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3-Colouring



k-Clique




Constraint Satisfaction Problems

CSP(A, B)

Given two classes A and B of relational structures
and A € A, B € B, decide whether A — B.



Non-Uniform CSP(A, B): A=all, B={I'}

CSP(I") = CSP(—, {I'}), finite relational structure I
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Complexity of CSP(I)

1. CSP(I") =, CSP(IN)
where " = RelClone(T") is the closure of ' under 3, A, =

2. relational clones RelClone(T")
~ clones Pol(I")

3. properties of Pol(T")



Complexity of CSP(I)

1. CSP(I") =, CSP(IN)
where " = RelClone(T") is the closure of ' under 3, A, =

2. relational clones RelClone(T")
~ clones Pol(I")

3. properties of Pol(T")

Example: Pol(I") contains a Mal'cev operation = CSP(I') tractable
[Bulatov & Dalmau SICOMP06]
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Valued CSPs

» fixed finite set D

» Q=QU{x}
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Valued CSPs

» fixed finite set D

> Q=QU {0} [

possibly different m for different ¢ € F]
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Valued CSPs

» fixed finite set D

» Q=QU{x}

Let T be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(I) is an optimisation problem of the form

min _ ¢1(x1, -, Xumy) + oo Bg(Xq1s - - s Xqumg)
X1,---,Xn €D
where x;; € {x1,...,x,} and all functions ¢; € T.

Complexity of VCSP(I") for all possible I'!
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Valued CSPs

Let I be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(T) is an optimisation problem of the form

min ¢1(X171, c. ,X17m1) AF oo Ar qu(Xq,l, c.. 7Xq,mq)
X1,-.e,Xn €D
where x;; € {x1,...,x,} and all functions ¢; € T.

Monotone NAE 3-SAT

X ‘ y ‘ z I (z)nae(xz}/»z)
. T|T|T
min E ¢nae(Xi7Xjan) FIFI|F z
X17~"7XUE{T7F}
(Xi7Xj7Xk)€C * * * 0
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Valued CSPs

Let I be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(I) is an optimisation problem of the form

mmeD ¢1(X171, C ,X17m1) + ...+ qu(Xq,l, C 7Xq,mq)

where x;; € {x1,...,x,} and all functions ¢; € T.

(s, t)-Min-Cut
x|y | ¢=(x,y)
. a a 0
min Z d=(xi, x;) alb 1
X17~"7Xn€{aab} b a 1
(xi,x)EE(G) b | b 0

s.t. Xs=a,xt=b

14



Valued CSPs

Let I be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(I) is an optimisation problem of the form

min ¢1(X171, c. ,X17m1) AF oo Ar qu(Xq,l, c.. 7Xq,mq)
X1,-.e,Xn €D
where x;; € {x1,...,x,} and all functions ¢; € T.
Max-Cut
x |y | ¢x(xy)
. a a 1
min Z (i, X;) alb 0
X1,...,xn€{a,b} b | a 0
(xig)EE(G) ol ;
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Valued CSPs

Let I be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(I) is an optimisation problem of the form

P1(Xt,1 - Ximy) F oo+ Dg(Xg,1s - - Xgymg)
X1,-.e,Xn €D
where x;; € {x1,...,x,} and all functions ¢; € T.

Vertex Cover

' x | n(x)
BATN Z uclxi, ) + Z n(xi) °

(xi,%)EE(G) xeV(G) 1
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Valued CSPs

Let I be a finite set of functions ¢ : D™ — Q. An instance of
VCSP(T) is an optimisation problem of the form

min ¢1(X171, c. ,X17m1) AF oo Ar gbq(Xq,la c. 7Xq,mq)
X1,-..,Xn €D
where x;; € {x1,...,x,} and all functions ¢; € T.

Codomain of functions from I':

» {0,00}: CSPs (feasibility)
» {0,1}: Max-CSPs (max ##satisfied constraints)
» Q: Finite-Valued CSPs (optimisation)
» Q: (General-)Valued CSPs (feasibility & optimisation)

Approximation: strict CSPs=CSPs, CSPs=Max-CSPs, Finite-Valued CSPs=Generalised CSPs
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Outline

operations — weightings
clones — weighted clones
polymorphisms — weighted polymorphisms

19



Operations and Clones

A k-ary operation on D is a mapping f : DK — D.

