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Warning:

Many statements and proofs below are purposedly incom-
plete, even false if taken as face value, assumptions are
missing etc: we try to convey the main ideas and not
to stick to technicalities. Unfortunately, not all of our
mistakes are deliberate...



Part I: Optimal regularity for mappings of
finite distortion in plane

1. The basic question:

The classical theory of planar quasiconformal maps considers the

Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z

where |µ(z)| ≤ k < 1 almost everywhere. Our basic question is what

happens if one gives up the condition ‖µ‖∞ < 1, but allows ‖µ‖∞ = 1

instead?



1. The basic question:

The classical theory of planar quasiconformal maps considers the

Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z

where |µ(z)| ≤ k < 1 almost everywhere (µ is then the complex dilata-

tion of f). Our basic question is what happens if one gives up the

condition ‖µ‖∞ < 1, but allows ‖µ‖∞ = 1 instead.

Applications include e.g. 2-dimensional elasticity theory, non-hyperbolic

dynamics, . . . , (recently) some random phenomena.



Part of a bigger picture: mappings of finite distortion

A mapping f : Ω → Rn defined in a domain Ω ⊂ Rn is a mapping of

finite distortion if

1. f ∈W1,1
loc (Ω),

2. J(·, f) ∈ L1
loc(Ω), and

3. there is a measurable function K(z) ≥ 1, finite almost

everywhere, such that

|Df(z)|n ≤ K(z) J(z, f) almost everywhere in Ω

The smallest such function is denoted by K(z, f) and is called the

distortion function of f .



The more general framework: mappings of finite distortion

A mapping f : Ω → Rn defined in a domain Ω ⊂ Rn is a mapping of
finite distortion if

1. f ∈W1,1
loc (Ω),

2. J(·, f) ∈ L1
loc(Ω), and

3. there is a measurable function K(z) ≥ 1, finite almost
everywhere, such that

|Df(z)|n ≤ K(z) J(z, f) almost everywhere in Ω

The smallest such function is denoted by K(z, f) and is called the
distortion function of f .

Arguably, the last condition is a minimal requirement for a mapping
to carry geometric (conformality related) information.



In two dimension a homeomorphic mapping f is a map of finite dis-

tortion exactly if f ∈W1,1
loc and

∂f

∂z̄
= µ(z)

∂f

∂z
, |µ(z)| < 1 a.e..

Recall that one has

Df = |fz|+ |fz̄| for the operator norm and

J(z, f) = |fz|2 − |fz̄|2 for the Jacobian,

whence the distortion has the the formula

K(z) =
1 + |µ|
1− |µ|

.



The measurable Riemann mapping theorem: review of the classical
case

Theorem. (Morrey, Bojarski, Ahlfors-Bers,...) If |µ(z)| ≤ k =
K−1
K+1 for z ∈ C and for some constant k < 1, then the Beltrami
equation has a homeomorphic solution, unique up to post-composing
with analytic maps.

Understanding the local regularity of the solution reduces to that of
the principal solution: a principal solution is a homeomorphism of C
onto itself with the expansion

f(z) = z +
a1

z
+
a2

z2
+ · · ·

in C\K ( K compact, usually K = D), whence f is conformal in C\K.



• The Beurling operator S:

Sϕ(z) := −
1

π

∫∫
C

ϕ(τ)

(z − τ)2
dτ

acts unitarily on L2(C).

• One has S(hz̄) = hz for every h ∈W1,2(C).

Assume that µ is supported in the unit disc. Classical way to look for

a solution of the Beltrami eq. is to make the Ansatz

f = z + C(ω), Cω(z) :=
1

π

∫∫
C

ϕ(τ)

(z − τ)
dτ

where C is the Cauchy transform.



Then ω = fz̄ is to satisfy the identity

ω(z) = µ(z)Sω(z) + µ(z) for almost every z ∈ C.

Such an ω is easy to find when ‖µ‖∞ ≤ k < 1. We define

ω := (1− µS)−1µ = µ+ µSµ+ µSµSµ+ µSµSµSµ+ · · ·
The above series (’the Neumann series’) converges in Lp(C) for p
close to 2 since

‖µSµS · · ·µS‖Lp(C) ≤ (k‖S‖Lp→Lp)n, n ∈ N,
and (by interpolation) ‖S‖Lp→Lp → 1 as p→ 2.

As a consequence of Astala’s area distortion theorem one finds the
optimal regularity in the classical case in the form:

|Df |p ∈ L1
loc p <

2K

K − 1
.



Degenerate case: some conditions on µ needed !

Example Consider the smooth function f(z)) := z(z + z̄). It satisfies

Beltrami with

µ(z) =
z

2z + z̄
.

Clearly f is a mapping of finite distortion, but f(iR) = 0, whence

the inverse function is not very well defined ! On the other hand,

distortion is very large:

K(z) � 1 + (y/x)2,

especially K 6∈ L1
loc.



Some conditions on µ needed !

Example Consider the smooth function f(z)) := z(z + z̄). It satisfies
the Beltrami with

µ(z) =
z

2z + z̄
.

Clearly f is a mapping of finite distortion, but f(iR) = 0 ! Especially,
the inverse function is not very well defined. On the other hand,
distortion is very large:

K(z) � 1 + (y/x)2,

especially it is not integrable.

A positive surprise ahead : bare integrability of K alone will help in
several nice ways!



Lemma: (modulus of continuity, Gehring, Goldstein and Vodopy-

anov)

Assume that f ∈W1,2(2D) is a homeomorphism. Then, if z1, z2 ∈ D
one has

|f(z1)− f(z2)|2 ≤
c
∫
2D |∇f |2

log(e+ 1/|z1 − z2|)
.



Lemma: (modulus of continuity, Gehring, Goldstein and Vodopy-
anov)
Assume that f ∈W1,2(2D) is a homeomorphism. Then, if z1, z2 ∈ D
one has

|f(z1)− f(z2)|2 ≤
c
∫
2D |∇f |2

log(e+ 1/|z1 − z2|)
.

