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dA(n) = the least size of a generating set for An.



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 2 / 23
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Growth rate

The growth rate of a finite algebra A is the function
dA(n) = the least size of a generating set for An.

Examples

A is a module over a ring. Then dA(n) = Θ(n) (linear).
Reason: The size of a basis in a vector space Fn is n.

A is a Boolean algebra. Then dA(n) = Θ
(

log(n)
)

(logarithmic).
The same holds if A is a simple nonabelian group.
Reason: all finitary functions on A are polynomials.

A is a unary algebra. Then dA(n) = 2Θ(n) (exponential).
Reason: The free algebras over A have polynomially bounded size.
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Wiegold dichotomy
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G is a finite group. If G has a nontrivial abelian factor group, then
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Wiegold dichotomy

Theorem (J. Wiegold, 1974)

G is a finite group. If G has a nontrivial abelian factor group, then
dG is linear. Otherwise (that is, if G is perfect) dG is logarithmic.

Remarks

If B is a homomorphic image of A, then dB(n) ≤ dA(n).
So if G has an abelian factor, then dG is at least linear.

If B is an expansion of A, then dB(n) ≤ dA(n).
The richer the structure, the smaller the growth rate.

Wiegold-dichotomy holds for Maltsev algebras (see later).

Motivating problem

What are the possible growth rates of finite algebras?
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Theorem (KKSz)

Let A be an algebra with an m-ary, p ≥ 1-pointed, k-cube term,
with at least one constant symbol appearing in the cube identities.
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Growth restrictions imposed by identities

Theorem (KKSz)

Let A be an algebra with an m-ary, p ≥ 1-pointed, k-cube term,
with at least one constant symbol appearing in the cube identities.
If Ap+k−1 is finitely generated, then all finite powers of A are
finitely generated and dA(n) is bounded above by a polynomial
of degree at most logw (m), where w = 2k/(2k − 1).

There exist finite algebras with pointed cube terms whose
growth rate is ∼ to a polynomial of any prescribed degree.

The growth rate of any algebra with a pointed cube term arises
as the growth rate of an algebra without a pointed cube term.

If a basic Σ does not entail the existence of a pointed
cube term, then Σ imposes no restriction on growth rates.
“Basic” identity: at most one operation symbol on both sides.
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Suppose that A is finite.
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General Wiegold dichotomy

If A has a 0-pointed cube term, then it generates a congruence
modular variety. We say that A is perfect, if [1A, 1A] = 1A
(in the sense of the modular commutator).
That is, A is perfect iff it has no nontrivial abelian factor algebras.

Theorem (KKSz)

Suppose that an algebra A has a 0-pointed, k-cube term
and Ak is finitely generated.

A perfect =⇒ dA(n) = O
(

log(n)
)

.
A imperfect =⇒ dA(n) = O(n).

Suppose that A is finite. A perfect =⇒ dA(n) = Θ
(

log(n)
)

.
A imperfect =⇒ dA(n) = Θ(n).

The proof uses a probabilistic argument of independent interest.
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Abelianness properties

By R. McKenzie and D. Hobby in tame congruence theory:

If α, β, δ ∈ Con(A), then α centralizes β modulo δ, that is,
C (α, β; δ) holds iff
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By R. McKenzie and D. Hobby in tame congruence theory:

If α, β, δ ∈ Con(A), then α centralizes β modulo δ, that is,
C (α, β; δ) holds iff for all polynomials t of A we have
(∀a ≡α b)(∀c ≡β d) t(a, c) ≡δ t(a,d) =⇒ t(b, c) ≡δ t(b,d).

The commutator: [α, β] =
∧

{δ ∈ Con(A) : C (α, β; δ) holds}.

A is abelian if [1A, 1A] = 0A (that is, C (1A, 1A; 0A) holds).



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 7 / 23
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{δ ∈ Con(A) : C (α, β; δ) holds}.

