FINITE ELEMENTS AND FAST SOLVERS
COMPUTATIONAL EXERCISES *

81. The Stokes Equations. Running the driver stokes_testproblem auto-

matically sets up the data files specific flow and specific_bc associated with
Examples 5.1-5.4 in Chapter 5 of [Esw]. The function it_solve uses the built-in
MATLAB routine minres and offers the possibility of a diagonal, block diagonal or
a multigrid V-cycle preconditioning the (1, 1) block, together with a diagonal matrix
preconditioning the (2,2) block.
1.1. This exercise explores Example 5.1 in [ESw]. This problem represents steady
horizontal flow in a channel driven by a pressure difference between the two ends,
or Poiseuille flow. Here a solution is computed numerically on 5 using the velocity
7= (1 —y?, 0) to define a Dirichlet condition on the inflow boundary x = —1. Take
the default Neumann outflow condition and run stokes_testproblem to compute the
blocks Ast, Bst and C for the Stokes matrix K = [Ast,Bst’;Bst,-(1/4)*C] using
stabilized Q1P approximation on a 4 x 4 grid. Then, compute the eigenvalues of
K using eig(full(K)), and check that the number of negative and zero eigenvalues
agree with the dimension of the pressure space. Compare the number of unit and
positive eigenvalues with the number of boundary velocity nodes and the number of
interior velocity nodes, respectively. Finally, repeat the experiment with a Dirichlet
outflow condition.

1.2. This is an important exercise. It explores the issue of local mass conservation
using the step flow problem in Example 5.2 in [ESW]. The function flowvolume
postprocesses a flow solution and computes the volume of fluid crossing a specified
vertical grid line. Take the default 16 x 48 grid and use flowvolume to generate
horizontal velocity profiles at x = —1, x = 0 and = = 5 for the default stabilized Q-
Py and Q1—Q; methods. Compare the results with those obtained using the higher
order Qo>—P_1 and Q2—Q1 methods.

1.3. This exercise explores Example 5.3 in [ESW]. This is a classical test problem used
in fluid dynamics, known as driven-cavity flow. It is a model of the flow in a square
cavity (the domain is Qg) with the lid moving from left to right. Consider solving the
default regularized driven cavity flow problem in Example 5.3 using Q1—FP, approxi-
mation without stabilisation using a uniform 32 x 32 grid. The effect on the computed
pressure solution will be self-evident, but the effect on iterative convergence can be
observed by then running it_solve using the default AMG preconditioner choice.
Contrast the iteration counts with those obtained using the same preconditioner in
the case of stabilized Q1—Py approximation.

1.4. Consider solving the regularized driven cavity flow problem in Example 5.3 using
stabilized @1—Q1 approximation. Select a stretched 32 x 32 grid and run it_solve
with algebraic multigrid preconditioning and Jacobi smoothing. Compare the conver-
gence profile with that obtained for a uniform 32 x 32 grid and the default stretched
64 x 64 grid. Then, repeat the exercise using Gauss-Seidel smoothing instead of Jacobi.

§2. The Navier-Stokes Equations. Running navier_testproblem automat-
ically sets up the data files specific_flow and specific_bc associated with Exam-
ples 7.1-7.4 in Chapter 7 of [Esw]. The function it_solve offers the possibility of

*©David Silvester, Kacov Summer School 2011.
1



using preconditioned GMRES, BICGSTAB or IDR as a solver. Both ideal and inexact—
AMG pressure convection-diffusion and least squares commutator preconditioners are
provided.

2.1. Consider solving the Poiseuille flow problem in Example 7.1 Verify that the exact
solution is computed using Q2—)1 approximation on the default 16 x 16 grid and the
hybrid nonlinear iteration strategy that is built into IFISS. Rerun the same problem
using a uniform 32 x 32 grid for a range of viscosity parameters v. What happens in
the limit ¥ — 07 Repeat this experiment using the stabilized Q1—FPy method instead.
Can you explain the difference in the observed behavior?

2.2. This is a fundamental modeling exercise. It explores the natural outflow condi-
tion in Example 7.2 in [ESW]. The default problem has the outflow at # = 5. Consider
solving the problem on a longer domain with the outflow at x = 10. Take the locally
mass conserving Qo—P_; approximation method, and the default uniform grid. Then,
use flowvolume to compare the computed horizontal velocity profiles at x = 5 for
increasing Reynold numbers (specifically; v = 1/50, v = 1/125 and v = 1/200) on the
original and the extended domain.

2.3. Compare GMRES iteration counts and CPU timings for the ideal and AMG-
iterated pressure convection-diffusion preconditioners by solving the driven cavity
problem in Example 7.3 with ¥ = 1/100 on a sequence of three uniform grids. Take
Q->—Q; and Q1—PFP, mixed approximation and compare the results.

2.4. Compare the effectiveness of the default AMG-iterated pressure convection-
diffusion, modified pressure convection-diffusion and least-squares commutator pre-
conditioners for solving systems associated with the step flow problem in Example 7.2.
Take the stable Q2—Q1 mixed approximation method using the level 5 grid with the
outflow at x = 10 and set up an Oseen problem by running five Picard steps. Consider
three cases: v =1/50, v =1/125 and v = 1/200.

83. Unsteady Navier-Stokes Flow. Running unsteady navier_testproblem

sets up the data files specific_flow and specific_bc associated with the reference
unsteady flow problems. The function snapshot_solve offers the possibility of using
preconditioned GMRES as a solver for the linearized system that must be solved at a
given (snapshot) time.
3.1. Assess the effectiveness of the pressure convection-diffusion and least-squares
commutator preconditioners for solving snapshot systems that arise at times t = 5 and
t = 90 when solving the unsteady cavity flow problem with » = 1/1000. Take a 64 x 64
stretched grid with Q2—Q; approximation. Run the function square_flowmovie and
verify that the solution converges to the steady-state solution that is generated by
running solve navier. Compare snapshot_solve GMRES iteration counts with those
obtained when using it_solve to solve the system that arises at the final step of
Newton iteration.

3.2. Consider the problem of unsteady flow over a square obstacle with the grid
parameter set to 5 using Qo—P_; approximation, with all other parameters set to
default values. Verify that the solution converges to the steady-state solution by
running solve_obstaclemnavier and plotting the solution via:
>> obstacle_unsteadyflowplot (qmethod,mv,xns(1:2*nv) ,inf,By,Bx,
G(1:nv,1:nv),xy,Xyp,X,y,bound,bndxy,bnde,obs,0.1,198);

What happens when you repeat this experiment: this time running the driver function
unsteady_obstacle navier with v = 1/4007