Proof. Let Bt := B(z0, t) be the disc with center z0 := (z1 + z2)/2.
Obtain for a.e. t > |z0 − z1|/2

|u(z1)− u(z2)|
πt

≤
1

2πt

∫
∂Bt
|∇f ||ds|.

Do Cauchy-Schwarz and multiply by t :

|u(z1)− u(z2)|2

π2t
≤

1

2π

∫
∂Bt
|∇f |2|ds|.

Simply integrate over t ∈ (|z0 − z1|/2,1). �



Lemma: (regularity of the inverse, Iwaniec and Sverak, ...)

Assume that f ∈W1,2
loc be a (homeomorphic) principal solution with

distortion K. Then, the inverse map g := f−1 satisfies

|g(a))− g(b)|2 ≤ C
(1 + |a|2 + |b|2)

log(e+ 1/|a− b|)

∫
D
K(z).

Proof. The basic idea (omitting easy technicalities) is to use reduce

to the previous Lemma via the identity∫
|Dg|2 =

∫
Kg ◦ (f ◦ g)Jg =

∫
Kg ◦ f =

∫
Kf .

�



Lemma: (regularity of the inverse, Iwaniec and Sverak, ...)

Assume that f ∈ W1,2
loc is a (homeomorphic) principal solution with

distortion K. Then, the inverse map g := f−1 satisfies

|g(a))− g(b)|2 ≤
(1 + |a|2 + |b|2)

log(e+ 1/|a− b|)

∫
D
K(z).

Proof. The basic idea (omitting easy technicalities) is to use reduce
to the previous Lemma by via the identity∫

|Dg|2 =
∫
Kg ◦ f ◦ gJg =

∫
Kg ◦ f =

∫
Kf .

�

Remark: The right hand side depends only on K. This allows one
to (try to ) approximate f with classical qc-homeos, while retaining
uniformly the above estimate !



Lemma: (limits of approximations solve Beltrami) Assume that the

dilatation µ has compact support and satisfies 1+|µ|
1−|µ| = K ∈ L1

loc. Let
fn be the principal solution with dilation

µn := (1− 1/n)µ.

Assume additionally that we know that fn → f locally uniformly. Then
f is a principal solution of the Beltrami equation corresponding to µ.

Proof. By the previous Lemma the inverses g form an equicontinu-
ous family, whence (by the local uniformity of fn → f) we deduce that
f is a homeomorphism. Observe that standard Koebe-Bieberbach es-
timates ensure that nothing escapes to infinity.

We have that |Dfn| ≤ (KfnJfn)1/2(KJfn)1/2 . By basic Koebe- Bieber-
back theory we see that

∫
2D Jfn ≤ |fn(2D)| ≤ C for all n. Hence the



sequence |Dfn| is uniformly integrable, and we obtain weak conver-

gence Dfn → Df in L1 locally.

Consider for φ ∈ C∞0 the identity∫
φ(
∂fn

∂z̄
− µ

∂fn

∂z
) =

∫
φ((µn − µ)

∂fn

∂z
).

The right hand side converges to 0 as n→∞, again by an application

of the uniform integrability of the functions ∂fn
∂z . This and the weak

convergence of the derivatives shows that the limit satisfies Beltrami.

Remark: Part of the general research on mappings on finite distor-

tion use results like the above one, where the uniform continuity of f

is deduced from a suitable condition on K via modulus methods (e.g.

Ryazanov, Srebro and Yakubov).



Some conditions on µ needed - part 2. !

Example. Consider the radial map: f(z) = z
|z|ρ(|z|), where ρ(r)→ 0

slowly as r → 0+. One computes that (for reasonable ρ) in this case

K(|z|) = ρ(|z|)/(|z|ρ′(|z|). Choose

f(z) :=
z

|z|

(
1+log−ε(e+1/|z|)

)
, which solves Beltrami with µ satisfying

Kf =
1 + |µ|
1− |µ|

� log1+ε(e+ 1/|z|).

The distortion has quite nice integrability properties:

exp(K1−2ε) ∈ L1
loc.

However, the image of f misses completely the ball D !



Example. Consider the radial map: f(z) = z
|z|ρ(|z|), where ρ(r)→ 0

slowly as r → 0+. One computes that (for reasonable ρ) in this case

K(|z|) = ρ(|z|)/(|z|ρ′(|z|). Choose

f(z) :=
z

|z|

(
1+log−ε(e+1/|z|)

)
, which solves Beltrami with µ satisfying

Kf =
1 + |µ|
1− |µ|

� log1+ε(e+ 1/|z|).

The distortion has quite nice integrability properties:

exp(K1−2ε) ∈ L1
loc.

However, the image of f misses completely the ball D ! Danger of

cavitation present even if K is almost exponentially integrable !



A moment to stop: what should one try ?



A moment to stop: what should one try ?

The right class of Beltrami equations try to solve is G. David’s class

of mapping of exponentially integrable distortion, i.e for some p > 0

one has

(∗) epK(z) ∈ L1
loc ,with K :=

1 + |µ|
1− |µ|



A moment to stop: what should one try ?

The right class of Beltrami equations try to solve is G. David’s class
of mapping of exponentially integrable distortion, i.e for some p > 0
one has

(∗) epK(z) ∈ L1
loc ,with K :=

1 + |µ|
1− |µ|

Here are some fundamental questions:

• can we solve the Beltrami fz̄ = µfz with Df ∈ L2
loc?

• given p > 0, what is the precise regularity for f?

• Does usual uniqueness (Stoilow etc. ) hold?



Guessing the optimal regularity result... Consider the follow-
ing example (modification of one due to Kovalev)

gp(z) =
z

|z|

[
log

(
e+

1

|z|

)]−p/2 [
log log

(
e+

1

|z|

)]−1/2

for |z| < 1,

gp(z) = c0 for |z| > 1.

For each p > 0 one computes that

eK(z,gp) ∈ Lp(D)

If 0 < β < p, we obtain that

eβK(z,gp) ∈ L1
loc(C) with |Dgp|2 logβ−1 |Df | ∈ L1

loc(C),

while the latter inclusion fails for β = p.

Especially, if p = 1, g1 /∈W1,2
loc (C).



