Incompressible Flow Iterative Solution Software (IFISS)
Installation & Software Guide !

David J. Silvester? Howard C. Elman® Alison Ramage?

Version 3.1 | released 25 January 2011

I This project was supported in part by the U.S. National Science Foundation under grant DMS0208015,
the U.S. Department of Energy under grant DOEG0204ER25619, and the UK Engineering and Physical
Sciences Research Council under grant EP/C000528/1.

2School of Mathematics, University of Manchester, Manchester, UK. d.silvester@manchester.ac.uk.

3Department of Computer Science, University of Maryland, College Park, Maryland, USA.
elman@cs.umd.edu.

4Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.
a.ramage@strath.ac.uk.

Contents

1.1

1.2

1.3
2.1

2.2

Backgroundo Lo 1
1.1.1 Imstallation 1
Steady-state problems 2
Unsteady problems L 10
Directory structure Lo 14
2.1.1 Help facility and IFISS function glossary 15
2.1.2 TFISS figures e 21
2.1.3 Running jobs in batchmode oo o000 21
Generating new domains or model problems o000 22
2.2.1 Introducing a new problem domain o0 L 22
2.2.2 Changing PDE features or boundary conditions 25

IFISS 3.1 Software Guide 1

1.1 Background

This is an overview of the IFISS software library that is associated with the book [ESW2005]

Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics
Howard Elman, David Silvester and Andy Wathen
Oxford University Press, 2005.1

The IFISS software library is “open-source” and is written in MATLAB.? It can also be installed
and run using the freely available Octave package, see http://www.gnu.org/software/octave/.

IFISS can be downloaded from either of the following sites:

http://www.manchester.ac.uk/ifiss
http://www.cs.umd.edu/~elman/ifiss.html.

It can be distributed and/or modified under the terms of the GNU Lesser General Public Li-
cense as published by the Free Software Foundation; either version 2.1 of the License, or any
later version. For precise details, see the file readme.m. The software is distributed in the hope
that it will be useful, but without any warranty; without even the implied warranty of mer-
chantability or fitness for a particular purpose. See the GNU Lesser General Public License
http://wuw.gnu.org/licenses/1lgpl.html for a definitive statement. The IFISS library may
be freely copied as long as the file readme.m is included. The current version of the software:
IFISS 3.1 has been tested using Windows, Unix and Mac OS X. Previous releases were developed
using MATLAB Versions 5.3 to 7.9. (If you are not sure which version of MATLAB you have
running, just type version at the system prompt.) The current release was developed and tested
using MATLAB 7.11 (R2010b) and is fully compatible with Octave 3.2.4.

We are happy to receive feedback, especially if it is positive. If you find any bugs please send an
email to a.ramage@strath.ac.uk.

1.1.1 Installation

IFISS is downloaded in the form of a gzipped tar file (Linux/MacOS) or a zip file (Windows).
After unpacking the tar or zip file, installation is achieved by manually editing the scriptfile
gohome.m in the top level directory. This scriptfile identifies the “home” directory of the package
via a command of the form

cd(’<local directory>/ifiss3.1’), or cd(’<local directory>\ifiss3.1’),

when installing in a Linux/MacOS or Windows environment, respectively. After this has been
done, IFISS is set to run without additional user intervention.

IFor further details see http://ukcatalogue.oup.com/product/9780198528685.do or
http://www.oup.com/us/catalog/general/subject/Mathematics/AppliedMathematics/?view=usa&ci=019852868X
2Copyright (© The MathWorks, software is available from http://www.mathworks.com/.

IFISS 3.1 Software Guide 2

Once TFISS is installed, for all subsequent uses the MATLAB path must include the IFISS home
directory. This requirement can be enforced each time MATLAB or Octave is initiated either by
typing setpath in response to the prompt, or by incorporating the functionality of the setpath
command into the user’s MATLAB startup file. Having run setpath at the MATLAB or Octave
prompt, simply type ifiss, helpme to get started.

1.2 Steady-state problems

The IFISS package focuses on four specific partial differential equation problems (PDEs): these are
the Poisson equation, the convection-diffusion equation, and the Stokes and Navier-Stokes equa-
tions. Investigation of these is facilitated by a suite of drivers that set up and solve four reference
test problems for each PDE. These test problems have been selected to illustrate characteristics
of typical solutions and to allow users to experiment with various aspects of the modelling and
solution processes. A full description of the reference problems can be found in [ESW2005]. For
convenience, a short summary of this information is given in the first Appendix.

A sample TFISS session for test problem NS2 (see the Appendix), which models flow over a step is
reproduced below. The driver navier_testproblem asks the user to choose the problem, the grid
resolution and the type of finite element discretisation to be used. The resulting nonlinear system
is then solved using a hybrid Picard/Newton solver and an estimate of the error is computed as
described in Chapter 7 of [ESW2005].

>> setpath

>> ifiss

This is IFISS version 3.1: finally released on 25 January 2011
For help, type "helpme".

>> navier_testproblem

specification of reference Navier-Stokes problem.

choose specific example (default is cavity)
Channel domain

Flow over a backward facing step
Lid driven cavity

Flow over a plate

Flow over an obstacle

GO N

0 2
horizontal dimensions [-1,L]: L? (default L=5)

Grid generation for a step shaped domain.

grid parameter: 3 for underlying 8x4*(L+1) grid (default is 4) : 5
Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/47 (default Q1-PO)

setting up Q1-PO matrices... done

system matrices saved in step_stokes_nobc.mat ...

Incompressible flow problem on step domain ...

viscosity parameter (default 1/50)

IFISS 3.1 Software Guide

Picard/Newton/hybrid linearization 1/2/3 (default hybrid)
number of Picard iterations (default 2)

number of Newton iterations (default 4)

nonlinear tolerance (default 1.e-8)

stokes system ...

Stokes stabilization parameter (default is 1/4)

setting up Q1 convection matrix... done.
uniform/exponential streamlines 1/2 (default uniform)
number of contour lines (default 50) : 75

computing Q1-PO element stress flux jumps... done

computing local error estimator... done.

estimated velocity error (in energy): (3.158849e-01,1.655539e-01)
computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 5.554454e-03
plotting element data... done

initial nonlinear residual is 4.108490e+00
Stokes solution residual is 8.538847e-01

Picard iteration number 1

setting up Q1 convection matrix... done.

nonlinear residual is 1.093384e-02
velocity change is 4.345363e+00

Picard iteration number 2

setting up Q1 convection matrix... done.

nonlinear residual is 4.003099e-03
velocity change is 2.073700e+00

Newton iteration number 1
setting up Q1 Newton Jacobian matrices... done.
setting up Q1 convection matrix... done.
nonlinear residual is 4.397459e-04

velocity change is 1.528600e+00

Newton iteration number 2
setting up Q1 Newton Jacobian matrices... done.
setting up Q1 convection matrix... done.
nonlinear residual is 9.297262e-07

velocity change is 7.807388e-02

Newton iteration number 3
setting up Q1 Newton Jacobian matrices... done.
setting up Q1 convection matrix... done.
nonlinear residual is 1.855600e-11

velocity change is 2.985901e-04

IFISS 3.1 Software Guide 4

finished,

computing
computing
estimated
computing
estimated
estimated

nonlinear convergence test satisfied

Q1-PO element stress flux jumps... done

oseen local error estimator... done.

velocity error (in energy): (3.169732e-01,1.032707e-01)
divergence of discrete velocity solution ... done
velocity divergence error: 4.506274e-03

overall error is 3.334024e-01

plotting 2x2 element data... done

The computed solution and the estimated error are shown in Figure 1.1 (a) and (b).

