Fast Solvers for Incompressible Flow Problems I

David Silvester
University of Manchester

Lecture Schedule

$$
-\nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0
$$

Lecture Schedule

$$
\begin{gathered}
-\nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0 \\
\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0
\end{gathered}
$$

Lecture Schedule

$$
\begin{gathered}
-\nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0 \\
\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0 \\
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=0 ; \quad \nabla \cdot \vec{u}=0
\end{gathered}
$$

Lecture Schedule

$$
\left.\begin{array}{c}
-\nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0 \\
\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0 \\
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=0 ; \quad \nabla \cdot \vec{u}=0 \\
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}-\nu \nabla^{2} \vec{u}+\nabla p=\vec{j} T ; \quad \nabla \cdot \vec{u}=0 \\
\frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T-\nu \nabla^{2} T=0
\end{array}\right\}
$$

Reference - lectures I \& II

Chapters 5-6 (Stokes) \& 7-8 (Steady Navier-Stokes) .

References - lectures III \& IV

- David Kay \& Philip Gresho \& David Griffiths \& David Silvester Adaptive time-stepping for incompressible flow; part II: Navier-Stokes equations SIAM J. Scientific Computing, 32: 111-128, 2010.
- Howard Elman, Milan Mihajlović and David Silvester. Fast iterative solvers for buoyancy driven flow problems J. Computational Physics, 230: 3900-3914, 2011.

Lecture I

$$
-\nabla^{2} \vec{u}+\nabla p=\overrightarrow{0} ; \quad \nabla \cdot \vec{u}=0
$$

Poiseuille Flow: problem 5.1

Flow in $[-1,1] \times[-1,1]$ with Dirichlet boundary conditions:

$$
\begin{aligned}
& \vec{u}(x, y)=\overrightarrow{0} \text { for all }(x, y) \in(-1,1) \times\{-1,1\} \\
& \vec{u}(x, y)=\left(1-y^{2}, 0\right) \text { for all }(x, y) \in\{-1\} \times(-1,1),
\end{aligned}
$$

and the Neumann condition

$$
\left.\begin{array}{rl}
\frac{\partial u_{x}(x, y)}{\partial x}-p(x, y) & =0 \\
\frac{\partial u_{y}(x, y)}{\partial x} & =0
\end{array}\right\} \quad \text { for all } \quad(x, y) \in\{1\} \times(-1,1)
$$

Cavity Flow: problem 5.3

Flow in $[-1,1] \times[-1,1]$ with Dirichlet boundary conditions:
$\vec{u}=\overrightarrow{0}$
$\vec{u}=\left(\left(1-x^{2}\right)\left(1+x^{2}\right), 0\right)^{T} \quad$ on $\quad y=1$.

Streamlines: exponential

on $\quad x=-1,1$ and $y=-1$.

Stokes flow problem

$$
\begin{aligned}
-\nabla^{2} \vec{u}+\nabla p & =\overrightarrow{0} & & \text { in } \Omega \subset \mathbb{R}^{d} \\
\nabla \cdot \vec{u} & =0 & & \text { in } \Omega \\
\vec{u} & =\vec{g} & & \text { on } \Gamma_{D} \\
\nabla \vec{u} \cdot \vec{n}-p \vec{n} & =\overrightarrow{0} & & \text { on } \Gamma_{N}
\end{aligned}
$$

Stokes flow problem

$$
\begin{aligned}
-\nabla^{2} \vec{u}+\nabla p & =\overrightarrow{0} & & \text { in } \Omega \subset \mathbb{R}^{d} \\
\nabla \cdot \vec{u} & =0 & & \text { in } \Omega \\
\vec{u} & =\vec{g} & & \text { on } \Gamma_{D} \\
\nabla \vec{u} \cdot \vec{n}-p \vec{n} & =\overrightarrow{0} & & \text { on } \Gamma_{N}
\end{aligned}
$$

Mixed formulation : find $(\vec{u}, p) \in\left(H_{0}^{1}(\Omega)\right)^{d} \times L^{2}(\Omega)$ such that

$$
\begin{aligned}
(\nabla \vec{u}, \nabla \vec{v})-(\nabla \cdot \vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in\left(H_{0}^{1}(\Omega)\right)^{d}, \\
-(\nabla \cdot \vec{u}, q) & =g(q) & \forall q \in L^{2}(\Omega) .
\end{aligned}
$$

