
Incompressible Flow Iterative Solution Software (IFISS)

Installation & Software Guide 1

David J. Silvester2 Howard C. Elman3 Alison Ramage4

Version 3.1 | released 25 January 2011

1This project was supported in part by the U.S. National Science Foundation under grant DMS0208015,
the U.S. Department of Energy under grant DOEG0204ER25619, and the UK Engineering and Physical
Sciences Research Council under grant EP/C000528/1.

2School of Mathematics, University of Manchester, Manchester, UK. d.silvester@manchester.ac.uk.
3Department of Computer Science, University of Maryland, College Park, Maryland, USA.

elman@cs.umd.edu.
4Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.

a.ramage@strath.ac.uk.

Contents

1.1 Background . 1

1.1.1 Installation . 1

1.2 Steady-state problems . 2

1.3 Unsteady problems . 10

2.1 Directory structure . 14

2.1.1 Help facility and IFISS function glossary . 15

2.1.2 IFISS figures . 21

2.1.3 Running jobs in batchmode . 21

2.2 Generating new domains or model problems . 22

2.2.1 Introducing a new problem domain . 22

2.2.2 Changing PDE features or boundary conditions 25

0

IFISS 3.1 Software Guide 1

1.1 Background

This is an overview of the IFISS software library that is associated with the book [ESW2005]

Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics

Howard Elman, David Silvester and Andy Wathen
Oxford University Press, 2005.1

The IFISS software library is “open-source” and is written in MATLAB.2 It can also be installed
and run using the freely available Octave package, see http://www.gnu.org/software/octave/.

IFISS can be downloaded from either of the following sites:

http://www.manchester.ac.uk/ifiss

http://www.cs.umd.edu/∼elman/ifiss.html.

It can be distributed and/or modified under the terms of the GNU Lesser General Public Li-
cense as published by the Free Software Foundation; either version 2.1 of the License, or any
later version. For precise details, see the file readme.m. The software is distributed in the hope
that it will be useful, but without any warranty; without even the implied warranty of mer-
chantability or fitness for a particular purpose. See the GNU Lesser General Public License
http://www.gnu.org/licenses/lgpl.html for a definitive statement. The IFISS library may
be freely copied as long as the file readme.m is included. The current version of the software:
IFISS 3.1 has been tested using Windows, Unix and Mac OS X. Previous releases were developed
using MATLAB Versions 5.3 to 7.9. (If you are not sure which version of MATLAB you have
running, just type version at the system prompt.) The current release was developed and tested
using MATLAB 7.11 (R2010b) and is fully compatible with Octave 3.2.4.

We are happy to receive feedback, especially if it is positive. If you find any bugs please send an
email to a.ramage@strath.ac.uk.

1.1.1 Installation

IFISS is downloaded in the form of a gzipped tar file (Linux/MacOS) or a zip file (Windows).
After unpacking the tar or zip file, installation is achieved by manually editing the scriptfile
gohome.m in the top level directory. This scriptfile identifies the “home” directory of the package
via a command of the form

cd(’<local directory>/ifiss3.1’), or cd(’<local directory>\ifiss3.1’),

when installing in a Linux/MacOS or Windows environment, respectively. After this has been
done, IFISS is set to run without additional user intervention.

1For further details see http://ukcatalogue.oup.com/product/9780198528685.do or

http://www.oup.com/us/catalog/general/subject/Mathematics/AppliedMathematics/?view=usa&ci=019852868X
2Copyright c© The MathWorks, software is available from http://www.mathworks.com/.

IFISS 3.1 Software Guide 2

Once IFISS is installed, for all subsequent uses the MATLAB path must include the IFISS home
directory. This requirement can be enforced each time MATLAB or Octave is initiated either by
typing setpath in response to the prompt, or by incorporating the functionality of the setpath

command into the user’s MATLAB startup file. Having run setpath at the MATLAB or Octave
prompt, simply type ifiss, helpme to get started.

1.2 Steady-state problems

The IFISS package focuses on four specific partial differential equation problems (PDEs): these are
the Poisson equation, the convection-diffusion equation, and the Stokes and Navier-Stokes equa-
tions. Investigation of these is facilitated by a suite of drivers that set up and solve four reference
test problems for each PDE. These test problems have been selected to illustrate characteristics
of typical solutions and to allow users to experiment with various aspects of the modelling and
solution processes. A full description of the reference problems can be found in [ESW2005]. For
convenience, a short summary of this information is given in the first Appendix.

A sample IFISS session for test problem NS2 (see the Appendix), which models flow over a step is
reproduced below. The driver navier testproblem asks the user to choose the problem, the grid
resolution and the type of finite element discretisation to be used. The resulting nonlinear system
is then solved using a hybrid Picard/Newton solver and an estimate of the error is computed as
described in Chapter 7 of [ESW2005].

>> setpath

>> ifiss

This is IFISS version 3.1: finally released on 25 January 2011

For help, type "helpme".

>> navier_testproblem

specification of reference Navier-Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Flow over a plate

5 Flow over an obstacle

: 2

horizontal dimensions [-1,L]: L? (default L=5) :

Grid generation for a step shaped domain.

grid parameter: 3 for underlying 8x4*(L+1) grid (default is 4) : 5

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) :

setting up Q1-P0 matrices... done

system matrices saved in step_stokes_nobc.mat ...

Incompressible flow problem on step domain ...

viscosity parameter (default 1/50) :

IFISS 3.1 Software Guide 3

Picard/Newton/hybrid linearization 1/2/3 (default hybrid) :

number of Picard iterations (default 2) :

number of Newton iterations (default 4) :

nonlinear tolerance (default 1.e-8) :

stokes system ...

Stokes stabilization parameter (default is 1/4) :

setting up Q1 convection matrix... done.

uniform/exponential streamlines 1/2 (default uniform) :

number of contour lines (default 50) : 75

computing Q1-P0 element stress flux jumps... done

computing local error estimator... done.

estimated velocity error (in energy): (3.158849e-01,1.655539e-01)

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 5.554454e-03

plotting element data... done

initial nonlinear residual is 4.108490e+00

Stokes solution residual is 8.538847e-01

Picard iteration number 1

setting up Q1 convection matrix... done.

nonlinear residual is 1.093384e-02

velocity change is 4.345363e+00

Picard iteration number 2

setting up Q1 convection matrix... done.

nonlinear residual is 4.003099e-03

velocity change is 2.073700e+00

Newton iteration number 1

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

nonlinear residual is 4.397459e-04

velocity change is 1.528600e+00

Newton iteration number 2

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

nonlinear residual is 9.297262e-07

velocity change is 7.807388e-02

Newton iteration number 3

setting up Q1 Newton Jacobian matrices... done.

setting up Q1 convection matrix... done.

nonlinear residual is 1.855600e-11

velocity change is 2.985901e-04

IFISS 3.1 Software Guide 4

finished, nonlinear convergence test satisfied

computing Q1-P0 element stress flux jumps... done

computing oseen local error estimator... done.

estimated velocity error (in energy): (3.169732e-01,1.032707e-01)

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 4.506274e-03

estimated overall error is 3.334024e-01

plotting 2x2 element data... done

The computed solution and the estimated error are shown in Figure 1.1 (a) and (b).