A clone C on D is a set of operations on D closed under
superposition and containing all projections.
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such that w(f) < 0 only if f is a projection and
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Weightings

A k-ary weighting of a clone C is a function w : C*) — Q
such that w(f) < 0 only if f is a projection and

> w(f) =o0.

feck)
> w(f) = cu/(f) for every f € C(K) (scaling by ¢ € Q>0)
> w(f) = wi(f) + wa(f) (addition)
> wlgr, ..., &l(f’) = Z w(f) (superposition)
fectt
fler,....ex]=f'
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Superposition Example

» D totally ordered
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Superposition Example

» D totally ordered
» binary min,max € C
> 4-ary weighting w

~1 iffe{e?
w(f)=9 +1 iffe {maxg
0 o/w

(4)

(4) (4)}

€75 837, &

4)

2

min

4 4
%), max(y,

min

(4)
34

}
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Superposition Example

» D totally ordered
» binary min,max € C
> 4-ary weighting w

w(f) =

(81,82, 83,84) = (

-1
+1
0

if fe {eg4), egl), eg4), e£4)}
if fe {maxg), min:(é), maxgi),
o/w

3 B (3

)
e] ,e ;€3 maxyy)

(3

min

(4)
34

}
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» D totally ordered
» binary min,max € C
> 4-ary weighting w

—1 iffe{e?,
w(f) =4 +1 if f e {max{
0 o/w

(3) B) (3

<glag27g3ag4>:<e]_ ,62 ae3 7maX12

4 3
eg )[g17g27g3,g4] =g = e§ )

(4) (4 (4)}

4)

g3
minj, , maxs,

2

(3)>
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(4)
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}
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Superposition Example

» D totally ordered
» binary min,max € C
> 4-ary weighting w

-1 iffe {eg4), egl), eg4), e£4)}
w(f)=9 +1 iffe {maxg), min:(é)7 maxgi), ming?}
0 o/w

(g1, 82,83, 88) = (€, e, ) max())

W' = wlg1, &2, 83, &)

/ -1 iffe {eg3), eg3),eg3)}
W(f)=9 +1 iffe {maxg)?,, ming), min(3)(maxg32),eg3))}
0 o/w
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Superposition as Matrix Multiplication

w = (ﬂ,...,ﬁc(k)l)
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Superposition as Matrix Multiplication

w = (f,- s ficw))
wlgt, ..., &l = (h1,.... hcwoy)

gieCOfor1<i<k
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Superposition as Matrix Multiplication

w =

wler, .

(-5 fiewy)
.8k = (h1,... b))

G

gieCOfor1<i<k

|CR)|x|C®)

23



Superposition as Matrix Multiplication

W = (f17--'7f|c(k)|) g;GC(Z) for1<i<k
w[gl)"'7gk] :(hl)"wh‘C(Z)‘)

G

f[gl,...,gk]:h

|CR|x|CO)]
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Superposition as Matrix Multiplication

w =

wler, .

ole, .

(-5 fiewy)
.8k = (h1,... b))

7gk] = w-

G

gieCOfor1<i<k
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Weightings

A k-ary weighting of a clone C is a function w : C*) — Q
such that w(f) < 0 only if f is a projection and

> w(f) =o0.

feC(k)
» w(f) = cw/(f) for every f € C(K) (scaling by ¢ € Q>0)
> w(f) = wi(f) + wa(f) (addition)
> wlg, ... 8l(f) = Z w(f) (proper superposition)
fectk)
flgy,.-..ex]=F'
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Weightings

A k-ary weighting of a clone C is a function w : C*) — Q
such that w(f) < 0 only if f is a projection and

> w(f) =o0.

feck)

[Lemma: Improper superpositions can be eIiminated!]

> w(f) = cu/(f) for every f € C(K) (scaling by ¢ € Q>0)
> w(f) = wi(f) + wa(f) (addition)
> wlgt,...,8(f") = Z w(f) (proper superposition)
fectk)
f[gl 7777 gk]:f/
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Weighted Clones

A weighted clone W is a non-empty set of weightings of the
support clone C which is closed under non-negative scaling,
additiong of weightings of equal arity, and proper
superpositions with operations from C.
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Weighted Clones

A weighted clone W is a non-empty set of weightings of the
support clone C which is closed under non-negative scaling,
additiong of weightings of equal arity, and proper
superpositions with operations from C.

» We: all possible weightings of C

» WQ: 0-valued weightings of C
(i.e., for each arity k > 1, wy(f) = 0 for all f € C(K)

Structure of Weighted Clones!
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
An operation f : DX — D is a polymorphism of ¢ if, for any
X1,...,Xk € Feas(¢) we have f(xq,...,xx) € Feas(¢).
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
An operation f : DK — D is a polymorphism of ¢ if, for any
X1,...,Xk € Feas(¢) we have f(xq,...,xx) € Feas(¢).

