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Motivation

The term
x1/2yx1/2

proved useful in several types of algebras.

The operation
x ◦ y = x1/2yx1/2

either plays an important role, or the associated algebra (A, ◦)
is easier to investigate than the original algebra (A, ·).

The term is interesting only if (A, ·) is not commutative and/or
not associative.
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Taking square roots

We denote by x1/2 the unique element in A (or a fixed subset of
A) such that

(x1/2)2 = x .

The square root x1/2 is well-defined if the squaring map a 7→ a2

is a bijection of A, i.e., if A is uniquely 2-divisible.

A special case of this is when every element of (A, ·) has odd
order. Indeed, if |x | = 2n + 1, we have x1/2 = xn+1.
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An alternative: (xy2x)1/2

Suppose that the squaring map f is a bijection of A. Let

x ◦ y = x1/2yx1/2,

x • y = (xy2x)1/2.

Then f : (A, •)→ (A, ◦) is an isomorphism:

f (x • y) = f ((xy2x)1/2) = xy2x

= (x2)1/2y2(x2)1/2 = x2 ◦ y2 = f (x) ◦ f (y).
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The Baer trick

When A is a uniquely 2-divisible group of nilpotence class at
most two, the operation

x ∗ y = xy [y , x ]1/2

coincides with the operation x ◦ y .

The association of (A, ∗) with (A, ·) is known in group theory as
the Baer trick.
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Figure: The bear trick
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Badly nonassociative situations

In badly nonassociative situations (when xy2x is not well
defined), we might have to resort to variations.

For instance, if \ denotes the left division, that is,

x\y = z ⇔ y = xz

we might use
(x−1\(y2x))1/2.

In all such situations, the more complicated term reduces to our
friend (xy2x)1/2 in the presence of associativity.
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Powers

If (A, ·) is power-associative, that is, 〈x〉 is a group, then:
powers in (A, ·) and (A, ◦) coincide:

x ◦ xn = x1/2xnx1/2 = xn+1

inverses in (A, ·) and (A, •) coincide:

x • x−1 = (xx−2x)1/2 = 1 = x−1 • x .
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Inverses

Note that we have (x1/2)−1 = (x−1)1/2 = x−1/2.

In all situations covered in this talk (A, ◦) has the automorphic
inverse property

(x ◦ y)−1 = x−1 ◦ y−1.

Proof (in reasonable situations):

(x ◦ y)−1 = (x1/2yx1/2)−1 = x−1/2y−1x−1/2 = x−1 ◦ y−1.
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Bol identity

We will also always obtain the (left) Bol identity

x ◦ (y ◦ (x ◦ z)) = (x ◦ (y ◦ x)) ◦ z

Proof in associative case:

x ◦ (y ◦ (x ◦ z)) = x1/2y1/2x1/2zx1/2y1/2x1/2,

(x ◦ (y ◦ x)) ◦ z = (x1/2y1/2xy1/2x1/2)1/2z(x1/2y1/2xy1/2x1/2)1/2.

So it is enough to check that

(x1/2y1/2x1/2)2 = x1/2y1/2xy1/2x1/2.
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Loops

A loop is a groupoid (Q, ·) in which all translations

Lx : Q → Q, y 7→ xy , Rx : Q → Q, y 7→ yx

are bijections of Q, and there is an identity element 1 such that

1x = x1 = x .

The left and right divisions are then well defined as

x\y = L−1
x (y), x/y = R−1

y (x)

and we have

x(x\y) = y , (x/y)y = x , x\(xy) = y , (xy)/y = x .
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Bruck loops

A loop (Q, ·) is a Bol loop it if satisfies the Bol identity

x(y(xz)) = (x(yx))z.

A Bol loop satisfying the automorphic inverse property is known
as Bruck loop (or K-loop or gyrocommutative gyrogroup).

In all situations covered here, (A, ◦) is a Bruck loop.
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Addition of vectors in special relativity

The addition of vectors in special relativity is given by

u⊕ v =
1

1 + u·v
c2

(
u + v‖ +

√
1− |u|

2

c2 v⊥

)
,

where
v‖ =

u · v
|u|2

u

is the projection of v onto a vector parallel with u, and

v⊥ = v− v‖.

