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Outline

@ A Galois theory based on commutation

© Structure of the lattice of centralisers

© Minimal/maximal centralisers
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Why centraliser clones?

CSP, again!

T = (T; Q) finite rel structure, of finite signature, template.
CSP (T) is the decision problem Fhom. h: A — T7 for
finite A of the same signature.
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CSP (T) is the decision problem Jhom. h: A — T7? for
finite A of the same signature.

Complexity
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Why centraliser clones?

CSP, again!

T = (T; Q) finite rel structure, of finite signature, template.
CSP (T) is the decision problem Jhom. h: A — T7? for
finite A of the same signature.

Complexity
CSP (T) is always in NP, some CSP’s are in P.

CSP dichotomy conjecture

Feder/Vardi: |T| = 2 = either CSP (T) in P or NP-complete.
Conjecture: This extends to all finite domains.

Connection to centraliser clones

Feder/Madelaine/Stewart | Broniek: It suffices to establish the
dichotomy conjecture for T, where Pol T is a centraliser clone.
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Galois theory

Outline

@ A Galois theory based on commutation
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Operations and their graphs

Finitary operations
@ For k € N, afunc f: Ax — Ais a k-ary operation on A
° O(Ak) = AA set of k-ary operations on A

® 04 :=Upen, Oﬁ\k) set of all finitary operations on A
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Operations and their graphs

Finitary operations
@ For k € N, afunc f: Ax — Ais a k-ary operation on A
° O(Ak) = AA set of k-ary operations on A

@ Oy = Uk€1N+ Oﬁ\k) set of all finitary operations on A

Graphs
For f € OE\"), F COy4

= {(xl,...,xn,xn+1) €A™ | Xn41 = f(X17"'aXn)}
={(xt, s X, F (X1, .,%)) | (xay.o0,x0) €A™}
F*:={f*| feF}
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Galois theory
Basis of the Galois connection

Commutation

FornnmeN,, feol ge¢ Oi\m),

f commutes with g <= f L g <= fp> g°*

Mike Behrisch Centraliser clones



Galois theory
Basis of the Galois connection

Commutation

FornnmeN,, feol ge¢ Oi\m),

f commutes with g <= f L g <= fp> g°*

Lemma

Forn,me N, f € 0%, g € 04", we have

flg < f: (Ag"— (Ag) isahomomorphism.
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Galois theory

A more concrete characterisation of commutation

Lemma

Fornme IN,, f O(A"), g€ Oi\m), we have

flg<—
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Galois theory

A more concrete characterisation of commutation

Lemma

Fornme IN,, f O(A"), g€ Oi\m), we have

fL g <— VX = (X,-J)lg,'gm e A™":
1<j<n
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Galois theory

A more concrete characterisation of commutation

Lemma

Fornme IN,, f O(A"), g€ Oi\m), we have

fL g <— VX = (X,-J)lg,'gm e A™":

1<j<n
g g
VY /N
X1,1 tee X1,n
Xm,1 Xm,n
~— ~—r
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Galois theory

A more concrete characterisation of commutation

Lemma

Fornme IN,, f O(A"), g€ Oi\m), we have

fL g <— VX = (X,-J)lg,'gm e A™":

1<j<n
g g
VY /N
X1,1 tee X1,n
Xm,1 Xm,n
~— ~—r

cg* cg*
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Galois theory

A more concrete characterisation of commutation

Lemma
Fornme IN,, f O(A"), g€ Oi\m), we have
flg << VX= (X,-J)lg,'gm e AT
1<j<n
g 124
f( xa Xip )= f(x(1,-))
f( Xm1 Xmn ) = f(x(m,-))
f(g(X(,]_)) g(X(an))): y
cg* cg*
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Galois theory

A more concrete characterisation of commutation

Lemma
Fornme IN,, f O(A"), g€ Oi\m), we have
fL g <— VX = (X,-J)lg,'gm e A™":
1<j<n
g 124
f( xa Xip )= f(x(1,-))
f( Xm1 Xmn ) = f(x(m,-))
f(g(X(,]_)) g(X(an))): y
cg* cg* cg’
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Galois theory

