P
(
N(t + h) − N(t) = 1

)
= λ(t)h + o(h)

iv) P
(
N(t + h) − N(t) ≥ 2

)
= o(h)
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NHPP – properties

Thm. 42: Let N(t) and M(t) be independent NHPP with intensity

functions λ(t) a µ(t). Then for random process R(t) = N(t) + M(t)
holds:

i) It is NHPP with intensity κ(t) = λ(t) + µ(t)

ii) Let in time t appeared an event of the process R(t). Then,

independently what happened up to time t , probability that it has

been realizatin of the process N(t) is equal λ(t)/(λ(t) + µ(t))

Thm. 43: Assume process M/G/∞, i.e. the arrivals of clients are

described by Poisson process, infinity many of chanels and general

distribution of service times. Then output from this system is NHPP

with intensity λ(t) = λG(t).
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Compound Poisson Process

Random process X(t) is called Compound Poisson Process if it can be

represented as

X(t) =
∑N(t)

i=1
Yi , t ≥ 0,

where N(t), t ≥ 0 is Poisson process and Yi are iid rv’s independent of

N(

If Yi = 1 then X(t) ≡ N(t)

E X(t) = λt E Y1 and var X(t) = λt E Y2
1

If customers arrive in cars randomly according to some HPP and

numbers of customers in each car follow the same distribution, and

are independent on N(t), then X(t) is compound Poisson process

describing number of customers that arrived until the time t

If customers leave supermarket randomly according to some HPP

and the amont of money spent in the supermaket follows the same

distibution, and are independent on N(t), then X(t) is compound

Poisson process describing amount of money spent up to time t
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Queuing system

Def. 33: Queuing system will be characterized by:

One or more parallel service station(s), to which arrive customers.

When serving is finished, customer leaves system and next one in

line, if there is any, enters service.

Clients that cannot be served (because system is fully occupied)

form one queue (line).

Times between arrivals are iid rv’s with distribution A .

Service times (time in a queue is not included) are iid rv’s with

distribution B .

Rem. 36: Distribution of arrival/service times is usually one of:

exponential . . . M (Markovian)

deterministic . . . D (Deterministic)

general . . . G (General)

Erlang Γ(n, λ) . . . Sn (Erlang)
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M/M/1, M/M/c and M/M/∞

Def. 34: Queuing system M/M/x is characterized by the fact that arrivals

of clients follow homogeneous Poisson process with intensity λ and

service times follow exponential distribution.

Thm. 44: System M/M/x can be described by the general process of

birth and death.

Rem. 37: For model:

M/M/1 : λj = λ & µj = µ ∀j ∈ N0

M/M/c : λj = λ ∀j ∈ N0 & µj = jµ, 0 ≤ j < c, µj = cµ, c ≤ j < ∞
M/M/∞ : λj = λ & µj = jµ ∀j ∈ N0

For examples and details see models describing telephone central,

telephone booths, etc.
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M/M/1, M/M/c and M/M/∞

Thm. 45: For systems M/M/x it holds:

M/M/1 : If λ/µ < 1 then limit probabilities pn follow geometric

distribution with parameter 1 − λ/µ
M/M/c : If λ/(cµ) < 1 then limit probabilities pn follow truncated

Poisson distribution with parameters
(
c + 1, λ/µ

)

M/M/∞ : Limit probabilities pn follow Poisson distribution with

parameter λ/µ

Thm. 46: For system M/M/c it holds that departures from the stabilized

system with unlimited queue without any departures from it

with intensities λ (input) and µ (output) are described by homogeneous

Poisson process with parameter λ!

