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Key Relation

Relations.

Let A be a finite set. A subset p C A” is called a n-ary relation.

Usually we assume that A= {0,1,... .,k —1}.
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Key Relation

Relations.

Let A be a finite set. A subset p C A” is called a n-ary relation.

Usually we assume that A= {0,1,... .,k —1}.
Relations are represented as matrices where columns are tuples

from the relation.
0 1
10

000112 01 2
0121 22)’\0 12
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Key Relation

Relations.

Let A be a finite set. A subset p C A" is called a n-ary relation.

Usually we assume that A={0,1,...,k—1}.
Relations are represented as matrices where columns are tuples
from the relation.

000112 01201
012122/)’\01t 210

These binary relations can be represented in the following way

2 2
1 1
0 0
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Key Relation

Vector-functions

A tuple VW = (¢, %2, ...,1%p), where ¢; : A— A, is called a
vector-function.
We say that W preserves a relation p of arity h if

a Y1(ar) a
a Yo(az) a

vl . )= ) € pforevery [ . | €p.
a ¥n(an) a

Dmitriy Zhuk zhuk.dmit mail.com On Key Relations Preserved by a WNU



Key Relation

Vector-functions

A tuple VW = (¢, %2, ...,1%p), where ¢; : A— A, is called a
vector-function.
We say that W preserves a relation p of arity h if

a Y1(ar) a
a Yo(az) a
vl . )= ) € pforevery [ . | €p.
an ¥n(an) a
2 2
preserves
1 —_— 1
0 0



Key Relation

Vector-functions

A tuple VW = (¢, %2, ...,1%p), where ¢; : A— A, is called a
vector-function.
We say that W preserves a relation p of arity h if

a Y1(ar) a
a Yo(az) a

vl . )= ) € pforevery [ . | €p.
an ¥n(an) a
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Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.

Dmitriy Zhuk zhuk.dmit smail.com On Key Relations Preserved by a WNU



Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.




Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.




Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.




Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.




Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.




Key Relation

A relation p of arity his called a key relation if there exists a
tuple 8 € A"\ p such that for every a € A"\ p there exists a
vector-function W which preserves p and gives V(«) = .

A tuple 8 is called a key tuple for p.
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Key Relation

Example 2

Let A= {0,1,2},

p={(x.y,2) | x+y+z=0}
where + is addition modulo 3.
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Key Relation

Example 2

Let A= {0,1,2},

p={(x.y,2) | x+y+z=0}
where + is addition modulo 3.

Every 8 € {0,1,2}3\ p is a key tuple.

Sketch of the proof

For every a € {0,1,2}2\ p we need a vector-function W
preserving p such that W(«a) = 8. Combining the following
vector-functions (2x,2y,2z), (x+1,y,z—1), (x,y+1,z—1),
preserving p we can easily construct W.
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Key Relation

Why do we need

these key relations???
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Key Relation

Relational Clones and Galois Connection

[S] is the set of all relations p € Rk that can be represented by a
positive primitive formula over the set S:

p(X17“'7Xn):
E|y1 El}// p1(z1,17"'7z1,ﬂ1)/\"‘/\pS(ZS,17"'7ZS,ns)'

o Closed sets of relations containing equality and empty
relations are called relational clones.

@ There is a natural one-to-one correspondence between
clones and relational clones, which reverses the partial
order C.

Thus every clone can be defined by some set of relations.
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Key Relation

We need key relations because

o Every relation p can be represented as p1 Np2 N ... N pg of
some key relations pq,...,ps € [p].

@ [p] = [{p17’ s 7pS}]‘
o Every clone can be defined by only key relations.
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|A|=2

Key Relations on Two-Element Set

Let A={0,1}. An equation a;Xy + ...+ asXs = Cs is called a
linear equation (“4” is addition modulo 2).

p is a key relation if and only if p(Xxq,...,Xp) = L1 VLo V... VLy
for some linear equations Ly, Lo, ..., Ln.
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|A|=2

Key Relations on Two-Element Set

Let A={0,1}. An equation a;Xy + ...+ asXs = Cs is called a
linear equation (“4” is addition modulo 2).