A is abelian if [1A, 1A] = 0A (that is, C (1A, 1A; 0A) holds).
Homomorphic images of abelian algebras are not always abelian.

A is solvable, if there is a chain of congruences
0A = θ0 < θ1 < . . . < θn = 1A such that each θi+1/θi is abelian.
Can be expressed with the commutator the same way as for groups.
Homomorphic images, direct products and subalgebras of finite
solvable algebras are solvable. A finite algebra is solvable iff only
the types 1 and 2 of tame congruence theory occur in it.
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Nilpotence

Developed by K. Kearnes:

When α ∈ Con(A) define (α]1 = [α)1 = α and

(α]k+1 = [α, (α]k ], [α)k+1 = [[α)k , α].

If (α]n+1 = 0, then α is n-step left nilpotent,
if [α)n+1 = 0, then α is n-step right nilpotent.
Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:

C (1A,N
2; δ) holds whenever δ ≺ θ and N is a 〈δ, θ〉-trace. (†)

(Here N2 is considered as a binary relation, and centrality is
defined naturally). This condition is still stronger than solvability.



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 8 / 23
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When α ∈ Con(A) define (α]1 = [α)1 = α and

(α]k+1 = [α, (α]k ], [α)k+1 = [[α)k , α].

If (α]n+1 = 0, then α is n-step left nilpotent,
if [α)n+1 = 0, then α is n-step right nilpotent.
Right nilpotent congruences are left nilpotent in finite algebras.
Left nilpotence implies the following condition:

C (1A,N
2; δ) holds whenever δ ≺ θ and N is a 〈δ, θ〉-trace. (†)

(Here N2 is considered as a binary relation, and centrality is
defined naturally). This condition is still stronger than solvability.

Theorem (K. Kearnes)

Homomorphic images of finite abelian algebras are right nilpotent.
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The Hamiltonian property

A is Hamiltonian: every subalgebra is a congruence block.
quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every
maximal subgroup is normal) iff it is nilpotent.



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 9 / 23
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A is Hamiltonian: every subalgebra is a congruence block.
quasi-Hamiltonian: every maximal subalgebra is a congruence-block.

Theorem (E. W. Kiss, M. Valeriote)

A locally finite variety is abelian iff it is Hamiltonian.

Wielandt: A finite group is quasi-Hamiltonian (that is, every
maximal subgroup is normal) iff it is nilpotent.

Theorem (K. Kearnes)

If a finite algebra A satisfies (†), then it is quasi-Hamiltonian.
A variety generated by a finite left nilpotent algebra is
quasi-Hamiltonian. Conversely, if A2 is quasi-Hamiltonian, then
V(A) is quasi-Hamiltonian, and its finite members satisfy (†).
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An algebra A is strongly abelian, if for all polynomials t we have
(∀a,b, c,d, e) t(a, c) = t(b,d) =⇒ t(e, c) = t(e,d).

Let A be a nontrivial finite algebra and let B be a nontrivial
homomorphic image of Ak for some k .

If B is strongly abelian, then dA(n) = 2Θ(n) (exponential).

If B is abelian, then dA(n) = Ω(n) (at least linear).

This holds, because the free algebras in the first case have
polynomially bounded size, and in the second case their size
is in 2O(n) by a result of J. Berman and R. McKenzie.

Each simple factoralgebra of a finite solvable algebra A is either
abelian or strongly abelian, so dA(n) is at least linear.
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(1) A is solvable.

(2) A is (left) nilpotent.

(3) A is abelian.

(4) A is a subdirect product of simple abelian algebras.

(5) A generates an abelian variety.

We have (4) ⇒ (3) ⇒ (2) ⇒ (1) and (5) ⇒ (3).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield
a closer relationship between various growth-restricting conditions.
Example: Both (5) and (4) imply that
the growth rate is non-exponential iff A has a Maltsev term
(in which case the growth rate is linear),
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The hierarchy of abelianness properties

(1) A is solvable.

