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Outline

Rough outline:

1 The question:
suppose a clone homomorphically maps to the clone of projections,
is there also a continuous homomorphism?

2 its motivation:
complexity of CSPs for infinite templates

3 results

4 future work

New parts on joint work with Michael Pinsker and András Pongracz.
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Pointwise Convergence Topology

Let C be a clone over a countably infinite set D.

Then C has a natural topology:

Definition 1 (Topology of pointwise convergence).

C is subspace of the sum-space O :=
⋃

k DDk

(D taken to be discrete, DDk
has product topology)

Note:

C closed in O if and only if
C = Pol(Γ) for some relational structure Γ with domain D.

with respect to this topology, composition in D is continuous.

C is a topological clone: an abstract clone C (viewed as a multi-sorted
algebra) together with a topology under which composition is continuous.
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Clone Homomorphisms

Let C,D be two clones. For i ≤ k ∈ N, write πk
i for the i-th k -ary projection.

Then a mapping ξ from C to D is a clone homomorphism if

πk
i ∈ C is mapped to πk

i ∈ D, and

for all n-ary f ∈ C and all m-ary g1, . . . ,gk ∈ C:
ξ(f (g1, . . . ,gk )) = ξ(f )(ξ(g1), . . . , ξ(gk ))

Later talks (Pongracz, Pech, Pech):
phenomenon of automatic homeomorphicity.

Example: Every homomorphism between the polymorphism clone of the
random graph and another closed subclone of O is a homeomorphism
(MB,Pinsker,Pongracz’14).

Not the topic of this talk . . .
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The Clone of Projections

Let P := Clo(A) for any algebra A with at least two elements where all
operations are projections.

Topology of P is discrete.

Alternatively: P = Pol({0,1}; {(0,0,1), (0,1,0), (1,0,0)}).

Question
Is it true that whenever a closed subclone C of O has a homomorphism to P,
then there also a continuous homomorphism to P?

When C is oligomorphic, then this has applications for the study of the CSP.

Open in general.
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Constraint Satisfaction Problems

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 2 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Example: 3-colorability is CSP(K3) where K3 := ({0,1,2}; 6=)

G K3
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Examples of CSPs

Digraph Acyclicity
Input: a finite directed graph (V ;E)

Question: is (V ;E) acyclic?

Is CSP: template is (Q, <)
Complexity: in P.

Betweenness:
Input: a set of triples of variables (x , y , z)

Question: can we assign values to variables s.t. for each triple
either x < y < z or z < y < x?

Is a CSP: template is
(
Q; {(x , y , z) | (x < y < z)∨ (z < y < x)}

)
Complexity: NP-complete.
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More Examples of CSPs

And/Or Precedence Constraints:
Input: A set of triples of variables (x , y , z)

Question: Is there a weak linear order on the variables s.t. for each triple
x is strictly larger than the minimum of y and z?

Is a CSP: template is
(
Q; {(x , y , z) | (x > y)∨ (x > z)}

)
Complexity: in P.

No-Mono-Triangle
Input: A finite undirected graph (V ;E)

Question: Can we partition V into two K3-free parts?

Complexity: NP-complete
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The Feder-Vardi Dichotomy Conjecture

What can be said about CSP(Γ) when Γ has a finite domain?

Severely restricted setting: all of the above CSPs cannot be formulated.

Conjecture (Feder-Vardi’93).

For finite Γ , the problem CSP(Γ) is either in P or NP-complete.

This dichotomy has been confirmed in many special cases, for example

For 2-element structures Γ (Schaefer’78)
and 3-element structures Γ (Bulatov’06)

For graphs (Hell+Nešetřil’90)
and digraphs without sources and sinks (Barto+Kozik+Niven’08)

Open for digraphs Γ

Open for 5-element structures Γ

Strongest evidence comes from the so-called universal algebraic approach.
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Beyond Finite Domains

The universal-algebraic approach applies naturally to the large class of
ω-categorical templates.

