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The general problem

∆: a countable relational structure (typically ω-categorical)

C = Pol(∆), closed clone

Question 1 (Up to ...) can we reconstruct ∆ from Pol(∆) viewed as an
abstract clone? (same for groups and monoids)

Question 2 Can we reconstruct the topology on Pol(∆) from the
algebraic structure of Pol(∆)?(same for groups and monoids)
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Groups

Theorem [C. Ryll-Nardzewski]
∆ is ω-categorical iff Aut(∆) is oligomorphic.

Moreover, ∆ and Γ are first-order interdefinable iff Aut(∆) = Aut(Γ).

Theorem [G. Ahlbrandt, M. Ziegler]
If ∆ is ω-categorical, then ∆ and Γ are first-order bi-interpretable iff
Aut(∆) ∼= Aut(Γ) as topological groups.
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Permutation group     first-order interdefinability

Topological group     first-order bi-interpretability

Abstract group     ?

Aut(  )
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Groups

∆: a countable structure (typically ω-categorical).

Automatic homeomorphicity

For any closed group G and any isomorphism ξ : Aut(∆)→ G, ξ is a
homeomorphism.

Reconstruction
For any closed group G, if there exists an isomorphism
ξ : Aut(∆)→ G, then there exists (possibly another) isomorphism
ξ′ : Aut(∆)→ G which is a homeomorphism.
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Groups

The following groups have automatic homeomorphicity.
[E. B. Rabinovich (1977)] S∞

[D. M. Evans (1986)] Aut(V∞), where V∞ = GF (q)ω for some finite q.
[J. Truss (1989)] Aut(Q, <)

[W. Hodges, I. Hodkinson, D. Lascar, S. Shelah (1993)] Aut(V ,E)

[M. Rubin (1994)] Generic poset, universal tournament, etc.
[S. Barbina, D. Macpherson (2004)] Random k -uniform hypergraphs,
Henson digraphs, etc.
Fact: It is consistent with ZF that for every ω-categorical structure ∆
the topological group Aut(∆) has automatic homeomorphicity.
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Permutation group     first-order interdefinability

Topological group     first-order bi-interpretability

Abstract group     The same?

Aut(  )

Reconstruction András Pongrácz



Function clone     primitive positive interdefinability

Topological clone     primitive positive bi-interpretability

Abstract clone     The same?

Transf. monoid     existential positive interdefinability

Topo. monoid     existential positive bi-interpretability

Abstract monoid     The same?

Permutation group     first-order interdefinability

Topological group     first-order bi-interpretability

Abstract group     The same?

Pol(  )

End(  )

Aut(  )
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Clones

∆: a countable structure (typically ω-categorical).

Automatic homeomorphicity

For any closed clone C and any isomorphism ξ : Pol(∆)→ C, ξ is a
homeomorphism.

Reconstruction
For any closed clone C, if there exists an isomorphism ξ : Pol(∆)→ C,
then there exists (possibly another) isomorphism ξ′ : Pol(∆)→ C which
is a homeomorphism.
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From groups to monoids

O: the clone of all operations
O(1): its unary part

Proposition

LetM andM′ be closed submonoids of O(1) with dense subsets of
invertibles G and G′. Let ξ : G → G′ be a continuous isomorphism.
Then ξ extends to an isomorphism ξ̄ :M→M′ which is a
homeomorphism.
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From groups to monoids

Proposition (M. Bodirsky, M. Pinsker, AP ’13)

LetM be a closed submonoid of O(1) whose group of invertible
elements G is dense inM and has automatic homeomorphicity.
Assume that the only injective endomorphism ofM that fixes every
element of G is the identity function idM onM. ThenM has automatic
homeomorphicity.
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Automatic homeomorphicity of monoids

Theorem (M. Bodirsky, M. Pinsker, AP ’13)
Let ∆ be a countable homogeneous relational structure such that
Aut(∆) has no algebraicity and with the joint extension property such
that Aut(∆) has automatic homeomorphicity. Then the monoid Aut(∆)
of self-embeddings of ∆ has automatic homeomorphicity.

Examples: (V ,E), random tournament, random hypergraphs, (ω,=)
Non-examples: (Q, <), Henson graphs
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Horn clone

Let H be the closed clone generated by
all unary injections, and
a binary injection f : ω2 → ω.

H consists of all injections ωn → ω (almost. . . )
Given an isomorphism ξ : H → C. If g : ωk → ω is bijective, then any
k -ary h ∈ H is of the form α ◦ g.
Sequences (hn)n∈N ⊆ H(k) are sequences (αn ◦ g)n∈N.
lim ξ(hn) = lim(ξ(αn)) ◦ ξ(g) = ξ(lim(αn) ◦ g) = ξ(lim hn)

Proposition
Every isomorphism ξ : H → C is continuous.
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Gate coverings

Definition
A gate covering of a topological clone C consists of

an open covering U of C;
for every U ∈ U a function fU ∈ U;

such that for all converging sequences (g i)i∈ω in C
(say in some U ∈ U , and say of arity n)
there exist unary (αi)i∈N and (β i

1)i∈N, . . . , (β
i
n)i∈N in C with

g i(x1, . . . , xn) = αi(fU(β i(x1), . . . , β i(xn))) and
(αi)i∈N and (β i

1)i∈N, . . . , (β
i
n)i∈N converge.
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(say in some U ∈ U , and say of arity n)

there exist unary (αi)i∈N and (β i
1)i∈N, . . . , (β

i
n)i∈N in C with
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Gate coverings II

Theorem (M. Bodirsky, M. Pinsker, AP ’13)
If C is a closed subclone of O such that
C acts transitively;
C(1) has automatic homeomorphicity;
C has a gate covering;

Then C has automatic homeomorphicity.

Corollary
H has automatic homeomorphicity.
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Automatic homeomorphicity of Pol(V ,E)

Techniques

Gate coverings

Topological Birkhoff

Cheating!
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Pol(V ,E) has automatic homeomorphicity

Every isomorphism ξ : End(V ,E)→M is continuous.

Pol(V ,E) ∩H has automatic homeomorphicity.
Every f ∈ Pol(V ,E) decomposes as f = h ◦ g with h ∈ End(V ,E),
g ∈ Pol(V ,E) ∩H.
Moreover, if (fi)i∈N is Cauchy, then ∃ decompositions fi = hi ◦ gi with
hi ∈ End(V ,E), gi ∈ Pol(V ,E) ∩H Cauchy sequences.
All isomorphisms ξ : Pol(V ,E)→ C are continuous.
Openness follows from TB + CH.
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Open problems

∃ ω-categorical ∆ with a discontinuous automorphism of End(∆).

Problem 1 Is there an ω-categorical ∆ such that End(∆) (or Pol(∆))
does not have reconstruction?

Problem 2 Does End(Hn,E) (or Pol(Hn,E)) have automatic
homeomorphicity for (any) n ≥ 3?
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