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver it_solve. Here, the chosen iterative method
is GMRES with ideal pressure convection-diffusion preconditioning. As shown below the method
converges in 62 iterations, and the convergence curve is the blue line shown in Figure 1.2.

>> it_solve
inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.
GMRES/Bicgstab(1)/IDR(s) 1/2/3 (default GMRES)
stopping tolerance? (default le-6)
maximum number of iterations? (default 100)
preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator

4 modified pressure convection-diffusion (Fpx*)
default is modified pressure convection-diffusion : 2
ideal / AMG iterated preconditioning? 1/2 (default ideal)
setting up QO pressure preconditioning matrices...
NonUniform grids are fine.
fixed pressure on inflow boundary
ideal pressure convection-diffusion preconditioning ..

GMRES iteration ...
convergence in 62 iterations

k loglo(llr_k|I/I1z_0ll)
0 0.0000
1 -0.0115
2 -0.0156
3 -0.0171

IFISS 3.1 Software Guide

Streamlines: uniform

Pressure field

0.1—
0.05 —
04
-0.05 —
-0.1— 0
-1 0 1 2 3 4 5 -1
(a) Solution to problem NS2 with stabilised Q1-P¢ approximation.
Estimated error
Contours of estimated error .
0.8
0.04
0.6
0.4 0.03 /\
02 0.02 '
o [
0.01 -
-0.2 N
-0.4 04 Q\\ N \\\
1 \\\\\&‘%Si*\‘}\\‘t“@\:\\‘??\\\‘\
-0.6 W \“Q\QQQ\‘\Q\\\\\\\\\\\\::“\ S
0.5 \\\‘\\\“\\\\\Q\\\}}\ NS
NS
-0.8 0 NN 4

(b) Estimated error in the computed solution.

Figure 1.1: Sample output from navier_testproblem.

IFISS 3.1 Software Guide 6

61 -5.8082

62 -6.0196
Bingo!

6.1107e+00 seconds

use new (enter figno) or existing (0) figure, default is 0 : 1
colour (b,g,r,c,m,y,k): enter 1--7 (default 1)

10 residual reduction
T

10

Iogm(resldual)

0 10 20 30 40 50 60 70 80
iterations

Figure 1.2: Sample output from it_solve.

To produce the second (black) curve in Figure 1.2, it_solve must be rerun using pressure convection-

diffusion preconditioning, this time replacing the sparse direct solves in the preconditioning step
with an AMG V-cycle.

>> it_solve
inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q1 Newton Jacobian matrices... done.
GMRES/Bicgstab(1)/IDR(s) 1/2/3 (default GMRES)
stopping tolerance? (default le-6)

maximum number of iterations? (default 100)
preconditioner:

IFISS 3.1 Software Guide 7

none
unscaled least-squares commutator (BFBt)
pressure convection-diffusion (Fp)
least-squares commutator
4 modified pressure convection-diffusion (Fpx*)
default is modified pressure convection-diffusion : 2
ideal / AMG iterated preconditioning? 1/2 (default ideal) : 2
setting up QO pressure preconditioning matrices...
NonUniform grids are fine.
fixed pressure on inflow boundary
compute / load convection-diffusion AMG data? 1/2 (default 1)
AMG grid coarsening ... 13 grid levels constructed.

w N = O

AMG fine level smoothing strategy? PDJ/ILU 1/2 (default ILU)
ILU smoothing on finest level..

AMG iterated PCD preconditioning ..

AMG grid coarsening ... 9 grid levels constructed.

Pressure Poisson setup done.
ILU smoothing ..

GMRES iteration ...
convergence in 74 iterations

k loglo(llr_kII/llx_0l1)

0 0.0000

1 -0.0098

73 -5.8880

74 -6.0523
Bingo!

1.2567e+00 seconds

use new (enter figno) or existing (0) figure, default is O :
figure number (default is current active figure)

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) : 7

>> legend(’ideal’,’AMG’)

In this case GMRES converges in 74 iterations—but the CPU time for solution is reduced by a factor
of five!

The IFISS package includes an implementation of the modified pressure convection-diffusion pre-
conditioner that was proposed by Elman & Tuminaro®. This strategy is described in the online

3 Available online from http://hdl.handle.net/1903/8940

IFISS 3.1 Software Guide 8

publication ETNA 35:257-280, 2009 [ET2008], and is particularly effective in the case of non-
enclosed flow.

A new feature of the TFISS 3.1 package is that it includes an implementation of the est minres
optimal Stokes solver developed by Silvester & Simoncini.* A run that illustrates this feature is
reproduced below.

>> stokes_testproblem
specification of reference Stokes problem.

choose specific example (default is cavity)
1 Channel domain
2 Flow over a backward facing step
3 Lid driven cavity
4 Colliding flow
3
cavity type leaky/tight/regularised 1/2/3 (regularised)

Grid generation for cavity domain.
grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 6
uniform/stretched grid (1/2) (default is uniform) : 2

computed stretch ratio is 1.0977
Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/47 (default Q1-P0O) : 4
setting up Q2-P1 matrices... done

system matrices saved in square_stokes_nobc.mat ...

imposing boundary conditions and solving system ...

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.630023e-18.

This should not cause difficulty for enclosed flow problems.

Stokes system solved in 6.643e-01 seconds
uniform/exponential streamlines 1/2 (default uniform) : 2

Enclosed flow ..

FAST Stokes Q2-P1 a posteriori error estimation
checking edge numbering and computing mesh lengths ...
Q2-P1 local error estimator ...

interior residual RHS assembly took 5.3161e-01 seconds
flux jump RHS assembly took 8.1748e-02 seconds

LDLT factorization took 1.5545e-02 seconds

triangular solves took 2.1097e-02 seconds

computing divergence of discrete velocity solution ... done
estimated velocity divergence error: 1.386888e-04
estimated energy error is 2.8616e-02

4Available online from http://eprints.ma.man.ac.uk/1450/ .

