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Relational structures

Relational signatures

A relational signature is a pair Σ = (Σ,ar), where

Σ is a set of relational symbols,

ar : Σ → N \ {0}.

Relational structures

A Σ-structure is a pair A = (A, (̺A)̺∈Σ), where

A is a set,

̺A ⊆ Aar(̺), for each ̺ ∈ Σ.
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Clones

O
(n)
A := A(An), OA :=

⋃

n∈N\{0}

O
(n)
A ,

Projections

en
i ∈ O

(n)
A : (x1, . . . , xn) 7→ xi (where n ∈ N \ {0}, 1 ≤ i ≤ n).

JA denotes the set of all projections on A.

Clones

C ⊆ OA is called clone if

1 JA ⊆ C,
2 it is closed with respect to composition.

Clone isomorphisms

A clone isomorphism between clones C and D is a bijection

that preserves projections and composition.
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Polymorphism clones

Given a relational signature Σ, and a Σ-structure A.

Polymorphisms

f ∈ O
(n)
A is called n-ary polymorphism of A if

f : An → A.

The set of n-ary polymorphisms of A is denoted by Pol(n)(A).

Polymorphism clones

Pol(A) :=
⋃

n∈N\{0}

Pol(n)(A) is a clone.

It is called the polymorphism clone of A.
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Topology on Clones

Given a set A, equipped with the discrete topology.

Topology on O
(n)
A

for every finite M ⊆ An and for every h : M → A:

ΦM,h := {f ∈ O
(n)
A | f ↾M = h}.

together all ΦM,h form the basis of the Tychonoff topology

on O
(n)
A ,

Topology on OA

OA can be considered as the topological sum of the O
(n)
A .

Composition of functions is continuous.
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Topology on clones (cont.)

Topology on clones

Every clone C ≤ OA can be considered as topological

subspace of OA.

Thus, every clone is canonically equipped with a topology,

with respect to which the composition is continuous.

Metrization of Tychonoff topology on O
(n)
A when |A| = ω

Let w = (ai)i<ω be an enumeration of An.

Define Dw : O
(n)
A × O

(n)
A → ω + 1:

Dw(f ,g) :=

{

min{i ∈ ω | f (ai) 6= g(ai)} f 6= g

ω f = g.

Then the following defines an ultrametric on O
(n)
A :

dw (f ,g) :=

{

2−Dn(f ,g) f 6= g

0 f = g.
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Automatic homeomorphicity for clones

Definition (Bodirsky, Pinsker, Pongrácz)

Let C ≤ OA be a closed clone, and let K be a set of closed

clones on A. We say that C has automatic homeomorphicity

with respect to K if every clone isomorphism from C to a clone

from K is a homeomorphism.

If K is the set of all closed clones on A. Then we say that C has

automatic homeomorphicity.

Theorem (Bodirsky, Pinsker, Pongrácz)

The following clones have automatic homeomorphicity:

1 every closed clone on A that contains O
(1)
A ,

2 the polymorphism clone of the Rado graph,
3 the Horn-clone

Here the Horn clone is the smallest clone on a countable set A

that contains all injective functions from OA.
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New results

Recall:

(P,≤) is the Fraïssé-limit of the class of finite partial orders

— a.k.a. the countable universal homogeneous poset,

UQ is the Fraïssé-limit of the class of finite metric spaces

with rational distances — a.k.a. the rational Urysohn

space.

Theorem (MP+CP)

1 Pol(P,≤) has automatic homeomorphicity with respect to

the class of polymorphism clones of ω-categorical

structures.

2 Pol(UQ) has automatic homeomorphicity.
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Strong gate coverings

Definition

Let A be countable, let C ≤ OA be a clone, and let G be the

group of units in C(1).

A strong gate covering of C consists of

an open covering U of C,

functions fU ∈ U, for each U ∈ U ,

such that for all U ∈ U and for all Cauchy-sequences (g j)j∈ω of

elements of U of the same arity n there exist

a Cauchy-sequence (αj)j∈ω in G,

Cauchy-sequences (β j
i )j∈ω (1 ≤ i ≤ n) in G,

such that for all (x1, . . . , xn) ∈ An we have

g j(x1, . . . , xn) = αj(fU(β
j
1(x1), . . . , β

j
n(xn))).

Remark

The original definition of gate coverings is due to Bodirsky,

Pinsker, Pongrácz.
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Our working horse

Proposition (MP+CP)

Let A and B be two countable relational structures,

h : Pol(A) → Pol(B) be an isomorphism, such that

1 h is open,
2 h↾Aut(A) is continuous,
3 Pol(A) has a strong gate covering.

Then h is continuous.

Corollary

Let A be a countable relational structure such that

1 Aut(A) has automatic homeomorphicity,
2 Pol(A) has a strong gate covering,
3 every isomorphism from Pol(A) to another closed clone on

A is open.