Our main result

The following theorem gives a positive answer to a conjecture due to
Iwaniec and Sbordonne, Iwaniec, Koskela and Martin (∼ 2001).

Theorem (Astala, Gill, Rohde, S. (2010)) Let Ω ⊂ R2 be a do-
main. Suppose the distortion function K(z, f) of a mapping of finite
distorsion f ∈W1,1

loc (Ω) satisfies

eK(z,f) ∈ Lploc(Ω) for some p > 0

Then we have for every 0 < β < p,

J(z, f) logβ (e+ J(z, f)) ∈ L1
loc(Ω) and

|Df |2 logβ−1(e+ |Df |) ∈ L1
loc(Ω)

The result is optimal.



Theorem (Astala, Gill, Rohde, S. (2010)) Let Ω ⊂ R2 be a do-
main. Suppose the distortion function K(z, f) of a mapping of finite
distorsion f ∈W1,1

loc (Ω) satisfies

eK(z,f) ∈ Lploc(Ω) for some p > 0

Then we have for every 0 < β < p,

J(z, f) logβ (e+ J(z, f)) ∈ L1
loc(Ω) and

|Df |2 logβ−1(e+ |Df |) ∈ L1
loc(Ω)

The result is optimal.

Note: Earlier Faraco, Koskela and Zhong (2005) had the result in
Rn with the condition 0 < β < p/c with some constant c = c(n) > 1.
Optimality for n = 2 correponds to c = 1. It is conjectured that c = 1
should work for all n.



Theorem (Astala, Gill, Rohde, S. (2010)) Let Ω ⊂ R2 be a do-

main. Suppose the distortion function K(z, f) of a mapping of finite

distorsion f ∈W1,1
loc (Ω) satisfies

eK(z,f) ∈ Lploc(Ω) for some p > 0

Then we have for every 0 < β < p,

J(z, f) logβ (e+ J(z, f)) ∈ L1
loc(Ω) and

|Df |2 logβ−1(e+ |Df |) ∈ L1
loc(Ω)

The result is optimal.

Note 2: Case β = 1 shows that that the optimal condition for

Df ∈ L2
loc is p > 1. This is also open in higher dimensions.



Plan for the rest of Part I: we try to

• sketch two different approaches to obtain L2-estimates: the Iwaniec,

Koskela and Martin method, as well David’s original method.

• refine David’s approach in order to obtain the above theorem.



Plan for the rest of Part I: we try to

• sketch two approaches to obtaineing L2-estimates: the Iwaniec,

Koskela and martin method, as well David’s original method.

• refine David’s approach in order to obtain the above theorem.

• skip proofs of certain things, like uniqueness via Stoilow etc.



L2-regularity of the principal solution a la Iwaniec, Koskela
and Martin

Recall that ω = fz̄ satisfies

ω(z) = µ(z)Sω(z) + µ(z),

or in another words fz̄ = (1− µS)−1µ.

Theorem (Iwaniec, Koskela, Martin (2002)) There is p0 > 1 such
that if µ is supported in D and satisfies exp(pK) ∈ Lp for some p > p0,
then the equation

(1− µS)ω = h

has a unique solution ω ∈ L2(C) for every such h that K∗h ∈ L2(C),
where K∗ is a suitable BMO-majorant of K (such a K∗ always exists.)



Idea of the proof:

– Construct the BMO majorant using the Coifmann–Rochberg result.

– Assume that ω is a solution. Careful juggling with elementary in-

equalities yields the estimate

(|Sω|2 + |ω|2) ≤ 2K∗(|Sω|2 − |ω|2) + 4(K∗)2|h|2.



Idea of the proof:

– Construct the BMO majorant using the Coifmann-Rochberg result.
–Assume that ω is a solution. Careful juggling with elementary in-
equalities yields the estimate

(|Sω|2 + |ω|2) ≤ 2K∗(|Sω|2 − |ω|2) + 4(K∗)2|h|2.

Integrate and obtain apriori estimates via observing:
– |Sω|2−|ω|2 is (essentially) a Jacobian, hence Coifmann, Lions, Meyer
and Semmes result shows that its H1-norm is bounded by constant x
L2-norm of the gradient.
– can make the BMO-norm of K∗ small taking p0 large enough. Apply
Fefferman duality, move things to the left hand side.
– finally, approximate µ from below and take the limit to obtain so-
lutions. �



Remarks:

• The above approach has two big advantages:

– the obtained inequality says that (1 − µS) is invertible between

natural weighted spaces

– it generalizes to Rn, as was done in the original paper.



Remarks:

• The above approach has two big advantages:

- the obtained inequality says that (1−µS) is invertible between natural

weighted spaces

- it generalizes to Rn, as was done in the original paper.

• However, to obtain optimal exponents for regularity

we return to David’s original approach: estimating the Neuman se-

ries in the degenerate case.



Part 1. of the proof (of the main result): Reduction to
the regularity of principal solutions

Theorem (Iwaniec and Martin (2001)) Let Q(t) = t2

log(e+t) and sup-

pose we are given a homeomorphic solution f ∈W1,Q
loc (Ω) to the Bel-

trami equation

fz̄ = µ(z)fz, z ∈ Ω,

where |µ(z)| < 1 almost everywhere. Then every other solution h ∈
W

1,Q
loc (Ω) takes the form

h(z) = φ(f(z)), z ∈ Ω

where φ : f(Ω)→ C is holomorphic.

We will not prove this. However, from it follows that
it is enough to study the regularity of a principal solution.



W
1,Q
loc as a natural starting point

Assume that f ∈W1,1
loc (C) is an orientation preserving homeomorphism

whose distortion function K(z) satisfies eK(x) ∈ Lploc for some p > 0.

Apply ab ≤ a log(1 + a) + eb − 1 to find that

|Df |2

log(e+ |Dh|2)
≤

1

p

J

log(e+ J)
pK .

1

p

(
J + epK − 1

)
for all p > 0. Thus∫

Ω

|Df |2

log(e+ |Df |)
.

1

p

∫
Ω
J(z, f) +

1

p

∫
Ω

[epK(z) − 1] dz

for any bounded domain. This shows that f automatically belongs to

the Orlicz-Sobolev class W1,Q
loc (C).