IFISS 3.1 Software Guide

>> itsolve_stokes
Inexact AMG block preconditioning ..
number of V-Cycles? (default 1)

AMG grid coarsening ...

12 grid levels constructed.

AMG with point damped Gauss-Seidel smoothing ..
Enclosed flow ..
checking edge numbering and computing mesh lengths ...
Q2-P1 local error estimator ...
interior residual RHS assembly took 4.7206e-01 seconds

flux jump RHS assembly took 4.8778e-02 seconds
LDLT factorization took 1.6855e-02 seconds
triangular solves took 1.3280e-02 seconds

Call to EST_MINRES with built in error control ...

©O© 00 ~NO UL WN - K

e e e el
©O© 0 NO Ok WN - O

convergence in
5.3300e+00 seconds

Estimated-Error
.7839e+00
.5953e+00
.6205e+00
.2730e-01
.9704e-01
.1398e-01
.2805e-01
.1579e-01
.3678e-01
.3234e-01
.3283e-01
.5694e-01
.1152e-02
.4364e-02
.7931e-02
.5868e-02
.7005e-02
.9131e-02
.8869e-02

NN WOYWOAarFRr P NFE, WOOOON N WO

.1261e+00
.1260e+00
.0126e-01
.5200e-01
.9444e-01
.1041e-01
.0879e-01
.6155e-01
.3696e-01
.9896e-02
.4090e-02
.9944e-02
.9867e-02
.8548e-02

NN OF,r FP, WWPLOONRF- -

19 iterations

Eigenvalue convergence

k

0 ~NO O W

infsup
NaN
0.4312
0.3630
0.3308
0.2690
0.2690

lambda
NaN
0.9543
0.9371
0.9183
0.8634
0.8633

Algebraic-Bound

Residual-Error

B OFRP P NNOOOOORRFELNNDDDOOOO R -

.2057e+00
.1510e+00
.7249e-01
.1638e-01
.2154e-01
.1421e-01
.1419e-01
.2523e-01
.1587e-01
.6172e-02
.2587e-02
.2307e-02
.6595e-02
.2454e-02
.6223e-02
.0263e-02
.5826e-03
.6880e-03
.4777e-03 Bingo!

IFISS 3.1 Software Guide 10

9 0.2525 0.8134
10 0.2513 0.8035
11 0.2465 0.7644
12 0.2396 0.7034
13 0.2396 0.7027
14 0.2328 0.6448
15 0.2319 0.6341
16 0.2297 0.6217
17 0.2265 0.6136
18 0.2261 0.6128
19 0.2220 0.6084

Final estimated error is 2.8869e-02
Optimality in 19 iterations

>> [np,nul=size(Bst);

>> xdiff=norm(xest(1l:nu)-xst(1:nu),inf);

>> fprintf (’velocity solution difference is %7.3e\n’,xdiff)
velocity solution difference is 9.306e-04

1.3 Unsteady problems

Version 3.0 of the IFISS package extended the functionality to PDE models that include time
derivatives: the heat equation, the time-dependent convection-diffusion equation, and the Navier-
Stokes equations modelling unsteady fluid flow. As in the steady state case, a selection of test
problems have been selected which illustrate the characteristics of typical solutions and which
allow users to experiment with fast solvers for the linear equation systems that are solved at every
time step. A description of the built-in problems is given in the second Appendix.

A sample IFISS session for test problem T—-INS3 (see the Appendix), which models flow in a
lid driven cavity, is reproduced below. The driver unsteady navier_testproblem asks the user
to choose the problem, the spatial discretisation, the time of integration and an estimate of the

required temporal accuracy. The system of Differential Algebraic equations is solved using the
self-adaptive AB2-TR algorithm that is described in the MIMS Eprint® 2008.6 [KGGS2008].

>> unsteady_navier_testproblem
specification of reference unsteady Navier-Stokes problem.

choose specific example (default is step)
2 Flow over a backward facing step
3 Lid driven cavity
5 Flow around a square obstruction
: 3

5 Available online from http://eprints.ma.man.ac.uk/1110/

IFISS 3.1 Software Guide

cavity type leaky/tight/regularised 1/2/3 (regularised)

Grid generation for cavity domain.
grid parameter: 3 for underlying 8x8 grid (default is 16x16)
uniform/stretched grid (1/2) (default is uniform) : 2

computed stretch ratio is 1.0977
Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/47 (default Q1-PO) : 3
setting up Q2-Q1 matrices... done

system matrices saved in square_stokes_nobc.mat ...
Unsteady flow in a square domain ...

viscosity parameter (default 1/200) : 1/500
Discrete Saddle-Point DAE system ...

target time? (default 100)

accuracy tolerance? (default le-4)

averaging frequency? (default 10)

Solving DAE system using stabilized TR ...

AxBhandle =
@defaultAxB

initial nonlinear residual is 2.569596e-03
boundary change is 5.188603e-08

setting up Q2 convection matrix... done.
step timestep time
2 1.000e-09 2.000e-09
3 5.010e-05 5.010e-05
4 1.765e-03 1.815e-03
5 3.046e-03 4.861e-03
6 3.674e-03 8.535e-03
7 5.203e-03 1.374e-02
8 7.364e-03 2.110e-02
9 9.355e-03 3.046e-02
10 1.167e-02 4.213e-02 --- Averaging
11 1.450e-02 5.079e-02
117 4.361e+00 7.957e+01
118 4.626e+00 8.419e+01
119 4.844e+00 8.904e+01
120 4.947e+00 9.399e+01 --- Averaging
121 5.212e+00 9.672e+01
122 3.276e+00 1.000e+02

finished in 123 steps!
Integration took 8.711e+01 seconds

11

IFISS 3.1 Software Guide 12

plotting timestep sequence ...

specify plot symbol without quotes, default "bo"

use new (enter figno) or existing (0) figure, default is O : 9
123 timesteps

running flow field animation ...
step mean_vorticity

1 1.600e-08

2 1.600e-08

3 3.200e-08

121 1.600e+00

122 1.600e+00

123 1.600e+00
All dome

step 123 : time is 1.000e+02
minimum w is -20.9748 and maximum w is 24.7171
. to generate a movie run square_flowmovie
see help square_flowmovie ...
square_flowmovie - generates flow movie on square shaped domain
computing divergence of discrete velocity solution ... done
estimated velocity divergence error: 1.657197e-03

The associated flow animation shows the computed vorticity and the total velocity at each time
step. The solution tends to a steady state: this is illustrated in in Figure 1.3.

Velocity magnitude : 100 seconds Vorticity : 100 seconds

Figure 1.3: Sample output from unsteady navier_testproblem.

IFISS 3.1 Software Guide 13

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver snapshot_solve. Here, the chosen iterative
method is GMRES with AMG least-squares commutator preconditioning. At the selected time step
the preconditioned iteration converges in 20 iterations.