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver it solve. Here, the chosen iterative method
is gmres with ideal pressure convection-diffusion preconditioning. As shown below the method
converges in 62 iterations, and the convergence curve is the blue line shown in Figure 1.2.

>> it_solve

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) :

stopping tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator

4 modified pressure convection-diffusion (Fp*)

default is modified pressure convection-diffusion : 2

ideal / AMG iterated preconditioning? 1/2 (default ideal) :

setting up Q0 pressure preconditioning matrices...

NonUniform grids are fine.

fixed pressure on inflow boundary

ideal pressure convection-diffusion preconditioning ...

GMRES iteration ...

convergence in 62 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0115

2 -0.0156

3 -0.0171

IFISS 3.1 Software Guide 5

−1 0 1 2 3 4 5
−1

0

1
−0.1

−0.05

0

0.05

0.1

Pressure field

Streamlines: uniform

(a) Solution to problem NS2 with stabilised Q1–P0 approximation.

Contours of estimated error

0 1 2 3 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0
2

4

−1

−0.5

0

0.5

1
0

0.01

0.02

0.03

0.04

Estimated error

(b) Estimated error in the computed solution.

Figure 1.1: Sample output from navier testproblem.

IFISS 3.1 Software Guide 6

.

.

.

61 -5.8082

62 -6.0196

Bingo!

6.1107e+00 seconds

use new (enter figno) or existing (0) figure, default is 0 : 1

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) :

0 10 20 30 40 50 60 70 80
10

−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

iterations

 lo
g 10

(r
es

id
ua

l)

residual reduction

ideal
AMG

Figure 1.2: Sample output from it solve.

To produce the second (black) curve in Figure 1.2, it solvemust be rerun using pressure convection-
diffusion preconditioning, this time replacing the sparse direct solves in the preconditioning step
with an AMG V-cycle.

>> it_solve

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) :

stopping tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

IFISS 3.1 Software Guide 7

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator

4 modified pressure convection-diffusion (Fp*)

default is modified pressure convection-diffusion : 2

ideal / AMG iterated preconditioning? 1/2 (default ideal) : 2

setting up Q0 pressure preconditioning matrices...

NonUniform grids are fine.

fixed pressure on inflow boundary

compute / load convection-diffusion AMG data? 1/2 (default 1) :

AMG grid coarsening ... 13 grid levels constructed.

AMG fine level smoothing strategy? PDJ/ILU 1/2 (default ILU) :

ILU smoothing on finest level..

AMG iterated PCD preconditioning ...

AMG grid coarsening ... 9 grid levels constructed.

Pressure Poisson setup done.

ILU smoothing ..

GMRES iteration ...

convergence in 74 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0098

.

.

.

73 -5.8880

74 -6.0523

Bingo!

1.2567e+00 seconds

use new (enter figno) or existing (0) figure, default is 0 :

figure number (default is current active figure) :

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) : 7

>> legend(’ideal’,’AMG’)

In this case gmres converges in 74 iterations—but the CPU time for solution is reduced by a factor
of five!

The IFISS package includes an implementation of the modified pressure convection-diffusion pre-
conditioner that was proposed by Elman & Tuminaro3. This strategy is described in the online

3Available online from http://hdl.handle.net/1903/8940

IFISS 3.1 Software Guide 8

publication ETNA 35:257–280, 2009 [ET2008], and is particularly effective in the case of non-
enclosed flow.

A new feature of the IFISS 3.1 package is that it includes an implementation of the est minres

optimal Stokes solver developed by Silvester & Simoncini.4 A run that illustrates this feature is
reproduced below.

>> stokes_testproblem

specification of reference Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Colliding flow

: 3

cavity type leaky/tight/regularised 1/2/3 (regularised) :

Grid generation for cavity domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6

uniform/stretched grid (1/2) (default is uniform) : 2

computed stretch ratio is 1.0977

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 4

setting up Q2-P1 matrices... done

system matrices saved in square_stokes_nobc.mat ...

imposing boundary conditions and solving system ...

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.630023e-18.

This should not cause difficulty for enclosed flow problems.

Stokes system solved in 6.643e-01 seconds

uniform/exponential streamlines 1/2 (default uniform) : 2

Enclosed flow ..

FAST Stokes Q2-P1 a posteriori error estimation

checking edge numbering and computing mesh lengths ...

Q2-P1 local error estimator ...

interior residual RHS assembly took 5.3161e-01 seconds

flux jump RHS assembly took 8.1748e-02 seconds

LDLT factorization took 1.5545e-02 seconds

triangular solves took 2.1097e-02 seconds

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 1.386888e-04

estimated energy error is 2.8616e-02

4Available online from http://eprints.ma.man.ac.uk/1450/ .

IFISS 3.1 Software Guide 9

>> itsolve_stokes

Inexact AMG block preconditioning ..

number of V-Cycles? (default 1) :

AMG grid coarsening ... 12 grid levels constructed.

AMG with point damped Gauss-Seidel smoothing ..

Enclosed flow ..

checking edge numbering and computing mesh lengths ...