Generic structure

Find $(\vec{u}, p) \in\left(H_{0}^{1}(\Omega)\right)^{d} \times L^{2}(\Omega)$ such that

$$
\begin{aligned}
(\nabla \vec{u}, \nabla \vec{v})-(\nabla \cdot \vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in\left(H_{0}^{1}(\Omega)\right)^{d} \\
-(\nabla \cdot \vec{u}, q) & =g(q) & \forall q \in L^{2}(\Omega)
\end{aligned}
$$

Abstract formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$
\begin{align*}
a(\vec{u}, \vec{v})+b(\vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in V, \\
b(\vec{u}, q) & =g(q) & \forall q \in Q . \tag{V}
\end{align*}
$$

Where, V and Q represent Hilbert spaces; $a: V \times V \rightarrow \mathbb{R}$ is a symmetric bounded bilinear form, $b: V \times Q \rightarrow \mathbb{R}$ is a bounded bilinear form and $f: V \rightarrow \mathbb{R}$ and $g: Q \rightarrow \mathbb{R}$ are linear functionals.

Saddle Point Structure

$$
\begin{align*}
a(\vec{u}, \vec{v})+b(\vec{v}, p) & =f(\vec{v}) \quad \forall \vec{v} \in V, \\
b(\vec{u}, q) & =g(q) \quad \forall q \in Q . \tag{V}
\end{align*}
$$

To discover the structure we define dual spaces V^{*} and Q^{*} respectively, with a duality pairing $\langle\cdot, \cdot\rangle$.

Saddle Point Structure

$$
\begin{align*}
a(\vec{u}, \vec{v})+b(\vec{v}, p) & =f(\vec{v}) \quad \forall \vec{v} \in V, \\
b(\vec{u}, q) & =g(q) \quad \forall q \in Q . \tag{V}
\end{align*}
$$

To discover the structure we define dual spaces V^{*} and Q^{*} respectively, with a duality pairing $\langle\cdot, \cdot\rangle$. Then, if we associate the bilinear forms a and b with operators $\mathcal{A}: V \rightarrow V^{*}$ and $\mathcal{B}: V \rightarrow Q^{*}$ so that

$$
\langle\mathcal{A} \vec{u}, \vec{v}\rangle=a(\vec{u}, \vec{v})=\langle\vec{u}, \mathcal{A} \vec{v}\rangle, \quad\langle\mathcal{B} \vec{u}, q\rangle=b(\vec{u}, q)=\left\langle\vec{u}, \mathcal{B}^{*} q\right\rangle ;
$$

we arrive at the infinite-dimensional saddle point system

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B}^{*} \tag{S}\\
\mathcal{B} & 0
\end{array}\right)\binom{\vec{u}}{p}=\binom{f}{g} .
$$

Optimal preconditioning

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B}^{*} \tag{S}\\
\mathcal{B} & 0
\end{array}\right)\binom{u}{p}=\binom{f}{g} .
$$

Following Mardal \& Winther [2010], a canonical preconditioner is the 2×2 block diagonal matrix operator that maps the dual space $V^{*} \times Q^{*}$ back into the original space $V \times Q$:

$$
\mathcal{M}=\left(\begin{array}{cc}
M_{11}^{-1} & 0 \\
0 & M_{22}^{-1}
\end{array}\right) .
$$

Eigenvalues of the preconditioned operator $\mathcal{M K}$:

$$
\longleftarrow n_{p} \quad n_{u} \longrightarrow
$$

Preconditioning ... Stokes

Mixed formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$
\begin{align*}
(\nabla \vec{u}, \nabla \vec{v})+(\nabla \cdot \vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in V, \\
(\nabla \cdot \vec{u}, q) & =g(q) & \forall q \in Q . \tag{V}
\end{align*}
$$

Spaces : $V:=\left(H_{0}^{1}(\Omega)\right)^{d}$ and $Q=L^{2}(\Omega)$ so that the dual spaces are $V^{*}:=\left(H^{-1}(\Omega)\right)^{d}$ and $Q^{*}:=L^{2}(\Omega)$ respectively.