>> snapshot_solve

Iterative solution of a SNAPSHOT linear system

Solution data available for 100 seconds

Approximate time for the SNAPSHOT? (default is the end) : 10

Time step number 71
Constructing system at time 9.91164 seconds
current timestep is 0.370012 seconds

enclosed flow (cavity) problem ...
stopping tolerance? (default 1e-8)
maximum number of iterations? (default 100)
preconditioner:

0 none

3 least-squares commutator

9 modified pressure convection-diffusion (Fpx*)
default is Fpx : 3
ideal / AMG iterated preconditioning? 1/2 (default ideal) : 2
AMG grid coarsening ... 15 grid levels constructed.
AMG fine level smoothing strategy? PDJ/ILU 1/2 (default ILU)
ILU smoothing on finest level..
AMG iterated LSC preconditioning ..
fixing singularity in pressure matrix... done
AMG grid coarsening ... 9 grid levels constructed.
BinvGB setup done.
ILU smoothing on finest level..

GMRES iteration ...
convergence in 20 iteratioms

k logio(llr_klI/llx_0ll)
0 0.0000
1 -0.0091
2 -0.2777
3 -1.0799

19 -7.9153
20 -8.4136
Bingo!

7.0681e-01 seconds

IFISS 3.1 Software Guide 14

2.1 Directory structure

As already noted, IFISS comprises functions which generate finite element approximations of the
following PDE problems that arise in incompressible flow modelling:

the Poisson equation: directory /ifiss/diffusion/

e the convection-diffusion equation: directory /ifiss/convection/

the Stokes equations: directory /ifiss/stokes flow/

the Navier-Stokes equations: directory /ifiss/navier_flow/

The temporal discretization functions associated with unsteady versions of the above PDEs can
be found in a separate directory:

e /timestepping/

Each of these directories has a subdirectory /test_problems/. These contain the boundary and
coefficient function files associated with the PDE reference problems described in [ESW2005]. The
functions associated with the domain geometry and grid generation are independent of the PDE
being solved. These functions are located in a separate directory:

e /ifiss/grids/

The computed solutions are visualized using the three-dimensional plotting functions that are
built into MATLAB. The functions that generate this visual output are also located in a separate
directory:

e /ifiss/graphs/

For each class of discrete problem we provide specialized fast iterative solvers. The associated
functions are contained in two directories:

e /ifiss/solvers/ ; /ifiss/stokesminres/

Finally, there are two directories that are used for storing intermediate data (for example, finite
element matrices and multigrid data) and plot files:

e data (.mat) files : directory /ifiss/datafiles/

e plot (.pdf) files : directory /ifiss/plotfiles/

IFISS 3.1 Software Guide 15

The finite element approximations, preconditioners and iterative solution methods are described in
detail in [ESW2005]. Indeed, all the numerical results described in the book have been computed
(and can be reproduced) using IFISS. Additionally, the computational exercises at the end of each
chapter are designed to be carried out using the IFISS software.

2.1.1 Help facility and IFISS function glossary

Help for the package is integrated into the MATLAB help facility. The command help ifiss
gives a pointer to the IFISS general help command helpme. Typing help (directory name) lists
the files in that directory that users may want to look at more closely. Using MATLAB version 7,
the function names are “clickable” to give additional information.

The IFISS package consists of over 350 MATLAB functions and script files, of which the high level
ones are listed below. Simply type help <file-name> for further information on any of these. For
a complete list of functions and scripts in a specific directory type help <directory-name>.

IFISS3.1

activemode turns off batch processing for IFISS

batchmode enables batch processing for IFISS testproblem

gohome positions command prompt at top level directory

helpme IFISS interactive help facility

ifiss returns IFISS version number

ifisslogo generates IFISS logo

recall query the current discretized problem

setpath sets IFISS search path

DIFFUSION

diffpost driver for a posteriori error postprocessing
diffpost_q1 local Poisson error estimator for Q1 solution
diffpost_res computes @1 element residual estimator
diffpost_q2_with_q4 local Poisson error estimator for Q2 solution
element_lusolve vectorized local backward-forward solves
ell_diff solve Poisson problem in L-shaped domain
femql_diff vectorized bilinear coefficient matrix generator
femq2_diff vectorized biquadratic coefficient matrix generator

constructs one-dimensional Gauss Point Rule
constructs tensor product Gauss Point Rule

gausspoints_oned
gausspoints_twod

helpme_diff
nonzerobc
qlfluxjmps
qlres_diff
quad_diff
specific_bc
specific_rhs
square_diff

diffusion problem interactive help

imposes Dirichlet boundary condition

computes flux jumps for rectangular @ grid
computes interior residuals for rectangular @, grid
solve Poisson problem in quadrilateral domain
(current) problem boundary condition

(current) problem forcing function

solve Poisson problem in unit square domain

IFISS 3.1 Software Guide

GRIDS

box_domain
cavity_domain
ell_domain
channel_domain
edgegen

eexgen
forwardstep_domain
gridplot
longstep_domain
macrogridplot
obstacle_domain
perturb_grid
plate_domain
qlgrid

qlpOgrid
qlqlgrid

q2grid

q2plgrid
q2qlgridx
quad_domain
ref_domain
shish_grid
square_domain
step_domain

rectangular cavity Qs grid generator

square cavity Q2 grid generator

L-shape domain @2 grid generator

standard square shaped domain Q5 grid generator
edge information for flux jump computation
Q>—P_; reorientation for flux jump computation
forward step domain Q2 grid generator
quadrilateral grid verification

extended L-shaped domain @ grid generator
quadrilateral macroelement grid verification
obstacle domain Q2 grid generator

perturbed bilinear element grid generator

slit shaped domain Q2 grid generator
bilinear (Q1) element grid generator

Q1—P, element grid generator

Q1—Q; element grid generator

biquadratic (Q2) element grid generator
Q>—P_, element grid generator

Q->—Q); element grid generator

quadrilateral domain Q9 grid generator
reference square domain @ grid generator
Shishkin grid generator on unit domain
square domain @2 grid generator

standard L-shaped domain Q2 grid generator

subint geometrically stretched subdivision generator
CONVECTION

cdpost_bc postprocesses local Poisson error estimator

cdpost_p computes local Poisson error estimator for @ solution
femql_cd vectorized bilinear coefficient matrix generator

femql _cd_supg vectorized @, streamline diffusion matrix generator
helpme_cd convection-diffusion problem interactive help

ref_cd set up problem in reference square domain

solve_cd solve convection-diffusion problem in square domain

specific_.wind
square_cd

(current) problem convective wind
set up problem in unit square domain

16

IFISS 3.1 Software Guide

STOKES_FLOW

altinfsup
box_stokes
channel _stokes
flowbc
helpme_stokes
infsup
longstep_stokes
obstacle_stokes
plate_stokes
qldiv
quad_stokes