(2) A is (left) nilpotent.

(3) A is abelian.

(4) A is a subdirect product of simple abelian algebras.

(5) A generates an abelian variety.

We have (4) ⇒ (3) ⇒ (2) ⇒ (1) and (5) ⇒ (3).
No other implications hold (except the formal consequences).

We prove that stronger abelianness properties yield
a closer relationship between various growth-restricting conditions.
Example: Both (5) and (4) imply that
the growth rate is non-exponential iff A has a Maltsev term
(in which case the growth rate is linear), but (2) does not.
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.
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(ii) A has a pointed cube polynomial.
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(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).
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(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).
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(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv),
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v),
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v), and (iii)⇒(iv)⇒(v)⇒(vi).
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v), and (iii)⇒(iv)⇒(v)⇒(vi).
No other implications hold for general finite algebras.
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v), and (iii)⇒(iv)⇒(v)⇒(vi).
No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable A linear or exponential?
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v), and (iii)⇒(iv)⇒(v)⇒(vi).
No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable A linear or exponential?

True if A is nilpotent;
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The hierarchy of growth-restricting conditions

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets (see later).

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

We have (i)⇒(iv), (i)⇒(ii)⇒(v), and (iii)⇒(iv)⇒(v)⇒(vi).
No other implications hold for general finite algebras.

Open problem

Is the growth rate of each finite solvable A linear or exponential?

True if A is nilpotent; would follow from (vi)⇒(iii) for solvable A.
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Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
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a polynomial p of A
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Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
A subset S ⊆ A is a spread with respect to U if there exists
a polynomial p of A and (not necessarily distinct) elements
U1, . . . ,Uk ∈ U
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Let A be an algebra and U a collection of subsets of A.
A subset S ⊆ A is a spread with respect to U if there exists
a polynomial p of A and (not necessarily distinct) elements
U1, . . . ,Uk ∈ U such that p(U1, . . . ,Uk) = S .

Claim

If a finite algebra A is a spread of a family of subsets on which
the induced algebras have Maltsev polynomials
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Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
A subset S ⊆ A is a spread with respect to U if there exists
a polynomial p of A and (not necessarily distinct) elements
U1, . . . ,Uk ∈ U such that p(U1, . . . ,Uk) = S .

Claim

If a finite algebra A is a spread of a family of subsets on which
the induced algebras have Maltsev polynomials (like type 2

minimal sets),
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Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
A subset S ⊆ A is a spread with respect to U if there exists
a polynomial p of A and (not necessarily distinct) elements
U1, . . . ,Uk ∈ U such that p(U1, . . . ,Uk) = S .

Claim

If a finite algebra A is a spread of a family of subsets on which
the induced algebras have Maltsev polynomials (like type 2

minimal sets), then the growth rate of A is at most linear.
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Spreads

Definition

Let A be an algebra and U a collection of subsets of A.
A subset S ⊆ A is a spread with respect to U if there exists
a polynomial p of A and (not necessarily distinct) elements
U1, . . . ,Uk ∈ U such that p(U1, . . . ,Uk) = S .

Claim

If a finite algebra A is a spread of a family of subsets on which
the induced algebras have Maltsev polynomials (like type 2

minimal sets), then the growth rate of A is at most linear.

Theorem (KKSz)

If A is a finite solvable algebra with a Maltsev polynomial, then
A is a spread of its type 2 minimal sets.
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Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term.



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 14 / 23
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Then dA(n) = Θ(n).
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Let A be a finite solvable algebra that has a pointed cube term.
Then dA(n) = Θ(n).

Tool used: a new characterization of solvability.
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Then dA(n) = Θ(n).

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A.
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Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term.
Then dA(n) = Θ(n).

