Fast Solvers for Incompressible Flow Problems II

David Silvester University of Manchester

Lecture II

$$-\nabla^2 \, \vec{u} + \nabla p = \, \vec{0}; \quad \nabla \cdot \, \vec{u} = 0$$

$$\vec{u} \cdot \nabla \vec{u} - \mathbf{\nu} \nabla^2 \vec{u} + \nabla p = \vec{0}; \quad \nabla \cdot \vec{u} = 0$$

Reference — lectures I & II

Chapters 5-6 (Stokes) & 7-8 (Steady Navier-Stokes).

Steady-state Navier-Stokes equations

$$\vec{u} \cdot \nabla \vec{u} - \nu \nabla^2 \vec{u} + \nabla p = \vec{0}$$
 in Ω
 $\nabla \cdot \vec{u} = 0$ in Ω .

Boundary conditions:

$$\vec{u} = \vec{w} \text{ on } \partial\Omega_D, \quad \frac{\nu}{\partial n} \frac{\partial \vec{u}}{\partial n} - \vec{n}p = \vec{0} \text{ on } \partial\Omega_N.$$

Picard linearization: Given \vec{u}^0 , compute \vec{u}^1 , \vec{u}^2 , ..., \vec{u}^k via

$$\vec{u}^k \cdot \nabla \vec{u}^{k+1} - \nu \nabla^2 \vec{u}^{k+1} + \nabla p^{k+1} = 0,$$
$$\nabla \cdot \vec{u}^{k+1} = 0 \quad \text{in } \Omega$$

together with appropriate boundary conditions.

Steady-state Navier-Stokes equations

$$\vec{u} \cdot \nabla \vec{u} - \nu \nabla^2 \vec{u} + \nabla p = 0$$
 in Ω
 $\nabla \cdot \vec{u} = 0$ in Ω .

Boundary conditions:

$$\vec{u} = \vec{w} \text{ on } \partial\Omega_D, \quad \nu \frac{\partial \vec{u}}{\partial n} - \vec{n}p = \vec{0} \text{ on } \partial\Omega_N.$$

Newton linearization:

Given \vec{u}^k , and residuals R_k and r_k , compute the correction $(\delta \vec{u}^k, \delta p^k)$ via

$$\begin{split} \delta \, \vec{u}^k \cdot \nabla \, \vec{u}^k + \, \vec{u}^k \cdot \nabla \delta \, \vec{u}^k - \nu \nabla^2 \delta \, \vec{u}^k + \nabla \delta p^k &= R_k, \\ \nabla \cdot \delta \, \vec{u}^k &= r_k \qquad \text{in } \Omega \end{split}$$

together with appropriate boundary conditions.

Example: Flow over a Step

• A posteriori (energy–) error estimation

- A posteriori (energy–) error estimation
 - Stokes flow
 - Navier-Stokes flow

- A posteriori (energy–) error estimation
 - Stokes flow
 - Navier-Stokes flow
- Optimally preconditioned GMRES:

- A posteriori (energy–) error estimation
 - Stokes flow
 - Navier-Stokes flow
- Optimally preconditioned GMRES:
 - Pressure Convection-Diffusion preconditioner
 - Least-squares commutator preconditioner

- A posteriori (energy–) error estimation
 - Stokes flow
 - Navier-Stokes flow
- Optimally preconditioned GMRES:
 - Pressure Convection-Diffusion preconditioner
 - Least-squares commutator preconditioner
- A proof-of-concept implementation:
 - The IFISS 3.1 MATLAB Toolbox

Stokes recap ...

Mixed formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$(\nabla \vec{u}, \nabla \vec{v}) + (\nabla \cdot \vec{v}, p) = f(\vec{v}) \qquad \forall \vec{v} \in V, \\ (\nabla \cdot \vec{u}, q) = g(q) \qquad \forall q \in Q.$$
 (V)

Spaces : $V := (H_0^1(\Omega))^d$ and $Q = L^2(\Omega)$ so that the dual spaces are $V^* := (H^{-1}(\Omega))^d$ and $Q^* := L^2(\Omega)$ respectively.

In practice, the velocity approximation needs to be continuous across inter-element edges (e.g. Q_1), whereas the pressure approximation can be discontinuous. Two different inf-sup stable mixed approximation methods are implemented in IFISS:

 $Q_2 - Q_1$ element (also referred to as Taylor-Hood).