Theorem

p is a key relation if and only if p(Xxq,...,Xp) = L1 VLo V... VLy
for some linear equations Ly, Lo, ..., Ln.

v

o (x<y)=Kx=0)VvV(y=1)

N
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100
Let p=10 1 0]. Isit akey relation?
0 0 1

Dmitriy Zhuk zhuk.dmitriy@ i Relations Preserved by a WNU



100
Let p={0 1 0]. Isit akey relation? No!
0 0 1

p(X1, X2, X3) = p1(X1, X2, X3) A\ pa(X1, X2) A pa(X2, X3) A p2(X1, X3),

1 0 0 1 010
where pr =0 1 0 1], po= 00 1)
0 0 1 1

o pe[{p,p2}]
° p1,p2 € [p].
@ py and po are key relations.
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100
Let p={0 1 0]. Isit akey relation? No!
0 0 1

p(X1, X2, X3) = p1(X1, X2, X3) A\ pa(X1, X2) A pa(X2, X3) A p2(X1, X3),

1 0 0 1 010
where pr =0 1 0 1], po= 00 1)
0 0 1 1

o pe[{p,p2}]
° p1,p2 € [p].
@ py and po are key relations.

p1(X1,X2,X3) = (X1 + X2 + X3 = 1),
p2(X1,X2) = (x4 =0) V (x2 = 0).
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|A|=2

The lattice of all clones on two elements(for |A| = 2)
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|A|=2

The lattice of all clones on two elements(for |A| = 2)

It is well known!

Tell us something
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|A|=2

We can generalize this!

Definition

Suppose projection of p onto every coordinate is a two-element
set,

pi:A—={0,1} fori=1,2,...,n.

An equation ay@q(X1) + ...+ anen(Xn) = Cp is called a linear
equation (“+4” is addition modulo 2).
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|Al=2

We can generalize this!

Definition

Suppose projection of p onto every coordinate is a two-element
set,

pi:A—={0,1} fori=1,2,...,n.

An equation ay@q(X1) + ...+ anen(Xn) = Cp is called a linear
equation (“+4” is addition modulo 2).

Theorem

Suppose projection of p onto every coordinate is a two-element
set, then p is a key relation if and only if

p(X1,...,Xp) = Ly VLo V...V Ly for some linear equations
Li,Lo,..., Ly
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Why is it
interesting???
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|A|=2

Example for |A] =3

X, Hx.y,z}| <3

Let s(x,y,z) = )
Y, |{X7y72}’:3

Describe all clones containing S.
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|A|=2

Example for |A] =3

X, Hx.y,z}| <3

Let s(x,y,z) = ,
Y, |{X7y72}’=3

Describe all clones containing S.

Suppose p is a key relation preserved by S then

pef{(812).(30%),(82%).(218).(329).(30%)},

or projection of p onto every coordinate is a two-element set (or
a one-element set).
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|A|=2

Example for |A] =3

Let S(X7y’z): X, ’{vayz}’<3’
vy, {x,y,z}|=3

Describe all clones containing S.

Suppose p is a key relation preserved by S then

pe{(81%).(36%).(82%).(315).(92%). (309}
or p(X1,...,Xn) = L1 VL V...V Ly for some linear equations
Li,Lo,..., Lpn.
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What about key relations

on bigger sets?
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|A|=2

Key relations on bigger sets

o For a prime p the relation a;xq + ...+ anXp = g and
aixi + ...+ anxp # ap define key relations, where “+” is
addition modulo p.

e For any two key relations p1 and po, the relation defined by
p1(X1y .oy Xm) V p2(Xmats - - - s Xmen) is a key relation.
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|A|=2

Key relations on bigger sets

on A
111122 2 2
011 20122000 1]iskeyand [0] isa
101200010122 0
key tuple
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|A|=2

Key relations on bigger sets

0| isa

0
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|A|=2

Key relations on bigger sets

A 1,
ooo0oo0111122 22 0
011 20122000 1]iskeyand [0] isa
101200010122) 0
key tuple.
1 2
2
1 1
0
01 2 01 2

o Only projections preserve this relation.
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|A|=2

Weak Near-Unanimity Operation

o To avoid considering such relations we consider just
relations preserved by a weak near-unanimity operation.

