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.

For path p = (x0 < x1 < · · · < xr−1 < xr) in P , and f ∈ IPS , .

the path extension fp or fx0,x1,...,xr
is f(x0, x1)f(x1, x2) . . . f(xr−1, xr) in S. .

Write Π(x, y) for set of paths from x to y in P . .

.

The extended convolution product · on IPS is given by .

(f · g)(x, y) = fx,y + gx,y +
∑

x<z<y

∑
p∈Π(x,z)

∑
q∈Π(z,y) fpgq .

.

Compare matrix product (f · g)(x, y) = fx,y + gx,y +
∑

x<z<y fx,zgz,y for chain P .
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Incidence loops

(Q, ·) is a quasigroup .

if knowing two of a, b, c in a · b = c .

specifies the third uniquely. .

.

(Q, ·, e) is a loop if e · a = a = a · e for all a in Q. .

.

Theorem: (IPS , ·, e) forms a loop. .

Proof: To solve h · f = g for h in terms of f and g, specify h(x, y) uniquely .

by induction on the length l(x, y) of the longest path from x to y. .

Basis: hx,y = gx,y − fx,y if y covers x. � .

.

Definition: (IPS , ·, e) is the incidence loop of P over S. Informally: “Poset loops.”
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Centrality, commutants

For ring S, right annihilator ZR(S) = {z ∈ S | ∀ s ∈ S , sz = 0} and dual ZL(S). .

.

For loop Q, commutant C(Q) = {z ∈ Q | ∀ x ∈ Q , zx = xz}, .

center Z(Q) = {z ∈ C(Q) | ∀ x, y ∈ Q , z(xy) = (zx)y and (yx)z = y(xz)}. .

.

For locally finite P , minimal u means x ≤ u ⇒ x = u; maximal is dual. .

.

Then ZRP
S := {f ∈ IPS | ∀ u < v ∈ P , u not minimal ⇒ f(u, v) ∈ ZR(S)}, .

ZLP
S dual, and ZP

S := ZRP
S ∩ ZLP

S . .

.

Theorem: ZP
S = C(IPS , ·, e); a subloop of (IPS , ·, e).
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Connecting rings, posets, and loops

Theorem: For a locally finite poset P , .

ring homomorphism θ : S → T induces loop homomorphism IPS → IPT ; f 7→ fθ. .

.

.

Theorem: For a locally finite poset P = P1∪̇P2, ring S, have IPS
∼= IP1

S × IP2

S .

.

Corollary: Non-isomorphic posets may have isomorphic poset loops. .

.

.

Theorem: Suppose that locally finite poset P ′ = (X,≤′) extends P = (X,≤). .

Then IPS is a subloop of IP
′

S .
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Prop: Let P be a locally finite poset of height less than 3. .

Suppose that the set of covering pairs in P has cardinality κ. .

Then IPS
∼= (S,+, 0)κ is abelian. .
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Prop: Let P be a locally finite poset of height less than 3. .

Suppose that the set of covering pairs in P has cardinality κ. .

Then IPS
∼= (S,+, 0)κ is abelian. .
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Prop: Let P be a locally finite poset. Let S be a zero ring: |S · S| = 1. .

If λ = |{(x, y) ∈ P 2 | x < y}|, then IPS
∼= (S,+, 0)λ is abelian. .

Corollary: Each abelian group is the incidence loop of a locally finite poset.
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Theorem: Let P be a locally finite poset. Suppose that |S · S| > 1 in the ring S. .

Then the incidence loop IPS is an abelian group iff the height of P is less than 3. .
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Theorem: Let P be a locally finite poset. Suppose that |S · S · S| > 1 in the ring S. .
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Then the incidence loop IPS of P over S is a nilpotent group of class 2. .

.

Prop: Let P be a locally finite poset of height 3. Set G = IPZ . .

Let K , L be the respective sets of intervals of heights 2, 3 in P . .

Then the groups G/G′, G′ are free abelian of respective ranks |K|, |L|. .

.

Theorem: Suppose G/G′, G′ free abelian of respective ranks k, l. .

Then if 4l > k2, there is no locally finite poset P with IPZ
∼= G. .

.

Corollary: If group G is free nilpotent of class 2, finite rank k > 2, .

then there is no locally finite poset P with IPZ
∼= G.
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Nilpotent loops

A central series in a loop (L, ·, 1) is a nested sequence .

(∗) L = L0 ≥ L1 ≥ · · · ≥ Lc−1 ≥ Lc = {1} .

of normal subloops of L with Li/Li+1 ⊆ Z(L/Li+1) for 0 ≤ i < c. .
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Nilpotent loops

A central series in a loop (L, ·, 1) is a nested sequence .

(∗) L = L0 ≥ L1 ≥ · · · ≥ Lc−1 ≥ Lc = {1} .

of normal subloops of L with Li/Li+1 ⊆ Z(L/Li+1) for 0 ≤ i < c. .

.

Loop L is nilpotent of class at most c if it has a central series (∗). .

.

Theorem: Let P be a locally finite poset of height at most c+ 1. .

Then the incidence loop IPS is nilpotent, of class at most c. .

.

Remark: For locally finite P of infinite height, IPS need not be nilpotent.
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For |S| > 1, have height of P at most 1 iff IPS trivial; .
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A problem . . .

. . . for ring S, locally finite poset P : .

.

For |S| > 1, have height of P at most 1 iff IPS trivial; .

.

For |S2| > 1, have height of P at most 2 iff IPS abelian; .

.

For |S3| > 1, have height of P at most 3 iff IPS associative; .
... .

Find Vn as large as possible such that .

for |Sn| > 1, have height of P at most n iff IPS in variety Vn.



.

.

Thank you for your attention! .

.

.

.

.