Ungar noticed that ⊕ is a Bruck loop.
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Sequential product
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Order of measurements

In quantum physics, two measurements often cannot be
performed at the same time, hence must be measured in a
sequence A ◦ B (A is measured first).

There are experiments in which the order of measurements
matters. Since

P(A)P(B|A) = P(A)P(A ∩ B)/P(A) = P(A ∩ B)

is symmetric in A, B, classical probability cannot be used.

The interpretation of A ◦ B ◦ C is by convention A ◦ (B ◦ C),
which in the Gudder-Nagy approach below disagrees with
(A ◦ B) ◦ C. Is there a physical meaning of (A ◦ B) ◦ C?
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Related algebras

Banach space is a vector space with a norm, complete
w.r.t. the norm (limits of Cauchy sequences exist)
Hilbert space is a Banach space with norm ‖ x ‖=

√
x · x ,

Banach algebra is an algebra (A,+, ·) where (A, ·) is
associative, (A,+) is a Banach space and
‖ xy ‖≤‖ x ‖ ‖ y ‖,
C∗-algebra is a Banach algebra over C with ∗ : A→ A such
that x∗∗ = x , (x + y)∗ = x∗+ y∗, (xy)∗ = y∗x∗, (λx)∗ = λx∗

and ‖ x∗x ‖=‖ x ‖ ‖ x∗ ‖.

Example
Let H be a separable (countable dense subset)
infinite-dimensional Hilbert space. Then its compact operators
form a C∗-algebra.



Introduction Sequential product Bruck and Moufang loops of odd order Automorphic loops Commutative A-loops

Quantum effects

In 1955, John von Neumann introduced a model of quantum
mechanics based on complex separable Hilbert spaces H.
Observables are self-adjoint linear operators. Measurements
act on observables. A measurement with only 0 or 1 outcome is
called an effect.

Stan Gudder and Gabriel Nagy (2001) identify quantum effects
E(H) as operators A on H such that 0 ≤ A ≤ I. (Consequently,
A is self-adjoint.) The cumulative effect of sequential
measurements is modeled by

A ◦ B = A1/2BA1/2,

where A1/2 is the unique square root of A in E(H). (It can be
obtained as follows: If A has eigenvalues and eigenvectors λi ,
ei , then A1/2 has eigenvalues and eigenvectors

√
λi , ei .)
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Some results of Gudder and Nagy

The product A ◦ B indeed falls back in the interval [0, I]:

0 ≤ 〈A1/2BA1/2x , x〉 = 〈BA1/2x ,A1/2x〉
≤ 〈A1/2x ,A1/2x〉 = 〈Ax , x〉 ≤ 〈x , x〉.

Theorem (Gudder, Nagy 2001)

If A ◦ B = B ◦ A then AB = BA.
If A ◦ (B ◦ C) = (A ◦ B) ◦ C for all C ∈ E(H) then AB = BA.

S. Gudder and G. Nagy, Sequential quantum measurements, Journal
of Mathematical Physics 42, 5212 (2001)
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Uniqueness of the operation

(Left) Bruck loops have the left alternative property

a(ab) = (aa)b.

The following result states that under reasonable conditions on
sequential products, the operation is uniquely determined:

Theorem (Gudder and Latrémolière 2008)

Suppose that � is an operation on E(H) such that
A� I = A = I � A, (A� A)� B = A� (A� B) and such that
certain properties on the trace and projections hold. Then
A� B = A1/2BA1/2 = A ◦ B.

Gudder and Latrémolière, Characterization of the sequential product
on quantum effects, J. Math. Physics 49 (2008).
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Molnár’s generalization to C∗-algebras

Lajos Molnár greatly generalized the above results in the
setting of general C∗-algebras.

L. Molnár and R. Beneduci, On the standard K-loop structure of
positive invertible elements in a C∗-algebra, to appear in
J. Math. Anal. Appl.

L. Molnár, A few conditions for a C∗-algebra to be commutative,
to appear in Abstr. Appl. Anal.

Let X be a unital C∗-algebra, X+ the cone of positive elements
of X , and X−1

+ the invertible elements in X+. As always, define
◦ on X−1

+ by A ◦ B = A1/2BA1/2.