A more concrete characterisation of commutation

Lemma

Fornme IN,, f O(A"), g€ Oi\m), we have

fL g <— VX = (X,-J)lg,'gm e A™":

1<j<n
g 8 8
f( xa Xip )= f(x(1,-))
f( Xm1 Xmn ) = f(x(m,-))

cg*
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Galois theory
Commutativity is symmetric

Corollary
Forf,g € Oy we have f 1 g <— g L f. }
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Galois theory

Galois correspondence induced by commutation

Definition
For F C O4 we put

Fr={ge€O0a | VfeF:glf} (centraliser of F)
F** (bicentraliser of F, bicentrical closure of F)
Ca={F"| FCOa} (lattice of centraliser clones)

o’
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Galois theory

Galois correspondence induced by commutation

Definition
For F C O4 we put

Fr={ge€O0a | VfeF:glf} (centraliser of F)
F** (bicentraliser of F, bicentrical closure of F)
Ca={F"| FCOa} (lattice of centraliser clones)

Alternatively
For F C O4 we have

F* = Pols F* (centralisers are clones!)
={fe€04 | f*€lnvaF}
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Galois theory
Comparison with clone closure

Observation

Centralisers
= usual Pol — Inv where relations are confined to graphs
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Galois theory
Comparison with clone closure

Observation

Centralisers
= usual Pol — Inv where relations are confined to graphs

Lemma

For F C O4 we have F* = (F)g .
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Galois theory
Comparison with clone closure

Observation

Centralisers
= usual Pol — Inv where relations are confined to graphs

Lemma
For F C O4 we have F* = (F)g .
Proof.

gEF <= g clnvaF =lnva(F)y <= g€ (Fly, O
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Galois theory
Comparison with clone closure

Observation

Centralisers
= usual Pol — Inv where relations are confined to graphs

Lemma
For F C Oa we have F* = (F); .
Corollary

For FC Ouitis F** = (F)5.", ie. (F)o, C F*.
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Galois theory
Comparison with clone closure

Observation

Centralisers

= usual Pol — Inv where relations are confined to graphs
Lemma

For F C Oa we have F* = (F); .

Corollary

For F C Opitis F** = (F)y,", iie. (F)o, C F™.

Proof.

F*={F)o, = F**=(F)," 2 (Fo, 0
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Structure

Outline

© Structure of the lattice of centralisers
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Structure
Finitely many centralisers

Theorem (R. Péschel, unpublished)
|A| = k finite = VF C 04 3QF C R%) 4-ary rel’s:

= (<F>gj)* A Pol, QF.
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Structure
Finitely many centralisers

Theorem (R. Péschel, unpublished)
|A| = k finite = VF C 04 3QF C R%) 4-ary rel’s:

r_ (<F>g@j)* A Pol s QF.

Corollary (S. Burris/R. D. Willard, 1987, different proof)
|A| = k finite = |Cal finite.
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Structure
Finitely many centralisers

Theorem (R. Péschel, unpublished)
|A| = k finite = VF C 04 3QF C RSL) 4-ary rel’s:

r_ (<F>gj)* A Poly QF.

Corollary (S. Burris/R. D. Willard, 1987, different proof)
|A| = k finite = |Cal finite.

decomp:  Ca — 8 (047) (B (4Y)
Y (z*“‘), QZ*>
(z*(k))* A Poly Qs» = (<z*>gkj)* APoly Qg = T** — ¥

is inj., as




Structure
Special cases

|A| = 2, A.B. Ky3sHeuos, 1977
|Ca|l = 25,
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Structure
Special cases

|A| = 2, A.B. Ky3sHeuos, 1977

|Ca|l = 25,
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sketched by Laszlé Szabé (1978), reproved by Miki
Hermann, 2008
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Special cases