Two different inf-sup stable mixed approximation methods are implemented in IFISS:

 $Q_2 - Q_1$ element (also referred to as Taylor-Hood).

 $Q_2 - P_{-1}$ element : \circ pressure; $\xrightarrow{\uparrow}$ pressure derivative

Two unstable low-order mixed approximation methods are implemented in IFISS:

 $Q_1 - P_0$ element : • two velocity components; • pressure

Two unstable low-order mixed approximation methods are implemented in IFISS:

 $Q_1 - P_0$ element : • two velocity components; • pressure

 $Q_1 - Q_1$ element : • two velocity components; \circ pressure

$Q_1 - P_0$ stabilization

(Kechkar & S. (1992))

Given a suitable macroelement (e.g. 2×2) partitioning \mathcal{M}_h . Find $(\vec{u}_h, p_h) \in V_h \times Q_h$ such that:

$$a\left(\vec{u}_{h}, \vec{v}_{h}\right) + b\left(\vec{v}_{h}, p_{h}\right) = \vec{f} \quad \forall \vec{v}_{h} \in V_{h},$$

$$b\left(\vec{u}_{h}, q_{h}\right) - \beta^{*} c\left(p_{h}, q_{h}\right) = 0 \quad \forall q_{h} \in Q_{h}.$$

$Q_1 - P_0$ stabilization

(Kechkar & S. (1992))

Given a suitable macroelement (e.g. 2×2) partitioning \mathcal{M}_h . Find $(\vec{u}_h, p_h) \in V_h \times Q_h$ such that:

$$a\left(\vec{u}_{h}, \vec{v}_{h}\right) + b\left(\vec{v}_{h}, p_{h}\right) = \vec{f} \quad \forall \vec{v}_{h} \in V_{h},$$

$$b\left(\vec{u}_{h}, q_{h}\right) - \beta^{*} c\left(p_{h}, q_{h}\right) = 0 \quad \forall q_{h} \in Q_{h}.$$

Where $\beta^* = 1/4$ and

$$c(p_h, q_h) = \sum_{M \in \mathcal{M}_h} |M| \sum_{E \in \mathcal{E}(M)} \langle \llbracket p_h \rrbracket, \llbracket q_h \rrbracket \rangle_{\bar{E}} \qquad \forall q_h \in Q_h,$$

where |M| is the mean element area within the macroelement and $\langle p,q\rangle_{\bar{E}} = \frac{1}{|E|} \int_E pq$.

Q_1 – Q_1 stabilization

(Dohrmann & Bochev (2004)) Find $(\vec{u}_h, p_h) \in V_h \times Q_h$ such that:

$$a\left(\vec{u}_{h}, \vec{v}_{h}\right) + b\left(\vec{v}_{h}, p_{h}\right) = \vec{f} \quad \forall \vec{v}_{h} \in V_{h},$$

$$b\left(\vec{u}_{h}, q_{h}\right) - c\left(p_{h}, q_{h}\right) = 0 \quad \forall q_{h} \in Q_{h}.$$

Q_1 – Q_1 stabilization

(Dohrmann & Bochev (2004)) Find $(\vec{u}_h, p_h) \in V_h \times Q_h$ such that:

$$a\left(\vec{u}_{h}, \vec{v}_{h}\right) + b\left(\vec{v}_{h}, p_{h}\right) = \vec{f} \quad \forall \vec{v}_{h} \in V_{h},$$

$$b\left(\vec{u}_{h}, q_{h}\right) - c\left(p_{h}, q_{h}\right) = 0 \quad \forall q_{h} \in Q_{h}.$$

Where

$$c(p_h, q_h) = (p_h - \Pi_0 p_h, q_h - \Pi_0 q_h),$$

and

$$\Pi_0 p_h|_T = \frac{1}{|T|} \int_T p_h \ d\Omega \quad \forall T \in \mathcal{T}_h.$$

Stress Jump

In general P_0 approximation is discontinuous and Q_1 approximation has a discontinuous normal derivative across the edges.

Consequently it is convenient to define the stress jump across edge E adjoining elements T and S:

$$\left[\!\left[\nabla \vec{u}_h - p_h \vec{\mathbf{I}}\right]\!\right] := \left(\left(\nabla \vec{u}_h - p_h \vec{\mathbf{I}}\right)|_T - \left(\nabla \vec{u}_h - p_h \vec{\mathbf{I}}\right)|_S\right) \vec{n}_{E,T}.$$

(If a C^0 pressure approximation is used the jump in $p_h \vec{\mathbf{I}}$ is zero.)