Q2-P1 local error estimator ...

interior residual RHS assembly took 4.7206e-01 seconds

flux jump RHS assembly took 4.8778e-02 seconds

LDLT factorization took 1.6855e-02 seconds

triangular solves took 1.3280e-02 seconds

Call to EST_MINRES with built in error control ...

k Estimated-Error Algebraic-Bound Residual-Error

1 6.7839e+00 1.2057e+00

2 3.5953e+00 1.1510e+00

3 2.6205e+00 6.7249e-01

4 5.2730e-01 5.1638e-01

5 7.9704e-01 4.2154e-01

6 6.1398e-01 1.1261e+00 2.1421e-01

7 6.2805e-01 1.1260e+00 2.1419e-01

8 3.1579e-01 7.0126e-01 1.2523e-01

9 1.3678e-01 6.5200e-01 1.1587e-01

10 2.3234e-01 4.9444e-01 8.6172e-02

11 1.3283e-01 3.1041e-01 5.2587e-02

12 1.5694e-01 3.0879e-01 5.2307e-02

13 5.1152e-02 1.6155e-01 2.6595e-02

14 3.4364e-02 1.3696e-01 2.2454e-02

15 6.7931e-02 9.9896e-02 1.6223e-02

16 3.5868e-02 6.4090e-02 1.0263e-02

17 4.7005e-02 5.9944e-02 9.5826e-03

18 2.9131e-02 2.9867e-02 4.6880e-03

19 2.8869e-02 2.8548e-02 4.4777e-03 Bingo!

convergence in 19 iterations

5.3300e+00 seconds

Eigenvalue convergence

k infsup lambda

3 NaN NaN

4 0.4312 0.9543

5 0.3630 0.9371

6 0.3308 0.9183

7 0.2690 0.8634

8 0.2690 0.8633

IFISS 3.1 Software Guide 10

9 0.2525 0.8134

10 0.2513 0.8035

11 0.2465 0.7644

12 0.2396 0.7034

13 0.2396 0.7027

14 0.2328 0.6448

15 0.2319 0.6341

16 0.2297 0.6217

17 0.2265 0.6136

18 0.2261 0.6128

19 0.2220 0.6084

Final estimated error is 2.8869e-02

Optimality in 19 iterations

>> [np,nu]=size(Bst);

>> xdiff=norm(xest(1:nu)-xst(1:nu),inf);

>> fprintf(’velocity solution difference is %7.3e\n’,xdiff)

velocity solution difference is 9.306e-04

1.3 Unsteady problems

Version 3.0 of the IFISS package extended the functionality to PDE models that include time
derivatives: the heat equation, the time-dependent convection-diffusion equation, and the Navier-
Stokes equations modelling unsteady fluid flow. As in the steady state case, a selection of test
problems have been selected which illustrate the characteristics of typical solutions and which
allow users to experiment with fast solvers for the linear equation systems that are solved at every
time step. A description of the built-in problems is given in the second Appendix.

A sample IFISS session for test problem T–NS3 (see the Appendix), which models flow in a
lid driven cavity, is reproduced below. The driver unsteady navier testproblem asks the user
to choose the problem, the spatial discretisation, the time of integration and an estimate of the
required temporal accuracy. The system of Differential Algebraic equations is solved using the
self-adaptive AB2-TR algorithm that is described in the MIMS Eprint5 2008.6 [KGGS2008].

>> unsteady_navier_testproblem

specification of reference unsteady Navier-Stokes problem.

choose specific example (default is step)

2 Flow over a backward facing step

3 Lid driven cavity

5 Flow around a square obstruction

: 3

5Available online from http://eprints.ma.man.ac.uk/1110/

IFISS 3.1 Software Guide 11

cavity type leaky/tight/regularised 1/2/3 (regularised) :

Grid generation for cavity domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6

uniform/stretched grid (1/2) (default is uniform) : 2

computed stretch ratio is 1.0977

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 3

setting up Q2-Q1 matrices... done

system matrices saved in square_stokes_nobc.mat ...

Unsteady flow in a square domain ...

viscosity parameter (default 1/200) : 1/500

Discrete Saddle-Point DAE system ...

target time? (default 100) :

accuracy tolerance? (default 1e-4) :

averaging frequency? (default 10) :

Solving DAE system using stabilized TR ...

AxBhandle =

@defaultAxB

initial nonlinear residual is 2.569596e-03

boundary change is 5.188603e-08

setting up Q2 convection matrix... done.

step timestep time

2 1.000e-09 2.000e-09

3 5.010e-05 5.010e-05

4 1.765e-03 1.815e-03

5 3.046e-03 4.861e-03

6 3.674e-03 8.535e-03

7 5.203e-03 1.374e-02

8 7.364e-03 2.110e-02

9 9.355e-03 3.046e-02

10 1.167e-02 4.213e-02 --- Averaging

11 1.450e-02 5.079e-02

.

.

.

117 4.361e+00 7.957e+01

118 4.626e+00 8.419e+01

119 4.844e+00 8.904e+01

120 4.947e+00 9.399e+01 --- Averaging

121 5.212e+00 9.672e+01

122 3.276e+00 1.000e+02

finished in 123 steps!

Integration took 8.711e+01 seconds

IFISS 3.1 Software Guide 12

plotting timestep sequence ...

specify plot symbol without quotes, default "bo" :

use new (enter figno) or existing (0) figure, default is 0 : 9

123 timesteps

running flow field animation ...

step mean_vorticity

1 1.600e-08

2 1.600e-08

3 3.200e-08

.

.

.

121 1.600e+00

122 1.600e+00

123 1.600e+00

All done

step 123 : time is 1.000e+02

minimum w is -20.9748 and maximum w is 24.7171

... to generate a movie run square_flowmovie

see help square_flowmovie ...

square_flowmovie - generates flow movie on square shaped domain

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 1.657197e-03

The associated flow animation shows the computed vorticity and the total velocity at each time
step. The solution tends to a steady state: this is illustrated in in Figure 1.3.

Velocity magnitude : 100 seconds Vorticity : 100 seconds

Figure 1.3: Sample output from unsteady navier testproblem.

IFISS 3.1 Software Guide 13

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver snapshot solve. Here, the chosen iterative
method is gmres with AMG least-squares commutator preconditioning. At the selected time step
the preconditioned iteration converges in 20 iterations.

>> snapshot_solve

Iterative solution of a SNAPSHOT linear system

Solution data available for 100 seconds

Approximate time for the SNAPSHOT? (default is the end) : 10

Time step number 71

Constructing system at time 9.91164 seconds

current timestep is 0.370012 seconds

enclosed flow (cavity) problem ...

stopping tolerance? (default 1e-8) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

3 least-squares commutator

9 modified pressure convection-diffusion (Fp*)

default is Fp* : 3

ideal / AMG iterated preconditioning? 1/2 (default ideal) : 2

AMG grid coarsening ... 15 grid levels constructed.

AMG fine level smoothing strategy? PDJ/ILU 1/2 (default ILU) :

ILU smoothing on finest level..

AMG iterated LSC preconditioning ...

fixing singularity in pressure matrix... done

AMG grid coarsening ... 9 grid levels constructed.