Deep theorems of C∗-algebras are required.
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Algebraic properties

A loop is Moufang it it satisfies the identity

a(b(ac)) = ((ab)a)c.

Theorem (Molnár 2011-2014)
The following conditions are equivalent:

(X , ·) is commutative,
(X−1

+ , ◦) is commutative,

(X−1
+ , ◦) is associative,

(X−1
+ , ◦,+) is distributive,

(X−1
+ , ◦) is a Moufang loop.
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Uniqueness

A positive linear functional τ : X → C is called a trace if

τ(AB) = τ(BA).

It is faithful if τ(A∗A) = 0 implies A = 0.

Theorem (Molnár 2014)

Let τ be a faithful trace on X. Let � be defined on X−1
+ so that:

X−1
+ is a left quasigroup,

A� 1 = A,
(A� A)� B = A� (A� B),
τ((A� B)� C) = τ(B � (A� C)),
τ(A� B) = τ(AB).

Then A� B = A ◦ B.
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Bruck and Moufang loops
of odd order
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Overview

In 1960s George Glauberman wrote a series of three papers
where he proved important structural results about Bruck loops
of odd order and Moufang loops of odd order.

1 G. Glauberman, On loops of odd order, J. Algebra 1, 374–396
(1964)

2 G. Glauberman, Central elements in core free groups, J. Algebra
4, 403–420 (1966)

3 G. Glauberman, On loops of odd order II, J. Algebra 8, 393–414
(1968)

Papers 1 and 3 are a curious mixture of loop theory with
advanced group theory. A few results follow rather easily in loop
theory alone.
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Z ∗-theorem

A loop is solvable if it has a subnormal series where every
factor is an abelian group.

In 1 Glauberman formulated a conjecture in group theory which
is true if and only if every Bruck loop of odd order is solvable.

He established the conjecture in 2, and one of its
reformulations is now known as Glauberman’s Z ∗-theorem. It is
a key result in the classification of finite simple groups.
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Z ∗-theorem

For a finite group G, let O(G) be the largest normal subgroup of
odd order.

Let Z ∗(G) be a normal subgroup of G such that

Z ∗(G)/O(G) = Z (G/O(G)).

Theorem (Glauberman’s Z ∗-theorem)
Let G be a finite group with a Sylow 2-subgroup S. If there is an
involution x ∈ S such that xG ∩ S = {x} then x ∈ Z ∗(G).
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Bruck loops of odd order

Let G be a group of odd order. Recall that (G, ◦) is a Bruck loop.

Glauberman showed that any Bruck loop Q of odd order can be
embedded in a certain group GQ, and established properties of
Q by studying the group GQ and its automorphisms.

Theorem (Glauberman)

Let Q be a Bruck loop of odd order. Then:

Cauchy’s Theorem: If a prime p divides |Q| then there is x ∈ Q
such that |x | = p.

Lagrange’s Theorem: If A ≤ Q then |A| divides |Q|.

If |Q| = pk , p prime, then Q is centrally nilpotent.

Sylow’s Theorem: Q contains Sylow p-subloops, and every
p-subloop is contained in a Sylow p-subloop.

Hall’s Theorem: Q contains Hall π-subloops, and every
π-subloop is contained in a Hall π-subloop.
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Left power alternative property

Here is an example of a result of Glauberman that can be
obtained by elementary loop theory:

Lemma

Let Q be a left power alternative loop, that is, x i(x jy) = x i+jy. If
x ∈ Q and Q is finite then |x | divides |Q|.

Proof.

Let A = 〈x〉. If Ay ∩ Az 6= ∅ then x iy = x jz,
y = x−i · x iy = x−i · x jz = x j−iz ∈ Az, xk y = xk+j−iz ∈ Az, so
Ay ⊆ Az. By symmetry, Ay = Az.

Since left Bol loops are left power alternative (proof by
induction), we obtain:

Corollary

Let Q be a finite Bruck loop and x ∈ Q. Then |x | divides |Q|.
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Feit-Thompson Theorem for Bruck loops

Theorem (Glauberman)

Let x be an involution in a group G. Then x ∈ Z ∗(G) iff for
every g ∈ G the order of g−1gx is odd.