Stokes Error Estimation

Define the interior edge stress jump $\vec{R}_E := \frac{1}{2} [\nabla \vec{u}_h - p_h \vec{I}]$ and the element PDE residuals

$$\vec{R}_T := \{\nabla^2 \vec{u}_h - \nabla p_h\}|_T \text{ and } R_T := \{\nabla \cdot \vec{u}_h\}|_T.$$

This gives the error characterization: $\vec{e} := \vec{u} - \vec{u}_h \in V$ and $\epsilon := p - p_h \in Q$ satisfies

$$\begin{split} \sum_{T \in \mathcal{T}_h} (\nabla \vec{e}, \nabla \vec{v})_T &- \sum_{T \in \mathcal{T}_h} (\epsilon, \nabla \cdot \vec{v})_T \\ &= \sum_{T \in \mathcal{T}_h} \left\{ (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \right\} \quad \forall \vec{v} \in V \\ \sum_{T \in \mathcal{T}_h} (\nabla \cdot \vec{e}, q) &= \sum_{T \in \mathcal{T}_h} (R_T, q) \quad \forall q \in Q. \end{split}$$

q_1 – q_1 approximation

 \vec{R}_E is piecewise linear and

$$\vec{R}_T = \{\nabla^2 \vec{u}_h - \nabla p_h\}|_T \subset (P_0(T))^d.$$
$$R_T = \{\nabla \cdot \vec{u}_h\}|_T \subset P_1(T).$$

q_1 – q_1 approximation

 \vec{R}_E is piecewise linear and

$$\vec{R}_T = \{\nabla^2 \vec{u}_h - \nabla p_h\}|_T \subset (P_0(T))^d.$$
$$R_T = \{\nabla \cdot \vec{u}_h\}|_T \subset P_1(T).$$

Also, we recall the high order correction space:

$$\mathcal{Q}_T = Q_T \oplus B_T$$

The local (vector-) Poisson problem is to compute $\vec{e}_T \in \vec{Q}_T$ and $\epsilon_T \in P_1(T)$ such that

$$(\nabla \vec{e}_T, \nabla \vec{v})_T = (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \qquad \forall \vec{v} \in \vec{\mathcal{Q}}_T$$
$$(\epsilon_T, q)_T = (\nabla \cdot \vec{u}_h, q)_T \qquad \forall q \in \mathbf{P}_1(T).$$

The local (vector-) Poisson problem is to compute $\vec{e}_T \in \vec{Q}_T$ and $\epsilon_T \in P_1(T)$ such that

$$(\nabla \vec{e}_T, \nabla \vec{v})_T = (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \qquad \forall \vec{v} \in \vec{\mathcal{Q}}_T$$
$$(\epsilon_T, q)_T = (\nabla \cdot \vec{u}_h, q)_T \qquad \forall q \in \mathbf{P}_1(T).$$

Note that $\mathbf{R}_T \subset \mathbf{P}_1(T)$ implies that $\epsilon_T = \nabla \cdot \vec{u}_h$.

The local (vector-) Poisson problem is to compute $\vec{e}_T \in \vec{Q}_T$ and $\epsilon_T \in P_1(T)$ such that

$$(\nabla \vec{e}_T, \nabla \vec{v})_T = (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \qquad \forall \vec{v} \in \vec{\mathcal{Q}}_T$$
$$(\epsilon_T, q)_T = (\nabla \cdot \vec{u}_h, q)_T \qquad \forall q \in \mathbf{P}_1(T).$$

Note that $\mathbf{R}_T \subset \mathbf{P}_1(T)$ implies that $\epsilon_T = \nabla \cdot \vec{u}_h$.

The local estimator is given by $\eta_T^2 = \|\nabla \vec{e}_T\|_T^2 + \|\epsilon_T\|_T^2$, and the global error estimator is

$$\eta := (\sum_{T \in \mathcal{T}_h} \eta_T^2)^{1/2} \approx \|\nabla(\vec{u} - \vec{u}_h)\| + \|p - p_h\|$$

Theory

(Ainsworth & Oden (1997), Kay & S. (1999)) Assuming a shape regular subdivision, the local problem estimator is reliable in the case of either the unstabilized or the stabilized formulation:

$$\|\nabla(\vec{u} - \vec{u}_h)\| + \|p - p_h\| \le \frac{C}{\gamma_*} \left(\sum_{T \in \mathcal{T}_h} \eta_T^2\right)^{1/2}$$

where γ_* is the inf-sup constant associated with the continuous problem.

