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Question: is B ∈ HSP(A)?

Varsi -Mem(A)

Instance: a finite algebra B of the same signature as A
Question: is B ∈ [HSP(A)]si?

. decomposition into subdirectly irreducibles can be performed in
polynomial time (Demlová, 1982)
. Var-Mem is solvable in 2-EXPTIME (Bergman and Slutzki, 2000).
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NP-complete [Szekely, 7 (or 6) elements; 2002]

NP-hard for a semigroup [J and McKenzie, 55 elements; 2006]

NP-hard for an involuted semigroup [J and Volkov, 26 elements; 2010]

PSPACE-complete [Kozik; 2007]

EXPSPACE-complete [Kozik; 2007]

2-EXPTIME-complete [Kozik; 2009]
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Finite Axiomatisability

Connections with finite basis problem

If A has a finite basis for its equations

Var-Mem(A) is solvable in polynomial time

Marcel Jackson, La Trobe University Complexity of variety membership 4 / 14



Finite Axiomatisability

Connections with finite basis problem

If A has a finite basis for its equations

Var-Mem(A) is solvable in polynomial time

The converse not true.

One example: Lyndon’s algebra L

Marcel Jackson, La Trobe University Complexity of variety membership 4 / 14



Finite Axiomatisability

Connections with finite basis problem

If A has a finite basis for its equations

Var-Mem(A) is solvable in polynomial time

The converse not true.

One example: Lyndon’s algebra L

Var-Mem(L) is in NL

I (J and McNulty, 2011)
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Finite Axiomatisability

Eilenberg-Schützenberger

A is a finite algebra of finite signature

If HSPfin(A) is definable by a finite system of equations, is HSP(A)
finitely axiomatisable?
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Eilenberg-Schützenberger

A is a finite algebra of finite signature

If HSPfin(A) is definable by a finite system of equations, is HSP(A)
finitely axiomatisable?

If C a counterexample

Var-Mem(C) ∈ FO, even though HSP(C) is not finitely axiomatisable?!?!?
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Finite Axiomatisability

Eilenberg-Schützenberger

A is a finite algebra of finite signature

If HSPfin(A) is definable by a finite system of equations, is HSP(A)
finitely axiomatisable?

First order Eilenberg-Schützenberger

Does HSPfin(A) first order definable imply HSP(A) is first order definable?

A result: “no”

There exists a finite algebra A for which HSPfin(A) is definable by a
∀∗∃∗∀∗ sentence, but not by a ∀∗∃∗-sentence, nor by any finite system of
pseudo-equations. In particular, HSP(A) is not first order definable.
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Preservation and definability

Preservation Theorems

 Los-Tarski Theorem

If K = Mod(φ) and is closed under taking substructures, then φ is
equivalent to a ∀∗-sentence
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 Los-Tarski Theorem

If K = Mod(φ) and is closed under taking substructures, then φ is
equivalent to a ∀∗-sentence

Tait (1959), Gurevich-Shelah (1980s)

 Los-Tarski Theorem is not true when restricted to finite structures

Homomorphism Preservation

Rossman (2005/8) showed that the homomorphism preservation theorem
does hold at the finite level

This fact is crucial in the classification of first order definable CSPs
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Preservation and definability

ISP preservation?

Problem 1, Alechina and Gurevich 1997

If K = Modfin(φ) is closed under SPfin, then is it true that φ is equivalent
to a universal Horn sentence on finite structures?

No

SP(M3−3) is not finitely based (Belkin, 1978)

ScP(M3−3) (where M3−3 has discrete topology) is first order definable
amongst Boolean topological algebras (Clark, Davey, J, Pitkethly, 2008)

[ScP(M3−3)]fin and [SP(M3−3)]fin coincide

[SP(M3−3)]fin is not definable by a universal Horn sentence
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Preservation and definability

∀∗∃∗∀∗ for finite semilattice-based algebras

S finite, with a semilattice term ∧
T ∈ SPfin(S) if and only if

∧ is a semilattice operation on T and for each
a 6= b in T there is a subalgebra U of S and (distinct) tu ∈ T for each
u ∈ U such that the equivalence relation x ≡ y defined by
tu ≤ x ⇔ tu ≤ y is a congruence relation of T with a 6≡ b and with T/≡
isomorphic to U.
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Results

HSPfin(C) finitely axiomatisable but
HSP(C) not finitely axiomatisable

Example: C := M [
3−3

HSPfin(C) definable by a ∀∗∃∗∀∗-sentence, but not by any ∀∗∃∗-sentence

. Simultaneous failure of both the ISP-Preservation Theorem, and the
 Los-Tarski Theorem at the finite level! (And the HSP-preservation
theorem at the finite level)

. Shows Var-Mem(C) ∈ FO not equivalent to C being finitely based.
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Results

Related examples

Theorem

For every finite relational structure R of finite signature, there is a finite
algebra AR such that CSP(R) is first order equivalent to both
Var-Mem(AR) and Varsi-Mem(AR)

Corollary

Var-Mem(AR) can be L-complete, NL-complete, P-complete,
ModpL-complete, etc (infinitely many tractable complexities)

Interesting problem for future

Is it possible that if Var-Mem(A) not in P then it is NP-hard with respect
to many-one reductions?
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Results

For any complexity class K ( PSPACE

Given finite algebra A it is undecidable whether or not Var-Mem(A) is in K.

(In contrast, it is NP-complete to decide if CSP(R) is in FO; Larose, Loten,
Tardif 2006)
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Methods

Central technique

First order definable subdirect decomposition

There is a formula π(x , y , u, v) such that {(x , y) | A |= π(x , y , a, b)} is a
congruence θa,b maximal with respect to (a, b) /∈ θa,b

Consequence

A/θa,b is first order definable from A for each a 6= b
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Methods
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Pointed semi-discriminator varieties

1. If P has a projection term t(x , y) ≈ x , then

[HSP(P[)]si = [SP(P)][

⇒ Varsi-Mem(P[) is FO-equivalent to membership problem for SPfin(P)

2. V(P[) has first order definable subdirect decomposition: for a 6≤ b

π(x , y , a, b) =
(
¬t(x , a) ≈ a ∧∧¬t(y , a) ≈ a

)
∨∨(t(x ∧ y , a) ≈ a)

⇒ Var-Mem(P[) reduces to Varsi-Mem(P[) by a sort of “first order
Turing reduction”

3. If P comes from a relational structure, then a further trick enables a
genuine first order reduction from Var-Mem(P[) to Varsi-Mem(P[)

4. But first replace P by P]
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Methods

For M3−3

If φ defines [SPfin(P)][, then a finite system of equations plus

∀u∀v u 6≈ v → φu,v

defines HSPfin(P[), where φu,v has all instances of . . . ≈ . . . replaced by
π(. . ., . . ., u, v)

φ is a ∀∗∃∗∀∗-sentence for P = M3−3

A newish preservation theorem

If K is a uniformly locally finite SPfin-class of structures contained in some
locally finite and finitely axiomatisable SP-class, then K is definable by a
∀∗∃∗-sentence if and only if it is definable by a universal Horn sentence
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