Rem. 38: Systems M/M/c may be “easily” combined and under the

assumption of stability can be described by appropriate Markov process.
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M/M/1

Rem. 39: Assume model M/M/1. We know from Theorem 45 that limit

(stationary) probabilities pn describing number of clients in steady state

follows geometric distribution with parameter 1 − λ/µ. It follows from

basic properties of geometric distribution that:

Mean of rv describing number of clients in system is λ
µ

/(
1 − λ

µ

)

Variance of rv describing number of clients in system is λ
µ

/(
1 − λ

µ

)2

Mean length of the queue is
∑

j jpj+1 =
(
λ
µ

)2/(
1 − λ

µ

)

Rem. 40: Notice that difference between mean number of clients in

system and mean length of the queue is λ/µ, not 1. Why?
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M/M/1 (cont.)

Rem. 41: Assume model M/M/1.

Then time Tn, which client, who entered as the n-th one, will spend in the

system follow gamma distribution Γ(n + 1, µ), because it consists of the

remaining time of client who is served and service times of waiting clients

including the entering one.

Distribution of the waiting time T of randomly chosen client is, according

to the complete probability theorem, mixture of distributions of Tn with

weights given by the steady state probabilities pn. Show that it holds:

P(T ≤ t) = 1 − e−(µ−λ)t , t ≥ 0

so that the mean time spent in the system is equal to 1
µ−λ .
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Simulation of M/M/1

for (i in 1:maximálnı́ počet zákaznı́ků){

if (aktcas >= maximálnı́ čas){break}

# simulace končı́, pokud je dosaženo maximálnı́ho času

while (min(časy naplánovaných událostı́) < čas přı́chodu

dalšı́ho zákaznı́ka){

# někdo skončı́ obsluhu dřı́v, než dorazı́ dalšı́ zákaznı́k

aktcas <- min(časy naplánovaných událostı́)

stav <- stav - 1

záznam události, odebránı́ zákaznı́ka z˜obsluhy

# začátek obsluhy dalšı́ho zákaznı́ka

# (uvolnila se obslužná stanice)

if (fronta nenı́ prázdná){

délka obsluhy <- obsluha(aktcas,stav,stanice)

začátek obsluhy zákaznı́ka, aktualizace fronty

}

}

# nejbližšı́ událostı́ je přı́chod i-tého zákaznı́ka

aktcas <- čas přı́chodu dalšı́ho zákaznı́ka

stav <- stav + 1

záznam události

# pokud je volná stanice, bude zákaznı́k rovnou obsluhován

if (některá stanice je volná){začátek obsluhy zákaznı́ka}

else{zařazenı́ zákaznı́ka na konec fronty}

# určenı́ času přı́chodu dalšı́ho zákaznı́ka

přı́chod dalšı́ho zákaznı́ka <- aktcas + prichod(aktcas,stav)}
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M/M/1

aktuální čas
(událost č. k)

nejbližší událost
(č. k+1)

další událost
(č. k+2)

příchod
stav + 1

odchod
stav - 1

příchod
stav + 1

Scheme of considered simulation algorithm.
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M/M/1
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Histogram of waiting times of clients that had to wait positive

time in M/M/1 system with parameters λ = 1 and µ = 1.2.
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M/M/1 + M/M/1 ≡ Tandem

Def. 35: Serial connection of two independent queuing systems M/M/1 is

called tandem

µ1 µ2

λ
S1 S2

Thm. 47: In tandem connecting two independent queuing systems

M/M/1 such that ρi = λ/µi < 1, i = 1, 2, there exists a stationary

distribution π and is described by a product of stationary distributions for

individual nodes, i.e.

π

(
k1, k2

)
=

2∏

i=1

πi

(
ki

)
=

2∏

i=1

ρ
ki

i

(
1 − ρi

)
ki ∈ N0

Rem. 42: Similar result holds for a serial connection of J independent

queuing systems obsluhy M/M/ci , i = 1, . . . , J, if λ/
(
cµi

)
< 1.
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Jackson(ian) networks

A network of m interconnected queues is known as a Jackson(ian) open

network if it meets the following conditions:

