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The lattice of equational theories

o J. Jezek: The lattice of equational theories. Part I: Modular elements.
Czechoslovak Math. J. 31, 1981, 127-152.

o J. Jezek: The lattice of equational theories. Part II: The lattice of full
sets of terms. Czechoslovak Math. J. 31, 1981, 573-603.

o J. Jezek: The lattice of equational theories. Part Ill: Definability and
automorphisms. Czechoslovak Math. J. 32, 1982, 129-164.

o J. Jezek: The lattice of equational theories. Part IV: Equational
theories of finite algebras. Czechoslovak Math. J. 36, 1986, 331-341.

Def. An equational theory is a set of equations (ordered pairs of terms)
of type A containing all its consequences (fully invariant congruence).

The lattice L of equational theories is antiisomorphic to the lattice of
varieties of A-algebras.
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Thm. For any type A,
o the set of one-based equational theories of type A,
o the set of finitely-based equational theories of type A,
o the set of equational theories of finite A-algebras

is definable in the lattice La.

Thm. For any type A,
o any finitely based equational theory of type A,
o the equational theory of any finite algebra of finite type A

is definable up to automorphisms in Lx.

Thm. If Ais {f} or {f, 0} for some unary f and nullary o, then the group
of automorphisms of La is isomorphic to S,,, otherwise there are only
“syntactically defined” automorphisms.
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Further definability results

o J. Jezek and G. McNulty: Bounded and well-placed theories in the
lattice of equational theories. Algebra Universalis 26, 1989, 311-331.

J. JeZek and R. McKenzie: Definability in the lattice of equational
theories of semigroups. Semigroup Forum 46, 1993, 199-245.
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J. JeZzek: Definability of equational theories of commutative grupoids.
Czechoslovak Math. J. 62, 2012, 305-333.

o J. JeZek and R. McKenzie: Definability in substructure orderings, I:
finite semilattices. Algebra Univesalis 61, 2009, 59-75.

J. JeZek and R. McKenzie: Definability in substructure orderings, Il:
finite ordered sets. Order 27, 2010, 115-145.

J. JeZek and R. McKenzie: Definability in substructure orderings, 111:
finite distributive lattices. Algebra Univesalis 61, 2009, 283-300.

J. Jezek and R. McKenzie: Definability in substructure orderings, 1V:
finite lattices. Algebra Univesalis 61, 2009, 301-312.
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Lattice theoretic results

o A. Day and J. Jezek: The amalgamation
property for varieties of lattices. Transactions
of the AMS 286, 1984, 251-256.

o R. Freese, J. JeZek, J. B. Nation and V. Slavik:
Singular covers in free lattices. Order 3, 1986,
39-46.

o R. Freese, J. JeZek and J. B. Nation: Term
rewrite systems for lattices. J. Symbolic
Computation 16, 1993, 279-288.

o R. Freese, J. JeZek and J. B. Nation: Lattices

with large minimal extensions. Algebra
Universalis 45, 2001, 221-309.
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Minimal big lattices

Def. A finite lattice is big if it is a maximal
sublattice of an infinite lattice, otherwise it is small.

Thm. If a finite lattice has a big sublattice, then it
is also big.

Thm. There are 145 minimal big lattices. For
example, M3 is big and N5 is small.

Thm. If K and L are small lattices, then their linear
sum K + L is also small.

v

Use a general construction to embed L into a finitely
presented lattice generated by a partial lattice.
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Groupoids and varieties

o J. Jezek and T. Kepka: The lattice of varieties of commutative
abelian distributive groupoids. Algebra Universalis b, 1975, 225-237.

o J. Jezek: Subdirectly irreducible semilattices with one automorphism.
Semigroup Forum 43, 1991, 178-186.

o W. Dziobiak, J. Jezek and M. Maréti: Minimal varieties and
quasivarieties of semilattices with one automorphism. Semigroup
Forum 78, 2009, 253-261.

o J. Jezek: Nonfinitely based three-element idempotent groupoids.
Algebra Universalis 20, 1985, 292-301.

o J. Jezek, P. Markovi¢, M. Maréti and R. McKenzie: Equations of
tournaments are not finitely based. Discrete Mathematics 211
(2000), 243-248.

o J. Jezek and R. McKenzie: The variety generated by equivalence
algebras. Algebra Universalis 45, 2001, 211-219.

o R. Freese, J. Jezek, P. Jipsen, P. Markovi¢, M. Maréti, R. McKenzie:
The variety generated by order algebras. Algebra Universalis 47,
2002, 103-138.
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Def. A tournament is a conservative
commutative groupoid.

X—=y << Xy=yx=Xx.

Thm. The variety generated by tournaments
is not finitel based. J
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Linear representations

Problem: Given (G,-). Is there a (semi-)module M over a (semi-)ring R
such that G € M and

X-y=m+sy+c
for some r,s e R, ce M7

Stronger conditions considered, such as G = M, ¢ =0, rs = sr, r,s have
an inverse, etc.

o J. Jezek, Terms and semiterms. Commentatationes Math. Univ.
Carolinae 20, 1979, 447-460.

o J. Jezek, T. Kepka: Linear equational theories and semimodule

representations. International J. of Algebra and Computation 8
(1998), 599-615.

Thm. Every algebra admits a linear representation over a semimodule over
a semiring.
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Linear representations of medial groupoids

A groupoid is medial if (xy)(uv) = (xu)(yv).

Hence, in the representations, we consider commutative (semi-)rings.

o J. Jezek, T. Kepka: Medial groupoids. Rozpravy CSAV, Rada mat. a
prir. v&d 93/2, 1983, 93 pp.

Thm. Every medial groupoid with GG = G admits a linear representation
with ¢ = 0 and r, s having an inverse. J

Thm. Every cancellative medial groupoid admits a linear representation
over a module.
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Representations of distributive groupoids
A groupoid is distributive if x(yz) = (xy)(xz) and (zy)x = (zy)(zx).
o J. Jezek, T. Kepka and P. Némec: Distributive groupoids. Rozpravy
CSAV, Rada mat. a p¥ir. v&d 91/3, 1981, 94 pp.
o J. Jezek and T. Kepka: Distributive groupoids and
symmetry-by-mediality. Algebra Universalis 19, 1984, 208-216.
o J. Jezek and T. Kepka: Self-distributive groupoids of small orders.
Czechoslovak Math. J. 47, 1997, 463—468.

Idea. In linear representations, consider " quasi-modules”, where (M, +) is
a commutative Moufang loop.

Thm. The smallest non-medial distributive groupoid has 81 elements, and
there are 6 of them.

y

Thm. Distributive groupoids are symmetric-by-medial, i.e., there is a
decomposition where the blocks are symmetric quasigroups and the factor
is medial.

v
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Jarda’s work online

www.karlin.mff.cuni.cz/"jezek
138 papers
Universal algebra textbook

Finite geometries textbook
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Computer programs for calculating with groupoids and lattices
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