A weak near unanimity operation (WNU) is an operation f
satisfying f(x, X,...,X) = x and

f(x,....x,y)=f(X,....x, ¥, X) = --- = f(¥V, X, ..., X).
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|A|=2

Key relations on 2 elements with WNU

Key relations on A = {0, 1} preserved by a WNU can be
represented as follows

(X1 + X2+ 4 Xm =€)V (Xmy1 = my1) V-V (Xn = )
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|A|=2

Key relations on 2 elements with WNU

Key relations on A = {0, 1} preserved by a WNU can be
represented as follows

(X1 + X2+ 4 Xm =€)V (Xmy1 = my1) V-V (Xn = )

o We will try to generalize this fact for |A| > 2.

o Every variable occurs just in one equation.

Dmitriy Zhuk zhuk.dmitri mail.com On Key Relations Preserved by a WNU



Pattern

Pattern of a Key Relation

Definition

The pattern of a relation p of arity n is a binary relation ~ on
the set {1,2,...,n} defined as follows:

I ~ jif for every a1,...,an, bj, b € A we have

ai a ai a
ai_q aj—1 aj_1 aj—1

aj dj b,‘ bi

aj1 aj1 ajt1 i1
A 2 I I p g | P
& b; g b;

a1 8jt1 81 a1

an an an an

We set i ~ i for every i.

Dmitriy Zhuk zhuk.dmitriy@ i On Key Relations Preserved by a WNU



Pattern

Pattern of a Key Relation

12




Pattern

Pattern of a Key Relation

12

1

1 ~ 2 because there is no such square.
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Pattern

Pattern of a Key Relation

12

1 ~ 2 because there is no such square.

2
1
0

01 2

The equivalence relation {{1,2,...,m},{m+1},...,{n}} is the
pattern of a key relation on {0, 1} defined by

(X1—|—X2+"'+Xm:C)\/(Xm+1 :dm+1)\/~~\/(Xn:dn)
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Pattern

Pattern of a Key Relation

The pattern of a key relation is not always an equivalence
relation.
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Pattern

Pattern of a Key Relation

The pattern of a key relation is not always an equivalence
relation.

Let A={0,1,2,3} and
p={(x.y,z) | x,y e Aze{0,2},x+y+ze{0,1}}.
0 2

S = NWw
O = DN W

0123 0123
Then 1 ~3,2~3but 142



Pattern

Pattern of a Key Relation

The pattern of a key relation is not always an equivalence
relation.

Let A={0,1,2,3} and
p=1{(x,y,2) | x,y€ A zec{0,2},x+y+zc{0,1}}.

Then 1 ~3,2~3but 142
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Pattern

Pattern of a Key Relation with WNU

Theorem

Suppose p is a key relation preserved by a WNU. Then the
pattern of p is an equivalence relation. Moreover, at most one
equivalence class contains more than one element.
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Main result

Linear and almost linear relation

A relation o C Ay X --- X Ap is called linear if there exist a
prime number p and bijective mappings ¢; : Aj = Zp for
i=1,2,...,n such that o is defined by

©1(X1) + ... + pn(Xs) = 0.
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Main result

Linear and almost linear relation

A relation o C Ay X --- X Ap is called linear if there exist a
prime number p and bijective mappings ¢; : Aj = Zp for
i=1,2,...,n such that o is defined by

e1(X¥1) + ... + ¢n(Xn) = 0.

Definition 2

A relation o C Ay x --- X Ap is called almost linear if there exist
a prime number p, bijective mappings ¢; : A; — Zp for
i=1,2,...,mand b € Afor j=m+1,...,nsuch that o is
defined by

(p1(x1) + ...+ @n(Xm) = 0) V (Xmi1 = bmi1) V- -+ V (Xn = bp).