Lemma (Brauer)
Let S be a Sylow 2-subgroup of G and x an involution in S. The
following are equivalent:

for every g ∈ G the order of g−1gx is odd,
xG ∩ S = {x}.

The Z ∗-theorem follows, and combined with previous work of
Glauberman:

Theorem (Feit-Thompson Theorem for Bruck loops)
Every Bruck loop of odd order is solvable.
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Moufang loops of odd order

Moufang loops are diassociative, that is, 〈x , y〉 is a group.

Glauberman noticed that (G, ◦) is a Bruck loop even if G is just
a Moufang loop of odd order. He then managed to translate
properties from Bruck loops of odd order to Moufang loops of
odd order. The translation is not straightforward.



Introduction Sequential product Bruck and Moufang loops of odd order Automorphic loops Commutative A-loops

Theorem (Glauberman)
Let Q be a Moufang loop of odd order. Then:

Cauchy’s Theorem: If a prime p divides |Q| then there is
x ∈ Q such that |x | = p.
Lagrange’s Theorem: If A ≤ Q then |A| divides |Q|.
If |Q| = pk , p prime, then Q is centrally nilpotent.
Sylow’s Theorem: Q contains Sylow p-subloops, and every
p-subloop is contained in a Sylow p-subloop.
Hall’s Theorem: Q contains Hall π-subloops, and every
π-subloop is contained in a Hall π-subloop.
Feit-Thompson Theorem: Q is solvable.
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More recent results

Theorem (Glauberman-Wright)

Every Moufang loop of order 2k is centrally nilpotent.

Sylow theorem does not generalize to Moufang loops of even
order easily. There is a simple Moufang loop of order 120 with
no elements of order 5. Sylow theory can be saved for good
primes (Gagola, Grishkov, Zavarnitsine).

Lagrange’s Theorem also holds for Moufang loops:

Theorem (Grishkov-Zavarnitsine, Hall-Gagola)

Let Q be a finite Moufang loop and A ≤ Q. Then |A| divides |Q|.

This requires classification of finite simple Moufang loops
(Liebeck) and a careful study of groups with triality associated
with Moufang loops.
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Recent development

Modern approach to Glauberman’s theory is due to Aschbacher
(for Moufang loops) and Foguel-Kinyon-Phillips (for Bol loops).

Here is the key concept: A subset S of G is a twisted subgroup
if 1 ∈ S, S is closed under inverses and under the operation
xyx.

Theorem (Aschbacher, Kinyon, Phillips)

If S is a uniquely 2-divisible twisted subgroup then (S, •) is a
Bruck loop.

Example

It G is a group and τ ∈ Aut(G) then
K (τ) = {g ∈ G; gτ = g−1} is a twisted subgroup.
If Q is a Bol loop then {Lx ; x ∈ Q} is a twisted subgroup of
Mlt(Q) = 〈Lx ,Rx ; x ∈ Q〉.
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Automorphic loops
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Inner mapping groups

For a loop Q define the multiplication group

Mlt(Q) = 〈Lx ,Rx ; x ∈ Q〉

and the inner mapping group

Inn(Q) = {ϕ ∈ Mlt(Q); ϕ(1) = 1〉.

Bruck showed that

Inn(Q) = 〈Lx ,y ,Rx ,y ,Tx ; x , y ∈ Q〉,

where Lx ,y = L−1
xy LxLy , Rx ,y = R−1

yx RxRy and Tx = L−1
x Rx .
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Automorphic loops

A loop Q is automorphic if Inn(Q) ≤ Aut(Q).

Automorphic loops form a variety because Lx ,y , Rx ,y ,
Tx ∈ Aut(Q) can be written as identities (with multiplication and
divisions).

Theorem (Johnson, Kinyon, Nagy, V 2011)

A loop Q is automorphic iff Tx , Lx ,y ∈ Aut(Q) for every x, y ∈ Q.

The most recent treatment is:

M. Kinyon, K. Kunen, J.D. Phillips and P.V., The structure of
automorphic loops, to appear in Transactions of AMS
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Basic properties

In

R. H. Bruck and L. J. Paige, Loops whose inner mappings are
automorphisms, Ann. of Math. (2) 63 (1956) 308–323

the authors wanted to prove that every diassociative
automorphic loop is Moufang. This is now a theorem due to
Osborn in commutative case and Kinyon, Kunen and Phillips in
general.

