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Minors

f : An → B is a minor of g : Am → B if
f is obtained from g by

permutation of arguments,
identification of arguments,
introduction of inessential arguments.
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Minors

f : An → B is a minor of g : Am → B if
f is obtained from g by

permutation of arguments,
identification of arguments,
introduction of inessential arguments.

Minors are also known as
simple minors,
subfunctions,
polymers,
. . .
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Minors

f : An → B is a minor of g : Am → B if
f is obtained from g by

permutation of arguments,
identification of arguments,
introduction of inessential arguments.

Examples of minor-closed classes:
all clones
monotone decreasing functions
supermodular functions
threshold functions
. . .
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Relational constraints

A relational constraint is a pair (R,S) of relations R ⊆ Ar , S ⊆ Br .

A function f : An → B preserves a relational constraint (R,S),
denoted f . (R,S),
if for all a1, . . . ,an ∈ R, we have f (a1, . . . ,an) ∈ S.
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Minors and relational constraints

The preservation relation induces a Galois connection between
functions and relations.

For any set Q of relational constraints, and
for any set F of functions,

cPol(Q) = {f ∈ F : f . (R,S) for every (R,S) ∈ Q},
cInv(F) = {(R,S) ∈ Q : f . (R,S) for every f ∈ F}.

Theorem (Pippenger 2002)
The Galois closed classes of functions are exactly the classes closed
under taking minors.
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Minors and relational constraints

Theorem (Pippenger 2002; Ekin, Foldes, Hammer, Hellerstein
2000)
Let F be a class of functions. The following are equivalent.

1 F is closed under taking minors.
2 F is

finitely

characterizable by relational constraints.
3 F is of the form

forbid(A) := {f : g � f for all g ∈ A} = ↑A,

for some

finite

antichain A (with respect to the minor relation ≤).

4 F is defined by functional equations of a certain type.
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Threshold functions

A Boolean function f : {0,1}n → {0,1} is threshold
if there exist w1, . . . ,wn, t ∈ R such that

f (x1, . . . , xn) = 1 ⇐⇒
n∑

i=1

wixi ≥ t .

In other words, f is threshold if there exists a hyperplane in Rn that
separates the true points of f from the false points of f .

Therefore, it is characterizable by relational constraints.

However . . .

Theorem (Hellerstein 2001)
The class of threshold functions, while characterizable by relational
constraints, is not finitely characterizable.
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Threshold functions

T = the class of threshold functions

Problem
Is the class of “majority games”, i.e., self-dual monotone threshold
functions finitely characterizable by relational constraints?
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Threshold functions

T = the class of threshold functions

Problem
Which clones C on {0,1} have the property that C ∩ T is finitely
characterizable by relational constraints?
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Post’s Lattice and threshold functions

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Λ ⊆ T , V ⊆ T , L ∩ T = Ω(1).
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Threshold functions and asummability

A Boolean function f : {0,1}n → {0,1} is k-asummable if for any
m ∈ {2, . . . , k} and for all a1, . . . ,am ∈ f−1(0) and b1, . . . ,bm ∈ f−1(1),
it holds that

a1 + · · ·+ am 6= b1 + · · ·+ bm

(standard vector addition in Rn).

A Boolean function f is asummable if it is k -asummable for all k ≥ 2.

Theorem (Chow 1961, Elgot 1961, Muroga 1971)
A Boolean function is threshold if and only if it is asummable.
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Asummability and relational constraints

For m ≥ 1, define the 2m-ary relational constraint Bm as

R(Bm) := {(x1, . . . , x2m) ∈ {0,1}2m :
m∑

i=1

xi =
2m∑

i=m+1

xi},

S(Bm) := {0,1}2m \ {(0, . . . ,0︸ ︷︷ ︸
m

,1, . . . ,1︸ ︷︷ ︸
m

), (1, . . . ,1︸ ︷︷ ︸
m

,0, . . . ,0︸ ︷︷ ︸
m

)}.

f . Bm if and only if for all a1, . . . ,am ∈ f−1(0) and b1, . . . ,bm ∈ f−1(1),
it holds that

a1 + · · ·+ am 6= b1 + · · ·+ bm.
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m
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m

)}.

f . Bm if and only if for all a1, . . . ,am ∈ f−1(0) and b1, . . . ,bm ∈ f−1(1),
it holds that

a1 + · · ·+ am 6= b1 + · · ·+ bm.

Thus f is k -asummable iff f ∈ cPol(Ak ), where
Ak := {Bm : 2 ≤ m ≤ k}.
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m

,0, . . . ,0︸ ︷︷ ︸
m

)}.

Ak := {Bm : 2 ≤ m ≤ k}

Corollary
Let f : {0,1}n → {0,1}. The following are equivalent:

1 f is a threshold function.
2 f ∈

⋂
k≥2 cPol(Ak ).