Preconditioning ... Stokes

Mixed formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$
\begin{align*}
(\nabla \vec{u}, \nabla \vec{v})+(\nabla \cdot \vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in V, \\
(\nabla \cdot \vec{u}, q) & =g(q) & \forall q \in Q . \tag{V}
\end{align*}
$$

Spaces : $V:=\left(H_{0}^{1}(\Omega)\right)^{d}$ and $Q=L^{2}(\Omega)$ so that the dual spaces are $V^{*}:=\left(H^{-1}(\Omega)\right)^{d}$ and $Q^{*}:=L^{2}(\Omega)$ respectively.
In practice, the velocity approximation needs to be continuous across inter-element edges (e.g. Q_{1}), whereas the pressure approximation can be discontinuous.

Preconditioning ... Stokes

Mixed formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$
\begin{align*}
(\nabla \vec{u}, \nabla \vec{v})+(\nabla \cdot \vec{v}, p) & =f(\vec{v}) & \forall \vec{v} \in V, \\
(\nabla \cdot \vec{u}, q) & =g(q) & \forall q \in Q . \tag{V}
\end{align*}
$$

Spaces : $V:=\left(H_{0}^{1}(\Omega)\right)^{d}$ and $Q=L^{2}(\Omega)$ so that the dual spaces are $V^{*}:=\left(H^{-1}(\Omega)\right)^{d}$ and $Q^{*}:=L^{2}(\Omega)$ respectively.
In practice, the velocity approximation needs to be continuous across inter-element edges (e.g. Q_{1}), whereas the pressure approximation can be discontinuous.
Canonical Stokes Preconditioner :

$$
\mathcal{M}=\left(\begin{array}{cc}
\left(-\nabla^{2}\right)^{-1} & 0 \\
0 & I^{-1}
\end{array}\right)
$$

Discretized approximation

$$
\left[\begin{array}{cc}
\mathbb{A} & B^{T} \tag{h}\\
B & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

That is, given $V_{h} \subset V$ and $Q_{h} \subset Q:$ find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ such that

$$
\begin{align*}
a\left(u_{h}, v\right)+b\left(v, p_{h}\right) & =f(v) & \forall v \in V_{h} \\
b\left(u_{h}, q\right) & =g(q) & \forall q \in Q_{h} . \tag{h}
\end{align*}
$$

Discretized approximation

$$
\left[\begin{array}{cc}
\mathbb{A} & B^{T} \tag{h}\\
B & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

That is, given $V_{h} \subset V$ and $Q_{h} \subset Q$: find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ such that

$$
\begin{align*}
a\left(u_{h}, v\right)+b\left(v, p_{h}\right) & =f(v) & & \forall v \in V_{h}, \\
b\left(u_{h}, q\right) & =g(q) & & \forall q \in Q_{h} . \tag{h}
\end{align*}
$$

Ideal Stokes Preconditioner :

$$
M=\left(\begin{array}{cc}
\mathbb{A}^{-1} & 0 \\
0 & \mathbb{I}^{-1}
\end{array}\right) .
$$

See Rusten \& Winther [1992], Silvester \& Wathen [1994].

Optimal Solver

Energy arguments lead to a natural norm for measuring the quality of approximation for functions in the space $V \times Q$,

$$
\|(u, p)\|_{V \times Q}=\|u\|_{V}+\|p\|_{Q} .
$$

This will be referred to as the energy norm.
Our goal is to construct an optimal iterative solver for (S)...

Optimal Solver

Energy arguments lead to a natural norm for measuring the quality of approximation for functions in the space $V \times Q$,

$$
\|(u, p)\|_{V \times Q}=\|u\|_{V}+\|p\|_{Q} .
$$

This will be referred to as the energy norm.
Our goal is to construct an optimal iterative solver for (S)... that is, we would like to construct a sequence of rapidly converging iterates $\left(u_{h}^{(1)}, p_{h}^{(1)}\right),\left(u_{h}^{(2)}, p_{h}^{(2)}\right),\left(u_{h}^{(3)}, p_{h}^{(3)}\right), \ldots$ with the property that the iteration is terminated once the energy norm of the algebraic error $\left(u_{h}-u_{h}^{(m)}, p_{h}-p_{h}^{(m)}\right)$ is commensurate with the discretization error:

$$
\left\|u_{h}-u_{h}^{(m)}\right\|_{V}+\left\|p_{h}-p_{h}^{(m)}\right\|_{Q} \sim\left\|u-u_{h}^{(m)}\right\|_{V}+\left\|p-p_{h}^{(m)}\right\|_{Q}
$$