Dmitriy Zhuk zhuk.dmitr mail.com On Key Relations Preserved by a WNU



Main result

Main theorem

Suppose p is a key relation of arity n preserved by a WNU,
whose pattern is {{1,2,...,m},{m+1},{m+2},...,{n}}.
Then for every key tuple a there exists A= A x Ao x -+ x Ap
such that @ € A and p N A is almost linear with m variables in
the nontrivial linear equation.
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Main result

Main theorem

Suppose p is a key relation of arity n preserved by a WNU,
whose pattern is {{1,2,...,m},{m+1},{m+2},...,{n}}.
Then for every key tuple a there exists A= A x Ao x -+ x Ap
such that @ € A and p N A is almost linear with m variables in
the nontrivial linear equation.

2
g B
ol [X
01 2
Pattern : {{1},{2}} Pattern : {{1,2}}
(x1=0)V(x2=2) X1+ X =0
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Main result

Example
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Main result

Example

01201012
Let A={0,1,2} andp=(0 1 2 0 0 1 1 2
0001111 1

Pattern: {{1,2},{3}}
(X1 + Xo :O)V(X3 = 1)
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Main result

Example

01201012
Let A={0,1,2} andp=(0 1 2 0 0 1 1 2
0001111 1

Pattern: {{1,2},{3}}
(X1 + Xo :O)V(X3 = 1)
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Trivial Pattern

Pattern is a trivial equivalence relation: {{1},{2},...,{n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1},{2},{3},...,{n}}
e we can find a part which is organized as follows:
(X1 :b1)\/(X2:bz)\/"~\/(Xn:bn),

e or equivalently there exist (ay,ap,...,an) ¢ p and
by,...,bn € Asuch that

({81,b1} X {ag,bg} X oo X {an,bn}) \ {(31,32,...,3,7)} Cp.
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Trivial Pattern

Pattern is a trivial equivalence relation: {{1},{2},...,{n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1},{2},{3},...,{n}}
e we can find a part which is organized as follows:
(X1 :b1)\/(X2:bg)\/"~\/(Xn:bn),

e or equivalently there exist (ay,ap,...,an) ¢ p and
by,...,bn € Asuch that

({81,b1} X {ag,bg} X - X {an,b,,}) \ {(a1,ag,...,a,,)} Cp.

Suppose p is a relation preserved by a WNU with the pattern
{{1},{2},{3},...,{n}}. Then p is a key relation iff there exist
(ay,a,...,an) ¢ pand by, by, ..., by € Asuch that

({a1,b1} x {az, bo} x --- x {an, bn}) \ {(a1,a2,...,an)} C p.
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Trivial Pattern

Do we really
need WNU here?
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Trivial Pattern

The existence of a WNU preserving a relation is a necessary
condition

Example

0 0

0011112222
p=10 1 1 2 01 2 2 0 0 0 1] isa key relation.
101200010122
0
0 | is the only key tuple in p.
0

The pattern of this relation is a trivial equivalence relation.
We cannot find by, bo, bs € {1,2} such that

({0, b1} x {0, b2} x {0, b5}) \ {(0,0,0)} < p.

Dmitriy Zhuk zhuk.dmitriy@gmail.com
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Trivial Pattern

Why trivial pattern

is an important case???
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Trivial Pattern

Near-unanimity operation

A near unanimity operation is an operation f satisfying

f(x,....x,y)=1f(x,...,x,y,x)=---=f(y,x,...,X) = X.
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Trivial Pattern

Near-unanimity operation

A near unanimity operation is an operation f satisfying

f(x,....x,y)=1f(x,...,x,y,x)=---=f(y,x,...,X) = X.

Theorem

Suppose p is a key relation of arity greater than 2 preserved by
a near-unanimity operation. Then the pattern of p is a trivial
equivalence relation.