Theory

(Ainsworth & Oden (1997), Kay & S. (1999)) Assuming a shape regular subdivision, the local problem estimator is reliable in the case of either the unstabilized or the stabilized formulation:

$$\|\nabla(\vec{u} - \vec{u}_h)\| + \|p - p_h\| \leq \frac{C}{\gamma_*} \left(\sum_{T \in \mathcal{T}_h} \eta_T^2\right)^{1/2}$$

where γ_* is the inf-sup constant associated with the continuous problem.

The local problem estimator is also efficient :

$$\eta_T \le C \left(\left\| \nabla (\vec{u} - \vec{u}_h) \right\|_{\omega_T} + \left\| p - p_h \right) \right\|_{\omega_T} \right)$$

where C is independent of γ_* .

Example: Poiseuille flow

Grid	$\ \nabla(\vec{u}-\vec{u}_h)\ $	$\ abla \cdot ec{u}_h\ $	η
4×4	6.112×10^{-1}	3.691×10^{-2}	5.600×10^{-1}
8×8	2.962×10^{-1}	6.656×10^{-3}	2.912×10^{-1}
16×16	1.460×10^{-1}	1.196×10^{-3}	1.458×10^{-1}
32×32	7.255×10^{-2}	2.129×10^{-4}	7.267×10^{-2}

Stabilized $Q_1 - Q_1$ approximation

Error estimators for Q_2-Q_1 and Q_2-P_{-1} approximation are include in IFISS 3.1. They are discussed in

Qifeng Liao & David Silvester. A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations. MIMS Eprint 2009.75. What have we achieved?

- A simple a posteriori energy estimator for inf-sup stable (and stabilized) mixed approximation.
- Efficiency index is very close to unity.

Computational interlude ...

NS Error Estimation I

Define the interior edge stress jump $\vec{R}_E := \frac{1}{2} [\![\nu \nabla \vec{u}_h - p_h \vec{I}]\!]$ the element PDE residuals

$$\vec{R}_T := \{-\vec{u}_h \cdot \nabla \vec{u}_h + \nu \nabla^2 \vec{u}_h - \nabla p_h\}|_T \text{ and } R_T := \{\nabla \cdot \vec{u}_h\}|_T.$$

and the difference operator

$$D(\vec{u}_h, \vec{e}, \vec{v}) := c(\vec{e} + \vec{u}_h, \vec{e} + \vec{u}_h, \vec{v}) - c(\vec{u}_h, \vec{u}_h, \vec{v})$$

= $c(\vec{u}, \vec{u}, \vec{v}) - c(\vec{u}_h, \vec{u}_h, \vec{v})$
= $(\vec{u} \cdot \nabla \vec{u}, \vec{v}) - (\vec{u}_h \cdot \nabla \vec{u}_h, \vec{v})$.

NS Error Estimation II

This gives the error characterization: $\vec{e} := \vec{u} - \vec{u}_h \in V$ and $\epsilon := p - p_h \in Q$ satisfies

$$\begin{split} \sum_{T \in \mathcal{T}_h} (\nabla \vec{e}, \nabla \vec{v})_T &- \sum_{T \in \mathcal{T}_h} (\epsilon, \nabla \cdot \vec{v})_T + D(\vec{u}_h, \vec{e}, \vec{v}) \\ &= \sum_{T \in \mathcal{T}_h} \left\{ (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \right\} \quad \forall \vec{v} \in V \\ &\sum_{T \in \mathcal{T}_h} (\nabla \cdot \vec{e}, q) = \sum_{T \in \mathcal{T}_h} (R_T, q) \quad \forall q \in Q. \end{split}$$

The local (vector-) Poisson problem is to compute $\vec{e}_T \in \vec{Q}_T$ such that

$$\boldsymbol{\nu}(\nabla \vec{e}_T, \nabla \vec{v})_T = (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \quad \forall \vec{v} \in \vec{\mathcal{Q}}_T$$

