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Epigroups

A semigroup S is called an epigrpoup if some power of every element x in S

lies in a subgroup G of S .

s s s

x x2 xn G

. . . . . .

For any x there is the maximal subgroup containing x . It is denoted by Gx .
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Periodic semigroups

S is a periodic semigroup ⇐⇒ S satisfies xn = xn+m for some n,m ≥ 1.

s s s s

s s

x x2 xn = xn+m xn+1

xn+2xn+m−1

Gx

. . . . . .

. . . . . . . . . . . .

Gx = {xn
, x

n+1
, . . . , x

n+m−1}
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Completely regular semigroups (unions of groups)

S =
⋃

x∈S

Gx

x ∈ Gx
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s
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Gb

c

Gc

. . . . . . . . . . . . .
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Epigroups as unary semigroups

A unary semigroup is a semigroup equipped by an additional unary operation.

A completely regular semigroup: x−1 is inverse to x in Gx
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Epigroups as unary semigroups

A unary semigroup is a semigroup equipped by an additional unary operation.

A completely regular semigroup: x−1 is inverse to x in GxУнарная полугруппа

— полугруппа с дополнительной унарной операцией.

An epigroup:

s s s

s

x x2 xn
Gx

xω

. . . . . .

xω is a unit element of Gx .
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Epigroups as unary semigroups

An epigroup:

s s s

s

s

x x2 xn
Gx

xω

xxω

. . . . . .

xω is a unit element of Gx ; xxω = xωx ∈ Gx
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Epigroups as unary semigroups

An epigroup

s s s

s

s

s

x x2 xn
Gx

xω

xxω

x

. . . . . .

pseudoinversion

xω is a unit element of Gx ; xxω = xωx ∈ Gx ; x = (xxω)−1 in Gx

x is pseudoinverse to x
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Completely regular case

If S is completely regular then x = x−1.

Varieties of completely regular semigroups are varieties of epigroups.
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Neutral elements of lattices

a is called neutral in L if

∀x , y ∈ L : a, x , y generate a distributive sublattice in L

or, equivalently

∀x , y ∈ L : (a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a) = (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a).

If a is neutral in L then L is a subdirect product of (a] and [a) where

(a] = {x ∈ L | x ≤ a} and [a) = {x ∈ L | a ≤ x}.
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Neutral elements in the lattice of epigroup varieties

Theorem

Neutral elements of the elements of epigroup varieties are

1 the trivial variety T,

2 the variety of all semilattices SL,

3 the variety of all semigroups with zero multiplication ZM,

4 the variety SL ∨ ZM

and only they.
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The lattice of all epigroup varieties

The lattice of all epigroup varieties
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The lattice of all epigroup varieties and its neutral elements
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Completely reegular case

The lattice of completely regular varieties has infinitely many neutral elements
including

all varieties of bands;

the variety of all groups;

the variety of all completely simple semigroups;

the variety of all orthodox semigroups

and some others (Trotter, 1989).
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Modular elements of lattices

a is called modular in L if

∀x , y ∈ L : x ≤ y −→ (a ∨ x) ∧ y = (a ∧ y) ∨ x

s

s
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Modular elements of the lattice of epigroup varieties

0-reduced identity: w = 0, that is wx = xw = w where x is a letter that does
not occur in the word w .

Substitutive identity: v = w where w is obtained from v by renaiming of
tletters

Examples: xy = yx , xyz = yxz , x2y = y2x , xyx = yxy etc.

Theorem

If an epigroup variety V is a modular element of the lattice of epigroup varieties

then V = X ∨ N where X is one of the varieties T or SL, and N is a nil-variety

given by 0-reduced and substitutive identities only.

X is modular ⇐⇒ SL ∨ X is modular.

The Theorem gives a complete reduction to nilvarieties.

Theorem

A commutative epigroup variety V is a modular element of the lattice of

epigroup varieties if and only if V = X ∨ N where X is one of the varieties T or

SL while N satisfies the identity x2y = 0.
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Upper-modular elements of lattices

a is called upper-modular in L if

∀x , y ∈ L : y ≤ a −→ (x ∨ y) ∧ a = (x ∧ a) ∨ y
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Upper-modular elements of the lattice of epigroup varieties

Theorem

A commutative epigroup variety V is an upper-modular element of the lattice

of epigroup varieties if and only if either V ⊆ G∨C ∨D or V ⊆ SL∨ E where G

is an abelian group variety, C = var {x2 = x3
, xy = yx},

D = var {x2y = 0, xy = yx} and E = var {x2y = xy2
, x2yz = 0, xy = yx}.

Corollary

If a commutative epigroup variety V is a modular element of the lattice of

epigroup varieties then it is an upper-modular element of this lattice.
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