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Incidence algebras

Associative ring S, locally finite poset P or (P, <).
Restricted incidence algebra [ g is the set of S-valued functions on

{(x,y) | * < yinP}, with pointwise abelian group structure (I, +, e) from (.S, +, 0).
Forpathp = (zg < 21 < -+ < xp_1 < x,)in P,and f € Ig,
the path extension f}, or fi, », ... 2. is f(xo,21)f(x1,22) ... f(xr_1,2,)in S.

Write II(x, i) for set of paths from x to y in P.

The extended convolution product - on I is given by

(f ) g) (ZC, y) — fo,’y + Ga,y T Zx<z<y ZpEH(x,z) quﬂ(z,y) fpgq

Compare matrix product (f - 9)(,Y) = fa,y + Guy + D pcrcy J2,292,y for chain P.
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(Q, ) is a quasigroup
if knowing two of @, b,cina - b =c

specifies the third uniquely.
(Q,-,e)isaloopife-a=a=a-eforallain@.

Theorem: (I, -, e) forms a loop.

Proof: Tosolve h - f = g for h interms of f and g, specify h(x, ) uniquely
by induction on the length l(:z:, y) of the longest path from x to v.

Basis: hyy = Guy — Juo,yifycoversz. U

Definition: (Ig, ., €) is the incidence loop of P over S. Informally: “Poset loops.’
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Forloop Q, commutant C(Q) ={z€ Q |Vz € Q, zx = xz},
conter Z(Q) = {z € C(Q) | Yo,y € Q. 2(ay) = (z2)y and (y2)= = y(a2)}.
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Then ZRE :={f € I |Vu < v € P, unotminimal = f(u,v) € ZR(S)},
ZLE dual,and ZE := ZRE N ZLE.

Theorem: ZL = C(I% - e); asubloopof (I£,-, e).
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Connecting rings, posets, and loops

Theorem: For a locally finite poset P,

ring homomorphism 6 : .S — T" induces loop homomorphism Ig — 11133 f— fo.

Theorem: For a locally finite poset P = P;UPs, ring S, have I£ = If;l X 152

Corollary: Non-isomorphic posets may have isomorphic poset loops.

Theorem: Suppose that locally finite poset P’ = (X, <) extends P = (X, <).

Then I is a subloop of Igl.
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Prop: Let P be a locally finite poset of height less than 3.
Suppose that the set of covering pairs in P has cardinality .
Then IL =2 (S, +,0)" is abelian.

Corollary: Non-(anti)isomorphic connected posets may have isomorphic poset loops.

NV

Prop: Let P be a locally finite poset. Let S be a zeroring: |5 - S| = 1.
It A= |{(z,y) € P?| 2 <y} then IL = (S, +,0)" is abelian.

Corollary: Each abelian group is the incidence loop of a locally finite poset.
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Groups

Theorem: Let P be a locally finite poset. Suppose that |5 - S| > 1 in the ring .S.

Then the incidence loop Ig is an abelian group iff the height of P is less than 3.

Theorem: Let P be a locally finite poset. Suppose that |5 - S -S| > linthering S.

Then the incidence loop Ig is a group iff the height of P is less than 4.

Prop: Let P be a locally finite poset. Suppose that |[S - .S - S| = 1inthering S.

Then the incidence loop Ig is a group.
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Nilpotent groups of class 2

Prop: Let P be a locally finite poset of height 3. Suppose that |.S - S| > 1inthering S.

Then the incidence loop Ig of P over S is a nilpotent group of class 2.

Prop: Let P be a locally finite poset of height 3. Set G = Ig.
Let /C, L be the respective sets of intervals of heights 2, 3 in P.

)

L.

Then the groups G/G’, G’ are free abelian of respective ranks | K

Theorem: Suppose G/G’, G’ free abelian of respective ranks k, [.

Then if 41 > k2, there is no locally finite poset P with 2" = G.

Corollary: If group G is free nilpotent of class 2, finite rank & > 2,

then there is no locally finite poset P with 17 =~ G.
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Nilpotent loops

A central series in a loop (L, -, 1) is a nested sequence
(*) L:LOZlech—lch:{l}
of normal subloops of L with L; /L;+1 C Z(L/L;11)for0 <1i < c.

Loop L is nilpotent of class at most ¢ if it has a central series ().

Theorem: Let P be a locally finite poset of height at most ¢ + 1.

Then the incidence loop Ig is nilpotent, of class at most c.

Remark: For locally finite P of infinite height, I§ need not be nilpotent.
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A problem ...

...forring .S, locally finite poset P:

For |S| > 1, have height of P at most 1 iff I’ trivial;

For |S?| > 1, have height of P at most 2 iff I abelian;

For |S?| > 1, have height of P at most 3 iff I. associative;

Find V,, as large as possible such that

for |S™| > 1, have height of P at most n iff I in variety V.



Thank you for your attention!