Definition
A first-order theory is ω-categorical if all its countable models are isomorphic.
A structure is ω-categorical if its first-order theory is ω-categorical.

Remarks:

Finite structures are ω-categorical

All CSPs we have seen earlier can be formulated with ω-categorical
templates

Fraı̈ssé-limits of classes of structures with finite relational signature are
ω-categorical.
These limits Γ are homogeneous: any isomorphism between finite
substructures of Γ can be extended to an automorphism of Γ .
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The Theorem of Ryll-Nardzewski

Let Γ be a structure with domain D, and let Aut(Γ) be its automorphism group.

The orbit of a (t1, . . . , tk ) ∈ Dk is the set
{
(a(t1), . . . ,a(tk )) | a ∈ Aut(Γ)

}
.

Theorem 1 (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , the following are equivalent:

Γ is ω-categorical.

Aut(Γ) is oligomorphic, i.e., there are finitely many orbits of k -tuples in
Aut(Γ), for each k .

A relation R is first-order definable in Γ if and only if it is preserved by all
automorphisms in Aut(Γ).

Call e ∈ C(1) invertible in C if there is i ∈ C(1) such that ei = ie = π1
1.

Call C oligomorphic if the invertible elements of C(1) form an oligomorphic
permutation group.
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Cores

A structure Γ is called a core if all endomorphisms of Γ are embeddings.

Crucial properties of finite cores:

Every finite structure Γ is homomorphically equivalent to a core structure
∆, which is unique up to isomorphism.

In a finite core Γ , all orbits of n-tuples are subalgebras of Pol(Γ)n.

When Γ is a finite core, and c1, . . . , cn are elements of Γ ,
then CSP(Γ) and CSP(Γ, {c1}, . . . , {cn}) are Ptime-equivalent.
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Model-Complete Cores

How to generalize these concepts to ω-categorical Γ?

Definition
A structure Γ is called model-complete if embeddings between models of the
first-order theory of Γ preserve all first-order formulas.

For ω-categorical Γ , the following are equivalent:

Γ is model-complete and a core;

Aut(Γ) is dense in End(Γ).

Theorem (MB’05,MB+Hils+Martin’10).

Every finite or countable ω-categorical structure is homomorphically
equivalent to a model-complete core ∆. The structure ∆ is unique up to
isomorphism, and ω-categorical. In ∆, every orbit{
(α(t1), . . . , α(tn)) | α ∈ Aut(Γ)

}
is a subalgebra of Pol(∆)n.

For c1, . . . , cn from ∆, CSP(∆) and CSP(∆, {c1}, . . . , {cn}) are Ptime equivalent.
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Pseudovarieties
HSPfin(A): pseudovariety generated by A.

Theorem (Bulatov+Jeavons+Krokhin’05).

Let Γ be a finite relational structure and A an algebra with Clo(A) = Pol(Γ).

Let ∆ be a relational structure and B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).
Then there is a Ptime reduction from CSP(∆) to CSP(Γ).

Consequences:

for finite A, by Birkhoff’s HSP/HSPfin theorem, complexity of CSP(Γ)
captured by HSP(A).

tractability of CSP(Γ) can be characterized by equations that hold for
polymorphisms of Γ .

Theorem.

Let Γ be an ω-categorical structure and A an algebra with Clo(A) = Pol(Γ).
Let ∆ be a relational structure and B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).
Then there is a Ptime reduction from CSP(∆) to CSP(Γ).
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Topological Birkhoff

Theorem (MB+Pinsker’13).

Let C and D be two closed oligomorphic subclones of O. Equivalent:

C and D are isomorphic via a homeomorphism;

there are algebras A, B such that C = Clo(A), C = Clo(B), and
HSPfin(A) = HSPfin(B).

Consequence: for ω-categorical Γ , the complexity of CSP(Γ) is captured by
Pol(Γ), viewed as a topological clone.