BinvGB setup done.

ILU smoothing on finest level..

GMRES iteration ...

convergence in 20 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0091

2 -0.2777

3 -1.0799

.

.

.

19 -7.9153

20 -8.4136

Bingo!

7.0681e-01 seconds

IFISS 3.1 Software Guide 14

2.1 Directory structure

As already noted, IFISS comprises functions which generate finite element approximations of the
following PDE problems that arise in incompressible flow modelling:

• the Poisson equation: directory /ifiss/diffusion/

• the convection-diffusion equation: directory /ifiss/convection/

• the Stokes equations: directory /ifiss/stokes flow/

• the Navier-Stokes equations: directory /ifiss/navier flow/

The temporal discretization functions associated with unsteady versions of the above PDEs can
be found in a separate directory:

• /timestepping/

Each of these directories has a subdirectory /test problems/. These contain the boundary and
coefficient function files associated with the PDE reference problems described in [ESW2005]. The
functions associated with the domain geometry and grid generation are independent of the PDE
being solved. These functions are located in a separate directory:

• /ifiss/grids/

The computed solutions are visualized using the three-dimensional plotting functions that are
built into MATLAB. The functions that generate this visual output are also located in a separate
directory:

• /ifiss/graphs/

For each class of discrete problem we provide specialized fast iterative solvers. The associated
functions are contained in two directories:

• /ifiss/solvers/ ; /ifiss/stokes minres/

Finally, there are two directories that are used for storing intermediate data (for example, finite
element matrices and multigrid data) and plot files:

• data (.mat) files : directory /ifiss/datafiles/

• plot (.pdf) files : directory /ifiss/plotfiles/

IFISS 3.1 Software Guide 15

The finite element approximations, preconditioners and iterative solution methods are described in
detail in [ESW2005]. Indeed, all the numerical results described in the book have been computed
(and can be reproduced) using IFISS. Additionally, the computational exercises at the end of each
chapter are designed to be carried out using the IFISS software.

2.1.1 Help facility and IFISS function glossary

Help for the package is integrated into the MATLAB help facility. The command help ifiss

gives a pointer to the IFISS general help command helpme. Typing help 〈directory name〉 lists
the files in that directory that users may want to look at more closely. Using MATLAB version 7,
the function names are “clickable” to give additional information.

The IFISS package consists of over 350 MATLAB functions and script files, of which the high level
ones are listed below. Simply type help <file-name> for further information on any of these. For
a complete list of functions and scripts in a specific directory type help <directory-name>.

ifiss3.1

activemode turns off batch processing for IFISS
batchmode enables batch processing for IFISS testproblem
gohome positions command prompt at top level directory
helpme IFISS interactive help facility
ifiss returns IFISS version number
ifisslogo generates IFISS logo
recall query the current discretized problem
setpath sets IFISS search path

diffusion

diffpost driver for a posteriori error postprocessing
diffpost q1 local Poisson error estimator for Q1 solution
diffpost res computes Q1 element residual estimator
diffpost q2 with q4 local Poisson error estimator for Q2 solution
element lusolve vectorized local backward-forward solves
ell diff solve Poisson problem in L-shaped domain
femq1 diff vectorized bilinear coefficient matrix generator
femq2 diff vectorized biquadratic coefficient matrix generator
gausspoints oned constructs one-dimensional Gauss Point Rule
gausspoints twod constructs tensor product Gauss Point Rule
helpme diff diffusion problem interactive help
nonzerobc imposes Dirichlet boundary condition
q1fluxjmps computes flux jumps for rectangular Q1 grid
q1res diff computes interior residuals for rectangular Q1 grid
quad diff solve Poisson problem in quadrilateral domain
specific bc (current) problem boundary condition
specific rhs (current) problem forcing function
square diff solve Poisson problem in unit square domain

IFISS 3.1 Software Guide 16

grids

box domain rectangular cavity Q2 grid generator
cavity domain square cavity Q2 grid generator
ell domain L-shape domain Q2 grid generator
channel domain standard square shaped domain Q2 grid generator
edgegen edge information for flux jump computation
eexgen Q2–P−1 reorientation for flux jump computation
forwardstep domain forward step domain Q2 grid generator
gridplot quadrilateral grid verification
longstep domain extended L-shaped domain Q2 grid generator
macrogridplot quadrilateral macroelement grid verification
obstacle domain obstacle domain Q2 grid generator
perturb grid perturbed bilinear element grid generator
plate domain slit shaped domain Q2 grid generator
q1grid bilinear (Q1) element grid generator
q1p0grid Q1–P0 element grid generator
q1q1grid Q1–Q1 element grid generator
q2grid biquadratic (Q2) element grid generator
q2p1grid Q2–P−1 element grid generator
q2q1gridx Q2–Q1 element grid generator
quad domain quadrilateral domain Q2 grid generator
ref domain reference square domain Q2 grid generator
shish grid Shishkin grid generator on unit domain
square domain square domain Q2 grid generator
step domain standard L-shaped domain Q2 grid generator
subint geometrically stretched subdivision generator

convection

cdpost bc postprocesses local Poisson error estimator
cdpost p computes local Poisson error estimator for Q1 solution
femq1 cd vectorized bilinear coefficient matrix generator
femq1 cd supg vectorized Q1 streamline diffusion matrix generator
helpme cd convection-diffusion problem interactive help
ref cd set up problem in reference square domain
solve cd solve convection-diffusion problem in square domain
specific wind (current) problem convective wind
square cd set up problem in unit square domain