Part 2. of the proof: The optimal decay of the Neumann
series

Recall the Beurling operator S: Sϕ(z) := −1
π

∫∫
C

ϕ(τ)
(z−τ)2 dτ and that

it is an isometry in L2. Recall also the Neumann series

ω := (1− µS)−1µ = µ+ µSµ+ µSµSµ+ µSµSµSµ+ · · ·
Proposition (Optimal decay in Neumann series) Suppose |µ(z)| <
1 almost everywhere, with µ(z) ≡ 0 for |z| > 1. If the distortion
function K(z) = 1+|µ(z)|

1−|µ(z)| satisfies
eK ∈ Lp(D), p > 0,

then we have for every 0 < β < p,∫
C
|(µS)nµ|2 ≤ C0 (n+ 1)−β, n ∈ N.



Proof.

• David’s idea: estimate iteratively the terms (µS)nµ of the Neu-

mann series starting from the Chebychev type estimate (recall that

K(z) + 1 = 2
1−|µ(z)|

|{z ∈ D : |µ(z)| ≥ 1−
1

t
}| ≤ e−2pt

∫
D
ep(K+1) = C e−2pt, t > 1

and employ the f-isometry property of S.



Proof.

• David’s idea: estimate iteratively estimate the terms (µS)nµ of
the Neumann series starting from the Chebychev type estimate (recall
that K(z) + 1 = 2

1−|µ(z)|

|{z ∈ D : |µ(z)| ≥ 1−
1

t
}| ≤ e−2pt

∫
D
ep(K+1) = C e−2pt, t > 1

• Fix the parameter 0 < β < p, and then for each n ∈ N divide the
unit disk into the ”bad” set

Bn = {z ∈ D : |µ(z)| > 1−
β

2n+ β
}

and the ”good” one, i.e. the complements

Gn = D \Bn



According to Chebyschev |Bn| ≤ C1 e
−4n p/β , n ∈ N, .

• Define ψn = µS(ψn−1), ψ0 = µ

and the auxiliary terms gn = χGn µS(gn−1), g0 = µ,

• The terms gn are easy to estimate:

‖gn‖2L2 =
∫
Gn
|µS(gn−1)|2 ≤

(
1−

β

2n+ β

)2

‖gn−1‖2L2

Thus

‖gn‖L2 ≤
n∏

j=1

(
1−

β

2j + β

)
‖µ‖L2 ≤ Cβ n

−β/2.



• Decompose

ψn − gn = χGnµS(ψn−1 − gn−1) + χBnµS(ψn−1)

This gives the norm bounds

‖ψn − gn‖2L2 ≤
(

1−
β

2n+ β

)2

‖ψn−1 − gn−1‖2L2 +R(n) (1)

where

R(n) = ‖χBnµS(ψn−1)‖2
L2 =

∫
Bn
|(µS)nµ|2



• Induction argument finally yields

‖ψn − gn‖2L2 ≤
n∑

j=1

R(j)
n∏

k=j+1

(
1−

β

2k + β

)2

≤ C̃ 2
β n−β

n∑
j=1

jβ R(j)

=⇒ remains to verify that R(n) decays quickly enough!

It is possible to estimate R(n) using known spectral estimates for the

operator µS. Let us give another proof that uses more directly the

know area distortion bounds for ordinary qc-maps.



• Let f = fλ be the principal solution to

fz̄(z) = λµ(z)fz(z)

Then the dependence λ→ fλ is holomorphic for λ ∈ D. Namely,

fλz̄ = λµ+ λ2µSµ+ · · ·+ λn(µS)n−1µ+ · · ·

• Let E ⊂ D. Then

χE (µS)nµ =
1

2πi

∫
|λ|=ρ

1

λn+1
(fλ)z̄ χE dλ, E ⊂ D,

valid for any 0 < ρ < 1. We are hence to estimate the norms

‖(fλ)z̄ χE‖2L2 =
∫
E
|(fλ)z̄|2 ≤

|λ|2

1− |λ|2
∫
E
J(z, fλ)

=
|λ|2

1− |λ|2
|fλ(E)|



Classical area distortion estimate reads:

|fλ(E)| ≤ πM |E|1/M , |λ| = M−1
M+1, M > 1.

Choose ρ := |λ| =: M−1
M+1 and combine our previous bound with the

above estimates to obtain

(∗∗) ‖χE (µS)nµ‖2 ≤
√
π

(
M + 1

M − 1

)nM + 1

2
|E|1/(2M)

The estimate is valid for every M > 1 and for any Beltrami coefficient

with |µ| ≤ χD almost everywhere.

• We apply the above on the set E = Bn recalling that

|Bn| ≤ C1 e
−4n p/β.



We obtain

R(n) ≤ 4M2
(
M + 1

M − 1

)2n
|E|1/M

≤ 4C1M
2
(
M + 1

M − 1

)2n
e
−4n
M

p
β

Given β < p we can choose M > 1 so that

log
(
M + 1

M − 1

)
−

2

M

p

β
< −δ < 0

for some δ > 0. With this choice R(n) ≤ Ce−2δn. �



We obtain

R(n) ≤ 4M2
(
M + 1

M − 1

)2n
|E|1/M

≤ 4C1M
2
(
M + 1

M − 1

)2n
e
−4n
M

p
β

Given β < p we can choose M > 1 so that

log
(
M + 1

M − 1

)
−

2

M

p

β
< −δ < 0

for some δ > 0. With this choice R(n) ≤ Ce−2δn. �

• One may verify by concrete examples that the obtained decay of

the Neumann series is optimal, which looks quite bad right now!.



Part 3. of the proof: W1,2-solution if p > 2.

From here on we are slightly more sketchy!

Lemma 1. (tentative area distortion) Assume that eK ∈ Lp(D) for

some p > 2. Then the Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z
almost every z ∈ C

admits a principal solution f ∈ W1,2
loc (C). Moreover, this solution sat-

isfies the area distortion estimate

f(E) ≤ C log2−β(e+ |E|) for E ⊂ D.

for any β < p.



Proof.