3 f ∈ cPol({Bm : m ≥ 2}).
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Asummability and relational constraints

For m ≥ 1, define the 2m-ary relational constraint Bm as

R(Bm) := {(x1, . . . , x2m) ∈ {0,1}2m :
m∑

i=1

xi =
2m∑

i=m+1

xi},

S(Bm) := {0,1}2m \ {(0, . . . ,0︸ ︷︷ ︸
m
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m

), (1, . . . ,1︸ ︷︷ ︸
m

,0, . . . ,0︸ ︷︷ ︸
m

)}.

Ak := {Bm : 2 ≤ m ≤ k}

Ak ⊆ Ak ∪ {Bk+1} = Ak+1 =⇒ cPol(Ak+1) ⊆ cPol(Ak )
for all k ≥ 2

Theorem (Taylor, Zwicker 1995)
For all k ≥ 2, there exists a function that is k-asummable but not
(k + 1)-asummable, i.e., cPol(Ak+1) ( cPol(Ak ).
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Finite characterizability of C ∩ T

Ω

T0 T1M

L

Ω(1)

S

SM

U2

U3

U∞

McU∞

Λ

W2

W3

W∞

McW∞

V

Theorem
Let C be a clone on {0,1}. Then C ∩ T is finitely characterizable by
relational constraints if and only if C is contained in one of the clones
L, V , Λ.

E. Lehtonen (CAUL) Finite characterizability of threshold functions ALC fest 11 / 16



Proof idea

Theorem (Taylor, Zwicker 1995)
For all k ≥ 2, cPol(Ak+1) ( cPol(Ak ).

Thus, for every k ≥ 2, there exists a function fk such that
fk ∈ cPol(B`) for all ` ∈ {2, . . . , k} and fk /∈ cPol(Bk+1).

Lemma
Let f : {0,1}n → {0,1}, and let C ∈ {SM,McU∞,McW∞}. There exists
a Boolean function GC(f ) that satisfies the following conditions:

1 Gc(f ) ∈ C,
2 for all m ≥ 2, GC(f ) ∈ cPol Bm if and only if f ∈ cPol Bm.

Thus, for every k ≥ 2, there exists a function f C
k such that

f C
k ∈ C,

f C
k ∈ cPol(B`) for all ` ∈ {2, . . . , k} and f C

k /∈ cPol(Bk+1).
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Proof idea

Suppose, on the contrary, that C ∩ T is finitely characterizable.

Theorem (Pippenger; Ekin, Foldes, Hammer, Hellerstein)
Let F be a class of functions. The following are equivalent.

1 F is finitely characterizable by relational constraints.
2 F is of the form forbid(A) for some finite antichain A.

Let A be a finite antichain such that C ∩ T = forbid(A).
Each one of the functions f C

k has a minor in A.
Since A is finite, there is g ∈ A and an infinite set S ⊆ N such that
g ≤ f C

k for all k ∈ S.
Since g is not threshold, there exists p ∈ N such that g /∈ cPol Bp.
Since S is infinite, there is q ∈ S such that p ≤ q.
We have g ≤ fq and fq ∈ cPol Bp.
Since cPol Bp is closed under taking minors, we have g ∈ cPol Bp. E
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Constructions

Lemma
Let f : {0,1}n → {0,1}, and let C ∈ {SM,McU∞,McW∞}. There exists
a Boolean function GC(f ) that satisfies the following conditions:

1 Gc(f ) ∈ C,
2 for all m ≥ 2, GC(f ) ∈ cPol Bm if and only if f ∈ cPol Bm.
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Constructions

f : {0,1}n → {0,1}

GS(f )(x1, . . . , xn+1) := (xn+1 ∧ f (x1, . . . , xn)) ∨ xn+1 ∧ f d(x1, . . . , xn))

GMc (f ) : {0,1}2n → {0,1}
If w(x) < n, then GMc (f )(x) = 0.
If w(x) > n, then GMc (f )(x) = 1.
If x = (a,a), then GMc (f )(x) = f (a).
If w(x) = n and there exists i ∈ {1, . . . ,n} such that xi = xn+1 and
xj 6= xn+j for all j < i , then GMc (f )(x) = xi .

GSM(f ) := GMc (GS(f ))

GU∞(f )(x1, . . . , xn+1) := xn+1 ∧ f (x1, . . . , xn)

GMcU∞(f ) := GU∞(GMc (f ))

GMcW∞(f ) := GMcU∞(f )d
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The end

Děkuji.

Kiitos.

Merci.

Obrigado.

Thank you.

E. Lehtonen (CAUL) Finite characterizability of threshold functions ALC fest 16 / 16