1 Arrivals to the system follows homogeneous Poisson process with

intensity α > 0; and in the same time each customes is randomly

assigned to the node j with probability p0j ≥ 0,
∑J

j=1 p0j = 1

2 Any external arrivals to node i form a Poisson process

3 All service times are exponentially distributed and the service

discipline at all queues is first-come, first-served

4 Customer completing service at queue i will either move to some

new queue j with probability pij or leave the system with

probability pi0 = 1 −∑m
j=1 pij, which is non-zero for some subset of

the queues (nodes)

5 Utilization of all of the queues is less than one (server utilization

means the proportion of time the server is busy)
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Jackson(ian) networks

A network of m interconnected queues is known as a Jackson(ian) open

network if it meets the following conditions:

1 Arrivals to the system follows homogeneous Poisson process with

intensity α > 0; and in the same time each customes is randomly

assigned to the node j with probability p0j ≥ 0,
∑J

j=1 p0j = 1

2 Any external arrivals to node i form a Poisson process

3 All service times are exponentially distributed and the service

discipline at all queues is first-come, first-served

4 Customer completing service at queue i will either move to some

new queue j with probability pij or leave the system with

probability pi0 = 1 −∑m
j=1 pij, which is non-zero for some subset of

the queues (nodes)

5 Utilization of all of the queues is less than one (server utilization

means the proportion of time the server is busy)

Rem. 44: λi = αp0i +
∑J

j=1 λjpji , i = 1, . . . , J
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Jackson(ian) networks
could depend on the length of the waiting lines.

Figure 2.2
Opened and closed Jackson(ian) networks
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Jackson(ian) open network for model M/M/c

Rem. 45: Recall, that for a model:

M/M/1 : λj = λ & µj = µ ∀j ∈ N0

If λ/µ < 1 then stationary distribution pn follows geometric

distribution with parameter 1 − λ/µ
M/M/c : λj = λ ∀j ∈ N0 & µj = jµ, 0 ≤ j < c, µj = cµ, c ≤ j < ∞
If λ/(cµ) < 1 then stationary distribution pn follows truncated

Poisson distribution with parameters
(
c + 1, λ/µ

)

Thm. 48: In opened Jackson(ian) network composed of J nets M/M/1

such that ρi = λ/µi < 1, i = 1, . . . , J, there exists stationary distribution π

and is given by a product of individual stationary distributions for

respective nets, i.e.

π

(
k1, . . . , kJ

)
=

J∏

i=1

πi

(
ki

)
=

J∏

j=1

ρ
ki

i

(
1 − ρi

)
, ki ∈ N0

Rem. 46: Similar result holds for opened Jackson(ian) network of J

queues of the type M/M/ci , i = 1, . . . , J, provided λi/(ciµi) < 1
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Cost equilibrium

Assume stationary system

N(t) . . . number of clients that entered system up to time t

λa . . . average arrival rate of entering customers

ARE . . . average rate at which system earns

AAP . . . average amount an entering customer pays

Cost equilibrium

λa = limt→∞
N(t)

t

ARE = λa · AAP

(Recall SN =
∑N

i=1 Xi, where both Xi and N are random)
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Little’s law (formula)

ARE . . . average rate at which system earns

AAP . . . average amount an entering customer pays

L . . . mean number of clients in system

LQ . . . mean number of clients in queue

W . . . mean time client spents in system

WQ . . . mean time client spents in queue

• Assume that each client will pay 1 US for unit of time spent in system.

Then from cost equilibrium ARE = λa · AAP we get

L = λaW

• If client pays 1 US for unit of time spent in queue, the

LQ = λaWQ

• If client paus 1 US for unit of time spent in service, then

average number of clients in service= λaE(S)
where E(S) is mean time client spents in service.

Rem. 47: There relations are independent of distribution of arrival times,

service times, number of servers, order of service, etc.
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Branching process alias How viruses can propagate

Model. Assume individuals that can give origin to new individuals of the

same type with probabilities

P(U = j) = pj , j = 0, 1, 2, . . . (13)

and probability generating function (PGF) P(x) =
∑∞

j=0 pjx
j.