• Existence: cut in the standard way the Beltrami coefficient µ(z):

µm(z) :=

 µ(z) if |µ(z)| ≤ 1− 1
m

(1− 1
m) µ(z)
|µ(z)| otherwise.

(2)

Since p > 2 the Neumann series of ∂fm – the principal solution cor-

responding to µm – converges uniformly in L2 with respect to m.

Since we are in case Df ∈ L2, our previous considerations yield the

homeomorphic solution function

f = lim fm ∈W1,2
loc .



• Suppose 2 < β < p and observe that

f(E) =
∫
E
Jf ≤

∫
E
|∂f |2 = ‖χE∂f‖22

≤ (
∞∑
k=0

‖χE(Sµ)k‖2)2 (3)

Our Proposition and its proof give us two different ways to estimate

the terms. First,

‖χE(µS)nµ‖2 ≤ C0 (n+ 1)−β/2

Summing this up gives

∞∑
n=m+1

‖χE(µS)nµ‖2+ ≤ c
C0

β − 2
m1−β/2 , m ∈ N



Secondly, choose M = 3 in the estimate (**). Then

‖χE(µS)nµ‖2 ≤ c · 2n |E|1/6,

whence
m∑
n=0

‖χE(µS)nµ‖2 ≤ c · 2m+1|E|1/6

Combining we arrive at

∞∑
n=0

‖χE σµ‖2 ≤
cC0

β − 2
m1−β/2 + c′ · 2m|E|1/6

Simply optimize over m. �



Part 4. of the proof: Optimal area distorsion via factor-
ization

Lemma 2. (factorization) Suppose the distortion function K =
K(z) satisfies eK ∈ Lp(D) for some p > 0. Then for any M ≥ 1 the
principal solution to fz̄(z) = µ(z) fz(z) admits a factorization

f = g ◦ F
where both g and F are principal mappings, g is M-quasiconformal
and F satisfies ∫

D
epMK(z,F ) ≤ C0 <∞.

Proof. Quite standard – just construct the dilatation of F as a suit-
able multiple (which may vary pointwise) of µ. �



Lemma 3. (area distortion) Assume that a principal solution sat-
isfies eK ∈ Lp for some p > 0,

then for any 0 < β < p we have

|f(E)| ≤ C log−β(e+
1

|E|
), E ⊂ D

Proof. Choose β0 ∈ (β, p). Apply the factorization f = g ◦ F from
Lemma 2 with large enough M to deduce with the use of Lemma 1:

|f(E)| = |g ◦ F (E)| ≤ πM |F (E)|1/M ≤ π C
(

log(e+
1

|E|
)

)(2−β0M)/M

Choosing M large enough one has β < β0 − 2/M = (2− β0M)/M and
the result follows. �



Part 5. (conclusion) of the proof: Optimal integrability
of Jacobian and the derivatives.

Just for simplicity of notations, assume that p > 1. We then must

first prove that J(z, f) log (e+ J(z, f)) ∈ L1
loc(C).



• Replace J(z, f) by its nondecreasing radial rearrangement J∗.

• Set An := {2−n ≤ |z| < 21−n} and denote

jn := 2−2nJ∗(2−n) for n ≥ 1.

Apply area distortion on set {|z| ≤ 2−`}:

r` :=
∞∑
n=`

jn =
∞∑
n=`

J∗(2−n)2−2n .
∞∑
n=`

J∗(2−n)m(An+1)

≤
∫
{|z|≤2−`}

J∗ ≤ c`−β with β > 1.



to obtain ∫
{|z|≤1}

J(z, f) log(e+ J(z, f)) =
∫
{|z|≤1}

J∗ log(e+ J∗)

≤
∞∑
n=1

J∗(2−n) log(e+ J∗(2−n))m(An)

.
∞∑
n=1

jn log(e+ 22njn) .
∞∑
n=1

njn

=
∞∑
n=1

n(rn − rn+1) .
∞∑
n=1

rn <∞,

The second claim |Df |2 ∈ L1
loc(Ω) follows from what we just proved

by applying the inequality

xy ≤ Cp(x log(e+ x) + ep y for all x, y > 0

Simply choose x = J and y = K. �



Part II: Lehtos method and random weldings



’Conformally invariant’ Random Curves in the plane.

2d Statistical Mechanics:

• E.g. boundaries between phases

• One often gets curves joining boundary points

• Critical temperatures...

Percolation; Brownian frontier; etc. ....



Pictures: Oded Schramm



Scaling limit: SLEκ



Scaling limit: SLEκ

• Curves (κ ≤ 4) growing in fictious time are contructed (somewhat

indirectly) using an explicit equation:

∂tgt(z) = 2
gt(z)−B(κ t) , g0(z) = z.



Scaling limit: SLEκ

• Curves growing in fictious time are contructed using an explicit

equation:

∂tgt(z) = 2
gt(z)−B(κ t) , g0(z) = z.

• Statistics of the full curve less explicit.



Scaling limit: SLEκ

• Curves growing in fictious time are contructed using an explicit

equation:

Proposal of Peter Jones:

construct natural random Jordan curves by describing the statistics

of welding homeomorphisms on the circle.



Conformal welding:

Closed Jordan curves in Ĉ ←→ Homeomorphisms φ : T→ T.
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Jordan curve Γ ⊂ Ĉ splits Ĉ \ Γ = Ω+ ∪Ω−.

Take Riemann mappings:

f+ : D→ Ω+ and f− : D∞ → Ω−



Conformal welding:

Closed curves in Ĉ ←→ Homeomorphisms φ : T→ T.

Jordan curve Γ ⊂ Ĉ splits Ĉ \ Γ = Ω+ ∪Ω−.

Take Riemann mappings:

f+ : D→ Ω+ and f− : D∞ → Ω−

f− and f+ extend continuously to T = ∂D = ∂D∞ ⇒

get homeo : φ =
(
f+

)−1
◦ f− : T→ T



The Welding problem: invert this !

Given homeo φ : T→ T, find Γ and Riemann maps f± so that

φ =
(
f+

)−1
◦ f− : T→ T



The Welding problem: invert this !

Given homeo φ : T→ T, find Γ and Riemann maps f± so that

φ =
(
f+

)−1
◦ f− : T→ T

Problem: Not possible for every homeomorphism φ !