Issues

- The most natural iterative solver for a symmetric indefinite system $K \mathrm{x}=\mathrm{b}$ is MINRES. This minimizes the ℓ_{2}-norm of the m th residual

$$
\left\|\mathbf{r}^{(m)}\right\|=\left\|\mathbf{b}-K \mathbf{x}^{(m)}\right\|=\left\|K\left(\mathbf{x}-\mathbf{x}^{(m)}\right)\right\|
$$

over the Krylov space

$$
\mathcal{K}_{m}(K, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, K \mathbf{b}, \ldots, K^{m-1} \mathbf{b}\right\} .
$$

It does not minimize the energy norm of the error.

- How does one compute an accurate estimate of the discretization error $\left\|u-u_{h}^{(m)}\right\|_{V}+\left\|p-p_{h}^{(m)}\right\|_{Q}$?

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods
- Optimally preconditioned MINRES:

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods
- Optimally preconditioned MINRES:
- Mass matrix preconditioning
- Negative Laplacian preconditioning

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods
- Optimally preconditioned MINRES:
- Mass matrix preconditioning
- Negative Laplacian preconditioning
- Estimating the inf-sup constant on the fly:

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods
- Optimally preconditioned MINRES:
- Mass matrix preconditioning
- Negative Laplacian preconditioning
- Estimating the inf-sup constant on the fly:
- Harmonic Ritz values

Rest of the talk

- Well-posedness of (V) and $\left(V_{h}\right)$
- Stable mixed approximation methods
- Unstable mixed approximation methods
- Optimally preconditioned MINRES:
- Mass matrix preconditioning
- Negative Laplacian preconditioning
- Estimating the inf-sup constant on the fly:
- Harmonic Ritz values
- A proof-of-concept implementation:
- EST_MINRES
- The IFISS 3.1 MATLAB Toolbox

Well posedness

Abstract formulation : find $(\vec{u}, p) \in V \times Q$ such that

$$
\begin{align*}
(\nabla \vec{u}, \nabla \vec{v})-(\nabla \cdot \vec{v}, p)=\vec{f} & \forall \vec{v} \in V \tag{V}\\
-(\nabla \cdot \vec{u}, q)=0 & \forall q \in Q
\end{align*}
$$

with norms $\|\vec{u}\|_{V}:=(\nabla u, \nabla u)^{1 / 2}$ and $\|p\|_{Q}:=(p, p)^{1 / 2}$.
Discrete formulation : find $\left(\vec{u}_{h}, p_{h}\right) \in V_{h} \times Q_{h}$

$$
\begin{array}{rlr}
a\left(\vec{u}_{h}, \vec{v}_{h}\right)+b\left(\vec{v}_{h}, p_{h}\right)=\vec{f} & \forall \vec{v}_{h} \in V_{h} \\
b\left(\vec{u}_{h}, q_{h}\right)=0 & \forall q_{h} \in Q_{h} . \tag{h}
\end{array}
$$

... inf-sup stability

Theorem Brezzi [1974]. Given bounded bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$, two conditions are sufficient for the existence and uniqueness of solutions to the Stokes problem in its discrete form:

... inf-sup stability

Theorem Brezzi [1974]. Given bounded bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$, two conditions are sufficient for the existence and uniqueness of solutions to the Stokes problem in its discrete form:

1. V_{h} - coercivity: there exists a constant $\alpha(=1)$ such that

$$
a\left(\vec{v}_{h}, \vec{v}_{h}\right) \geq \alpha\left\|\vec{v}_{h}\right\|_{V}^{2} \quad \forall \vec{v}_{h} \in V_{h} .
$$

2. Discrete "inf-sup" condition: there exists a constant $\gamma \geq \gamma_{*}>0$ such that

$$
\sup _{\substack{\vec{v}_{h} \in V_{h} \\ \vec{v}_{h} \neq 0}} \frac{b\left(\vec{v}_{h}, q_{h}\right)}{\left\|\vec{v}_{h}\right\|_{V}} \geq \gamma\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h} .
$$