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A.
The translation-digraph Tr(p) on A has directed edges
(c , c ′) =

(

p(c , c , . . . , c), p(c , . . . , c , d , c , . . . , c)
)

,
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Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A.
The translation-digraph Tr(p) on A has directed edges
(c , c ′) =

(

p(c , c , . . . , c), p(c , . . . , c , d , c , . . . , c)
)

, where c , d ∈ A.

Theorem (KKSz)

A finite algebra A is solvable if and only if for every neighborhood
U of A,
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Let A be a finite solvable algebra that has a pointed cube term.
Then dA(n) = Θ(n).

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A.
The translation-digraph Tr(p) on A has directed edges
(c , c ′) =

(

p(c , c , . . . , c), p(c , . . . , c , d , c , . . . , c)
)

, where c , d ∈ A.

Theorem (KKSz)

A finite algebra A is solvable if and only if for every neighborhood
U of A, and every idempotent polynomial p of the induced
algebra A|U ,
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Solvable algebras

Theorem (KKSz)

Let A be a finite solvable algebra that has a pointed cube term.
Then dA(n) = Θ(n).

Tool used: a new characterization of solvability.

Let A be an algebra and p an idempotent polynomial of A.
The translation-digraph Tr(p) on A has directed edges
(c , c ′) =

(

p(c , c , . . . , c), p(c , . . . , c , d , c , . . . , c)
)

, where c , d ∈ A.

Theorem (KKSz)

A finite algebra A is solvable if and only if for every neighborhood
U of A, and every idempotent polynomial p of the induced
algebra A|U , the directed graph Tr(p) is strongly connected.
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Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial.
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pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine
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pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine (so has a Maltsev-term).
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Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and A|A| does not have
a nontrivial strongly abelian quotient algebra,
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Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and A|A| does not have
a nontrivial strongly abelian quotient algebra,
then A is a spread of its type 2 minimal sets
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Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and A|A| does not have
a nontrivial strongly abelian quotient algebra,
then A is a spread of its type 2 minimal sets (hence linear).
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Nilpotent algebras

Theorem (KKSz)

A finite left nilpotent algebra has a Maltsev polynomial iff it has a
pointed cube polynomial. Hence a finite abelian algebra has a
pointed cube polynomial iff it is affine (so has a Maltsev-term).

Theorem (KKSz)

If A is a finite, left nilpotent algebra, and A|A| does not have
a nontrivial strongly abelian quotient algebra,
then A is a spread of its type 2 minimal sets (hence linear).

The proof uses the quasi-Hamiltonian property
for the subalgebras of A|A|.
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Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.
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Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.

If H(A2) is abelian, then there is an abelian group operation
on A that is compatible with all operations of A,
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Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.

If H(A2) is abelian, then there is an abelian group operation
on A that is compatible with all operations of A,
and preserves all congruences of A.
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Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.

If H(A2) is abelian, then there is an abelian group operation
on A that is compatible with all operations of A,
and preserves all congruences of A.

If the variety V(A) generated by A is abelian, then A is affine.
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Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.

If H(A2) is abelian, then there is an abelian group operation
on A that is compatible with all operations of A,
and preserves all congruences of A.

If the variety V(A) generated by A is abelian, then A is affine.

Examples

An 8-element quasi-affine algebra shows that in the second
statement the assumption that V(A) is abelian cannot be dropped.
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Abelian varieties

Theorem (KKSz)

Let A be an algebra, which is a spread of subsets
whose induced algebras are affine. Then the following hold.

If H(A2) is abelian, then there is an abelian group operation
on A that is compatible with all operations of A,
and preserves all congruences of A.

If the variety V(A) generated by A is abelian, then A is affine.

Examples

An 8-element quasi-affine algebra shows that in the second
statement the assumption that V(A) is abelian cannot be dropped.