The local (vector-) Poisson problem is to compute $\vec{e}_T \in \vec{Q}_T$ such that

$$\boldsymbol{\nu}(\nabla \vec{e}_T, \nabla \vec{v})_T = (\vec{R}_T, \vec{v})_T - \sum_{E \in \mathcal{E}(T)} \langle \vec{R}_E, \vec{v} \rangle_E \quad \forall \vec{v} \in \vec{\mathcal{Q}}_T$$

The local estimator is given by $\eta_T^2 = \|\nabla \vec{e}_T\|_T^2 + \|\nabla \cdot \vec{u}_h\|_T^2$, and the global error estimator is

$$\eta := (\sum_{T \in \mathcal{T}_h} \eta_T^2)^{1/2} \approx \|\nabla(\vec{u} - \vec{u}_h)\| + \|p - p_h\|$$

Theory

(Verfürth (1996))

Given that the Navier-Stokes problem is guaranteed to have a unique solution, and assuming a shape regular subdivision, the local problem estimator is reliable in the case of either the unstabilized or the stabilized formulation:

$$\|\nabla(\vec{u} - \vec{u}_h)\| + \|p - p_h\| \le C \left(\sum_{T \in \mathcal{T}_h} \eta_T^2\right)^{1/2}$$

where C is independent of ν

Theory

(Verfürth (1996))

Given that the Navier-Stokes problem is guaranteed to have a unique solution, and assuming a shape regular subdivision, the local problem estimator is reliable in the case of either the unstabilized or the stabilized formulation:

$$\|\nabla(\vec{\boldsymbol{u}} - \vec{\boldsymbol{u}}_{\boldsymbol{h}})\| + \|\boldsymbol{p} - \boldsymbol{p}_{\boldsymbol{h}}\| \le C \left(\sum_{T \in \mathcal{T}_{\boldsymbol{h}}} \eta_T^2\right)^{1/2}$$

where C is independent of ν

The efficiency of the local problem estimator is an open problem:

$$\eta_T \stackrel{?}{\leq} C\left(\|\nabla(\vec{u} - \vec{u}_h)\|_{\omega_T} + \|p - p_h\|_{\omega_T} \right).$$

Example: Driven cavity flow

Grid	$\ abla \cdot ec{u}_h\ $	η
16×16	5.288×10^{-2}	4.116×10^{0}
32×32	1.997×10^{-2}	2.595×10^{0}
64×64	5.970×10^{-3}	1.370×10^{0}
128×128	1.593×10^{-3}	7.030×10^{-1}

Stabilized $Q_1 - P_0$ approximation

Back to fast solvers ...

Introducing the basis sets

$$V_h = \operatorname{span}\{\vec{\phi}_i\}_{i=1}^{n_u}, \quad \text{Velocity basis functions};$$

 $Q_h = \operatorname{span}\{\psi_j\}_{j=1}^{n_p}, \quad \text{Pressure basis functions}.$

gives the discretized Oseen system:

$$\begin{pmatrix} N + \boldsymbol{\nu} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix},$$

with associated matrices

$$\begin{split} N_{ij} &= (\vec{w}_h \cdot \nabla \vec{\phi}_i, \vec{\phi}_j), \quad \text{convection} \\ A_{ij} &= (\nabla \vec{\phi}_i, \nabla \vec{\phi}_j), \quad \text{diffusion} \\ B_{ij} &= -(\nabla \cdot \vec{\phi}_j, \psi_i), \quad \text{divergence} \end{split}$$

Block triangular preconditioning

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \mathcal{P}^{-1} \quad \mathcal{P} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{0} \end{pmatrix}$$

A perfect preconditioner is given by

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \underbrace{\begin{pmatrix} F^{-1} & F^{-1}B^T S^{-1} \\ 0 & -S^{-1} \end{pmatrix}}_{\mathcal{P}^{-1}} = \begin{pmatrix} I & 0 \\ BF^{-1} & I \end{pmatrix}$$

Here $F = N + \nu A$ and $S = BF^{-1}B^T$.