IFISS 3.1 Software Guide 17

stokes flow

altinfsup computes inf-sup eigenvalue distribution of potential flow
box stokes set up flow problem in rectangular domain
channel stokes setup inflow/outflow problem in square domain
flowbc imposes inflow boundary condition
helpme stokes Stokes flow problem interactive help
infsup computes inf-sup eigenvalue distribution
longstep stokes setup flow problem in extended step domain
obstacle stokes setup inflow/outflow problem in obstacle domain
plate stokes setup flow problem in slit domain
q1div computes norm of divergence of Q1 flow solution
quad stokes setup Stokes problem in quadrilateral domain
solve step stokes solve Stokes problem in step domain
solve stokes solve Stokes problem in square domain
specific flow (current) problem imposed boundary condition
square stokes setup flow problem in unit square domain
step stokes setup flow problem in standard step domain
stokes q1p0 Q1–P0 matrix generator
stokes q1q1 Q1–Q1 matrix generator
stokes q2p1 Q2–P−1 matrix generator
stokes q2q1 Q2–Q1 matrix generator
stokespost estimates Stokes error distribution
stokespost q2p1 vectorized Q2–P−1 local Poisson error estimator
stokespost q1p0 p computes Poisson error estimator for Q1–P0

stressjmps q1p0 stress jumps for rectangular Q1–P0 grid
stressjmps q2p1 vectorised stress jumps for Q2–P−1 grid
vorticity q1 computes Q1 total vorticity

stokes minres

algpost q2p1 computes Q2–P−1 error estimate inside iteration
est errorq2p1 computes energy error estimate for Q2–P−1 solution
est minres MINRES with discretization error estimation
helpme stopping optimal iterative solvers interactive help
hydro removes hydrostatic pressure mode from Stokes solution vector
itsolve stokes specialized iterative solution of Stokes problem
minres esterror MINRES with energy norm estimation
param est determines adaptive stopping criteria for EST MINRES

IFISS 3.1 Software Guide 18

navier flow

Cpre q1p0 stabilization for least squares commutator for Q1-P0

fpsetup q0 Q0 pressure convection-diffusion matrix
fpsetup q1 Q1 pressure convection-diffusion matrix
fpsetup q2p1 P−1 pressure convection-diffusion matrix
fpzsetup q0 modified Q0 pressure convection-diffusion matrix
fpzsetup q1 modified Q1 pressure convection-diffusion matrix
fpzsetup q2p1 modified P−1 pressure convection-diffusion matrix
helpme navier Navier-Stokes flow problem interactive help
navier q1 Q1 convection matrix
navier q2 Q2 convection matrix
navierpost q1p0 bc postprocesses Poisson error estimator
navierpost q1p0 p computes Poisson error estimator for Q1–P0

newton q1 Q1 convection derivative matrices
newton q2 Q2 convection derivative matrices
solve navier solve Navier-Stokes problem in square domain
solve plate navier solve Navier-Stokes problem in slit domain
solve obstacle navier solve Navier-Stokes problem in obstacle domain
solve step navier solve Navier-Stokes problem in step domain
navierpost estimates Q2–P−1 or Q2–Q1 NS error distribution

timestepping

box heat solves heat equation in rectangular cavity domain
colamdAxB refined saddlepoint system solver
defaultAxB standard MATLAB saddlepoint system solver
dtflowbc imposes updated flow BC at the current timestep
dtheatbc imposes updated Dirichlet BC at the current timestep
ell heat solves heat equation in L-shaped domain
helpme heat heat equation interactive help
helpme timestepping unsteady problem solution interactive help
helpme unsteady cd unsteady convection-diffusion problem interactive help
helpme unsteady navier unsteady flow problem interactive help
stabtr standard integrator based on stabilized TR
stabtrNS Navier-Stokes integrator based on stabilized TR
unsteady cd unsteady convection-diffusion in square-shaped domain
unsteady navier unsteady Navier-Stokes flow in square-shaped domain
unsteady obstacle navier unsteady Navier-Stokes flow in obstructed domain
unsteady step navier unsteady Navier-Stokes flow in step domain
unsteadyflowbc imposes inflow boundary condition

IFISS 3.1 Software Guide 19

graphs

box heatplot evolves temperature data on rectangular domain
dttplot plots timestep data
ell heatplot evolves temperature data on L-shaped domain
eplot plots element data on square-shaped domain
eplotl plots element data on L-shaped domain
errplot plots solution and error on square-shaped domain
errplotl plots solution and error on L-shaped domain
flowplot09 plots flow data
flowvolume plots/explores flow solution on vertical cross-section
logoplot plots IFISS logo
mplot plots 2x2 macroelement data on square-shaped domain
mplotl plots 2x2 macroelement data on L-shaped domain
obstacle flowmovie generates movie of flow around square obstacle
obstacle unsteadyflowplot evolves flow data on obstructed channel domain
outflow plots/explores tangential flow solution on outflow
solplot plots nodal data on square-shaped domain
solplotl plots nodal data on L-shaped domain
solsurf plots solution surface on square-shaped domain
solsurfl plots solution surface on L-shaped domain
square flowmovie generates flow movie on square-shaped domain
square heatplot evolves temperature data on square-shaped domain
square unsteadyflowplot evolves flow data on square-shaped domain
square vorticityplot plots vorticity data on square-shaped domain
step flowmovie generates flow movie on extended step-shaped domain
step unsteadyflowplot evolves flow data on extended step-shaped domain
step vorticityplot plots vorticity data on step domain
wwwplotl plots solution and error estimate on L-shaped domain
wwwplotobs plots streamlines and error estimate on general domain
xrefplot comparison plot of iterative solver residuals
xsection plots/explores solution on horizontal cross-section

IFISS 3.1 Software Guide 20

solvers

a cdt matrix-vector product for convection-diffusion operator
a nst matrix-vector product for linearized Navier-Stokes operator
amg grids setup performs algebraic multigrid setup phase
amg smoother performs AMG smoothing
amg smoother params generates structure for AMG smoother parameters
amg v cycle performs one AMG V-cycle
bicgstab ell r BICGSTAB(ℓ) iteration with right preconditioning
bsolve solves Galerkin system using backslash
cg test CG convergence demo
gmres r GMRES iteration with right preconditioning
helpme it iterative solvers interactive help
helpme mg geometric multigrid interactive help
idrs r Induced Dimension Reduction iteration
it solve driver for iterative solution of predefined problem
m amgzt AMG preconditioner for scalar operator
m amgzz AMG preconditioner with multiple v-cycles
m bfbt ideal least squares commutator preconditioner (unscaled)
m diagt action of diagonal preconditioning operator
m fp ideal pressure convection-diffusion preconditioner
m fp amgz AMG iterated PCD preconditioner
m fp mg GMG iterated PCD preconditioner
m ilut incomplete LU preconditioner
m masscheb mass matrix Chebyshev preconditioning operator
m massdiag mass matrix diagonal preconditioning operator
m mg GMG preconditioner for scalar problems
m st amgz AMG block preconditioner for Stokes equations
m st block block preconditioner for Stokes equations
m st mg block MG preconditioner for Stokes equations
m sxbfbt ideal stabilized least squares commutator preconditioner
m xbfbt ideal least squares commutator preconditioner
m xbfbt amgz AMG iterated LSC preconditioner
m xbfbt mg GMG iterated LSC preconditioner
m xfp modified ideal PCD preconditioner
m xfp amgz AMG iterated modified PCD preconditioner
mg apsetup q1 Q1 pressure diffusion matrix for GMG
mg cd GMG preconditioner for convection-diffusion problem
mg diff GMG preconditioner for diffusion problem
mg iter performs one GMG iteration
mg ns GMG preconditioner for Navier-Stokes equations
mg post postsmoothing for GMG
mg pre presmoothing for GMG
mg prolong GMG prolongation operator for square domain
mg smooth smoothers for GMG on square domain
mg solve driver for GMG solution of predefined problem
resplot plot residuals computed by iterative solvers
snapshot solve driver for iterative solution of predefined unsteady problem

IFISS 3.1 Software Guide 21

2.1.2 IFISS figures

As is evident from the sample runs described in the previous sections, several figures are “preal-
located” within IFISS. That is, particular figures are always used for generating specific graphical
output. A list of these figures is given below.

