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An intriguing question

How much information about an ω-categorical structure can be recovered
from its endomorphism monoid?

In particular, when does the endomorphism monoid of an ω-categorical
structure have automatic homeomorphicity?
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Automatic homeomorphicity

Given:

M ≤ TA – a closed transformation monoid and

K – a set of closed transformation monoids on A.

M has automatic homeomorphicity with respect to K if every
monoid-isomorphism from M to an element of K is a homeomorphism.

M has automatic homeomorphicity if it has automatic homeomorphicity
with respect to the set of all closed submonoids of TA.
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Examples

Monoids with automatic homeomorphicity

Monoid of injective selfmappings of A

Full transformation monoid on A

Monoid of selfembeddings of the Rado graph

Monoids with automatic homeomorphicity with respect to K
Monoid of selfembeddings of countable universal homogeneous
tournament
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Strong gate coverings

Given:

A – a countably infinite set,

M⊆ TA – a transformation monoid,

G – the set of units in M and

G – the closure of G in M.

A strong gate covering of M is an open covering U of M with elements
fU ∈ U, for every U ∈ U , such that

for all U ∈ U and

for all Cauchy-sequences (gn)n∈N in U

there exist Cauchy-sequences (κn)n∈N und (ιn)n∈N in G such that

∀n ∈ N : gn = κn ◦ fU ◦ ιn.
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Automatic homeomorphicity and strong gate coverings

Proposition

Let A and B be two countable relational structures such that

End(A) has a strong gate covering.

Let h : End(A)→ End(B) be a monoid-isomorphism such that

h is open and

h�Aut(A) is continuous.

Then h is continuous. In particular, h is a homeomorphism.
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Can we recognize when monoid-isomorphisms are open?

Proposition

Let A and B be two relational structures such that

End(A) contains all constant functions and

Aut(B) is oligomorphic.

Then every monoid-isomorphism h : End(A)→ End(B) is open.
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When are group-isomorphisms homeomorphisms?

Small index property

Let A be a countable set and let G ≤ SA be a closed subgroup.
Then G has the small index property if every subgroup of index less than
2ℵ0 in G is open.

Small index property and automatic homeomorphicity

If G ≤ SA has a small index property, than it has automatic
homeomorphicity.

Weak ∀∃ interpretations and automatic homeomorphicity

If an oligomorphic closed subgroup of SA has a weak ∀∃ interpretation,
then it has automatic homeomorphicity with respect to the closed
oligomorphic subgroups of SA.
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Examples

Rationals

Aut(Q,≤) has the small index property.

Generic poset

Aut(P,≤) has a weak ∀∃ interpretation.
It is not known whether it has the small index property.
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How to obtain strong gate coverings?
Use universal homogeneous endomorphisms!

Let U be a countable structure.

Universal endomorphism

u ∈ End(U) is universal if for every A ∈ Age(U) and every h : A→ U
there exists an embedding ι : A ↪→ U with h = u ◦ ι.

Homogeneous endomorphism

u ∈ End(U) is homogeneous if for

∀A ∈ Age(U),

∀h : A→ U and

∀ι1, ι2 : A ↪→ U with h = u ◦ ι1 = u ◦ ι2,

there exists an f ∈ Aut(U) with

f ◦ ι1 = ι2 and u ◦ f = u
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How to obtain strong gate coverings?
Use universal homogeneous endomorphisms! (cont.)

Proposition

If U is a countable infinite relational structure that has a universal
homogeneous endomorphism, then End(U) has a strong gate covering.
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Structures with a universal homogeneous endomorphism

Amalgamated extension property (AEP)
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Structures with a universal homogeneous endomorphism

Amalgamated extension property (AEP)
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Structures with a universal homogeneous endomorphism
(cont.)

Homoalmagamation property (HAP)
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Structures with a universal homogeneous endomorphism
(cont.)

Homoalmagamation property (HAP)
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Structures with a universal homogeneous endomorphism
(cont.)

Homoalmagamation property (HAP)

B T2

A T1.

b

a

g h

Proposition Existence of UHE

Let U be a countably infinite homogeneous structure. Then the following
are equivalent:

1 U has a universal homogeneous endomorphism.

2 Age(U) has the AEP and the HAP.
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Automatic homeomorphicity for End(Q,≤) and End(P,≤)

Theorem 1

Let B be a countable ω-categorical structure, and let

h : End(Q,≤)→ End(B)

be a monoid isomorphism. Then h is a homeomorphism.

Theorem 2

Let B be a countable ω-categorical structure, and let

h : End(P,≤)→ End(B)

be a monoid isomorphism. Then h is a homeomorphism.
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