solve_step_stokes

solve_stokes
specific_flow
square_stokes
step_stokes
stokes_ql1p0
stokes_qlql
stokes_q2p1
stokes_q2ql
stokespost

computes inf-sup eigenvalue distribution of potential flow
set up flow problem in rectangular domain

setup inflow /outflow problem in square domain
imposes inflow boundary condition

Stokes flow problem interactive help

computes inf-sup eigenvalue distribution

setup flow problem in extended step domain
setup inflow /outflow problem in obstacle domain
setup flow problem in slit domain

computes norm of divergence of Q1 flow solution
setup Stokes problem in quadrilateral domain
solve Stokes problem in step domain

solve Stokes problem in square domain

(current) problem imposed boundary condition
setup flow problem in unit square domain

setup flow problem in standard step domain

Q- Py matrix generator

Q1—-Q; matrix generator

Q>—P_, matrix generator

Q2>—Q1 matrix generator

estimates Stokes error distribution

stokespost_q2pl

stokespost_qlp0O_p

stressjmps_ql1p0
stressjmps_q2pl

vectorized Q2—P_1 local Poisson error estimator
computes Poisson error estimator for Q1—P,
stress jumps for rectangular @Q,—FP, grid
vectorised stress jumps for Q2—P_; grid

17

vorticity_ql computes Q1 total vorticity

STOKES_MINRES

algpost_q2pl
est_errorq2pl
est_minres
helpme_stopping
hydro
itsolve_stokes
minres_esterror
param_est

computes Qo—P_1 error estimate inside iteration

computes energy error estimate for Q2—P_; solution

MINRES with discretization error estimation

optimal iterative solvers interactive help

removes hydrostatic pressure mode from Stokes solution vector
specialized iterative solution of Stokes problem

MINRES with energy norm estimation

determines adaptive stopping criteria for EST_MINRES

IFISS 3.1 Software Guide

NAVIER_FLOW

Cpre_qlp0
fpsetup_q0
fpsetup_ql
fpsetup_q2p1
fpzsetup_q0
fpzsetup_ql
fpzsetup_q2pl
helpme_navier
navier_ql

navier_q2
navierpost_qlp0_bc
navierpost_qlp0_p
newton_ql
newton_q2
solve_navier
solve_plate_navier
solve_obstacle_navier
solve_step_navier

stabilization for least squares commutator for Q1-Py
Q) pressure convection-diffusion matrix

Q1 pressure convection-diffusion matrix

P_; pressure convection-diffusion matrix
modified Qg pressure convection-diffusion matrix
modified @ pressure convection-diffusion matrix
modified P_; pressure convection-diffusion matrix
Navier-Stokes flow problem interactive help

Q1 convection matrix

Q> convection matrix

postprocesses Poisson error estimator

computes Poisson error estimator for Q1—FP,

Q1 convection derivative matrices

Q) convection derivative matrices

solve Navier-Stokes problem in square domain
solve Navier-Stokes problem in slit domain

solve Navier-Stokes problem in obstacle domain
solve Navier-Stokes problem in step domain

18

navierpost estimates Q2—P_1 or Q2—Q1 NS error distribution
TIMESTEPPING

box_heat solves heat equation in rectangular cavity domain
colamdAxB refined saddlepoint system solver
default AxB standard MATLAB saddlepoint system solver
dtflowbc imposes updated flow BC at the current timestep
dtheatbc imposes updated Dirichlet BC at the current timestep
ell_heat solves heat equation in L-shaped domain

helpme_heat
helpme_timestepping
helpme_unsteady_cd
helpme_unsteady_navier
stabtr

stabtrNS

unsteady_cd
unsteady_navier
unsteady_obstacle_navier
unsteady_step_navier
unsteadyflowbc

heat equation interactive help

unsteady problem solution interactive help

unsteady convection-diffusion problem interactive help
unsteady flow problem interactive help

standard integrator based on stabilized TR,
Navier-Stokes integrator based on stabilized TR
unsteady convection-diffusion in square-shaped domain
unsteady Navier-Stokes flow in square-shaped domain
unsteady Navier-Stokes flow in obstructed domain
unsteady Navier-Stokes flow in step domain

imposes inflow boundary condition

IFISS 3.1 Software Guide

19

GRAPHS

box_heatplot

dttplot

ell_heatplot

eplot

eplotl

errplot

errplotl

flowplot09

flowvolume

logoplot

mplot

mplotl
obstacle_flowmovie
obstacle_unsteadyflowplot
outflow

solplot

solplotl

solsurf

solsurfl
square_flowmovie
square_heatplot
square_unsteadyflowplot
square_vorticityplot
step_flowmovie
step_unsteadyflowplot
step_vorticityplot
wwwplotl
wwwplotobs

xrefplot

xsection

evolves temperature data on rectangular domain

plots timestep data

evolves temperature data on L-shaped domain

plots element data on square-shaped domain

plots element data on L-shaped domain

plots solution and error on square-shaped domain
plots solution and error on L-shaped domain

plots flow data

plots/explores flow solution on vertical cross-section
plots IFISS logo

plots 2x2 macroelement data on square-shaped domain
plots 2x2 macroelement data on L-shaped domain
generates movie of flow around square obstacle
evolves flow data on obstructed channel domain
plots/explores tangential flow solution on outflow
plots nodal data on square-shaped domain

plots nodal data on L-shaped domain

plots solution surface on square-shaped domain

plots solution surface on L-shaped domain

generates flow movie on square-shaped domain
evolves temperature data on square-shaped domain
evolves flow data on square-shaped domain

plots vorticity data on square-shaped domain
generates flow movie on extended step-shaped domain
evolves flow data on extended step-shaped domain
plots vorticity data on step domain

plots solution and error estimate on L-shaped domain
plots streamlines and error estimate on general domain
comparison plot of iterative solver residuals
plots/explores solution on horizontal cross-section

IFISS 3.1 Software Guide

20

SOLVERS

a_cdt

a_nst
amg_grids_setup
amg_smoother

amg_smoother_params

amg_v_cycle
bicgstab_ell_r
bsolve
cg_test
gmres_r
helpme_it
helpme_mg
idrs_r
it_solve
m_amgzt
m_amgzz
m_bfbt
m_diagt
m_fp
m_fp_amgz
m_fp_mg
m_ilut
m_masscheb
m_massdiag
m_mg
m_st_amgz
m_st_block
m_st_mg
m_sxbfbt
m_xbfbt
m_xbfbt_amgz
m_xbfbt_mg
m_xfp
m_xfp_amgz
mg_apsetup_ql
mg_cd
mg_diff
mg_iter
mg_ns
mg_post
mg_pre
mg_prolong
mg_smooth
mg_solve
resplot
snapshot_solve

matrix-vector product for convection-diffusion operator
matrix-vector product for linearized Navier-Stokes operator
performs algebraic multigrid setup phase

performs AMG smoothing

generates structure for AMG smoother parameters
performs one AMG V-cycle

BICGSTAB(Y) iteration with right preconditioning
solves Galerkin system using backslash