Another 8-element abelian algebra shows that in the first
statement it is not sufficient to assume only that H(A) is abelian.
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A.
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial.
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial. In particular, if A is (linear,
and) a direct product of simple abelian algebras, then A is Maltsev.
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial. In particular, if A is (linear,
and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a
subdirect product of simple abelian algebras.
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial. In particular, if A is (linear,
and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a
subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two,
4-element affine (hence abelian, Maltsev) algebras,
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial. In particular, if A is (linear,
and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a
subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two,
4-element affine (hence abelian, Maltsev) algebras,
has a linear growth rate,
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Semisimple algebras

Theorem (KKSz)

Let A be a finite solvable algebra and β the intersection of all
maximal congruences of A. If the growth rate of A/β is linear,
then A/β has a Maltsev polynomial. In particular, if A is (linear,
and) a direct product of simple abelian algebras, then A is Maltsev.

The proof shows that A/β is a direct product, and not just a
subdirect product of simple abelian algebras.

Example

There exist a 16-element algebra that is a direct product of two,
4-element affine (hence abelian, Maltsev) algebras,
has a linear growth rate, but does not have a Maltsev polynomial.
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Summary: arbitrary

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets.

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if V(A) is abelian.

(iii) =⇒ (iv) =⇒ (v) =⇒ (vi).

=
⇒

(i) =⇒ (ii)

=
⇒

For arbitrary finite algebras
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Summary: solvable

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets.

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if V(A) is abelian.

(iii) =⇒ (iv) =⇒ (v) =⇒ (vi).

=⇒

(i) =⇒ (ii)

=⇒

For finite, solvable algebras
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Summary: nilpotent

(i) A has a Maltsev polynomial.

(ii) A has a pointed cube polynomial.

(iii) A is a spread of its type 2 minimal sets.

(iv) dA(n) ∈ O(n).

(v) dA(n) /∈ 2Ω(n).

(vi) An has no nontrivial strongly abelian factor (for all n).

All are equivalent if A is semisimple or if V(A) is abelian.

(iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi).

=⇒

(i) ⇐⇒ (ii)

=⇒

For finite, left nilpotent algebras
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Open problems

Is there a finite algebra A such that dA(n) /∈ Ω(n) and
dA(n) /∈ O(log(n))? That is, whose growth rate is between
logarithmic and linear?
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Open problems

Is there a finite algebra A such that dA(n) /∈ Ω(n) and
dA(n) /∈ O(log(n))? That is, whose growth rate is between
logarithmic and linear? Open for 2-element partial algebras, too.

Is it true that a finite algebra with a 2-sided unit for some binary
term has logarithmic or linear growth? (Note that the identities
x ∗ 1 = 1 ∗ x = x show that ∗ is a 1-pointed 2-cube term.)

Does (ii)⇒(iii) hold for finite solvable algebras?

Which of the true implications (iii)⇒(iv)⇒(v)⇒(vi) can be
reversed for finite solvable algebras? In particular, is the growth
rate of a finite solvable algebra always linear or exponential?
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Literature

Hobby, David, McKenzie, Ralph, The structure of finite

algebras. Contemporary Mathematics, 76. American
Mathematical Society, Providence, RI, 1988.

Kearnes, Keith, An order–theoretic property of the

commutator. Internat. J. Algebra Comput. 3 (1993), 491–533.

Kearnes, Keith, A Hamiltonian property for nilpotent algebras.

Algebra Universalis 37 (1997), 403–421.



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 22 / 23

Literature

Hobby, David, McKenzie, Ralph, The structure of finite

algebras. Contemporary Mathematics, 76. American
Mathematical Society, Providence, RI, 1988.

Kearnes, Keith, An order–theoretic property of the

commutator. Internat. J. Algebra Comput. 3 (1993), 491–533.

Kearnes, Keith, A Hamiltonian property for nilpotent algebras.

Algebra Universalis 37 (1997), 403–421.

KKSz: Growth rates of algebras I: pointed cube terms.

Arxiv: 1311.2352



Growth rates of solvable algebras Keith. A Kearnes, Emil W. Kiss, Ágnes Szendrei 22 / 23
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