Corollary

Suppose p (of arity greater than 2) is preserved by a NU. Then
p is a key relation if and only if there exist (ay,az,...,an) ¢ p
and bq,...,b, € A such that

({a1, b1} x {az, b2} x -~ x {an, bn}) \ {(a1, 82,...,an)} C p.
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Trivial Pattern

Pattern is an almost trivial equivalence relation: {{1,2},{3},...,{n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1,2},{3},...,{n}}

e we can find a part which is organized as follows:
(X1 +X2:O)V(ngbg)\/'--\/(Xn:bn),

o therefore there exist (ay,az,...,an) ¢ pand by,...,bp € A
such that

({31 9 b1}><‘ ' 'X{al’h bn})\{(a1 82,43, .., an)7 (b17b27 ag,..., an)} - p-
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Trivial Pattern

Pattern is an almost trivial equivalence relation: {{1,2},{3},...,{n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1,2},{3},...,{n}}

e we can find a part which is organized as follows:
(X1 +X2:0)\/(X3:b3)\/\/()(n:bn),

o therefore there exist (ay,az,...,an) ¢ pand by,...,bp € A
such that

({31 9 b1}><‘ ' 'X{al’h bn})\{(a1 82,43, .., an)7 (b17b27 ag,..., an)} - p-

Suppose p is a relation preserved by a WNU, the pattern of p is
{{1,2},{3},...,{n}}. Then p is a key relation iff there exist
(ay,a,...,an) ¢ p and by, by, ..., by € Asuch that

({a1 ) b1 }X‘ : 'X{al’h bn})\{(a1 ) a27 a37 ceey an)7 (b17b27 a37 ey an)} - p-
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Trivial Pattern

Why is this case

important???
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Trivial Pattern

Semilattice operation

A semilattice operation is a binary associative commutative
idempotent operation.

A 2-gemilattice operation is a binary commutative idempotent
operation satisfying f(x, f(x,y)) = f(x,y).

Dmitriy Zhuk zhuk.dmi



Trivial Pattern

Semilattice operation

A semilattice operation is a binary associative commutative
idempotent operation.

A 2-gemilattice operation is a binary commutative idempotent
operation satisfying f(x, f(x,y)) = f(x,y).

Suppose p is a key relation preserved by a semilattice
(2-semilattice) operation. Then the pattern of p is either trivial,
or almost trivial.
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Trivial Pattern

Semilattice operation

A semilattice operation is a binary associative commutative
idempotent operation.

A 2-gemilattice operation is a binary commutative idempotent
operation satisfying f(x, f(x,y)) = f(x,y).

Suppose p is a key relation preserved by a semilattice
(2-semilattice) operation. Then the pattern of p is either trivial,
or almost trivial.

Suppose p is a relation preserved by a semilattice (2-semilattice)
operation. Then p is a key relation if and only if there exist
(a1,a2,...,an) ¢ p and by,..., by € A such that

({a‘l 5 b1 }X' : 'X{ana bn})\{(a1 82,483, ..., an)v (b1>b27 as,..., an)} - p-
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Full Pattern

Pattern is a full equivalence relation: {{1,2,...,n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1,2,...,n}} we can find a part which
is a linear relation: ¢1(Xq1) + @2(X2) + ... + ¢n(Xn) = 0.
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Full Pattern

Pattern is a full equivalence relation: {{1,2,...,n}}

By the main theorem for any key relation p preserved by a
WNU with the pattern {{1,2,...,n}} we can find a part which
is a linear relation: ¢1(Xq) + @2(X2) + ... + ¢n(Xn) = 0.

Can you say
anything else???
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Full Pattern

The structure of key relations with full pattern preserved by a

o The relation can be reduced to a core by a vector-function
preserving the relation which doesn’t change at least one
key tuple.

@ A core can be divided into blocks of the form
By x B> x --- x Bj. A block is called trivial if it contains
only tuples from the relation.

o Different blocks cannot contain common tuples and tuples
that differ in one component.

o Every nontrivial block is a linear relation.

o All nontrivial blocks are «isomorphics.
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Full Pattern

Do we really
need WNU here?
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Full Pattern

We really need WNU here!

The existence of a WNU preserving a relation is a necessary
condition.

Counter Example

Let Sy, So,. .., Sg be all premutations on the set {0,1,2}.
p={(ab,i)|ie{l1,2,...,6},abe{0,1,2},si(a) = b}.

1 2 3 4 5 6
2
1
0
012 012 012 012 012 012

@ p is not a linear relation.

o There is no a WNU preserving this relation!



Full Pattern

We really need WNU here!

The existence of a WNU preserving a relation is a necessary
condition.