D={0,1}, m=3, k=2, f =min
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
An operation f : DK — D is a polymorphism of ¢ if, for any
X1,...,Xk € Feas(¢) we have f(xq,...,xx) € Feas(¢).

D={0,1}, m=3, k=2, f =min

x|y|z]|olxy,2)

0100 o0 x1 = (0,1,1) € Feas(¢)
0 0 1 5 X2 = (17071)

0|10 00

011 2

1100 00

1101 1

1110 0

1111 00
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
An operation f : DK — D is a polymorphism of ¢ if, for any
X1,...,Xk € Feas(¢) we have f(xq,...,xx) € Feas(¢).

D={0,1}, m=3, k=2, f =min

x|y lz]|oxy 2)

0100 o0 x1 = (0,1,1) € Feas(¢)
0101 > xa = (1,0,1) € Feas(¢)
8 i 2 020 f(xla X2) = (Oa 0, 1) € Feas(¢)
1100 00

1101 1

11110 0

1111 o0
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Polymorphisms

Let ¢ : D™ — Q and let Feas(¢) = {x € D™ | ¢(x) is finite}.
An operation f : DK — D is a polymorphism of ¢ if, for any
X1,...,Xk € Feas(¢) we have f(xq,...,xx) € Feas(¢).

D={0,1}, m=3, k=2, f =min

x|y lz]|dxy,2)

0100 ©© x3; = (1,0,1) € Feas(¢)
0101 5 x2 = (1,1,0) € Feas(¢)
SR B foaxe) = (L0,0) ¢ Feas(9)
11010 00

1101 1 . .
11110 0 f is not a polymorphism of ¢
1711 o0
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Weighted Polymorphisms
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Weighted Polymorphisms

Let ¢ : D™ — Q be a function and let C C Pol(¢) be a clone
of operations. A k-ary weighting w : C¥) — Q

(> fecw w(f) =0,w(f) < 0 only if f a projection) is a k-ary
weighted polymorphism of ¢ if
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Weighted Polymorphisms

Let ¢ : D™ — Q be a function and let C C Pol(¢) be a clone
of operations. A k-ary weighting w : C¥) — Q

(O fecww(f) =0,w(f) <0 only if f a projection) is a k-ary
weighted polymorphism of ¢ if for any xq, ..., xx € Feas(¢)

S w(N)o(F(x, - i)

feCk)

0.

IN

Equivalently, a probability distribution u over C(5) C Pol(¥)(¢)
Eroplo(f(xa,-. -, xK))] < avg{p(x1),..., d(xi)}-
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Weighted Polymorphisms

Let ¢ : D™ — Q be a function and let C C Pol(¢) be a clone
of operations. A k-ary weighting w : C¥) — Q

(O fecww(f) =0,w(f) <0 only if f a projection) is a k-ary
weighted polymorphism of ¢ if for any xq, ..., xx € Feas(¢)

E : w(f)d)(f(xlw"axk)) < 0.
feck)
Equivalently, a probability distribution u over C(5) C Pol(¥)(¢)

Erp[o(f(xa, .. x0))] < ave{p(x1), ..., (x)}-

¢ : D™ — Q is submodular if for all x1,x2 € D™,

P(min(x1,x2)) + d(max(x1,x2)) — d(x1) — p(x2) < 0
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Weighted Polymorphisms

Let ¢ : D™ — Q be a function and let C C Pol(¢) be a clone
of operations. A k-ary weighting w : C¥) — Q

(O fecww(f) =0,w(f) <0 only if f a projection) is a k-ary
weighted polymorphism of ¢ if for any xq, ..., xx € Feas(¢)

> w(f)p(F(xa,... %)) < 0.

feCk)

Equivalently, a probability distribution u over C(5) C Pol(¥)(¢)
Efoplo(f(x1,...,x0))] < avg{o(x1),...,d(x)}

¢ : D™ — Q is submodular if for all x1,x2 € D™,
@(min(x1,x2)) + d(max(x1,x2)) — ¢(x1) — ¢(x2) < 0

wsub(min) = wsub(max) = +1and wsub(el ) = wsub(e(z ) =-1
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Weighted Polymorphisms

Let ¢ : D™ — Q be a function and let C C Pol(¢) be a clone
of operations. A k-ary weighting w : C¥) — Q

(O fecww(f) =0,w(f) <0 only if f a projection) is a k-ary
weighted polymorphism of ¢ if for any xq, ..., xx € Feas(¢)

> w(f)p(F(xa,... %)) < 0.

feCk)

Equivalently, a probability distribution u over C(5) C Pol(¥)(¢)
Efoplo(f(x1,...,x0))] < avg{o(x1),...,d(x)}