Theorem (MB+Pinsker’13).

Let C be a closed oligomorphic subclone of O, and let D be a clone over a
finite set. The following are equivalent:

there is a continuous surjective clone homomorphism from C to D;

there are algebras A, B such that C = Clo(A), C = Clo(B), and
A ∈ HSPfin(B).

Constraint Satisfaction Manuel Bodirsky 15
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The Tractability Conjecture

Let C be an idempotent clone over a finite set.

Theorem (Taylor’77,McKenzie+Maroti’08,Siggers’10,Barto+Kozik’10).

The following are equivalent:

C has no homomorphism to P (otherwise, CSP(Γ) is NP-hard)

C contains a Taylor operation;

C contains a weak near unanimity operation;

C has a (4-ary) Siggers operation.

C contains a cyclic operation satisfying

∀�x . f (x1, . . . , xn) = f (x2, . . . , xn, x1) ;

Conjecture 1 (Bulatov+Jeavons+Krokhin’05).

Let Γ be such that C := Pol(Γ) satisfies the conditions from the previous
theorem. Then CSP(Γ) is in P.
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Homomorphisms to P

Consequences of the previous results:

Corollary

Let Γ be ω-categorical. If there is a continuous surjective homomorphism from
Pol(Γ) to P, then CSP(Γ) is NP-hard.

Proof. Recall that P = Pol({0,1}; {(0,0,1), (0,1,0), (1,0,0)}), and that
CSP({0,1}; {(0,0,1), (0,1,0), (1,0,0)}) is NP-complete.

Can we drop the word continuous here?

Initial question: Suppose a closed subclone C of O has a homomorphism to
P, then there is also a continuous homomorphism to P?

By the topological Birkhoff theorem, this question is equivalent to:

Question

Let A, B be such that B ∈ HSP(A) and Clo(B) = P.
Is there also B ′ ∈ HSPfin(A) such that Clo(B ′) = P?
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The Locally Finite Idempotent Case

Theorem.
Let A be a locally finite idempotent algebra. If there is a homomorphism from
Clo(A) to P, then there is also a continuous one.

Proof. For each i , the subalgebra Ai of A generated by {1, . . . , i} is finite.
Two cases:

Clo(Ai) homomorphically maps to P.
Then this homomorphism is continuous.
Hence, also A homomorphically continuously maps to P.

Clo(Ai) does not homomorphically map to P.
Then Ai has a Siggers term.
For each i , there are finitely many such terms.
A compactness argument shows that A has a Siggers term.
Hence, there is no homomorphism from A to P. �
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A Discontinuous Homomorphism to P

Theorem.
There exists a closed oligomorphic subclone C of O with a discontinuous
homomorphism to P.

Equivalently: there are algebras A, B such that

Clo(A) is oligomorphic,

Clo(B) = P, and

B ∈ HSP(A) \ HSPfin(A).
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The Example

1 Let C be the class of all finite structures with signature {R1,R2, . . . } where
Rn has arity 2n and denotes an equivalence relation on n-tuples with two
equivalence classes.

2 C is an amalgamation class; let ∆ be its homogeneous ω-categorical
Fraı̈ssé-limit.

3 Let Γ be the structure with the same domain as ∆ that contains for all n
the 3n-ary relation S2{

(�x , �y , �z) ∈ D3n
∣∣ not all three of �x , �y , �z are equivalent under Rn

}
.

Γ is ω-categorical.

4 For each n, every f ∈ Pol(Γ) acts as an essentially unary projection µn(f )
on the equivalence classes of En.

5 Let F be a non-principal ultrafilter on ω. Define ξ : Pol(Γ)→ P by
ξ(f ) = πi

k if Uf := {n : µn(f ) = πk
i } ∈ F .
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Canonical Clones

Let Γ a structure with domain D.