Furthermore, if (\vec{u}, p) is the weak solution of the Stokes problem, and if there exists a constant $\gamma \geq \gamma_{*}>0$ such that

$$
\sup _{\substack{\vec{v}_{\overrightarrow{v_{2}} \in V_{h}} \\ \vec{v}_{h} \neq 0}} \frac{b\left(\vec{v}_{h}, q_{h}\right)}{\left\|\vec{v}_{h}\right\|_{V}} \geq \gamma\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h} .
$$

then there exists a constant $C\left(\gamma_{*}\right)>0$ such that

$$
\left\|\vec{u}-\vec{u}_{h}\right\|_{V}+\left\|p-p_{h}\right\|_{Q} \leq C\left\{\inf _{\vec{v}_{h} \in V_{h}}\left\|\vec{u}-\vec{v}_{h}\right\|_{V_{V}} \inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{Q}\right\} .
$$

Two different inf-sup stable mixed approximation methods are implemented in IFISS:

$Q_{2}-Q_{1}$ element (also referred to as Taylor-Hood).

Two different inf-sup stable mixed approximation methods are implemented in IFISS:

$Q_{2}-Q_{1}$ element (also referred to as Taylor-Hood).

$Q_{2}-P_{-1}$ element : o pressure $; \stackrel{\uparrow}{\rightarrow}$ pressure derivative

Two unstable low-order mixed approximation methods are implemented in IFISS:

$Q_{1}-P_{0}$ element : • two velocity components; o pressure

Two unstable low-order mixed approximation methods are implemented in IFISS:

$Q_{1}-P_{0}$ element : • two velocity components; o pressure

$Q_{1}-Q_{1}$ element : • two velocity components; o pressure

Stokes Preconditioner I

$Q_{2}-Q_{1}$ element (• two velocity components; o pressure).

$$
M=\left(\begin{array}{cc}
\mathbb{A}_{*}^{-1} & 0 \\
0 & \mathbb{I}_{*}^{-1}
\end{array}\right)
$$

- Negative Laplacian preconditioning $\left(\left(-\nabla^{2}\right)^{-1}\right.$ operator $)$

$$
\lambda \leq \frac{\mathbf{u}^{T} \mathbb{A} \mathbf{u}}{\mathbf{u}^{T} \mathbb{A}_{*} \mathbf{u}} \leq \Lambda
$$

1 SUMMARY

Given an $n \times n$ sparse matrix \mathbf{A} and an $n-$ vector \mathbf{z}, HSL_MI2 20 computes the vector $\mathbf{x}=\mathbf{M z}$, where \mathbf{M} is an algebraic multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section 5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, 'Multigrid', Academic Press, 2001, pp 413-532.

ATTRIBUTES - Version: 1.1.0 Types: Real (single, double). Uses: HSL_MA48, HSL_MC65, HSL_ZD11, and the LAPACK routines _GETRF and _GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J. A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable components of derived types. Remark: The development of HSL_MI20 was funded by EPSRC grants EP/C000528/1 and GR/S42170.

$$
\lambda \leq \frac{\mathbf{u}^{T} \mathbb{A} \mathbf{u}}{\mathbf{u}^{T} \mathbb{A}_{*} \mathbf{u}} \leq \Lambda .
$$

Using black-box AMG nv is the number of V -cycles performed.

nv	1		2		4	
grid	λ	Λ	λ	Λ	λ	Λ
uniform 8×8	0.864	1.000	0.981	1.000	1.000	1.00
uniform 32×32	0.831	1.000	0.971	1.000	0.999	1.00
stretched 32×32	0.447	1.000	0.694	1.000	0.906	1.00

Stokes Preconditioner II

$Q_{2}-Q_{1}$ element (• two velocity components; o pressure).

$$
M=\left(\begin{array}{cc}
\mathbb{A}_{*}^{-1} & 0 \\
0 & \mathbb{I}_{*}^{-1}
\end{array}\right)
$$