CG convergence demo

GMRES iteration with right preconditioning

iterative solvers interactive help

geometric multigrid interactive help

Induced Dimension Reduction iteration

driver for iterative solution of predefined problem
AMG preconditioner for scalar operator

AMG preconditioner with multiple v-cycles

ideal least squares commutator preconditioner (unscaled)
action of diagonal preconditioning operator

ideal pressure convection-diffusion preconditioner
AMG iterated PCD preconditioner

GMG iterated PCD preconditioner

incomplete LU preconditioner

mass matrix Chebyshev preconditioning operator

mass matrix diagonal preconditioning operator

GMG preconditioner for scalar problems

AMG block preconditioner for Stokes equations

block preconditioner for Stokes equations

block MG preconditioner for Stokes equations

ideal stabilized least squares commutator preconditioner
ideal least squares commutator preconditioner

AMG iterated LSC preconditioner

GMG iterated LSC preconditioner

modified ideal PCD preconditioner

AMG iterated modified PCD preconditioner

Q) pressure diffusion matrix for GMG

GMG preconditioner for convection-diffusion problem
GMG preconditioner for diffusion problem

performs one GMG iteration

GMG preconditioner for Navier-Stokes equations
postsmoothing for GMG

presmoothing for GMG

GMG prolongation operator for square domain
smoothers for GMG on square domain

driver for GMG solution of predefined problem

plot residuals computed by iterative solvers

driver for iterative solution of predefined unsteady problem

IFISS 3.1 Software Guide 21

2.1.2 TIFISS figures

As is evident from the sample runs described in the previous sections, several figures are “preal-
located” within IFISS. That is, particular figures are always used for generating specific graphical
output. A list of these figures is given below.

Figure Description

10 grid plot (diffusion or convection-diffusion)

11 diffusion problem solution & error plot (Q1)

12 diffusion problem solution & error plot (Q2)

19 heat equation temperature evolution

20 convective wind

22 convection-diffusion solution & error plot (Q1)

29 unsteady convection-diffusion problem temperature evolution

30 grid plot (Stokes or Navier-Stokes flow problem)

33 Stokes flow solution plot

34 Stokes flow solution error plot (Q1—Py, Q1—Q1, Q2-Q1, Q2—P_1)
66 Navier-Stokes flow solution plot

67 Navier-Stokes flow solution error plot (Q1—Pp, Q2-Q1, Q2—P_1)
167 unsteady Navier-Stokes flow solution evolution

2.1.3 Running jobs in batchmode

IFISS also provides a batchmode facility via which data may be input from a pre-prepared file
rather than directly from the terminal. The specific parameters that need to be input will of
course vary from problem to problem, and the input file must be prepared accordingly. Sample
input files for each of the model problems are provided (located in the appropriate test_problems
subdirectory); these can be easily modified by the user for a particular run. The names of these
input files must have the form “*_batch.m” where “*” begins with one of “P”, “CD”, “S” or “NS”
for the Poisson, convection-diffusion, Stokes or Navier-Stokes equations, respectively. For example,
typing the command

batchmode (’P2°)

uses the file P2_batch.m to generate and solve the discrete Poisson equation on an L-shaped domain
without interactive input. The results of the run are stored in the file batchrun in the datafiles
subdirectory.

A similar batchmode facility is available for running the driver it_solve without interactive in-
put after a discrete system has been generated in batchmode. Input files must have the names
itsolve* batch.m. A template, itsolve batch.m, which applies multigrid preconditioned CG to
the discrete Poisson equation, is available in the solvers subdirectory:

batchmode (’itsolve’)

IFISS 3.1 Software Guide 22

This file would have to be modified by the user to contain the appropriate parameter values for
other problems. The list of parameters required in each case can be generated by carrying out an
initial run in interactive mode.

2.2 Generating new domains or model problems

For each of the four PDEs treated, IFISS contains four built-in model problems. These are outlined
in the Appendix. It is also straightforward to adapt the code to include different domains, PDE
features or boundary conditions.

2.2.1 Introducing a new problem domain

The first task in setting up a different PDE domain is the grid generation, which should be done by
a function <newproblem> domain.m analogous to those in the /grids/ directory (see Section 2.1
for details of the directory structure). This function should generate grid information (specifically,
node point coordinates and element connectivity information), which will also serve to define the
domain. The results should be saved in a data file called /datafiles/<newproblem> grid.mat.

The grid information should be organized into a collection of MATLAB arrays specified as follows.

e A nodal coordinate matrix (xy) of size (# of nodes)x2, in which the first column contains
the x-coordinates of the nodes and the second column contains the y-coordinates.

e A matrix (mv) of size (# of macroelements)x9 containing the so-called “macroelement map-
ping”. For biquadratic Qs approximation this is simply the connectivity array of the grid,
i.e. entry mv(nel,nv) contains the global node number of node nv on element nel. The PDE
problem drivers in IFISS tacitly assume that the same nine-node data structure is used in
the case of bilinear Q; approximation. This means that the associated subdivision is formed
from macroelements each consisting of four elements. This concept is explained in more
detail below.

e A boundary vertex vector (bound) containing a list of nodes on the Dirichlet part of the
boundary.

e A macroelement boundary edge matrix (mbound) of size (# of macroedges)x4. For each
macroelement having an edge on the Dirichlet part of the boundary, the first column is a
pointer to the macroelement number and the second is an integer 1, 2, 3 or 4, which uniquely
defines the orientation of the edge (bottom, right, top or left).

e Two vectors x and y. These are used solely for plotting purposes (MATLAB assumes a
rectangular matrix of values when calling mesh and contour plotting functions). The default
choice is to match the data in x and y to the nodal coordinate data in xy. For a cartesian
product grid this enables generation of mesh plots showing the underlying element structure.
For general quadrilateral grids the data in x and y determine the interpolation points used
in generating the solution plots.

IFISS 3.1 Software Guide

RSN,
EEEESNY
LTS

(a) Indices of nodes of the macroelement grid.

13\
T
™~
I
I

NN,

15
~
~
I
T

S
T
™~
\
\

&

\

[~ \
\\

\\\\ \\

S \\\

24

(b) Indices of nodes on the Dirichlet boundary.

Figure 2.4: Sample output from macrogridplot.

23

After a grid is created by the grid generator, the data can be visually checked using the function
macrogridplot. This facility is illustrated in the sample IFISS session below, which produces a
nonrectangular domain and a nonrectangular grid.

