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Quandles

A binary algebra (Q, ·) is called a quandle if it is:

idempotent: xx = x for each x ∈ Q,

left distributive: x(yz) = (xy)(xz) for every x , y , z ∈ Q,

a left quasigroup: the equation xu = y has a unique solution u ∈ Q
for every x , y ∈ Q.

A quandle Q is called medial if

(xy)(uv) = (xu)(yv)

for every x , y , u, v ∈ Q.
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Affine quandles

Example

Let A be an abelian group, k its endomorphism, and define an operation
on the set A by

a ∗ b = (1 − k)(a) + k(b).

The resulting algebra Aff(A, k) = (A, ∗) is called affine over the group A.
It is idempotent and medial. If k is an automorphism then it is a medial
quandle, called affine quandle over A.

What is the role of affine quandles in the class of medial quandles?
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Two important groups

The (left) multiplication group of a quandle Q is the permutation group
generated by left translations, i.e.,

LMlt(Q) = 〈La | a ∈ Q〉 ≤ SQ .

La : Q → Q; La(x) = ax

The group of displacements is the subgroup

Dis(Q) = 〈LaL
−1
b | a, b ∈ Q〉.

Both groups are normal subgroups of Aut(Q).
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Two important groups

Proposition

Let Q be a quandle. Then

1 Dis(Q) = {Lk1
a1
. . . Lkn

an
: a1, . . . , an ∈ Q and

∑n
i=1 ki = 0};

2 the natural actions of LMlt(Q) and Dis(Q) on Q have the same
orbits;

3 Q is medial if and only if Dis(Q) is abelian.
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Orbit decomposition
Orbits of Q are the orbits of transitivity of the groups LMlt(Q) and
Dis(Q) denoted

Qe = {α(e) | α ∈ LMlt(Q)} = {α(e) | α ∈ Dis(Q)},

i.e. Qe is the orbit containing an element e ∈ Q.

Orbits are subquandles of Q.

Let α(e), β(e) ∈ Qe with α, β ∈ Dis(Q) and put

α(e) + β(e) = αβ(e) and − α(e) = α−1(e).

Then OrbQ(e) = (Qe,+,−, e) is an abelian group, called the orbit group
for Qe.

Every orbit of a medial quandle is an affine quandle:

Qe = Aff(OrbQ(e), Le).
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Construction

An affine mesh over a non-empty set I is a triple

A = ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I )

where Ai are abelian groups, ϕi ,j : Ai → Aj homomorphisms, and ci ,j ∈ Aj

constants, satisfying the following conditions for every i , j , j ′, k ∈ I :

(M1) 1 − ϕi ,i is an automorphism of Ai ;

(M2) ci ,i = 0;

(M3) ϕj ,kϕi ,j = ϕj ′,kϕi ,j ′ , i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Ajyϕi,j′

yϕj,k

Aj ′
ϕj′,k−−−−→ Ak

(M4) ϕj ,k(ci ,j) = ϕk,k(ci ,k − cj ,k).
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Construction

The sum of an affine mesh ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) over a set I is
a binary algebra defined on the disjoint union of the sets Ai , with operation

a ∗ b = ci ,j + ϕi ,j(a) + (1 − ϕj ,j)(b)

for every a ∈ Ai and b ∈ Aj .

Every fibre (Ai , ∗) is a subquandle of the sum. Moreover it is affine and
equal to Aff(Ai , 1 − ϕi ,i ).

Lemma

The sum of an affine mesh is a medial quandle.
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Representation theorem

An affine mesh ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) over a set I is called
indecomposable if

Aj =

〈⋃
i∈I

(ci ,j + Im(ϕi ,j))

〉
,

for every j ∈ I .

Theorem

A binary algebra is a medial quandle if and only if it is the sum of an
indecomposable affine mesh. The orbits of the quandle coincide with the
groups of the mesh.
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Homologous meshes

Two affine meshes A = ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) and
A′ = ((A′

i )i∈I , (ϕ′i ,j)i ,j∈I , (c ′i ,j)i ,j∈I ), over the same index set I , are
homologous, if there is a permutation π of the set I , group isomorphisms
ψi : Ai 7→ A′

πi , and constants di ∈ A′
πi , such that, for every i , j ∈ I ,

(H1) ψjϕi ,j = ϕ′πi ,πjψi , i.e., the following diagram commutes:

Ai
ϕi,j−−−−→ Ajyψi

yψj

A′
πi

ϕ′
πi,πj−−−−→ A′

πj

(H2) ψj(ci ,j) = c ′πi ,πj + ϕ′πi ,πj(di ) − ϕ′πj ,πj(dj).
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Isomorphism theorem

Theorem

Let A = ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) and
A′ = ((A′

i )i∈I , (ϕ′i ,j)i ,j∈I , (c ′i ,j)i ,j∈I ) be two indecomposable affine meshes,
over the same index set I . Then the sums of A and A′ are isomorphic
quandles if and only if the meshes A, A′ are homologous.
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