- Mass matrix preconditioning (I^{-1} operator)

$$
\theta \leq \frac{\mathbf{p}^{T} \mathbb{I} \mathbf{p}}{\mathbf{p}^{T} \mathbb{I}_{*} \mathbf{p}} \leq \Theta
$$

$$
\theta \leq \frac{\mathbf{p}^{T} \mathbb{I} \mathbf{p}}{\mathbf{p}^{T} \mathbb{I}_{*} \mathbf{p}} \leq \Theta
$$

Wathen \& Rees [2009]
Using Chebyshev accelerated Jacobi
its is the number of acceleration steps performed.

its	5		10		20	
grid	θ	Θ	θ	Θ	θ	Θ
uniform 16×16	0.883	1.234	0.986	1.003	1.000	1.00
uniform 64×64	0.883	1.234	0.986	1.003	1.000	1.00
stretched 64×64	0.883	1.234	0.986	1.003	1.000	1.00

Back to the Issues ...

- The most natural iterative solver for a symmetric indefinite system $K \mathrm{x}=\mathrm{b}$ is MINRES. This minimizes the ℓ_{2}-norm of the m th residual

$$
\left\|\mathbf{r}^{(m)}\right\|=\left\|\mathbf{b}-K \mathbf{x}^{(m)}\right\|=\left\|K\left(\mathbf{x}-\mathbf{x}^{(m)}\right)\right\|
$$

over the Krylov space

$$
\mathcal{K}_{m}(K, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, K \mathbf{b}, \ldots, K^{m-1} \mathbf{b}\right\} .
$$

Back to the Issues ...

- The most natural iterative solver for a symmetric indefinite system $K \mathrm{x}=\mathrm{b}$ is MINRES. This minimizes the ℓ_{2}-norm of the m th residual

$$
\left\|\mathbf{r}^{(m)}\right\|=\left\|\mathbf{b}-K \mathbf{x}^{(m)}\right\|=\left\|K\left(\mathbf{x}-\mathbf{x}^{(m)}\right)\right\|
$$

over the Krylov space

$$
\mathcal{K}_{m}(K, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, K \mathbf{b}, \ldots, K^{m-1} \mathbf{b}\right\} .
$$

- We want to compute constants c and C such that

$$
c\left\|\mathbf{e}^{(m)}\right\|_{E} \leq\left\|\mathbf{r}^{(m)}\right\|_{M} \leq C\left\|\mathbf{e}^{(m)}\right\|_{E},
$$

where $\mathbf{e}^{(m)}=\mathbf{x}-\mathbf{x}^{(m)}, \mathbf{r}^{(m)}=K \mathbf{e}^{(m)}$, and $M=E^{-1}$ with E the block diagonal matrix representing the norms associated with the underlying space $V \times Q$.

... Stokes flow case

$$
\begin{gathered}
c\left\|\mathbf{e}^{(m)}\right\|_{E} \leq\left\|\mathbf{r}^{(m)}\right\|_{M} \leq C\left\|\mathbf{e}^{(m)}\right\|_{E} \\
K=\left[\begin{array}{cc}
\mathbb{A} & B^{T} \\
B & 0
\end{array}\right], E=\left[\begin{array}{cc}
\mathbb{A} & 0 \\
0 & \mathbb{I}
\end{array}\right], M^{-1}=\left[\begin{array}{cc}
\mathbb{A}_{*} & 0 \\
0 & \mathbb{I}_{*}
\end{array}\right] .
\end{gathered}
$$

... Stokes flow case

$$
\begin{gathered}
c\left\|\mathbf{e}^{(m)}\right\|_{E} \leq\left\|\mathbf{r}^{(m)}\right\|_{M} \leq C\left\|\mathbf{e}^{(m)}\right\|_{E} \\
K=\left[\begin{array}{cc}
\mathbb{A} & B^{T} \\
B & 0
\end{array}\right], E=\left[\begin{array}{cc}
\mathbb{A} & 0 \\
0 & \mathbb{I}
\end{array}\right], M^{-1}=\left[\begin{array}{cc}
\mathbb{A}_{*} & 0 \\
0 & \mathbb{I}_{*}
\end{array}\right] .
\end{gathered}
$$