Block triangular preconditioning

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \mathcal{P}^{-1} \quad \mathcal{P} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{0} \end{pmatrix}$$

A perfect preconditioner is given by

$$\begin{pmatrix} F & B^T \\ B & 0 \end{pmatrix} \underbrace{\begin{pmatrix} F^{-1} & F^{-1}B^T S^{-1} \\ 0 & -S^{-1} \end{pmatrix}}_{\mathcal{P}^{-1}} = \begin{pmatrix} I & 0 \\ BF^{-1} & I \end{pmatrix}$$

Here $F = N + \nu A$ and $S = BF^{-1}B^T$. Note that

$$\underbrace{\begin{pmatrix} F^{-1} & F^{-1}B^{T}S^{-1} \\ 0 & -S^{-1} \end{pmatrix}}_{\mathcal{P}^{-1}} \underbrace{\begin{pmatrix} F & B^{T} \\ 0 & -S \end{pmatrix}}_{\mathcal{P}} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

$$\begin{pmatrix} N + \boldsymbol{\nu} A & B^T \\ B & 0 \end{pmatrix} \boldsymbol{\mathcal{P}}^{-1} \quad \boldsymbol{\mathcal{P}} \begin{pmatrix} \mathbf{u} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix}$$

With discrete matrices

$$\begin{split} N_{ij} &= (\vec{w}_h \cdot \nabla \vec{\phi}_i, \vec{\phi}_j), \quad \text{convection} \\ A_{ij} &= (\nabla \vec{\phi}_i, \nabla \vec{\phi}_j), \quad \text{diffusion} \\ B_{ij} &= -(\nabla \cdot \vec{\phi}_j, \psi_i), \quad \text{divergence} \end{split}$$

For an efficient block triangular preconditioner \mathcal{P} we require a sparse approximation to the "exact" Schur complement

$$S^{-1} = (B(N + \nu A)^{-1}B^T)^{-1} =: (BF^{-1}B^T)^{-1}$$

Two possible constructions ...

Schur complement approximation – I

Introducing associated pressure matrices

$$A_p \sim (\nabla \psi_i, \nabla \psi_j),$$
 diffusion
 $N_p \sim (\vec{w}_h \cdot \nabla \psi_i, \psi_j),$ convection
 $F_p = \nu A_p + N_p,$ convection-diffusion

gives the "pressure convection-diffusion preconditioner":

$$(BF^{-1}B^T)^{-1} \approx Q^{-1} F_p \underbrace{A_p^{-1}}_{AMG}$$

David Kay & Daniel Loghin (& Andy Wathen) A Green's function preconditioner for the steady-state Navier-Stokes equations Report NA–99/06, Oxford University Computing Lab. SIAM J. Sci. Comput, 24, 2002.

Schur complement approximation – II

Introducing the diagonal of the velocity mass matrix

$$M_* \sim M_{ij} = (\vec{\phi}_i, \vec{\phi}_j),$$

gives the "least-squares commutator preconditioner":

$$(BF^{-1}B^{T})^{-1} \approx (\underbrace{BM_{*}^{-1}B^{T}}_{\text{AMG}})^{-1} (BM_{*}^{-1}FM_{*}^{-1}B^{T}) (\underbrace{BM_{*}^{-1}B^{T}}_{\text{AMG}})^{-1}$$

 Howard Elman (& Ray Tuminaro et al.) Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput, 20, 1999.
 Block preconditioners based on approximate commutators, SIAM J. Sci. Comput, 27, 2006.

IFISS computational results

Final step of Oseen iteration : $R = 2/\nu$ # GMRES iterations using Q_2-Q_1 (Q_1-P_0) — tol = 10^{-6} Exact Least Squares Commutator

1/h	R = 10	R = 100	R = 200
5	15 (<mark>15</mark>)	17 (<mark>16</mark>)	
6	19 (21)	21 (22)	29 (<mark>32</mark>)
7	23 (<mark>31</mark>)	29 (<mark>32</mark>)	29 (<mark>30</mark>)

Summary | Navier-Stokes preconditioning

- Grid independent convergence rate for preconditioned GMRES for inf-sup stable (and stabilized) mixed approximation.
- Relatively robust with respect to reductions in ν .

Summary | Navier-Stokes preconditioning

- Grid independent convergence rate for preconditioned GMRES for inf-sup stable (and stabilized) mixed approximation.
- Relatively robust with respect to reductions in ν .

Further Reading ...

Howard Elman (& Silvester et al.) Least squares preconditioners for stabilized discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput, 30, 2007.

Howard Elman & Ray Tuminaro Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations, Electronic Transactions on Numerical Analysis, 35:257–280, 2009.