Figure Description
10 grid plot (diffusion or convection-diffusion)
11 diffusion problem solution & error plot (Q1)
12 diffusion problem solution & error plot (Q2)
19 heat equation temperature evolution
20 convective wind
22 convection-diffusion solution & error plot (Q1)
29 unsteady convection-diffusion problem temperature evolution
30 grid plot (Stokes or Navier-Stokes flow problem)
33 Stokes flow solution plot
34 Stokes flow solution error plot (Q1–P0, Q1–Q1, Q2–Q1, Q2–P−1)
66 Navier-Stokes flow solution plot
67 Navier-Stokes flow solution error plot (Q1–P0, Q2–Q1, Q2–P−1)
167 unsteady Navier-Stokes flow solution evolution

2.1.3 Running jobs in batchmode

IFISS also provides a batchmode facility via which data may be input from a pre-prepared file
rather than directly from the terminal. The specific parameters that need to be input will of
course vary from problem to problem, and the input file must be prepared accordingly. Sample
input files for each of the model problems are provided (located in the appropriate test problems

subdirectory); these can be easily modified by the user for a particular run. The names of these
input files must have the form “* batch.m” where “*” begins with one of “P”, “CD”, “S” or “NS”
for the Poisson, convection-diffusion, Stokes or Navier-Stokes equations, respectively. For example,
typing the command

batchmode(’P2’)

uses the file P2 batch.m to generate and solve the discrete Poisson equation on an L-shaped domain
without interactive input. The results of the run are stored in the file batchrun in the datafiles

subdirectory.

A similar batchmode facility is available for running the driver it solve without interactive in-
put after a discrete system has been generated in batchmode. Input files must have the names
itsolve* batch.m. A template, itsolve batch.m, which applies multigrid preconditioned CG to
the discrete Poisson equation, is available in the solvers subdirectory:

batchmode(’itsolve’)

IFISS 3.1 Software Guide 22

This file would have to be modified by the user to contain the appropriate parameter values for
other problems. The list of parameters required in each case can be generated by carrying out an
initial run in interactive mode.

2.2 Generating new domains or model problems

For each of the four PDEs treated, IFISS contains four built-in model problems. These are outlined
in the Appendix. It is also straightforward to adapt the code to include different domains, PDE
features or boundary conditions.

2.2.1 Introducing a new problem domain

The first task in setting up a different PDE domain is the grid generation, which should be done by
a function <newproblem> domain.m analogous to those in the /grids/ directory (see Section 2.1
for details of the directory structure). This function should generate grid information (specifically,
node point coordinates and element connectivity information), which will also serve to define the
domain. The results should be saved in a data file called /datafiles/<newproblem> grid.mat.

The grid information should be organized into a collection of MATLAB arrays specified as follows.

• A nodal coordinate matrix (xy) of size (# of nodes)×2, in which the first column contains
the x-coordinates of the nodes and the second column contains the y-coordinates.

• A matrix (mv) of size (# of macroelements)×9 containing the so-called “macroelement map-
ping”. For biquadratic Q2 approximation this is simply the connectivity array of the grid,
i.e. entry mv(nel,nv) contains the global node number of node nv on element nel. The PDE
problem drivers in IFISS tacitly assume that the same nine-node data structure is used in
the case of bilinear Q1 approximation. This means that the associated subdivision is formed
from macroelements each consisting of four elements. This concept is explained in more
detail below.

• A boundary vertex vector (bound) containing a list of nodes on the Dirichlet part of the
boundary.

• A macroelement boundary edge matrix (mbound) of size (# of macroedges)×4. For each
macroelement having an edge on the Dirichlet part of the boundary, the first column is a
pointer to the macroelement number and the second is an integer 1, 2, 3 or 4, which uniquely
defines the orientation of the edge (bottom, right, top or left).

• Two vectors x and y. These are used solely for plotting purposes (MATLAB assumes a
rectangular matrix of values when calling mesh and contour plotting functions). The default
choice is to match the data in x and y to the nodal coordinate data in xy. For a cartesian
product grid this enables generation of mesh plots showing the underlying element structure.
For general quadrilateral grids the data in x and y determine the interpolation points used
in generating the solution plots.

IFISS 3.1 Software Guide 23

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

(a) Indices of nodes of the macroelement grid.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(b) Indices of nodes on the Dirichlet boundary.

Figure 2.4: Sample output from macrogridplot.

After a grid is created by the grid generator, the data can be visually checked using the function
macrogridplot. This facility is illustrated in the sample IFISS session below, which produces a
nonrectangular domain and a nonrectangular grid.

IFISS 3.1 Software Guide 24

>> quad_domain % generates the datafile quad_grid.mat

Grid generation for quadrilateral domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 3

aspect ratio (x:1) (default is 4:1) : 1

height contraction ratio (default is 4) : 2

outflow boundary: natural/prescribed 1/2 (default is natural) :

plotting grid points ...

>> load quad_grid

>> macrogridplot(xy,mv,bound,mbound);

Subdivision logistics ..

81 nodes

16 (2x2 macro)elements

25 nodes on Dirichlet boundary

12 macroelement edges on Dirichlet boundary

>> disp(mv)

1 19 21 3 10 20 12 2 11

3 21 23 5 12 22 14 4 13

5 23 25 7 14 24 16 6 15

...

59 77 79 61 68 78 70 60 69

61 79 81 63 70 80 72 62 71

>> [ev,ebound]=q1grid(xy,mv,bound,mbound);

>> gridplot(xy,ev,bound,ebound);

Grid logistics ..