|A| = 2, A.B. Ky3sHeuos, 1977
|Ca|l = 25,
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sketched by Laszlé Szabé (1978), reproved by Miki
Hermann, 2008

|A] = 3, A. ®. Nanunsuenko, 1974-79
ICa| = 2986,
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Special cases
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sketched by Laszlé Szabé (1978), reproved by Miki
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Structure
Special cases

|A| = 2, A.B. Ky3sHeuos, 1977

|Ca|l = 25,
© KysHewos's proof unavailable,

sketched by Laszlé Szabé (1978), reproved by Miki
Hermann, 2008

|A] = 3, A. ®. Nanunsuenko, 1974-79

IC.a| = 2986,
available, readable
© does not give intuition how to find these clones in general
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Structure
Special cases

|A| = 2, A.B. Ky3sHeuos, 1977
|Ca|l = 25,
© KysHewos's proof unavailable,

sketched by Laszlé Szabé (1978), reproved by Miki
Hermann, 2008

|A] = 3, A. ®. Nanunsuenko, 1974-79

IC.a| = 2986,
available, readable
© does not give intuition how to find these clones in general

Al =4
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Structure
Special cases

|A| = 2, A.B. Ky3sHeuos, 1977

|Ca|l = 25,
© KysHewos's proof unavailable,

sketched by Laszlé Szabé (1978), reproved by Miki
Hermann, 2008

|A] = 3, A. ®. Nanunsuenko, 1974-79

IC.a| = 2986,
available, readable
© does not give intuition how to find these clones in general

Al =4

We don't know, but we would like to.
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Structure
More structural properties/questions

Ca is finite —
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Structure
More structural properties/questions

Ca is finite —
e finitely many atoms/co-atoms,
@ VF €Ca\{L} JAE€Cyatom: ACF.
@ VF €Ca\{T} 3C € Cx co-atom: F C C.
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Structure
More structural properties/questions

Ca is finite —
e finitely many atoms/co-atoms,
o VFeCa\{L} JA€Csatom: ACF.
@ VF €Ca\{T} 3C € Cx co-atom: F C C.
@ char of L, T? (easy)

@ char of [-irreducibles? (not easy)
every F € Cp is [ of [-irreducibles
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Structure
More structural properties/questions

Ca is finite —

e finitely many atoms/co-atoms,

o VFeCa\{L} JA€Csatom: ACF.

@ VF €Ca\{T} 3C € Cx co-atom: F C C.

@ char of L, T? (easy)

@ char of [-irreducibles? (not easy)

every F € Cp is [ of [-irreducibles

Hanunnbuenko's method

Describe a generator for each (-irreducible F € Ca
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T and L of C4y

Lemma
We have O} = Ja. J
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T and L of C4y

Lemma
We have O} = Ja.

Proof.
W.lo.g. |Al > 2.
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T and L of Cx

Lemma
We have O} = Ja.

Proof.
W.lo.g. |Al > 2.
fEOZ = f*c InVAOA:DiagA — Je: f* = L
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T and L of C4y

Lemma
We have O} = Ja.

Proof.

W.lo.g. |Al > 2.

feO, = f*€lnvy0y=Diag, = Je: f*=d.
fdgla = ec=Aie f*=V
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T and L of C4y

Lemma
We have O} = Ja.

Proof.

W.lo.g. |Al > 2.

feO, = f*€lnvy0y=Diag, = Je: f*=d.

fels = e=A, ie f*=V4, no graph. O
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T and L of C4y

Lemma
We have O} = Ja.

Proof.

W.lo.g. |[Al > 2.

fEOZ = f*c InVAOA: DiagA — Je: f* = L

f¢JA — e¢=A, e f* =V}, no graph. 0
Corollary

For FCQuitis F*¥ =04 <— F C J4.