Counter Example

Let Sy, So,. .., Sg be all premutations on the set {0,1,2}.
p={(ab,i)|ie{l1,2,...,6},abe{0,1,2},si(a) = b}.

012 012

@ p is not a linear relation.

o There is no a WNU preserving this relation!
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Full Pattern

Example 1

012012
Let A={0,1,2} and p= {0 1 2 1 0 2].
(o 00 1 1 1)
0 1
p
1
0



Example 1




Full Pattern

Example 1

[« 2N \C 1\
_ a0
—_. O =
= NN

- trivial block

- nontrivial block
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Full Pattern

Example 2

Let A={0,1,2,3} and
01 2301230101223 3
p=101 231 03 22233010 1].
oooo01t1t11122222222

)
—
[\

S = NW

012 3 012 3 0123



Full Pattern

1

2 2 3 3
0

1
03222330

1

1

0123

0
2 2222222

1

2 30

1

1
.1

{0,1,2,3} and
2 3 0 1

0 1
0123
0 00O

Let A

™
0]

—
=
g
s
=

£al



Full Pattern

Example 2

Let A={0,1,2,3} and
01 2301230101223 3
p=|101 2 3 103222330101
oooo01t1t11122222222

- trivial block

|:| - nontrivial block
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Full Pattern

When the pattern
is a full equivalence

relation”?
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Full Pattern

Mal’cev operation

A Mal’cev operation is a ternary operation f satisfying

f(x,y,y) = f(y,y,x) = x.
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Full Pattern

Mal’cev operation

A Mal’cev operation is a ternary operation f satisfying

f(x,y,y) = f(y,y,x) = x.

Suppose p is a key relation preserved by a Mal’cev operation.

o The pattern of p is full equivalence relation.

o Every block in a core of p is nontrivial.
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Full Pattern

Mal’cev operation

A Mal’cev operation is a ternary operation f satisfying

f(x,y,y) = f(y,y,x) = x.

Lemma

Suppose p is a key relation preserved by a Mal’cev operation.

o The pattern of p is full equivalence relation.

o Every block in a core of p is nontrivial.

Lemma [Keith A Kearnes and Agnes Szendrei]

A relational clone admits a Mal’cev operation if and only if the
pattern of each key relation in it is a full equivalence relation.
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Full Pattern

Mal’cev operation

Let A={0,1,2,3} and p = {(x,y,2) | x+y+2z=0( mod 4)}'J

Mal’cev operation: f(x,y,2) =x—y + z.
WNU: g(Xy, X2, X3, X4, X5) = X1 + X2 + X3 + X4 + Xs.

0 1 2 3

S = NNW

0123 0123 0123 0123



Full Pattern

Mal’cev operation

Let A={0,1,2,3} and p = {(x,y,2) | x+y+2z=0( mod 4)}'J

Mal’cev operation: f(x,y,2) =x—y + z.
WNU: g(Xy, X2, X3, X4, X5) = X1 + X2 + X3 + X4 + Xs.

0 2 1 3

SN = W

021 3 021 3 021 3 021 3




Full Pattern

Mal’cev operation

Let A={0,1,2,3} and p = {(x,y,2) | x+y+2z=0( mod 4)}'J

Mal’cev operation: f(x,y,2) =x—y + z.
WNU: g(Xy, X2, X3, X4, X5) = X1 + X2 + X3 + X4 + Xs.




Full Pattern

Mal’cev operation

Let A={0,1,2,3} and p = {(x,y,2) | x+y+2z=0( mod 4)}'J

Mal’cev operation: f(x,y,2) =x—y + z.
WNU: g(Xy, X2, X3, X4, X5) = X1 + X2 + X3 + X4 + Xs.

- nontrivial block
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Full Pattern

Mal’cev operation

Mal’cev operation and WNU: f(x,y,z) =x+y + z.

