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Clowns in the ’00s

The clown lattice

X . . . infinite base set of size ℵα.
O(n) = X X n

= {f : X n → X} . . . n-ary functions on X .
O =

⋃
n≥1 O

(n) . . . finitary operations on X .

Definition
C ⊆ O clone iff

C contains the projections and
C closed under composition.

Cl(X ) . . . lattice of clones (with inclusion).

Fact

X infinite→ |Cl(X )| = 22ℵα .
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3 Conjectures

Homogeneous structures and Ramsey structures
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Homogeneous structures

Definition
A relational structure ∆ is homogeneous :↔
every isomorphism between finite substructures of ∆

extends to an automorphism of ∆.

Theorem (Fraïssé)
Homogeneous relational structures↔
Fraïssé classes of finite structures.
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Examples

(Finite) linear orders↔ (Q;<)

Undirected graphs↔ random graph (V ; E)

Ordered undirected graphs↔ random ordered graph (V ; E , <)

Partial orders↔ random partial order

Permutations (P;<1, <2)↔ random permutation

Binary trees (T ;≤, xy |z)↔ random tree
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Ramsey structures, pub style

∆ is Ramsey↔
whenever some idiot comes with finitely many colors
and paints all copies of his favorite finite substructure
there remains a monochromatic copy of any finite substructure of ∆.
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Ramsey expansions

Conjecture (Bodirsky+MP ’10)
Every homogeneous structure in a finite signature
has a finite homogeneous Ramsey expansion.

Example: Graphs→ Ordered graphs

Variant: Finitely bounded Fraïssé classes
(given by finitely many forbidden substructures)
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Clones on Ramsey structures

= clones having all automorphisms of a Ramsey structure.

Fact
Let ∆ be homogeneous in finite signature.

The polymorphism clones ⊇ Aut(∆) are precisely
those of structures definable in ∆ (“reducts of ∆”).

Automorphism groups ⊇ Aut(∆): Symmetries of the Fraïssé class

Polymorphism clones ⊇ Aut(∆): CSPs over the Fraïssé class
(“Is there a graph such that. . . ?”)
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Groups on Ramsey structures

Theorem (Pach+Pluhár+MP+Pongrácz+Szabó ’11)

Partial orders have 3 (non-trivial) symmetries.

Theorem (Bodirsky+MP+Pongrácz ’13)

Ordered graphs have 42 symmetries.

Theorem (MP+Linman ’14)
Permutations have 37 symmetries.

Theorem (Bodirsky+Bradley-Williams+MP+Pongrácz ’14)
Binary trees have 1 symmetry.

Conjecture (Thomas ’91)
Fraïssé classes in finite language have finitely many symmetries.
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Canonical functions

Definition
Let ∆ be a structure.

f : ∆n → ∆ is canonical iff
it sends tuples of equal type in ∆n

to tuples of equal type in ∆.

Examples

reversing < in the rationals
edge-max on the random graph
flipping the two orders in the random permutation
re-rooting binary trees with a distinguished branch
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Clones on Ramsey structures

. . . can be distinguished by canonical functions:

Proposition (Bodirsky+MP+Tsankov ’10)

Let Pol(Γ) ⊇ Aut(∆), where Γ has finite language.

Then there exist canonical functions f1, . . . , fm outside Pol(Γ)

such that any polymorphism clone on ∆ not contained in Pol(Γ)

contains an fi .
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CSPs on Ramsey structures

Conjecture (Bodirsky+MP ’11)
Every CSP over a finitely bounded homogeneous Ramsey structure is
either in P or NP-complete.

Let Pol(Γ) ⊇ Aut(∆), where ∆ is Ramsey.

Pol(Γ)→ canonical fragment→ Type clone (on finite set).

Conjecture (Bodirsky+MP ’12)
For model-complete cores Γ over Ramsey structures:

There exists an expansion by finitely many constants such that
Pol(Γ) has a continuous homomorphism
to the clone of projections;

or Pol(Γ) satisfies a non-trivial equation, and CSP(Γ) is in P.
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Three conjectures

Conjecture (Bodirsky+MP ’10)
Every homogeneous structure in a finite signature
has a finite homogeneous Ramsey expansion.

Conjecture (Thomas ’91)
Fraïssé classes in finite rel. language have finitely many symmetries.

Conjecture (Bodirsky+MP ’12)
For model-complete cores Γ over Ramsey structures:

There exists an expansion by finitely many constants such that
Pol(Γ) has a continuous homomorphism
to the clone of projections;

or Pol(Γ) satisfies a non-trivial equation, and CSP(Γ) is in P.
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Kerrie Warren, Composing chaos (Patterns in chaos)
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