At the beginning (generation 0) there exists only one individual. Let

immediate descendants of n-th generation form (n + 1)-st generation

and let descendents behave independently each from other.

Problems.

Find distribution of members in the n-th generation.

Find limit (n →∞) probability of event that population will die out.
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Branching process (cont.)

Model. Let X0 = 1, X1(≡ U) follow (13) with PGF P1(x) ≡ P(x). Let Xn

describes number of elements in n-th generation.

Let number of descendants of each of the X1 elements of first generation

is again rv with distribution (13). Let these rv’s are mutually independent

and independent on X1, i.e.

X2 = U1 + . . .+ UX1

Analogously, X3 are descendants of the second order of the individuals

of first generation, i.e. X1 rv’s with distribution as X2, resp. descendents

of X2 rv’s with distribution as X1, i.e. (13) etc.

Thm. 49: Probability generation function Pn(x) of Xn fulfil recurrent

relation

Pn+1(x) = P
(
Pn(x)

)
= Pn

(
P(x)

)

and, moreover, it holds

E Xn =
(
E X1

)n
, varXn =


σ2µn−1(1−µn

1−µ ), µ , 1,

nσ2, µ = 1,
n = 1, 2, . . .
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Markov processes with discrete states and continuous time

Def. 36: Markov processes with discrete states and continuous time

will be for us random process which moves from one state to another

according to some Markov chain and the times which spends in different

states follow exponential distribution. Moreover, (random) times it spends

in respective states are independent rv’s.

Rem. 48: By the other words, it is a random process such that:

Time spend in state i follow exponential distribution with mean

say 1/vi .

Process leaves state i and enters to state j with probability Pij, and it

holds

Pii = 0 ∀ i &
∑

j

Pij = 1 ∀ i.
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Basic characterizations of random variables

Rem. 49: Recall that any random variable (rv) can be unambiguously

characterized by the following characteristics:

density f(x), x ∈ R1

distribution function F(x) = P(X ≤ x), x ∈ R1

characteristic function ϕ(t) = E eitX , t ∈ R1

Some “special” types of random variables (rv’s) can be also

characterized by another characteristics as, e.g.

Integer valued rv’s are unambiguously characterized by

corresponding generating function P(x) =
∑∞

i=0 pix
i , x ∈ R1

Non-negative rv’s are unambiguously characterized by

corresponding reliability function (survival function)

R(x) = P(X > x) = 1 − F(x), x ∈ R1, or

intensity function λ(x) =
f(x)

1−F(x)
, x > 0, or

cumulative intensity function Λ(x) =
∫ x

0
λ(t) dt
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Basic characterizations and characteristics of random

variables

Another useful characterizations can be obtained using

characteristic function ϕ(t) = E eitX , t ∈ R1, and its logarithm

moment generating function m(t) = E etX , t ∈ R1, and its logarithm
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Conditional probability

Def. 37: Assume probability space
(
Ω,A,P

)
. Let events A ,B ∈ A and

P(B) > 0. Then conditional probability of event A under condition B is

defined as

P(A |B) =
P(A ∩ B)

P(B)
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Conditional characteristics for discrete rv’s

Def. 38: Let X and Y are two discrete rv’s. Then:

conditional density of X given that Y = y is defined by

pX |Y (x |y) = P
(
X = x |Y = y

)
=
P
(
X = x ,Y = y

)

P
(
Y = y

) =
pX ,Y (x , y)

pY (y)

conditional distribution function of X given that Y = y is defined by

FX |Y (x |y) = P
(
X ≤ x |Y = y

)
=

∑

z≤x

pX |Y (z|y)

conditional expectation of X given that Y = y is defined by

E
[
X |Y = y

]
=

∑

x

x · P
(
X = x |Y = y

)
=

∑

x

x · pX |Y (x |y)

conditional variance of X given that Y = y is defined by

var
[
X |Y = y

]
= E

[(
X − E

[
X |Y = y

])2|Y = y

]
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Conditional characteristics for continuous rv’s