IFISS 3.1 Software Guide 24

>> quad_domain % generates the datafile quad_grid.mat

Grid generation for quadrilateral domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 3
aspect ratio (x:1) (default is 4:1) : 1

height contraction ratio (default is 4) : 2

outflow boundary: natural/prescribed 1/2 (default is natural)
plotting grid points ...

>> load quad_grid
>> macrogridplot (xy,mv,bound,mbound) ;

Subdivision logistics ..
81 nodes
16 (2x2 macro)elements
25 nodes on Dirichlet boundary
12 macroelement edges on Dirichlet boundary

>> disp(mv)

1 19 21 3 10 20 12 2 11
3 21 23 5 12 22 14 4 13
5 23 25 7 14 24 16 6 15

59 77 79 61 68 78 70 60 69
61 79 81 63 70 80 72 62 71

>> [ev,ebound]=qlgrid(xy,mv,bound,mbound) ;
>> gridplot(xy,ev,bound, ebound) ;

Grid logistics ..
81 nodes
64 elements
25 nodes on Dirichlet boundary
24 element edges on Dirichlet boundary

The graphical output from macrogridplot is shown in Figure 2.4. The macroelement connectivity
matrix mv can be correlated with the numbered nodes in the figure. The macroelement boundaries
are distinguished from the internal element boundaries by their darker colour and represent the
actual grid lines if biquadratic approximation is employed. In the example above, the call to qlgrid
is used to generate a bilinear approximation, for which the underlying grid is that represented by
the union of the light and dark blue boundaries. This function generates the element connectivity
matrix ev and the element boundary edge matrix ebound. This information can also be visualized
by calling the function gridplot (graphical output not shown).

In addition to the grid generator, the other requirement is to write the PDE driver. Templates for
this are the function quad_diff (solving Poisson’s equation) and the function quad_stokes (which
sets up matrices for subsequent solution using solve_stokes or solve navier).

IFISS 3.1 Software Guide 25

2.2.2 Changing PDE features or boundary conditions

Information on PDE attributes and boundary conditions are held in specific m~-files in the di-
rectory associated with each PDE. For example, for Navier-Stokes flow problems these are the
two files /stokes flow/specific flow.m and /diffusion/specificbc.m. These specify the
velocity boundary conditions and stream-function boundary conditions, respectively. To define
a different Navier-Stokes flow problem on the same domain one simply needs to edit these two
m-files. Further information can be obtained by using helpme.

Appendix A

Steady-state problems

In this appendix we give a brief description of the seventeen test problems currently implemented
in IFISS. A fuller description can be found in [ESW2005]. Each problem can be generated by
running the appropriate driver routine (as identified below) and is based on one of the following
physical domains:

{27 : the square (—1,1) x (—1,1);

(27 : the L-shaped region generated by taking the complement in (—1, L) x (-1, 1) of the quadrant
(717 0] X (715 O]a

{25 : the rectangular region (—1,5) x (—1, 1), with a slit along the line where 0 < x < 5 and y = 0.

)7 : adisconnected rectangular region (0, 8) x (—1, 1) generated by deleting the square (7/4,9/4) x

(—1/4,1/4).

The Poisson equation: diff testproblem

P1 The domain is {25, the source is the constant function f(z,y) = 1, and zero Dirichlet conditions
are applied on all boundaries. This represents a simple diffusion model for the temperature
distribution u(zx, y) in a square plate, with uniform heating of the plate whose edges are kept
at an ice-cold temperature.

P2 The source function and boundary conditions are the same as above but here the domain is
(. As aresult, the underlying solution to the Poisson problem has a singularity at the origin.

P3 The domain is 25 and the source function f is identically zero. The boundary conditions are
chosen so that the problem has the exact analytic solution

2(1+y)
3o+ (1+ 97

u(z,y) = (

26

IFISS 3.1 Software Guide 27

P4 This is a second analytic test problem, which is associated with the singular solution of problem
P2 given by

20
u(r,0) = r2/3 sin (+7r> ;

where r represents the radial distance from the origin, and 6 is the angle with the vertical
axis.
The convection-diffusion equation: cd_testproblem

All of these reference problems are posed on the square domain (25 with convective velocity of
order unity, that is, || ¥]|. = O(1).

CD1 For constant convective velocity vector @ = (0, 1), the function

l—ey:1
u(r,y) =v | ——
l1—e"¢

satisfies the convection-diffusion equation exactly. For this problem, Dirichlet conditions on
the boundary are determined by this solution, and satisfy

u(z,—1) =z, wu(z,1)=0, u(-1l,y)~-1, u(l,y) =1,

where the latter two approximations hold except near y = 1. The dramatic change in the
value of u near y = 1 constitutes an exponential boundary layer. This problem also has an
option for applying a natural (Neumann) boundary condition on the outflow (top) boundary.

CD2 Here @ = (0,1 + (x + 1)?/4), so the wind is again vertical but increases in strength from
left to right across the domain. The function w is set to unity on the inflow boundary and
decreases to zero quadratically on the right wall and cubically on the left wall. On the outflow
(top) boundary, either a Dirichlet or Neumann condition can be applied (both homogeneous).
The fixed values on the side boundaries generate characteristic boundary layers.

CD3 For this problem, w = (— sin g, cos %), that is, the wind is still constant but is now at
an angle of 30° to the left of vertical. The Dirichlet boundary conditions are zero on the
left and top boundaries and unity on the right boundary, with a jump discontinuity (from
0 to 1) on the bottom boundary at the point (0,—1). The resulting discontinuity in the
solution is smeared by the presence of diffusion, producing an internal layer. There is also

an exponential boundary layer near the top boundary y = 1.

CD4 This is a simple model for the temperature distribution in a cavity with a ‘hot’ external
wall. The wind @ = (2y(1 —2?), —2x(1 —y?)) determines a recirculating flow. The Dirichlet
boundary conditions imposed have value one on the right-hand (hot) wall and zero every-
where else. There are therefore discontinuities at the two corners of the hot wall, z = 1,
y = £1, which lead to boundary layers near these corners.

IFISS 3.1 Software Guide 28

The Stokes equations: stokes_testproblem

S1 This problem represents steady horizontal flow in a channel driven by a pressure difference
between the two ends, or Poiseuille flow. Here a solution is computed numerically on (25
using the velocity % = (1 — y?, 0) to define a Dirichlet condition on the inflow boundary
z = —1. The no-flow Dirichlet condition @ = 0 is applied on the characteristic boundaries
y = —1and y = 1. At the outflow boundary (z = 1,—1 < y < 1), there is a choice of
applying a Neumann or a Dirichlet condition.