Welding by QuasiConformal homeomorphisms:
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Suppose first that φ : T→ T is a restriction

φ = f |T,

where f : Ĉ→ Ĉ is a quasiconformal homeo:

∂z̄f = µ(z)∂zf with |µ(z)| ≤ k < 1 a.e.
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Suppose first that φ : T→ T is a restriction

φ = f |T,

where f : Ĉ→ Ĉ is a quasiconformal homeo:

∂z̄f = µ(z)∂zf with |µ(z)| ≤ k < 1 a.e.

Solve

∂z̄F =

{
µ(z)∂zF if x ∈ D
0 if x ∈ D∞



Welding by QuasiConformal homeomorphisms:

Suppose first that φ : T→ T is a restriction

φ = f |T,

where f : Ĉ→ Ĉ is a quasiconformal homeo:

∂z̄f = µ(z)∂zf with |µ(z)| ≤ k < 1 a.e.

Solve

∂z̄F =

{
µ(z)∂zF if x ∈ D
0 if x ∈ D∞

Then: f− := F |D∞ : D∞ → Ω− is conformal and Γ = F (T) = f−(T)

is a Jordan curve.



Beltrami equation: Now have in D two solutions

∂z̄f = µ(z)∂zf, ∂z̄F = µ(z)∂zF

Uniqueness of solutions in the uniformly elliptic case ‖µ‖∞ < 1:

=⇒ F (z) = f+ ◦ f(z), z ∈ D,

where

f+ : D = f(D)→ F (D) := Ω+ is conformal.



Beltrami equation: Now have in D two solutions

∂z̄f = µ(z)∂zf, ∂z̄F = µ(z)∂zF

Uniqueness of solutions in the uniformly elliptic case ‖µ‖∞ < 1:

F (z) = f+ ◦ f(z), z ∈ D,

where

f+ : D = f(D)→ F (D) := Ω+ is conformal.

f± solve welding: Since F |D∞ := f− and f |T = φ then

φ(z) = f |T(z) = f−1
+ ◦ f−(z), z ∈ T.



When does the reduction to Beltrami equations work?

When is φ : T→ T a restriction φ = f |T of a qc homeo f : Ĉ→ Ĉ ?

In the uniformly elliptic case ‖µ‖∞ < 1, this happens ⇔
φ is quasisymmetric:

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

≤ K <∞, s, t ∈ T = R/Z

These have QC extensions with |µ| ≤ m(K) < 1.



When does the reduction to Beltrami equations work?

When is φ : T→ T a restriction φ = f |T of a qc homeo f : Ĉ→ Ĉ ?

In the uniformly elliptic case ‖µ‖∞ < 1, this happens ⇔
φ is quasisymmetric:

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

≤ K <∞, s, t ∈ T = R/Z

These have QC extensions with |µ| ≤ m(K) < 1.

In the random setting: Our φ will not be quasisymmetric and our

Beltrami will not be uniformly elliptic !



Random homeomorphisms φ : T→ T ?



Random homeomorphisms φ : T→ T

We take

φ(t) =

∫ t
0
eβX(s) ds∫ 1

0
eβX(s) ds

where

• X = X(t) is a Gaussian random field, the restriction of

2D Gaussian free field on the unit circle,

• 0 ≤ β < β0, where β0 is a ’critical value’.



Recall: Gaussian random variables are determined by their

expectation (take zero) and covariance.

Gaussian free field (GFF), restricted to T:

• X(ζ) is a Gaussian random field with covariance

EX(ζ)X(ξ) = log
1

|ζ − ξ|
, ζ, ξ ∈ T.

(Conformally invariant modulo constants !)

• X is D′(T) -valued random field: need some care!



Existence:

Set

X =
∞∑
n=1

1
√
n

(
An cos(2πnt) +Bn sin(2πnt)

)
, t ∈ [0,1),

where

An ∼ N(0,1) ∼ Bn (n ≥ 1)

are independent standard Gaussians.



Geometric representation of our free field in terms of white
noise:
(Bacry, Muzy):

X(s) =
∫
H+s

W (dxdy)

Here W is the (periodic) white noise in the upper half plane H (with

respect to the hyperbolic measure in H) and H is the domain

H := {(x, y) ∈ H : −1/2 < x < 1/2, y >
2

π
tan(|πx|)}.

The field obtained by replacing H with the triangular domain V gives

a good approximation of the GFF:

V := {(x, y) ∈ H : −1/4 < x < 1/4, 2|x| < y < 1/2}.



Integration domain H for GFF and its approximation V .



Random homeomorphisms φ : T→ T: We take

φ(t) =
∫ t

0
eβX(s)ds/

∫ 1

0
eβX(s)ds, T = R/Z,

where 0 ≤ β <
√

2 =: β0 and X is the restriction of GFF on T.

• X is D′(T)-valued random field: not clear how to define!

• Regularize eβX̃ε(s) := eβXε(s)/EeβXε(s) so that you obtain martin-
gale in decreasing ε.

• Almost surely eβX̃ε(s) ds converges weakly to a random Borel
measure τ(ds) ≡: eβX(s)ds on T



Properties of the random measure τ(ds) =: eβX(s)ds � φ′

(case β <
√

2):

• τ has no atoms

• E τ(I)p <∞, for −∞ < p < 2/β2 and all intervals I ⊂ T

Hence by Hölder, the distortion satisfies

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

=
τ([s, s+ t])

τ([s− t, s])
∈ Lp(dω), p < 2/β2.



Main Theorem. (Astala-Jones-Kupiainen-S) (i) Let φ = φβ
be the random homeomorphism

(∗) φβ(s) = τ([0, s])/τ([0,1]) (here τ(ds) = eβX(s)ds, β <
√

2).

Then a.s. in ω, the random homeo φβ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.
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Then a.s. in ω, the random homeo φβ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.

(ii) Dependence on β is continuous ’pathwise’.



Main Theorem. (Astala-Jones-Kupiainen-S) (i) Let φ = φβ
be the random homeomorphism
(∗) φβ(s) = τ([0, s])/τ([0,1]) (here τ(ds) = eβX(s)ds, β <

√
2).