Def. 39: Let X and Y are two continuous rv’s. Then:

conditional density of X given that Y = y is defined by

fX |Y (x |y) =
f(x , y)

fY (y)

conditional distribution function of X given that Y = y is defined by

FX |Y (x |y) = P
(
X ≤ x |Y = y

)
=

∫ x

−∞
pX |Y (z|y) dz

conditional expectation of X given that Y = y is defined by

E
[
X |Y = y

]
=

∫ ∞

−∞
x · fX |Y (x |y) dx

conditional variance of X given that Y = y is defined by

var
[
X |Y = y

]
= E

[(
X − E

[
X |Y = y

])2|Y = y

]
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Generating functions

Def. 40: Let a0, a1, . . . be a sequence of real numbers. If a series

A(x) = ∑∞
j=0 ajx

j converge in some neighborhood of zero, we call A(x)
corresponding generating function.

Rem. 50: If {aj} is bounded, then A(x) evidently converge at least in the

interval (−1, 1).

Def. 41: If X is integer valued rv for which P(X = j) = pj ≥ 0,

j = 0, 1, . . . ,
∑

j pj = 1, then its (probability) generating function has the

form P(x) = ∑∞
j=0 pjx

j .

Rem. 51:

Generating function P(x) unambiguously characterize

corresponding random variable X .

Notice that P(t) = E tX[
recall that E X =

∑
j pjxj and E g(X) =

∑
j pjg(xj)

]
.

For integer valued rv X corresponding generating function always

converge in point x = 1, because P(1) = ∑
j pj = 1.
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Convolution

Def. 42: Let a0, a1, . . . and b0, b1, . . . are two sequences of real numbers.

Then a sequence c0, c1, . . . defined by relation

cn = a0bn + a1bn−1 + . . .+ anb0, n = 0, 1, . . .

is called convolution of sequences {aj} and {bj}. We will write

{cj} = {aj} ⋆ {bj}

Thm. 50: Let {aj} and {bj} are two sequences with generating functions

A(x) and B(x). Then for the generating function corresponding to their

convolution {cj} it holds

C(x) = A(x)B(x).
Rem. 52: Convolution of a sequence {aj} with itself is called convolution

power and is denoted {aj}2⋆. Analogously, n-th convolution power

{aj} ⋆ . . . ⋆ {aj}will be denoted {aj}n⋆.
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Convolution

Thm. 51: Let X1,X2, . . . ,Xn are independent identically distributed (iid)

rv’s with integer valued distribution described by probabilities {pj}.
Denote corresponding generating function by P(x). Then distribution of

their sum, i.e. distribution of X1 + X2 + . . .+ Xn is described by the n-th

convolution power {pj}n⋆, and corresponding generating function has the

form

P(x) . . .P(x) = Pn(x)
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Generating functions – examples

Ex. 21: Check the form of generating functions for following most

important discrete distributions:

Alternative . . . P(x) = q + px

Binomial . . . P(x) = (q + px)n

Poisson . . . P(x) = exp{−λ+ λx}
Geometrical . . . P(x) = p/(1 − qx)

resp. = px/(1 − qx)

Negative binomial . . . P(x) =
(
p/(1 − qx)

)r

resp. =
(
px/(1 − qx)

)r

Discrete uniform . . . P(x) = (1 − xn+1)/
(
(n + 1)(1 − x)

)

resp. =
(
x(1 − xn)

)
/
(
n(1 − x)

)

Using these generating functions calculate corresponding expectations

and variances.

Rem. 53: Recall that geometric and negative binomial distributions are

the simplest models describing waiting times.
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Properties of generating functions

Thm. 52: Denote qk = P(X > k) =
∑

j>k pj , k = 0, 1, 2, . . . and

corresponding generating function Q(x) = ∑∞
j=0 qjx

j . Then for −1 < x < 1

it holds that Q(x) =
(
1 − P(x)

)
/(1 − x).