¢ : D™ — Q is submodular if for all x1,x2 € D™,
@(min(x1,x2)) + d(max(x1,x2)) — ¢(x1) — ¢(x2) < 0

wsub(min) = wsub(max) = +1and wsub(el ) = wsub(e(z ) =-1

. 1
;u'sub(mm) = ,u'sub(max) = 5
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This Talk

Valued CSPs

< Weighted Clones

[Cohen, Cooper, Creed, Jeavons, zZ. SICOMP’13]
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This Talk

Valued CSPs

< Weighted Clones

[Cohen, Cooper, Creed, Jeavons, zZ. SICOMP’13]
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Galois Connection
wRelClone(T)

closure of I' under scaling, addition, min
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wClone(W)
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Galois Connection

wRelClone(T)
wClone(W)
wPol(T)
Imp(W)

closure of I' under scaling, addition, min
smallest weighted clone containing W
weighted polymorphisms of I

functions ¢ with w € wPol(¢) for all w € W
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Galois Connection

wRelClone(I")  closure of I' under scaling, addition, min
wClone(W)  smallest weighted clone containing W
wPol(I") weighted polymorphisms of T

Imp(W) functions ¢ with w € wPol(¢) for all w € W

Theorem [Cohen, Cooper, Creed, Jeavons, Z. SICOMP’13]

For any finite I',  Imp(wPol(I")) = wRelClone(T).
For any finite W, wPol(Imp(W)) = wClone(W).
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Galois Connection in Picture 1

dp Wp

Sets, of

Se%s of
functions weightings

WENClons( @
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Galois Connection in Picture 2

dp Wp

Sets, of

Se%s of
functions weightings

wPol(Imp(W
o = \SvCIcp>$1e(

)
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Complexity of VCSP(T)

1. VCSP(I") =, VCSP(T),
" = wRelClone(I") closure of ' under +, scaling, min

2. weighted relational clones wRelClone(I")
~ weighted clones wPol(I)

3. properties of wPol(I)
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Complexity of VCSP(T)

1. VCSP(I") =, VCSP(T),
" = wRelClone(I") closure of ' under +, scaling, min

2. weighted relational clones wRelClone(I")
~ weighted clones wPol(I)

3. properties of wPol(I)

Example: wPol(I") contains wg,, = VCSP(I) tractable
[Iwata et al. JACM'01, Schrijver JCTB'00]
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Tractability

A weighted clone W with support clone C is tractable if
VCSP(Imp(W)) belongs to PTIME.
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Tractability

A weighted clone W with support clone C is tractable if
VCSP(Imp(W)) belongs to PTIME.

Easy to show:

» If C = Jp (projections on D) then either W = W or
W = Wg, both are NP-hard.

» If W= Wg for some C then W is NP-hard.
[Cohen, Cooper, Creed, Jeavons, V4 SICOMP’13]
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Tractability

A weighted clone W with support clone C is tractable if
VCSP(Imp(W)) belongs to PTIME.

Easy to show:

» If C = Jp (projections on D) then either W = W or
W = Wg, both are NP-hard.

» If W= Wg for some C then W is NP-hard.
[Cohen, Cooper, Creed, Jeavons, V4 SICOMP’13]

Consequently, unless W is NP-hard W contains a nontrivial
weighting w, i..e, w assigns a positive weight to a non-projection.
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|ldempotency

Wlog we can restrict to weighted clones W which are:

» surjective
for every unary w € W, w(f) > 0 = f bijection [Thapper & Z. '14]
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|ldempotency

Wlog we can restrict to weighted clones W which are:

» surjective
for every unary w € W, w(f) > 0 = f bijection [Thapper & Z. '14]

» idempotent
for every w € W, w(f) > 0 = f idempotent [Ochremiak '14]
(thus, the only w(f) > 0 in unary w € W are projections)
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Necessary Conditions for Tractability

Theorem [Creed & 2. cP'11/51COMP'13]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or

2. A set of binary idempotent operations that are not
projections; or

3. A set of ternary operations that are majority operations,
minority operations, Pixley operations or semiprojections; or

4. A set of k-ary semiprojections (for some k > 3).
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Necessary Conditions for Tractability

Theorem [Creed & 2. cP'11/51COMP'13]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or

2. A set of binary idempotent operations that are not
projections; or

3. A set of ternary operations that are majority operations,
minority operations, Pixley operations or semiprojections; or

4. A set of k-ary semiprojections (for some k > 3).

Proof: follows the proof of Rosenberg's classification.
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

(1) Pixley/semi out, (2) interplay of majorities and minorities.
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

Proof: Gordan's Theorem (duality of linear programming).
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

Easy: not possible/sufficient for tractability!
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Sufficient Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).
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Sufficient Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

Easy: sufficient for tractability as Imp(W) contains only relations!
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Sufficient Conditions for Tractability

[Only near-unanimity operations/only edge operations!]
Theorem [Thapper & Z. '14]

Any weighted clone W contal [ing a nontrivial weighting contains a
weighting that assigns positiv| | weight to either:

1. A set of unary operation|| that are not projections; or
2. A set of binary idempotdpt operations that are not
projections; or
3. A set of ternary operatiops that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or
4. A set of k-ary semiprojections (for some k > 3).