Definition
A function f : Dn → D is canonical (wrt. Γ ) if for every m ∈ N, all
t1, . . . , tn ∈ Dm, and all α1, . . . , αn ∈ Aut(Γ) there exists a β ∈ Aut(Γ) such that

f (α1(t1), . . . , αn(tn)) = β(f (t1, . . . , tn)) .

Example. Let G = (V ;E) be the random graph. Then any embedding of G2

into G is canonical with respect to G.
Observations. Automorphisms of ∆ are canonical. Projections are canonical.
Operations generated by canonical operations are canonical.

Theorem.
Let C be a closed subclone of O such that all operations are canonical with
respect to a homogeneous relational structure Γ with finite relational signature.
Then if there is a homomorphism from C to P, there is also a continuous one.
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Equations

Suppose that C is a closed subclone of O without a homomorphism to P.

By compactness:

Theorem.
There exists a primitive positive sentence in the language of abstract clones
which is true over C but not over P.

Example. ∃f (comp2
2(f , π

2
1, π

2
2) = comp2

2(f , π
2
2, π

2
1))

Such a function f will satisfy ∀x , y (f (x , y) = f (y , x))

Hope: as in the finite case, combine these finitely many equations into one
‘nice’ equation.

Example. Pol(N; 6=, {(x , y ,u, v)} : x = y ⇒ u = v })

does not contain a cyclic operation.

does not have a homomorphism to P.
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Candidate Equations

Pol(N; 6=, {(x , y ,u, v)} : x = y ⇒ u = v }) contains a, f such that

∀x , y(f (x , y) = a(f (y , x))

If a clone C has elements a, f that satisfy such an equation, then there is
no homomorphism to P.

Definition 3.
An n-ary operation f is cyclic modulo a unary operation if there are unary a,b
such that

∀x1, . . . , xn. a(f (x1, . . . , xn)) = b(f (x2, . . . , xn, x1)) .

An n-ary operation f is a weak near unanimity modulo unary operations if
there are unary a1, . . . ,an such that

∀x , y . a1(f (y , x , . . . , x)) = a2(f (x , y , . . . , x)) = · · · = an(f (x , . . . , x , y)) .

It is a Taylor operation modulo unary operations if . . . (you can imagine)
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Taylor Operations Modulo Unary Operations

Why doesn’t the proof in Hobby+McKenzie work?
We are missing idempotency
Good news: when Γ is a model-complete core,
and Pol(Γ) has a Taylor operation modulo unary operations,
then (Γ, c1, . . . , cn) also has a Taylor oepration modulo unary operations.
Existence of Taylor operations modulo unary operations has been shown
for all clones that contain Aut(G) and do not homomorphically map to P

(MB+Pinsker’11)

Conjecture 2.

Suppose that Γ is an ω-categorical model-complete core. Then there exists a
finite tuple t such that either Pol(Γ, t) has a homomorphism to P, or Pol(Γ)
contains a weak near unanimity modulo unary polymorphisms.

Theorem.
There are oligomorphic clones C such that there is no homomorphism to P,
but C does not contain cyclic operations modulo unary operations in C.
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Conclusion

We should use from now on the following terminology:

permutation group topological group group
transformation monoid topological monoid monoid
function clone topological clone clone
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Open Problems

1 Is there any closed clone with a homomorphism to P, but no continuous
one?

2 Is there an oligomorphic clone with a homomorphism to P, but no
continuous one?

3 Is there a homogeneous structure ∆ with a finite relational language such
that Pol(∆) has a discontinuous homomorphism to P?

4 Is there a closed oligomorphic clone C where the automorphisms are
dense in C(1) where the automorphisms are dense in C(1) such that C has
a homomorphism to P but no Taylor operation modulo unary operations?

5 Is there a closed oligomorphic clone C where the automorphisms are
dense in C(1) such that C has a homomorphism to P but no weak near
unanimity operation modulo unary operations?
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