Thm. 53: For integer valued random variable X it holds that

E X =
∑∞

i=0
jpj =

∑∞
j=0

qj = P′(1) = Q(1)

Thm. 54: Let generating function P(x) of integer valued rv X has radius

of convergence larger than one. Then it holds

var X = P′′(1) + P′(1) −
(
P′(1)

)2
= 2Q′(1) + Q(1) −

(
Q(1)

)2

Rem. 54: Thm. 54 holds also in the case when radius of convergence is

equal to 1, provided limx→1− Q′′(x) < ∞ and derivatives in point x = 1

are replaced by their limits for x → 1−.
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Partial fraction decomposition

Rem. 55: Knowledge of P(x) is theoretically equivalent to knowledge of

{pj}, and vice versa. However, the use of the fact that pj = P(j)(0)/j! can

be quite complicated in practice. In such a case following approximation

can be useful.

Thm. 55: Let generating function P(x) of the sequence {pn} can be

written in the form P(x) = U(x)/V(x), where U(x) and V(x) are

polynomials without common roots, order of U(x) is smaller than order of

V(x), and the roots of polynomial V(x) are simple. Then

pn =
ρ1

xn+1
1

+ · · ·+ ρm

xn+1
m

, 0 ≤ n < ∞,

where m is order of polynomial V(x), x1, . . . , xm are its roots and

ρk = −U(xk )/V
′(xk ), 1 ≤ k ≤ m.

Rem. 56: For calculation of ρk , 1 ≤ k ≤ m, can be used decomposition

into partial fractions, embedded in programs Maple or Mathematica, e.g.
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Partial fraction decomposition

Rem. 57: Assume that x1 is that root of V(x) for which

|x1| < xk , 2 ≤ k ≤ m. Then

pn =
ρ1

xn+1
1

(
1 +
ρ2

ρ1

(x1

x2

)n+1
+ . . .+

ρm

ρ1

( x1

xm

)n+1
)
, (14)

so that for n → ∞ it holds that pn ≈ ρ1/x
n+1
1

, where ρ1 = −U(x1)/V
′(x1).

Rem. 58: For validity of the assertion pn ≈ ρ1/x
n+1
1

it is possible to omit

assumption that degree of U(x) is smaller than degree of V(x). Instead it

is sufficient to assume only that the root x1 is unique. Moreover, recall

that practical experience shows that the approximation (14) is

satisfactory even for small values of n.

Ex. 22: Let qn be probability that in the sequence of n trials with

dichotomous response (T,F) a subsequence FFF will not occur. Find

corresponding generating function and calculate corresponding

probabilities qn both precisely and using the above approximations.

Solution: Q(x) =
(
8 + 4x + 2x2

)
/
(
8 − 4x − 2x2 − x3

)
.
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Compound distributions

Thm. 56: Let X1,X2, . . . and N are independent integer valued rv’s,

Xi ’s have the same distribution {fj} and N has distribution {gj}.
Then SN = X1 + . . .+ XN is also integer valued random variable with the

distribution {hj}, where

hj = P(SN = j) =
∑∞

n=0
gn · {fj}n⋆.

If A(x),B(x) and C(x) are generating functions corresponding to the

sequences {fj}, {gj} and {hj}, then C(x) = B
(
A(x)

)
and E SN = E X1 ·E N.

Corresponding variance o can be calculated using Thm. 54.

Rem. 59: Notice that random variable SN = X1 + . . .+ XN is nothing else

than random sum of random variables.

Ex. 23: Let number N of laid eggs follow Poisson distribution Po(λ) and

probability of arrival of individual from an egg is p, i.e. Xi follow

alternative distribution. Show that in such a case SN follows Poisson

distribution Po(λ · p).