Easy: sufficient for tractability as Imp(W) contains only relations!
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Sufficient Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).
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Sufficient Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

special case (2 maj & 1 minor) tractable  [Kolmogorov & Z. JACM'13]
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Necessary Conditions for Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

Holds true for any support clone C # Jp!
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Necessary Conditions for Finite-Valued Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or
4. A set of k-ary semiprojections (for some k > 3).

Easy: if the support clone C = Op the only possible case

44



Complexity of Finite-Valued CSPs

Theorem [Thapper & Z. sTOC'13)

Let W be an idempotent weighted clone with the support
clone C = Op for some finite D.

1. Either W contains a binary weighting that assigns
positive weight to commutative operations, in which case
W is tractable;

2. or W is NP-hard.
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Complexity of Finite-Valued CSPs

Theorem [Thapper & Z. sTOC'13)

Let W be an idempotent weighted clone with the support
clone C = Op for some finite D.

1. Either W contains a binary weighting that assigns
positive weight to commutative operations, in which case
W is tractable;

2. or W is NP-hard.

C = Op means that functions in Imp(W) are Q-valued
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Necessary Conditions for Conservative Tractability

Theorem [Thapper & Z. '14]

Any weighted clone W containing a nontrivial weighting contains a
weighting that assigns positive weight to either:

1. A set of unary operations that are not projections; or
2. A set of binary idempotent operations that are not
projections; or
3. A set of ternary operations that are either:
3.1 a set of majority operations; or
3.2 a set of minority operations; or
3.3 a set of majority operations with total weight 2 and a set
of minority operations with total weight 1; or

4. A set of k-ary semiprojections (for some k > 3).

Easy: if all unary functions C Imp(W) the only possible cases
46



Complexity of Conservative Valued CSPs

Theorem [Kolmogorov & Z. JACM'13]

Let W be weighted clone on D such that Imp(WW) contains all
unary functions (equivalently, all {0, 1}-valued unary fns).

1. Either I' admits a conservative binary multimorphism and
a conservative ternary multimorphism and there is a
family M of 2-element subsets of D, such that:

> for every {a,b} € M, wl, y is a symmetric tournament
pair and
» for every {a, b} ¢ M, w’|{a7b} is an MJN
in which case W is tractable;
2. or W is NP-hard.
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Complexity of Conservative Valued CSPs

Theorem [Kolmogorov & Z. JACM'13]

Let W be weighted clone on D such that Imp(WW) contains all
unary functions (equivalently, all {0, 1}-valued unary fns).

1. Either I' admits a conservative binary multimorphism and
a conservative ternary multimorphism and there is a
family M of 2-element subsets of D, such that:

> for every {a,b} € M, wl, y is a symmetric tournament
pair and
» for every {a, b} ¢ M, w’|{a7b} is an MJN
in which case W is tractable;
2. or W is NP-hard.

multimorphism: w(f) € N and w(egk)) =-1
STP: binary mm with f dual of g and both conservative commutative
MJN: ternary mm with 2 majority and 1 minority operations
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Weighted Clones on |D| = 2

“Neccessary Theorem” gives 9 nontrivial weightings,
which are atoms in the lattice of weighted clones.

8 are tractable, 1 is NP-hard.

[Creed & Z. CP’11/SICOMP’13]
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Weighted Clones on |D| =2 with C = Op

From the 9 before 4 are atomes, 2 generate everything.

H”O(H” — I/V\Inrt_\ — ijljll_\

PEARN
ZIANRN

”/rll

[Jeavons, Vaicenaviéius, Z. '14)
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Weighted Clones on |D| = 2 with C = Op, cont'd

Uncountably many weighted clones above Wi,ax (and Winin).

(W, w®, WO o

[Jeavons, Vaicenaviéius, Z. '14)
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Future Work, Open Problems, Where to Learn More?

The complexity of valued constraint satisfaction

[Jeavons, Krokhin, Z. '14]
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Thank You