Mike Behrisch Centraliser clones



Structure

Roadmap

@ Co-atoms are special [)-irreducibles
e Co-atoms and atoms are related

@ Atoms are related to minimal clones
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Minimal/maximal centralisers

Outline

© Minimal/maximal centralisers
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Minimal/maximal centralisers

Parametrically pre-complete sets

Lemma
For F C Op4 tfae:

JAaC F* Vg e F*\ Ja: F=g" (3)
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Minimal/maximal centralisers

Parametrically pre-complete sets

Lemma
For F C Op4 tfae:

JaC F” Vg € F*\ Ja: F=g" (3)
Corollary

F C Oa param. pre-complete =—> F = f* for some f € F*\Jal
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Minimal/maximal centralisers
Minimal functions

Proposition

F C Op parametrically pre-complete

—> dM minimal clone: F = M*

— df € O(Asmax(3’|A|)) minimal function: F = f*.
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Minimal/maximal centralisers
Minimal functions

Proposition

F C Ox parametrically pre-complete

—> dM minimal clone: F = M*

— df € O(Agmax(3,\A|)) minimal function: F = f*.

Proof.
(*] F*QJA — F*QMQJA
for some minimal clone M = (), generated by one of
Rosenberg's minimal functions.
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Minimal/maximal centralisers
Minimal functions

Proposition

F C Ox parametrically pre-complete

—> dM minimal clone: F = M*

— df € O(Agmax(3,\A|)) minimal function: F = f*.

Proof.
(*] F*QJA — F*QMQJA
for some minimal clone M = (), generated by one of
Rosenberg's minimal functions.

o Equivalently: F C M* = (f),, = f* C Oa.
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Minimal/maximal centralisers
Minimal functions

Proposition

F C Ox parametrically pre-complete

—> dM minimal clone: F = M*

— df € O(Agmax(3,\A|)) minimal function: F = f*.

Proof.
(*] F*QJA — F*QMQJA
for some minimal clone M = (), generated by one of
Rosenberg's minimal functions.

o Equivalently: F C M* = (f),, = f* C Oa.
@ Since M* D F and (M*)"" = M* # Oy,
— F =M =f" []
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Minimal/maximal centralisers
Unary case

Unary minimal functions from Rosenberg'’s theorem
f#idaand (fof =f or fP = ids for some prime p) J
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Minimal/maximal centralisers
Unary case

Unary minimal functions from Rosenberg'’s theorem
f#idaand (fof = f or fP = id, for some prime p)

Recall

All of these unary functions generate indeed minimal clones.
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Minimal/maximal centralisers
Unary case

Unary minimal functions from Rosenberg'’s theorem
f#idaand (fof = f or fP = id, for some prime p)

Recall
All of these unary functions generate indeed minimal clones.

Question
Which of these yield maximal centralisers?
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Minimal/maximal centralisers
Almost all

Theorem (W. Harnau, 1974)

f* is a co-atom in Vp 1= {g* g€ Oi‘l)} if and only if
Q@ f#idygandfof =1, or
@ (P =id, for some prime p and

f does not have exactly one fixed point
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Minimal/maximal centralisers
Almost all

Theorem (W. Harnau, 1974)

f* is a co-atom in Vp 1= {g* g€ Oi‘l)} if and only if
Q@ f#idygandfof =1, or

@ P =id, for some prime p and
f does not have exactly one fixed point

Proposition

feof) = fc(0f)
;
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Minimal/maximal centralisers
Almost all

Theorem (W. Harnau, 1974)

f* is a co-atom in Vp 1= {g* g€ Oi‘l)} if and only if
Q@ f#idygandfof =*f,or

@ P =id, for some prime p and
f does not have exactly one fixed point

Proposition

feof) = fc(0f)
;

Corollary

All functions from Harnau's theorem yield maximal centralisers
(minimal bicentralisers).
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Minimal/maximal centralisers

Future work

consider other classes of minimal functions
exploit characterisation of maximal clones
better algorithms for checking commutation condition

automatic computation of bicentrical closure up to a
certain arity

@ better upper bounds for the minimal arity needed to
**-generate centraliser clones

Mike Behrisch Centraliser clones



	A Galois theory based on commutation
	Structure of the lattice of centralisers
	Minimal/maximal centralisers