(0,0) (0,1) (1,0) (1,1)

(0,0)(0,1)(1,0)(1,1) (0,0)(0,1)(1,0)(1,1) (0,0)(0,1)(1,0)(1,1) (0,0)(0,1)(1,0) (1,1)




Full Pattern

Mal’cev operation

(0,0)(0,1)(1,0)(1,1)



Full Pattern

Mal’cev operation
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Full Pattern

Edge operation

A Kk-edge operation is an operation f of arity k + 1 satisfying
fy,y, X, X, ..., X,X) = X
(XY, Y, X, ..., X, X) =X

f(X, X, ¥, X, ..., X, X) =X

f(X, X, X, X...,X,¥) = X.
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Full Pattern

Edge operation

Lemma

Suppose a key relation p of arity n is preserved by a Kk-edge
operation, then

o If n > k then the pattern of p is full.
o If n < k then the pattern of p is either trivial, or full.

o If the pattern of p is full, then every block in a core of p is
nontrivial.
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Full Pattern

[ still don’t like this.

What the hell is core?
Can you prove

something in general?
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Full Pattern

Every key relation with full pattern preserved by a WNU can be
divided into blocks such that

o Different blocks cannot contain common tuples and tuples
that differ in one component.

e Every nontrivial block is a linear relation(with respect to
some equivalence relation).

o All nontrivial blocks are «similar».
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Conclusion

Tell me again
why it 1s useful!
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Conclusion

o Mal’cev operation + near-unanimity operation —
majority operation.
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Conclusion

Corollaries

o Mal’cev operation + near-unanimity operation —
majority operation.

e Mal’cev operation + semilattice (2-semilattice) operation
—> majority operation.
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Conclusion

Corollaries

o Mal’cev operation + near-unanimity operation —
majority operation.

e Mal’cev operation + semilattice (2-semilattice) operation
—> majority operation.

e edge operation + semilattice (2-semilattice) operation —>
near-unanimity operation.
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Conclusion

Corollaries

o Mal’cev operation + near-unanimity operation —
majority operation.

e Mal’cev operation + semilattice (2-semilattice) operation
—> majority operation.

e edge operation + semilattice (2-semilattice) operation —>
near-unanimity operation.

o edge operation <= cube operation.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Solution

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

X + 1(mod3).
2x + 2y(mod3)

@ semiprojection S.
o self-dual majority operation.
°

self-dual extension of disjunction.

o self-dual extension of conjunction.
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An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Solution

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

e X + 1(mod3). Easy!

e 2x + 2y(mod3)
semiprojection S.

self-dual majority operation.

e o6 o

self-dual extension of disjunction.

o self-dual extension of conjunction.
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An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Solution

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

e X + 1(mod3). Easy!

e 2x + 2y(mod3) = x — y + z, Mal’cev operation! Easy!
semiprojection S.

self-dual majority operation.

e o6 o

self-dual extension of disjunction.

o self-dual extension of conjunction.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Solution

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

X + 1(mod3). Easy!
2x +2y(mod3) = x — y + z, Mal’cev operation! Easy!

e semiprojection s. We did this before! Easy!
o self-dual majority operation.
°

self-dual extension of disjunction.

o self-dual extension of conjunction.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Solution

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

X + 1(mod3). Easy!
2x +2y(mod3) = x — y + z, Mal’cev operation! Easy!

e semiprojection s. We did this before! Easy!
o self-dual majority operation. Easy!
°

self-dual extension of disjunction.

o self-dual extension of conjunction.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

e X + 1(mod3). Easy!
e 2x + 2y(mod3) = x — y + z, Mal’cev operation! Easy!
semiprojection S. We did this before! Easy!

self-dual majority operation. Easy!

e o6 o

self-dual extension of disjunction. 2-semilattice operation!
Difficult, but can be done!

o self-dual extension of conjunction.
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Conclusion

An operation preserving (? ; %) is called self-dual.

Describe all clones of self-dual operations on 3 elements.

Find all minimal clones of self-dual operations and for each
clone describe all clones containing it.

e X + 1(mod3). Easy!
e 2x + 2y(mod3) = x — y + z, Mal’cev operation! Easy!
semiprojection S. We did this before! Easy!

self-dual majority operation. Easy!

e o6 o

self-dual extension of disjunction. 2-semilattice operation!
Difficult, but can be done!

o self-dual extension of conjunction. The same!
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Conclusion

Thank you for your attention
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