81 nodes

64 elements

25 nodes on Dirichlet boundary

24 element edges on Dirichlet boundary

The graphical output from macrogridplot is shown in Figure 2.4. The macroelement connectivity
matrix mv can be correlated with the numbered nodes in the figure. The macroelement boundaries
are distinguished from the internal element boundaries by their darker colour and represent the
actual grid lines if biquadratic approximation is employed. In the example above, the call to q1grid

is used to generate a bilinear approximation, for which the underlying grid is that represented by
the union of the light and dark blue boundaries. This function generates the element connectivity
matrix ev and the element boundary edge matrix ebound. This information can also be visualized
by calling the function gridplot (graphical output not shown).

In addition to the grid generator, the other requirement is to write the PDE driver. Templates for
this are the function quad diff (solving Poisson’s equation) and the function quad stokes (which
sets up matrices for subsequent solution using solve stokes or solve navier).

IFISS 3.1 Software Guide 25

2.2.2 Changing PDE features or boundary conditions

Information on PDE attributes and boundary conditions are held in specific m-files in the di-
rectory associated with each PDE. For example, for Navier-Stokes flow problems these are the
two files /stokes flow/specific flow.m and /diffusion/specific bc.m. These specify the
velocity boundary conditions and stream-function boundary conditions, respectively. To define
a different Navier-Stokes flow problem on the same domain one simply needs to edit these two
m-files. Further information can be obtained by using helpme.

Appendix A

Steady-state problems

In this appendix we give a brief description of the seventeen test problems currently implemented
in IFISS. A fuller description can be found in [ESW2005]. Each problem can be generated by
running the appropriate driver routine (as identified below) and is based on one of the following
physical domains:

Ω : the square (−1, 1) × (−1, 1);

Ω : the L-shaped region generated by taking the complement in (−1, L)×(−1, 1) of the quadrant
(−1, 0]× (−1, 0];

Ω : the rectangular region (−1, 5)× (−1, 1), with a slit along the line where 0 ≤ x ≤ 5 and y = 0.

Ω : a disconnected rectangular region (0, 8)×(−1, 1) generated by deleting the square (7/4, 9/4)×
(−1/4, 1/4).

The Poisson equation: diff testproblem

P1 The domain is Ω , the source is the constant function f(x, y) = 1, and zero Dirichlet conditions
are applied on all boundaries. This represents a simple diffusion model for the temperature
distribution u(x, y) in a square plate, with uniform heating of the plate whose edges are kept
at an ice-cold temperature.

P2 The source function and boundary conditions are the same as above but here the domain is
Ω . As a result, the underlying solution to the Poisson problem has a singularity at the origin.

P3 The domain is Ω and the source function f is identically zero. The boundary conditions are
chosen so that the problem has the exact analytic solution

u(x, y) =
2(1 + y)

(3 + x)2 + (1 + y)2
.

26

IFISS 3.1 Software Guide 27

P4 This is a second analytic test problem, which is associated with the singular solution of problem
P2 given by

u(r, θ) = r2/3 sin

(

2θ + π

3

)

,

where r represents the radial distance from the origin, and θ is the angle with the vertical
axis.

The convection-diffusion equation: cd testproblem

All of these reference problems are posed on the square domain Ω with convective velocity of
order unity, that is, ‖~w‖∞ = O(1).

CD1 For constant convective velocity vector ~w = (0, 1), the function

u(x, y) = x

(

1 − e
y−1

ǫ

1 − e−
2

ǫ

)

satisfies the convection-diffusion equation exactly. For this problem, Dirichlet conditions on
the boundary are determined by this solution, and satisfy

u(x,−1) = x, u(x, 1) = 0, u(−1, y) ≈ −1, u(1, y) ≈ 1,

where the latter two approximations hold except near y = 1. The dramatic change in the
value of u near y = 1 constitutes an exponential boundary layer. This problem also has an
option for applying a natural (Neumann) boundary condition on the outflow (top) boundary.

CD2 Here ~w = (0, 1 + (x + 1)2/4), so the wind is again vertical but increases in strength from
left to right across the domain. The function u is set to unity on the inflow boundary and
decreases to zero quadratically on the right wall and cubically on the left wall. On the outflow
(top) boundary, either a Dirichlet or Neumann condition can be applied (both homogeneous).
The fixed values on the side boundaries generate characteristic boundary layers.

CD3 For this problem, ~w =
(

− sin π
6
, cos π

6

)

, that is, the wind is still constant but is now at
an angle of 30◦ to the left of vertical. The Dirichlet boundary conditions are zero on the
left and top boundaries and unity on the right boundary, with a jump discontinuity (from
0 to 1) on the bottom boundary at the point (0,−1). The resulting discontinuity in the
solution is smeared by the presence of diffusion, producing an internal layer. There is also
an exponential boundary layer near the top boundary y = 1.

CD4 This is a simple model for the temperature distribution in a cavity with a ‘hot’ external
wall. The wind ~w = (2y(1−x2), −2x(1−y2)) determines a recirculating flow. The Dirichlet
boundary conditions imposed have value one on the right-hand (hot) wall and zero every-
where else. There are therefore discontinuities at the two corners of the hot wall, x = 1,
y = ±1, which lead to boundary layers near these corners.

IFISS 3.1 Software Guide 28

The Stokes equations: stokes testproblem

S1 This problem represents steady horizontal flow in a channel driven by a pressure difference
between the two ends, or Poiseuille flow. Here a solution is computed numerically on Ω
using the velocity ~u = (1 − y2, 0) to define a Dirichlet condition on the inflow boundary
x = −1. The no-flow Dirichlet condition ~u = ~0 is applied on the characteristic boundaries
y = −1 and y = 1. At the outflow boundary (x = 1,−1 < y < 1), there is a choice of
applying a Neumann or a Dirichlet condition.

S2 This example represents slow flow in a rectangular duct with a sudden expansion, or flow over

a step. The domain is Ω with L = 5. A Poiseuille flow profile is imposed on the inflow
boundary (x = −1; 0 ≤ y ≤ 1), and a no-flow (zero velocity) condition is imposed on the top
and bottom walls. A Neumann condition is applied at the outflow boundary which automat-
ically sets the mean outflow pressure to zero.

