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@ Describe the partially ordered monoid of operators generated by the
operators H, S and Py for the variety R. of commutative rings.
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Operators on Classes of Algebras

@ Operators are important tools for studying properties of large classes
of algebras such as varieties and quasivarieties
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Operators on Classes of Algebras

@ Operators are important tools for studying properties of large classes
of algebras such as varieties and quasivarieties

@ The most common operators in universal algebra are
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Operators on Classes of Algebras

@ Given a class K of algebras of the same type, it is likely that a new
class is obtained by applying composites of these operators to
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Operators on Classes of Algebras

@ Given a class K of algebras of the same type, it is likely that a new
class is obtained by applying composites of these operators to

o For any class K of algebras of the same type HSP(K) is a variety
@ We also compare operators using the equality relation and the partial
ordering
e V = HSP, SH < HS, SHPS < HSP etc.

@ These properties naturally raise the following questions: given a set of
operators o, how many essentially different operators can one get as
composites of operators from o and how are the composites ordered?
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Partially Ordered Monoids

A partially ordered monoid (briefly po-monoid) is an ordered quadruple
M = (M, -, 1, <) such that

e (M, -, 1) is a monoid,
e (M, <) is a partially ordered set,
o (x<y AN u<v)—xu<yvforall x,y,u,veM.
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Partially Ordered Monoids of Operators

@ Since the composition of operators is associative and the operator / is
the identity for composition, given a set of operators o one can
consider the po-monoid generated by o
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Partially Ordered Monoids of Operators

@ Since the composition of operators is associative and the operator / is
the identity for composition, given a set of operators o one can
consider the po-monoid generated by o

@ Several po-monoids generated by some of the most common
operators in universal algebra were described

o Pigozzi described the po-monoid generated by H, S and P
e Bergman described the po-monoid generated by H, S, and Py,
e Tasi¢ described the po-monoid generated by H, S, P and Ps
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The Po-Monoid Generated by H, S and Ps

The po-monoid M¢ = (Mg, -, I, <) generated by H, S and P¢ has 18
elements and the corresponding ordering is given by the following diagram
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The Po-Monoid Generated by H, S and Ps

HSP¢
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The Po-Monoid Generated by H, S and Ps

@ If we restrict domains of operators to be subclasses of a variety V we
will still have the po-monoidal structure on My.
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The Po-Monoid Generated by H, S and Ps

@ If we restrict domains of operators to be subclasses of a variety V we
will still have the po-monoidal structure on My.

@ We denote the corresponding po-monoid by M¢[V)].
e M;¢[V] is a homomorphic image of Mjy.
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The Po-Monoid Generated by H, S and Ps

Let V be a variety. A necessary and sufficient condition for M¢[V] to be
isomorphic to My is that there exists classes K1, Ko C V satisfying:

HSP¢(K1) € SHPfS(K1), (1)
HP¢(K2) € SPHS(KC2). (2)
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The Po-Monoid Generated by H, S and Ps

@ The class K = {Zg} satisfies HSP(K) € SHPS(K)
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The Po-Monoid Generated by H, S and Ps

@ The class K = {Zg} satisfies HSP(K) € SHPS(K)

@ Using the equalities HSP = HSP; and SHPS = SHP¢S we actually
showed the non-inclusion (1).
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The Po-Monoid Generated by H, S and Ps

@ The class K = {Zg} satisfies HSP(K) € SHPS(K)

@ Using the equalities HSP = HSP; and SHPS = SHP¢S we actually
showed the non-inclusion (1).

@ Unfortunately one cannot find a class K C R, that will show the
non-inclusion (2).

@ Namely, we will show that for every class K C R, we have
HP¢(K) C SPfHS(K), in fact, HPf < SPfH when restricted to Rc.
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@ R.is CP and forany R € R, and a, b, c1, d1,...ck, di € R we have

k

(a,b) € Cg((c1, dh), ... (ck, dk)) <> ey ... Jex(a— b= ei(ci — dy))
i=1

Boza Tasi¢ (Ryerson University) Operator Properties June 29, 2014 13 /29



@ R.is CP and forany R € R, and a, b, c1, d1,...ck, di € R we have

k

(a,b) € Cg((c1, dh), ... (ck, dk)) <> ey ... Jex(a— b= ei(ci — dy))
i=1

o It will turn out that these two properties are the main reason why R,
satisfies HPr < SPrH.
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Definitions

