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Congruence lattices

Problem. For a given class K of algebras describe Con K =all
lattices isomorphic to Con A for some A ∈ K.

Or, at least,

for given classes K, L determine if Con K = Con L
and, if Con K * Con L, determine

Crit(K,L) = min{card(Lc) | L ∈ ConK \ ConL}

(Lc = compact elements of L)
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Some critical points

We are interested in the case when K and L are
(congruence-distributive) varieties. For instance,
Crit(N5,M3) = 5,
Crit(M3,N5) = Crit(M3,D) = ℵ0,
Crit(M4,M3) = ℵ2,
Crit(Maj,Lat) = ℵ2.
(N5, M3, M4 are well-known lattice varieties, Lat = all lattices,
Maj = all majority algebras.)
P. Gillibert: under some reasonable finiteness conditions, the critical
point between two varieties cannot be larger than ℵ2.
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Critical points ℵ1
First such example has been discovered by P. Gillibert. We present
three more examples.
Let K be the variety generated by the bounded lattice
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Critical points ℵ1

Theorem
(1) Crit(N5,K) = ℵ1;
(2) Crit(K,N5) = ℵ0.
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C4 and N6

Let C∗4 and N∗6 be the varieties generated by the bounded lattices
C4 and N6 with an additional unary operation:
on C4 ... f(0) = 0, f(a) = b, f(b) = a, f(1) = 0;
on N6 ... 180◦ rotation (f(x) = w...) .
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Critical points ℵ1

Theorem
(1) Crit(N∗6,N5) = ℵ1;
(2) Crit(N5,N

∗
6) = ℵ0.

(3) Crit(N∗6,C
∗
4) = ℵ1;

(4) Crit(C∗4,N
∗
6) =∞.
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Question

What is the mechanism behind these examples?
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Conc functor

For any homomorphism of algebras f : A→ B we define

Conc f : ConcA→ ConcB

by
α 7→ congruence generated by {(f(x), f(y)) | (x, y) ∈ α}.

Fact. Conc f preserves ∨ and 0, not necessarily ∧.

For every commutative diagram A of algebras we have a
commutative diagram ConA of (∨, 0)-semilattices.
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Lifting of semilattice morphisms

Let
ϕ : S → T be a homomorphism of (∨, 0)-semilattices;
f : A→ B be a homomorphisms of algebras.

We say that f lifts ϕ, if there are isomorphisms ψ1 : S → ConcA,
ψ2 : T → ConcB such that

S
ϕ−−−−→ T

ψ1

y ψ2

y
ConcA

Conc f−−−−→ ConcB

commutes.
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Diagrams indexed by posets 1

Let
(P,≤) be a poset;
K be a category of algebras

Definition. A (P,≤)-indexed diagram in K is a functor

A : (P,≤)→ K.
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Diagrams indexed by posets 2

That means:
an algebra A(j) ∈ K for every j ∈ P ;
a homomorphisms A(j, k) : A(j)→ A(k) for every j ≤ k;

such that
A(j, j) = id(A(j)) for every j ∈ P ;
A(j, k) ◦ A(i, j) = A(i, k) for every i ≤ j ≤ k.
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Lifting of diagrams

Let P be a poset and let
D : P → S be a diagram of (∨, 0)-semilattices;
A : P → K be a diagram of algebras;

We say that A lifts D, if there are isomorphisms
ψj : D(j)→ ConcA(j) such that

D(j) D(j,k)−−−−→ D(k)
ψj

y ψk

y
ConcA(j)

ConcA(j,k)−−−−−−−→ ConcA(k)

commutes for every j ≤ k.
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Results of P. Gillibert 1

Let K, L be locally finite congruence distributive varieties.

Theorem
TFAE

ConK * ConL;
there exists a diagram of finite (∨, 0)-semilattices indexed by
{0, 1}n (for some n) liftable in K but not in L
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Results of P.Gillibert 2

Theorem
(2) implies (1), where

Crit(K,L) ≤ ℵn;
there exists a diagram of finite (∨, 0)-semilattices indexed by a
product of n+ 1 finite chains liftable in K but not in L

If n = 0 then also (1)=⇒ (2).

Especially, if there exists a diagram of finite (∨, 0)-semilattices
indexed by a square liftable in K but not in L, then
Crit(K,L) ≤ ℵ1.
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N6 versus N5

Both N5 and N∗6 have the same congruence lattice, but N∗6 has an
automorphism h (the vertical symmetry), such that Conc h
interchanges α and β:
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N6 versus N5

Below: D is the diagram in N∗6 , so that ConD has a lifting in N∗6
but - no lifting in N5.
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Observation

Every automorphism f : A→ A induces an automorphism
Conc f : ConcA→ ConcA. These induced automorphisms form a
subgroup of the automorphism group of ConcA. And this
subgroup has an influence on the class ConA, where A is the
variety generated by A.
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N5 versus K

The same idea as before, but more subtle. Not only automorphisms
are important.
Consider the homomorphisms f , g in N5:
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N5 versus K

The maps Conc f and Conc g:
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N5 versus K

If D is the diagram below, then ConD has a lifting in N5 but not
in K.
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Gillibert’s example

Different mechanism: a semilattice homomorphism ϕ : S → T
with two liftings f : A→ B1, g : A→ B2 such that Con f and
Con g have different kernels.

Possible general "theorem":

Crit(V1,V2) = ℵ1 occurs when all diagrams indexed by a finite
chain liftable in V1 are also liftable in V2, but the liftings in V2 are
"less symmetric".
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Congruence intersection

A variety V has the Compact intersection property (CIP) if the
intersection of two compact congruences on any A ∈ V is
compact.

If V has CIP, then Con V is tractable.
Critical point ℵ1 can still occur (N∗6 versus C∗4).
Conjecture: ℵ2 cannot occur.
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