S2 This example represents slow flow in a rectangular duct with a sudden expansion, or flow over
a step. The domain is {4z with L = 5. A Poiseuille flow profile is imposed on the inflow
boundary (z = —1;0 < y < 1), and a no-flow (zero velocity) condition is imposed on the top
and bottom walls. A Neumann condition is applied at the outflow boundary which automat-
ically sets the mean outflow pressure to zero.

S3 This is a classical test problem used in fluid dynamics, known as driven-cavity flow. It is a
model of the flow in a square cavity (the domain is {5) with the lid moving from left to right.
A Dirichlet no-flow condition is applied on the side and bottom boundaries. Different choices
of the nonzero horizontal velocity on the lid give rise to different computational models:

{y=1;-1<z <1llu, =1}, a leaky cavity;
{y=1-1<z < 1lu, =1}, a watertight cavity;
{y=1;-1<2 <1u, =1— 2}, a regularised cavity.

S4 This is a simple model of colliding flow. It is an analytic test problem on ()5 associated with
the solution of the Stokes equations given by

U= (20xy3, 5zt — 5y4), p = 6022y — 20y + constant.

The interpolant of % is used to specify Dirichlet conditions everywhere on the boundary.

Navier-Stokes equations: navier_testproblem

The first three of these test problems are fast-flowing analogues of the first three Stokes flow prob-
lems.

NS1 The Poiseuille channel flow solution % = (1—y2, 0), p = —2va is also an analytic solution of
the Navier-Stokes equations, since the convection term 4 - V %4 is identically zero. The only
difference is that here the pressure gradient is proportional to the viscosity parameter. As
for the analogous Stokes problem S1, at the outflow boundary (x = 1,—1 < y < 1) there is
a choice of Neumann or Dirichlet boundary conditions.

NS2 This example represents flow over a step of length L (the domain is {27 with L chosen by the
user). For high Reynolds number flow, longer steps are required in order to allow the flow
to fully develop (unlike in problem S2, where L = 5 is sufficient). The boundary conditions
are identical to those in problem S2.

IFISS 3.1 Software Guide 29

NS3 This problem again models flow in a cavity {25. The boundary conditions are the same as
in problem S3, with the choice of a leaky, watertight or regularised lid boundary condition.

NS4 This is a classical problem in fluid dynamics which is referred to as Blasius flow: the objective
is to compute the steady flow over a flat plate moving at a constant speed through a fluid
that is at rest. The flow domain is £25. The ‘parallel flow’ Dirichlet condition @ = (1,0) is
imposed at the inflow boundary (z = —1; -1 < y < 1) and also on the top and bottom of
the channel (—1 < x < 5;y = +1), representing walls moving from left to right with speed
unity. A no-flow condition is imposed on the internal boundary (0 < x < 5;y = 0), and a
Neumann condition is applied at the outflow boundary (x = 5; -1 <y < 1).

NS5 This is another classical problem. The domain is {4 and is associated with modelling flow in
a rectangular channel with a square cylindrical obstruction. A Poiseuille profile is imposed on
the inflow boundary (x = 0; —1 <y < 1), and a no-flow (zero velocity) condition is imposed
on the obstruction and on the top and bottom walls. A Neumann condition is applied at the
outflow boundary which automatically sets the mean outflow pressure to zero.

Appendix B

Time dependent problems

In this appendix we describe the seven unsteady test problems currently implemented in IFISS.
Each problem can be generated by running the appropriate driver routine (as identified below)
and is based on one of the following four physical domains:

)5 : the square (—1,1) x (—1,1);
% : the rectangle (0, L) x (0, H);

(7 : the L-shaped region generated by taking the complement in (-1, L) x (-1, 1) of the quadrant
(717 0] X (715 O]a

)7 : adisconnected rectangular region (0, 8) x (—1, 1) generated by deleting the square (7/4,9/4) x

(—1/4,1/4).

In all cases a slow “start-up” from zero to a steady-state Dirichlet temperature/horizontal velocity
Uso 18 achieved via the time-dependent boundary condition

Ui (1) = Uoo (1 — e710F).

The heat equation: heat_testproblem

H1 The heat equation is solved on the rectangular domain is {2, with the vertical edges heated/cooled
to values of £1/2. Either a zero Dirichlet or a zero Neumann condition can be specified on
the horizontal edges. In the latter case the solution tends to a steady state with a linear
temperature variation in the x-direction.

H2 The heat equation is solved on the L-shaped domain {%z. A zero Dirichlet condition is imposed
at all points on the boundary except for the vertical edge x = —1 and the point value (1,0)
which are forced to a constant temperature of unity.

The convection-diffusion equation: unsteady_cd_testproblem

These reference problems are posed on the square domain {25 and the convective wind is indepen-
dent of time.

30

IFISS 3.1 Software Guide 31

T—-CD2 This is the unsteady analogue of CD2. The convective field @ = (0,1 + (x + 1)2/4),
so the wind is vertical but increases in strength from left to right across the domain. The
temperature u is forced to unity on the inflow boundary but decreases to zero quadratically
on the right wall and cubically on the left wall. On the outflow (top) boundary, either a
Dirichlet or Neumann condition can be applied (both homogeneous). The wind pushes a hot
‘wave’ through the domain which exits in 2-3 time units. The steady-state solution can be
compared with that given by solving CD2.

T—CD4 This is the unsteady analogue of CD4. This is a model for the development of the temper-
ature distribution in a cavity with a ‘hot’ external wall. The wind @ = (2y(1 —2?), —2z(1—
y?)) determines a recirculating flow. The Dirichlet boundary conditions imposed have value
one on the right-hand (hot) wall and zero everywhere else. There are therefore discontinuities
at the two corners of the hot wall, x = 1, y = £1, which lead to boundary layers near these
corners. The steady-state solution can be compared with that given by solving CD4.

Navier-Stokes equations: unsteady_navier_testproblem

T—-NS2 This is the unsteady analogue of NS2. This example models the development of flow over
a step of length L (the domain is (= with L chosen by the user). The boundary conditions
ultimately tend to those in NS2. If the viscosity parameter is sufficiently large (v > 1/600)
and L is sufficiently long L ~ 40 the flow solution tends to a steady state. In this case the
steady-state solution can be compared with that given by solving NS2.

For high Reynolds number flow, the steady state is not stable and the flow is forever unsteady.

T—-NS3 This is the unsteady analogue of NS3. This problem models “spin-up” flow in a cavity
{27. The boundary conditions are the same as in S3, with the choice of a leaky, watertight
or regularised lid boundary condition. If the viscosity parameter is sufficiently large (v >
1/1500) the flow solution ultimately tends to a steady state.

T-NS5 This is the unsteady analogue of NS5. The critical value of the viscosity parameter
(associated a bifurcation from a symmetric steady flow to unsymmetric vortex shedding) is
relatively large in this case. For example, a periodic shedding solution can be computed for
v = 1/400 using Q2—P_1 approximation.

