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Constraint Satisfaction Problem
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An instance of CSP(A). Unary and binary relations must be from the
relational clone of A.

Is there a solution?
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Consistency checking

Solving CSP is NP-complete in general.

If a part of a CSP instance has no solution, then the whole instance
has no solution.

Good news: Consistency can be checked quickly.

Bad news: An instance can have no solution, yet be locally consistent.
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Datalog

A Datalog program adds tuples to predicates using local rules until it
reaches its goal or can’t apply any rule.

Example of a Datalog program with unary predicates Z , c0, c1, binary
predicate E , and the goal predicate G .

Z (x) ⇐ c0(x)

Z (y) ⇐Z (x) ∧ E (x , y)

G ⇐Z (y) ∧ c1(x)

The above program checks if there is a directed path from something
in c0 to something in c1.

How to use Datalog to solve ¬CSP: A Datalog program verifies local
consistency. Goal: Prove inconsistency.
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Linear and Symmetric Datalog

Predicates on left hand side of some rule: IDBs

Linear Datalog: At most one IDB on the right hand side of any rule.

Symmetric Datalog: At most one IDB on the right hand side of any
rule. If there is an IDB on both sides of a rule, we can switch the
IDBs.

Example: Rule
Z (y) ⇐ T (x) ∧ E (x , y)

gives
T (x) ⇐ Z (y) ∧ E (x , y).
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Bounded pathwidth duality

There is a linear Datalog program solving ¬CSP(A) iff A has
bounded pathwidth duality.

Bounded pathwidth duality: Unsatisfiable instances of CSP(A) always
have unsatisfiable “path-like” parts.

Example of what “path-like” means:
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Solving path instances is enough

Our goal: If ¬CSP(A) is solvable by a linear Datalog program and A
is n-permutable for some n, then ¬CSP(A) can be solved by a
symmetric Datalog program.

A has bounded pathwidth duality, so we look for path-like
unsatisfiable instances.

By replacing A by its power, it is enough to look at path shaped
unsatisfiable CSP instances.

Our new goal: How to use symmetric Datalog to decide path CSP
instances.
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Using n-permutability

If A is 4-permutable, then the following can’t be an unsatisfiable
instance of CSP(A):

Applying Hagemann-Mitschke terms gives us a solution.
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Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Glued potatoes

We label black the vertices that can be reached from the starting
potato.

We want lots of backwards edges: Edges from blue to black vertices.

We use some trickery to glue together potatoes without blue to black
edges.

Nature of the trickery: We can run a smaller symmetric Datalog
program inside our original program.

A Kazda (Vanderbilt University) LDLG + k-perm = SDLG July 1, 2014 9 / 13



Subdirect subinstance

Additional trickery gives us a long part of the path instance where
everything is subdirect.

Then it is a matter of pigeonhole principle to find something like this:
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Summing up, part 1

Theorem

Given n-permutatable relational structure A such that CSP(A) has
bounded pathwidth duality, there is a symmetric Datalog program that
decides CSP(A).

V. Dalmau previously proved this for 2-permutable structures.

n-permutability is necessary by L. Egri, B. Larose, and P. Tesson.
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Summing up, part 2

Algebraic view (due to L. Egri, B. Larose, and P. Tesson):

If ¬CSP(A) is solvable by linear Datalog, then the algebra of A must
be (join) semidistributive.

If ¬CSP(A) is solvable by symmetric Datalog, then the algebra of A
must be (join) semidistributive and n-permutable.

Conjecture

Semidistributive = linear Datalog = NL.

Conjecture

Semidistributive and n-permutable = symmetric Datalog = L.

Our result plus first conjecture gives the second conjecture.
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Thank you for your attention.
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