Theorem (Bruck and Paige, 1956)
Automorphic loops are power associative. The middle nucleus
Nµ(Q) = {y ∈ Q; x(yz) = (xy)z for all x, z ∈ Q} plays a
special role.
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Automorphic loops in context

Theorem (Johnson, Kinyon, Nagy, V 2011)

Automorphic loops satisfy the anti-automorphic inverse
property (xy)−1 = y−1x−1.

Note: Bruck loops ∩ automorphic loops = commutative
Moufang loops.

Proof: Commutative Moufang loops are Bruck loops, because
they are both left and right Bol. Bruck proved that every
commutative Moufang loop is automorphic. Conversely, a loop
that is both Bruck and automorphic has AAIP and AIP, hence is
commutative, hence Moufang.
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Finite simple automorphic loops?

It is an open problem if there are nonassociative finite simple
automorphic loops.

Theorem (Johnson, Kinyon, Nagy, V 2011)

There are no nonassociative finite simple automorphic loops of
order less than 2500.

The proof uses classification of primitive groups of small
degrees. A group acts primitively on X if no nontrivial partition
of X is preserved by the action.

Theorem (Albert)

A loop Q is simple if and only if Mlt(Q) acts primitively on Q.

We have some information about the socle of Mlt(Q). (So
O’Nan-Scott theorem narrows down the possibilities.)
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Constructions

There are by now quite a few constructions of nonassocative
automorphic loops.

Theorem (Grishov, Rasskazova, V 2014)

Let R be a commutative ring, V an R-module, E = EndR(V ).
Suppose that (W ,+) ≤ (E ,+) satisfies

I + W ⊆ E∗,
(W , ·) is commutative.

Then W × V with multiplication

(a, x)(b, y) = (a + b, (I + b)x + (I − a)y)

is an automorphic loop.
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Construction

Theorem (KKPV and Aboras 2013)

Let G be an abelian group, m an even integer and α ∈ Aut(G).
If m > 2, also assume α2 = 1. Then Zm ×G with multiplication

(i ,u)(j , v) = (i + j , ((−1)ju + v)αij)

is an automorphic loop.



Introduction Sequential product Bruck and Moufang loops of odd order Automorphic loops Commutative A-loops

Two ideas: 1) Associated Bruck loops

Let (Q, ·) be a uniquely 2-divisible automorphic loop. Mimicking
the situation in Moufang loops, define (Q, •) by

x • y = (x−1\(y2x))1/2.

You can also obtain it as follows:
prove that PQ = {Px ; x ∈ Q} is a twisted subgroup of
Mlt(Q), where Px = RxL−1

x−1 ,
then (PQ, •) is a Bruck loop, project down from Mlt(Q) onto
Q, get (Q, •).

This gives Lagrange’s and Cauchy’s theorems, but not Sylow’s
and Hall’s theorems for automorphic loops of odd order.
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Two ideas: 2) Associated Lie rings

Generalize a construction due to Wright (1967).

A Lie ring (L,+, [·, ·]) is an abelian group (L,+) with a bracket
satisfying

[x , y ] = −[y , x ],
[x + y , z] = [x , z] + [y , z],
[x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0.
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Associated Lie rings

Theorem
On a Lie ring (Q,+, [·, ·]) define x � y = x + y − [x , y ]. Then
(Q, �) is a uniquely 2-divisible automorphic loop whose
associated Bruck loop is an abelian group iff

the translations y 7→ y ± [y , x ] biject,
[[Q, x ], [Q, x ]] = 1.

Conversely, if (Q, ·) is a uniquely 2-divisible automorphic loop
with associated Bruck loop (Q, ◦) that is an abelian group,
define [x , y ] = x ◦ y ◦ (xy)−1 and get a Lie ring satisfying the
above two conditions.
The constructions are inverse to one another.
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Corollaries of the second idea

Theorem (Kinyon, Kunen, Phillips, V 2013)
Automorphic loops of odd order are solvable.