Definition

Let F be a type of algebras and s;(x,y, zi, w1, ..., zk, wk, 4),
ti(x,y,z1, w1, ..., 2k, W, U) be terms of type F. A k-finitely generated
congruence formula (k-FGCF) of the type F is a formula

%(x,y,z1, w1, ..., 2k, wi) of the form

n
Jd </\ si(x,y,z1,wa, ..., zk, Wk, ) = ti(x,y,z1, W1, ..., Zk, Wk, u)) ,
i=1

such that for every algebra A of type F and every a, b, ¢1, di ..., ck,
di € A we have:

If A |= wk(a, b,ci,di,...,ck, dk), then (a,b) € CgA((cl, di),...,(ck,dk))

v
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Remark 1

For every algebra A of the type F and every a, b, c1, di,..., ck,dx € A, if
(a, b) € Cg”((c1,d1),- -, (ck, dk)), then by Mal'cev's congruence
generation theorem there exists such 7<(x, y, z, wi, . .., zx, wi), with

A ): wk(a, b, C1, dl, <oy Cky dk).

| \

Remark 2

If My denotes the set of all k-generated congruence formulas then we have:

”(X,}/) € Cg((Zl,Wl),...(Zk,Wk))”(-) \/ Wk(X,y,Zl,Wl,...,Zk,Wk).
TFkEnk

\
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Definitions

Definition
A variety V of the type F has definable k-generated congruences

(k-DFGQ), if \/ 7K(x,y,z1,wi,..., 2k, wk) is equivalent in V to a finite
=
disjunction

k k
T (Y, 21, Wi, e Zk W) Vo V(X Y 21, W 2k, W)

We say that V has strongly definable k-generated congruences (k-SDFGC)
if

k
\/ (X, y, 21, W1, . .., Zk, Wk)
7Tk€|_|k
is equivalent in V to a single k-FGCF 7%(x,y, z1, wy, ..., z, w).
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Definitions

1-DFGC=DPC \
k-DFGC implies FDFGC for 1 </ < k \

BoZa Tasi¢ (Ryerson University) Operator Properties June 29, 2014 17 /29



Definition

A variety V of type F has definable finitely generated congruences (shortly
DFGQ) if for every k > 1 V has definable k-generated congruences. V has
strongly definable finitely generated congruences (shortly SDFGC) if for
every k > 1V has strongly definable k-generated congruences.
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Definitions

Example 1

The variety R of commutative rings with identity has SDFGC. Namely,
given k > 1 we have:

k
(x,y) € Cg((z1,w1), .., (zk, wk)) > Fup ... Juk (x —y = Z ui(zi — w;)).

So, Tk (x,y, z1, Wi, ..., zk, W) = uy ... uk (x — y = Z:l'(:l ui(zi — wy)).

v
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Main Results

Let V be a congruence permutable variety. ThenV has (S)DPC if and
only if V has (S)DFGC.
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Main Results

The previous Theorem remains true if congruence permutability is replaced
by k-congruence permutability for k > 3.
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Main Results

Let V be a congruence permutable variety having SDPC. Then for every
K CV we have HP¢(K) C SPrH(K).
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Corollaries

Let V be a congruence permutable variety having SDPC. Then for every
IC CV we have:

1. SHP(K) = SP¢H(K), SHP¢S(K) = SPrHS(K).
2. Q(H(K)) = SHP(K).
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Corollaries

Corollary

Let V be a congruence permutable variety having SDPC and let K C V.
Then HSP(KC) = SHPS(K) if and only if for every quasi-identity
n
( p,-%q,-)—)p%qifHS(/C)':(
=1

]

HSP(K) E (/\1 pi & q,-) — prq.

1

n
p,-zq,—) — p = q then
=1
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The structure of M¢[R]

The standard monoid M¢[R] of the variety of commutative rings with
identity has 16 elements. The corresponding ordering is given by the
following diagram
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Diagram
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The structure of M¢[R]

A necessary and sufficient condition for M¢[R ] to be isomorphic to the
previous diagram is that there exists classes K1, Ko C V satisfying:

HSP¢(K1) € SHPfS(K1), (3)
HP¢(K2) € PrHS(K2). (4)
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The structure of M¢[R]

The class K = {Zg} will simultaneously show both non-inclusions (3) and

(4).

We want to show that HPf({Zs}) € PrHS({Zs}) = Pr({Zs, Z4,Z5}).
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The End
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