S3 This is a classical test problem used in fluid dynamics, known as driven-cavity flow. It is a
model of the flow in a square cavity (the domain is Ω) with the lid moving from left to right.
A Dirichlet no-flow condition is applied on the side and bottom boundaries. Different choices
of the nonzero horizontal velocity on the lid give rise to different computational models:

{y = 1;−1 ≤ x ≤ 1|ux = 1}, a leaky cavity;
{y = 1;−1 < x < 1|ux = 1}, a watertight cavity;
{y = 1;−1 ≤ x ≤ 1|ux = 1 − x4}, a regularised cavity.

S4 This is a simple model of colliding flow. It is an analytic test problem on Ω associated with
the solution of the Stokes equations given by

~u = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 + constant.

The interpolant of ~u is used to specify Dirichlet conditions everywhere on the boundary.

Navier-Stokes equations: navier testproblem

The first three of these test problems are fast-flowing analogues of the first three Stokes flow prob-
lems.

NS1 The Poiseuille channel flow solution ~u = (1−y2, 0), p = −2νx is also an analytic solution of
the Navier-Stokes equations, since the convection term ~u · ∇~u is identically zero. The only
difference is that here the pressure gradient is proportional to the viscosity parameter. As
for the analogous Stokes problem S1, at the outflow boundary (x = 1,−1 < y < 1) there is
a choice of Neumann or Dirichlet boundary conditions.

NS2 This example represents flow over a step of length L (the domain is Ω with L chosen by the
user). For high Reynolds number flow, longer steps are required in order to allow the flow
to fully develop (unlike in problem S2, where L = 5 is sufficient). The boundary conditions
are identical to those in problem S2.

IFISS 3.1 Software Guide 29

NS3 This problem again models flow in a cavity Ω . The boundary conditions are the same as
in problem S3, with the choice of a leaky, watertight or regularised lid boundary condition.

NS4 This is a classical problem in fluid dynamics which is referred to as Blasius flow: the objective
is to compute the steady flow over a flat plate moving at a constant speed through a fluid
that is at rest. The flow domain is Ω . The ‘parallel flow’ Dirichlet condition ~u = (1, 0) is
imposed at the inflow boundary (x = −1;−1 ≤ y ≤ 1) and also on the top and bottom of
the channel (−1 ≤ x ≤ 5; y = ±1), representing walls moving from left to right with speed
unity. A no-flow condition is imposed on the internal boundary (0 ≤ x ≤ 5; y = 0), and a
Neumann condition is applied at the outflow boundary (x = 5;−1 < y < 1).

NS5 This is another classical problem. The domain is Ω and is associated with modelling flow in
a rectangular channel with a square cylindrical obstruction. A Poiseuille profile is imposed on
the inflow boundary (x = 0;−1 ≤ y ≤ 1), and a no-flow (zero velocity) condition is imposed
on the obstruction and on the top and bottom walls. A Neumann condition is applied at the
outflow boundary which automatically sets the mean outflow pressure to zero.

Appendix B

Time dependent problems

In this appendix we describe the seven unsteady test problems currently implemented in IFISS.
Each problem can be generated by running the appropriate driver routine (as identified below)
and is based on one of the following four physical domains:

Ω : the square (−1, 1) × (−1, 1);

Ω⊠ : the rectangle (0, L) × (0, H);

Ω : the L-shaped region generated by taking the complement in (−1, L)×(−1, 1) of the quadrant
(−1, 0]× (−1, 0];

Ω : a disconnected rectangular region (0, 8)×(−1, 1) generated by deleting the square (7/4, 9/4)×
(−1/4, 1/4).

In all cases a slow “start-up” from zero to a steady-state Dirichlet temperature/horizontal velocity
u∞ is achieved via the time-dependent boundary condition

u∗(t) = u∞(1 − e−10t).

The heat equation: heat testproblem

H1 The heat equation is solved on the rectangular domain is Ω⊠, with the vertical edges heated/cooled
to values of ±1/2. Either a zero Dirichlet or a zero Neumann condition can be specified on
the horizontal edges. In the latter case the solution tends to a steady state with a linear
temperature variation in the x-direction.

H2 The heat equation is solved on the L-shaped domain Ω . A zero Dirichlet condition is imposed
at all points on the boundary except for the vertical edge x = −1 and the point value (1, 0)
which are forced to a constant temperature of unity.

The convection-diffusion equation: unsteady cd testproblem

These reference problems are posed on the square domain Ω and the convective wind is indepen-
dent of time.

30

IFISS 3.1 Software Guide 31

T–CD2 This is the unsteady analogue of CD2. The convective field ~w = (0, 1 + (x + 1)2/4),
so the wind is vertical but increases in strength from left to right across the domain. The
temperature u is forced to unity on the inflow boundary but decreases to zero quadratically
on the right wall and cubically on the left wall. On the outflow (top) boundary, either a
Dirichlet or Neumann condition can be applied (both homogeneous). The wind pushes a hot
‘wave’ through the domain which exits in 2–3 time units. The steady-state solution can be
compared with that given by solving CD2.

T–CD4 This is the unsteady analogue of CD4. This is a model for the development of the temper-
ature distribution in a cavity with a ‘hot’ external wall. The wind ~w = (2y(1−x2), −2x(1−
y2)) determines a recirculating flow. The Dirichlet boundary conditions imposed have value
one on the right-hand (hot) wall and zero everywhere else. There are therefore discontinuities
at the two corners of the hot wall, x = 1, y = ±1, which lead to boundary layers near these
corners. The steady-state solution can be compared with that given by solving CD4.

Navier-Stokes equations: unsteady navier testproblem

T–NS2 This is the unsteady analogue of NS2. This example models the development of flow over
a step of length L (the domain is Ω with L chosen by the user). The boundary conditions
ultimately tend to those in NS2. If the viscosity parameter is sufficiently large (ν ≥ 1/600)
and L is sufficiently long L ∼ 40 the flow solution tends to a steady state. In this case the
steady-state solution can be compared with that given by solving NS2.
For high Reynolds number flow, the steady state is not stable and the flow is forever unsteady.

T–NS3 This is the unsteady analogue of NS3. This problem models “spin-up” flow in a cavity
Ω . The boundary conditions are the same as in S3, with the choice of a leaky, watertight
or regularised lid boundary condition. If the viscosity parameter is sufficiently large (ν ≥
1/1500) the flow solution ultimately tends to a steady state.

T–NS5 This is the unsteady analogue of NS5. The critical value of the viscosity parameter
(associated a bifurcation from a symmetric steady flow to unsymmetric vortex shedding) is
relatively large in this case. For example, a periodic shedding solution can be computed for
ν = 1/400 using Q2–P−1 approximation.