Then Pol(A) has automatic homeomorphicity.
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A criterion for automatically open clone isomorphisms

Proposition (Bodirsky, Pinsker, Pongrácz)

Let A be a structure such that Pol(A) contains all constant

functions. Then every isomorphism to another clone of

functions is open.
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Our way to show automatic homeomorphicity

The (rough) road for revealing new clones with automatic

homeomorphicity goes as follows:

1 start with a countable relational structure A,

2 show that Aut(A) has automatic homeomorphicity,

3 show that Pol(A) has a strong gate covering (hard!),

4 show that every clone-isomorphism from Pol(A) to another

closed clone on A is open,

5 conclude that Pol(A) has automatic homeomorphicity.

Instead of showing the existence of a strong gate covering, we

generally show a much stronger property of Pol(A) — the

existence of universal homogeneous polymorphisms of all

arities.
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Universal homogeneous polymorphisms

Let A be a relational structure. Then we define

Age(A) = {B | B finite, ∃ι : B →֒ A}

Age(A) = {B | B countable, Age(B) ⊆ Age(A)}

Universal polymorphisms

Let U be a structure. Then u ∈ Pol(n)(U) is called universal if for

all A ∈ Age(U) and for every f : An → U there exist ι : A →֒ U

such that for all (a1, . . . ,an) ∈ An holds

f (a1, . . . ,an) = u(ι(a1), . . . , ι(an))
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Universal homogeneous polymorphisms (cont.)

Homogeneous polymorphisms

Let U be a structure. Then u ∈ Pol(n)(U) is called

homogeneous if for all A ∈ Age(U), for every f : An → U, and

for all ι1, ι2 : A →֒ U with

∀(a1, . . . ,an) ∈ An, i ∈ {1,2} :

u(ιi(a1), . . . , ιi (an)) = f (a1, . . . ,an)

there exists h ∈ Aut(U) such that

1 h ◦ ι1 = ι2,

2 for all (a1, . . . ,an) ∈ Un we have

u(h(a1), . . . ,h(an)) = u(a1, . . . ,an).

Ch. Pech On automatic hoeomorphicity for clones ACF 2014 14 / 18



From UH polymorphisms to strong gate coverings

Proposition

If a structure U has universal homogeneous polymorphisms of

all arities, then Pol(U) has a strong gate covering.

In the following we will characterize all homogeneous

structures that have n-ary universal homogeneous

polymorphisms.

all conditions are properties of the age of the structure in

question.
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The amalgamated extension property

Definition

Let C be a class of structures of the same type, and let

n ∈ N \ {0}. We say that C has the [n]-AEP if ∀A,Bi ,T ∈ C,. . .

T

B1 Bn
1

A B2 An Bn
2

h1

f1

f2

f n
1

f n
2

h2
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The amalgamated extension property

Definition

Let C be a class of structures of the same type, and let

n ∈ N \ {0}. We say that C has the [n]-AEP if ∀A,Bi ,T ∈ C,. . .

T′

T

B1 C Bn
1 Cn

A B2 An Bn
2

k

g1

h1

gn
1

h

f1

f2

g2 f n
1

f n
2

h2gn
2
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The homo amalgamation property

Definition

Let C be a class of structures of the same type, and let

n ∈ N \ {0}. We say that C has the [n]-HAP if for all A,B ∈ C,

g : A →֒ B, T1 ∈ C, a : An → T1 . . .

Bn

An T1.
a

gn
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The homo amalgamation property

Definition

Let C be a class of structures of the same type, and let

n ∈ N \ {0}. We say that C has the [n]-HAP if for all A,B ∈ C,

g : A →֒ B, T1 ∈ C, a : An → T1 . . .

Bn T2

An T1.

b

a

gn
h
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The homo amalgamation property

Definition

Let C be a class of structures of the same type, and let

n ∈ N \ {0}. We say that C has the [n]-HAP if for all A,B ∈ C,

g : A →֒ B, T1 ∈ C, a : An → T1 . . .

Bn T2

An T1.

b

a

gn
h

C has the HAP if it has the [1]-HAP.

Ch. Pech On automatic hoeomorphicity for clones ACF 2014 17 / 18



Homogeneous structures with UH polymorphisms

Proposition

Let U be a countable homogeneous structure and let

n ∈ N \ {0}. Then U has an n-ary universal homogeneous

polymorphism if and only if Age(U) has the [n]-AEPand the

[n]-HAP.

Theorem

The following structures have universal homogeneous

polymorphisms of all arities:

1 the polymorphism clone of the countable universal

homogeneous poset (P,≤),
2 the polymorphism clone of the rational Urysohn-space

(polymorphisms are non-expansive functions).
3 every free homogeneous structure whose age is closed

with respect to finite products and has the HAP (e.g., the

Rado graph).
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