Then a.s. in ω, the random homeo φβ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.

(ii) Dependence on β is continuous ’pathwise’.

(iii) The above statements hold true if φβ is replaced by

ψ = φβ ◦ (φ̃
β̃

)−1,

where β, β̃ <
√

2 and φβ and φ̃
β̃

are independent copies of (*).



Outline of the proof.

1.Extension of φ to f : C→ C by a Beurling-Ahlfors-type extension

=⇒ bound for µ = ∂̄f/∂f in terms of the measure τ .

2. Existence for Beltrami equation by the Lehto method to control
moduli of annuli

3. The crucial ingredient for step 2: specialized large deviation estimates
for Lehto integrals that control moduli of annuli

4. Uniqueness of welding: theorem of Jones-Smirnov on removability
of Hölder curves



Control of the distortion of the Beurling-Ahlfors extension of φ:

• Let Dn = dyadic intervals on ∂D, n ∈ N, D = ∪Dn

• Tile D by Whitney cubes CI , I ∈ D, size ∼ 2−n distance 2−n to ∂D

Distortion bound for F . For all z ∈ CI, I ∈ Dn

K(z) :=
1 + |µ(z)|
1− |µ(z)|

≤ C
∑
J,J ′

τ(J)

τ(J ′)

Here J, J ′ ∈ Dn+5 contained in I and its dyadic neighbors.



For Proof: we use a Beurling-Ahlfors-type extension of φ to D with

controlled distortion:

• Let Dn = dyadic intervals on ∂D, n ∈ N, D = ∪Dn

• Tile D by Whitney cubes CI , I ∈ D, size ∼ 2−n distance 2−n to ∂D

Distortion bound for F . For all z ∈ CI, I ∈ Dn

K(z) :=
1 + |µ(z)|
1− |µ(z)|

≤ C
∑
J,J ′

τ(J)

τ(J ′)

Linear and local bound needed to cover all β <
√

2.



For Proof: we use a Beurling-Ahlfors-type extension of φ to D with

controlled distortion:

• Let Dn = dyadic intervals on ∂D, n ∈ N, D = ∪Dn

• Tile D by Whitney cubes CI , I ∈ D, size ∼ 2−n distance 2−n to ∂D

Distortion bound for F . For all z ∈ CI, I ∈ Dn

K(z) :=
1 + |µ(z)|
1− |µ(z)|

≤ C
∑
J,J ′

τ(J)

τ(J ′)

But, now µ is not bounded away from 1.



In Brief: Need to solve the welding problem, for homeo’s

φ : T→ T

of unbounded distortion.

→ Degenerate elliptic systems/ Beltrami equations.
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→ Uniqueness not obvious.



In Brief: Need to solve the welding problem, for homeo’s

φ : T→ T
of unbounded distortion.

→ Degenerate elliptic systems/ Beltrami equations.

→ Existence or uniqueness of homeomorphic solutions not obvious.

Especially: Our µ very strongly non-degenerate, e.g., almost surely
K 6∈ Lp(D) for p ≥ 2 + ε(β), where

K(z) :=
1 + |µ(z)|
1− |µ(z)|

⇒ we are far outside the realm of mappings of exponentially inter-
gable distortion !



Intermission: the Lehto method



Lehto integral. When solving degenerate Beltrami equations, Lehto

had the idea to control images of annuli under f with the distortion

K in terms of the Lehto integral:

LK(w, r,R) = L(w, r,R) :=
∫ R
r

1∫ 2π
0 K

(
w + ρeiθ

)
dθ

dρ

ρ
,

over the annulus A = A(w, r,R), with center w, radii 0 < r < R.



• Consider open topological annulus, with C \A = E ∪ F , (E and F

are disjoint, connected and closed, E bounded).

• ΓA stands for the closed curves that lie in A and have winding
number 1 with respect to E. One defines (Mod is the standard 2-
modulus)

Mod(A) := Mod(ΓA).

• Observe: Mod(A(w, r,R)) = (2π)−1 log(R/r).

Lemma 1. Let f : C→ C be an orientation preserving map of finite
distortion, and K = Kf . Then one has for every circular annulus
A(w, r,R)

Mod(f(A(w, r,R))) ≥ LK(w, r,R)



Proof. May assume w = 0. Denote A′ = F (A(w, r,R)) and Sr =

{|z| = r}. Let ρ be any test function for the modulus of A′. Especially

one has for any t ∈ (r,R)∫
f(St)

ρ|ds′| ≥ 1 =⇒ 1 ≤
∫
St
ρ ◦ f |Df ||ds| =

∫
St
ρ ◦ f(JfK)1/2|ds|.

By Cauchy-Schwarz(∫
St
K|ds|

)−1

≤
∫
St
ρ2 ◦ fJf |ds|

and sfter integration with respect to t ∈ (r,R)

LK(0, r, R) ≤
∫
A
ρ2(f)Jf =

∫
A′
ρ2. �



For a topological annulus A, let d(A) stand for the inner and D(A)

for the outer diameter of F (A).

Corollary. Let f : C → C be an orientation preserving map of finite

distortion, and K = Kf . Then one has for every circular annulus

A(w, r,R)

d(A) ≤ cD(A) e−c
′LK(w,r,R).

Proof. One simply uses (iterates suitably) the classical fact that for

a topological annulus one has

Mod(A) ≤ Φ

(
dist(E,F )

diam(E)

)
,

where Φ : (0,∞)→ (0,∞) is an increasing homeo. �



We need to recall our old Lemma (just slightly reformulated):

Old Lemma:) Assume that the dilatation µ has compact support

and satisfies 1+|µ|
1−|µ| = K ∈ L1

loc. Assume additionally that we know

that approximating functions fn (corresponding to principal solutions

with µn = µ(1 − 1/n)) are equicontinuous. Then a subsequence of

(fn) converges to a principal solution of the Beltrami equation with

dilatation µ.



Theorem a’ la Lehto. Assume that the dilatation µ has compact

support and satisfies 1+|µ|
1−|µ| = K ∈ L1

loc. Then there exists a principal

solution of the Beltrami equation fz̄ = µfz assuming that

LK(w, r,1)→∞ for every w ∈ D as r → 0.