Theorem (KKPV 2013)

An automorphic loop of order p2 is a group. There are
automorphic loops of order p3 that are not centrally nilpotent.

Moving toward the commutative case:

Theorem (Grishkov, Kinyon, Nagy 2013)

There are no finite simple nonassociative commutative
automorphic loops.
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Commutative automorphic
loops
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Early results on odd order

1 P. Jedlička, M. Kinyon and P. V., Constructions of commutative
automorphic loops, Communications in Algebra 38 (2010), no. 9,
3243–3267

2 , The structure of commutative automorphic loops,
Transactions of AMS 363 (2011), 365–384

3 , Nilpotency in automorphic loops of prime power order,
Journal of Algebra 350 (2012), no. 1, 64–76

In 2 the twisted subgroup {Px ; x ∈ Q} appears for the first time
and the Feit-Thompson theorem is obtained, as well as
Cauchy’s and Lagrange’s Theorems.
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Even order

We actually obtain Cauchy’s and Lagrange’s Theorems for all
finite commutative automorphic loops thanks to the following
decomposition result analogous to the first step in the
decomposition for finite abelian groups:

Theorem
Let Q be a finite commutative automorphic loop. Then Q is a
direct product of a loop of odd order and a loop od order 2k .

The odd order subloop does not further decompose into
p-primary components. Drápal constructed counterexamples of
order pq.
A. Drápal, A class of commutative loops with metacyclic inner
mapping groups, Comment. Math. Univ. Carolin. 49 (2008),
357–382.
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Nilpotence

Theorem (JKV 2013)

If Q is a commutative automorphic loop of order pk , p an odd
prime, then Q is centrally nilpotent.

Counterexamples for order n = 2k , already at n = 8.
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Automated deduction

Due to the many interconnected operations, automated
deduction (particularly PROVER9 and MACE4 by W. McCune)
is heavily used in papers on automorphic loops.

Automated deduction is becoming common in nonassociative
algebra:

J.D. Phillips and D. Stanovský, Automated theorem proving in
quasigroup and loop theory, Artificial Intelligence Communications
23/2–3 (2010), 267–283
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Figure: Home appliance with built-in automated deduction
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Figure: About to push the wrong button
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Automated deduction

A key step in the decomposition result was the following lemma:

Lemma

In a commutative automorphic loop, x2y2 is the square of
z = ((xy)\x · (yx)\y)−1.

First time the result was obtained (in a car while driving to Fort
Collins), PROVER9 found a more complicated formula for C:

((((((x · x)\x) · (y · (x · x)))\(y · (x · x)))\1)
· (((((((x · x)\x) · (y · (x · x)))\(y · (x · x)))\1)
\((((x · x)\x) · ((x · x)\x)) · (y · (x · x))))\1))
\((((((x · x)\x) · (y · (x · x)))\(y · (x · x)))\1)
· ((((((((x · x)\x) · (y · (x · x)))\(y · (x · x)))\1)
\((((x · x)\x) · ((x · x)\x)) · (y · (x · x))))\1)
· ((((((x · x)\x) · (y · (x · x)))\(y · (x · x)))\1)
· \((((x · x)\x) · ((x · x)\x)) · (y · (x · x))))))
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Inverse functors

All of the above results for odd order commutative automorphic
loops have been superseded by the the recent work of
M. Greer.

M. Greer, A class of loops categorically isomorphic to uniquely
2-divisible Bruck loops, to appear in Comm. Algebra

He defined a certain class of power-associative loops, called
Γ-loops, that properly contain commutative automorphic loops.
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Greer’s results

Theorem (Greer)
The following are inverse functors between the category B of
uniquely 2-divisible Bruck loops, and the category C of uniquely
2-divisible Γ-loops:

B → C, (Q, ·) 7→ (Q, •), x • y = (x−1\(y2x))1/2,

C → B, (Q, ·) 7→ (Q, ∗), x ∗ y = xy [y , x ]1/2.

You recognize our usual term on the one hand, and the Baer
trick on the other hand.

Corollary (Greer)
Cauchy, Lagrange, Sylow, Hall and Feit-Thompson Theorems
hold in commutative automorphic loops of odd order.
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Figure: Thank you and visit us in Denver!
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