Moreover, if there is the uniform bound

LK(w, r,1) ≥ c log(1/r)− c′ for every w ∈ D and r ∈ (0,1),

then the obtained solution is Hölder continuous.



Theorem a’ la Lehto. Assume that the dilatation µ has compact
support and satisfies 1+|µ|

1−|µ| = K ∈ L1
loc. Then there exists a principal

solution of the Beltrami equation fz̄ = µfz assuming that

LK(w, r,1)→∞ for every w ∈ Das r → 0.

Moreover, if there is the uniform bound

LK(w, r,1) ≥ c log(1/r)− c′ for every w ∈ D and r ∈ (0,1),

then the obtained solution is Hölder continuous.

Proof. Take any two points z, w ∈ 2D. Simply observe that as
Kfn ≤ K, the Corollary yields uniformly in n

|fn(z)− f(w)| ≤ cD(fn(w, |z − w|,1)) e−c
′LK(w,|z−w|,1).

By Koebe etc. the outer diameters D are uniformly bounded. �



Back to random weldings



Uniqueness for welding follows from Hölder continuity:

Suppose f± and f̃± are two solutions, mapping D,D∞ onto Ω± and

Ω̃±. Claim:

f̃± = Ψ ◦ f±, Ψ : Ĉ→ Ĉ Möbius.

Proof: Define

Ψ(z) :=

 f̃+ ◦
(
f+

)−1
(z) if z ∈ Ω+

f̃− ◦ (f−)−1 (z) if z ∈ Ω−

Then Ψ is continuous on Ĉ and conformal outside Γ = ∂Ω±.

Theorem (Jones-Smirnov): Hölder curves are conformally removable

i.e. Ψ extends conformally to Ĉ. Hence Ψ is Möbius.



Needed technical estimates:

Key probabilistic estimate: L(w, r,1) ≥ −c log r with high probabil-

ity. More precisely: for small enough δ

Prob(L(w, ρn,1) < nδ) ≤ ρ−(1+ε(β))n (1)

where ρ < 1.



Assume the key estimate holds true:

Prob(L(w, ρn,1) < nδ) ≤ ρ−(1+ε(β))n (1)

Outline for the rest: it suffices to consider behaviour at points

w ∈ ∂D = T.

• For any n ≥ 1 pick a grid An on T with spacing ρn(1+ε′). Get

points wi, i = 1, . . . ρ−n.



Assume the key estimate holds true:

Prob(L(w, ρn,1) < nδ) ≤ ρ−(1+ε(β))n (1)

Outline for the rest: it suffices to consider behaviour at points
w ∈ ∂D = T.

• For any n ≥ 1 pick a grid An on T with spacing ρn(1+ε′). Get
points wi, i = 1, . . . ρ−n.

• Borell-Cantelli lemma gives a.s. finite n(ω) such that

L(wi, ρ
n,1) > nδ for all wi ∈ An if n > n(ω)

=⇒ a.s. Hölder continuity.



To prove the key estimate (1) one must to study

Large Deviations for Lehto integrals.

Recall L(w, ρn,1) =
∫ 1

ρn

1∫ 2π
0 K

(
w + reiθ

)
dθ

dr

r

Reduce to sum of weakly correlated random variables:

• Suffices to take w ∈ ∂D = T, say w = 1.

• Take ρ < 1/2 and let Lk = L(1, ρk,2ρk). Then

L(w, ρn,1) ≥
n∑

k=1

Lk



Prove: Prob(
∑n
k=1Lk < nδ) < e−g(δ)n,

where Lk = L(1, ρk,2ρk).



Prove: Prob(
∑n
k=1Lk < nδ) < e−g(δ)n,

Point: • Lk ≥ 0 are identically distributed and P (Lk = 0) = 0.

BUT: they are correlated

=⇒ one needs to estimate the ’damage’ caused by the correlation!
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mates break down
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Prove: Prob(
∑n
k=1Lk < nδ) < e−g(δ)n,

Point: • Lk ≥ 0 are identically distributed and P (Lk = 0) = 0.

However they are correlated

=⇒ one needs to estimate the size of the correlation!

Main difficulties:

• The correlation structure is quite complicated.

• One works (if β close to
√

2) close to the situation where esti-

mates break down

=⇒ no extra room allowed

(We skip the proof, that is the most technical part of the ppaper.)
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Relation to SLE:

• The original suggestion of P. Jones conjectured ’unspecified’ relation
of the welding curve of φβ to SLEκ with κ = 2β2.

• [Duplantier& Sheffield 2010]: a program to connect SLE to expo-
nentials of Gaussian free fields.

• [Binder& Smirnov 2010, unpublished]: multifractal spectrum (for
harmonic measure) of the welding curve of (φβ)−1 ◦ φ̃β (here φ̃β is an
independent copy of φβ) agrees with known heuristics for SLEκ with
κ = 2β2.

• [Sheffield 2010, November, manuscript] states that SLEκ is indeed
obtained from ’welding’ of two weighted ’quantum wedges’ ! Locally
this corresponds to welding of (φβ)−1 ◦ φ̃β, again with κ = 2β2.



Brownian motion in the space of self-homeos of T

was defined by Malliavin. In this approach

• Weldings for random homeomorphisms generated by the (formal)

stochastic flow on T:

dθt =
∞∑
k=2

1√
k3 − k

(
cos(kθt)dX2k(t) + sin(kθt)dX2k+1(t)

)
.

Here Xk:s are independent Brownian motions.

• [Airault, Malliavin,Thalmaier 2004] starts to consider welding prob-

lems for corresponding homeos. There is a recent paper [Airault,

Malliavin,Thalmaier 2010] containing a new approach..
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• One should extend our proof to weld directly (φβ)−1 ◦ φ̃β (some
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QUESTIONS:

• One should extend our proof to weld directly (φβ)−1 ◦ φ̃β (some

technicalities need to be checked, we are working on this).

• Is there a theory in the case β2 = 2?

• Understand the Gibbs measure at β2 ≥ 2.

• THANKS !