Inf-Sup stability :

$$
\gamma^{2} \leq \frac{\mathbf{q}^{T} B \mathbb{A}^{-1} B^{T} \mathbf{q}}{\mathbf{q}^{T} \mathbb{I} \mathbf{q}} \leq \Gamma^{2} \leq d
$$

Eigenvalue bounds : (from Silvester \& Wathen [1994])
$c^{2}=\gamma^{2}\left(1+1 / 2 \gamma^{2}-\sqrt{1+1 / 4 \gamma^{4}}\right) \sim 1 / 2 \gamma^{4} ; \quad C^{2}=\max \left\{2+\Gamma^{2}, 2 \Gamma^{2}\right\}$
Stopping heuristic : $\quad\left\|\mathbf{e}^{(m)}\right\|_{E} \leq \frac{\sqrt{2}}{\gamma^{2}}\left\|\mathbf{r}^{(m)}\right\|_{M}$.

Flow over a Step: problem 5.2

Step flow: precomputed value: $\gamma^{2} \approx 0.0247$

Dynamic inf-sup constant ...

Can we estimate the value of γ^{2} on-the-fly?

Dynamic inf-sup constant ...

Can we estimate the value of γ^{2} on-the-fly?
Maybe yes:

Inverting the eigenvalue bounds on the largest negative value λ_{-}and the smallest positive eigenvalue λ_{+}of the matrix $M K$:

$$
\lambda_{-} \leq 1 / 2\left(\delta-\sqrt{\delta^{2}+4 \delta \gamma^{2}}\right) \quad \text { and } \quad \delta<\lambda_{+},
$$

leads to the computable estimate

$$
\gamma_{k}^{2}=\left(\lambda_{-}^{2}-\lambda_{-} \lambda_{+}\right) / \lambda_{+} .
$$

All we need to do is to estimate λ_{-}and λ_{+}using the harmonic Ritz values... EST_MINRES.

Harmonic Ritz values

Eigenvalues of the preconditioned matrix $\hat{K}=M K$.

Harmonic Ritz values ...

Eigenvalues of the preconditioned matrix $\hat{K}=M K$.
At step m of MINRES the Harmonic Ritz values $\theta_{1}, \ldots, \theta_{m}$ are the roots of the residual polynomial ϕ_{m}, defined as
$\mathbf{r}^{(m)}=\phi_{m}(\hat{K}) \hat{\mathbf{b}}$, with $\phi_{m}(\theta)=\frac{1}{\hat{\phi}_{m}(0)} \hat{\phi}(\theta)$.
They are also the eigenvalues of the following problem:

$$
\underline{T}_{m}^{T} \underline{T}_{m} \mathbf{u}=\theta T_{m} \mathbf{u}
$$

where T_{m} is the tridiagonal Lanczos matrix, and \underline{T}_{m} is the row augmented counterpart.
See Morgan [1991], Freund [1992] and Paige et al. [1995].

Step flow: γ^{2} estimated at each iteration

Back to the Issues ...

- How does one compute an accurate estimate of the discretization error $\left\|\vec{u}-\vec{u}_{h}^{(m)}\right\|_{V}+\left\|p-p_{h}^{(m)}\right\|_{Q}$?

Back to the Issues ...

- How does one compute an accurate estimate of the discretization error $\left\|\vec{u}-\vec{u}_{h}^{(m)}\right\|_{V}+\left\|p-p_{h}^{(m)}\right\|_{Q}$?
- That is, given a candidate solution $\left(\vec{u}_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ (not necessarily the Galerkin solution), we want to compute an estimate η which is equivalent to the exact error in the sense that

$$
c \eta \leq\left\|\vec{u}-\vec{u}_{h}\right\|_{V}+\left\|p-p_{h}\right\|_{Q} \leq C \eta,
$$

with $C / c \sim O(1)$.

- Qifeng Liao \& David Silvester.

A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations Appl. Numer. Math., 2011.

$$
c \eta^{(m)} \leq\left\|\nabla\left(\vec{u}-\vec{u}_{h}^{(m)}\right)\right\|+\left\|p-p_{h}^{(m)}\right\| \leq C \eta^{(m)}
$$

with $C / c \sim O(1)$.

$$
c \eta^{(m)} \leq\left\|\nabla\left(\vec{u}-\vec{u}_{h}^{(m)}\right)\right\|+\left\|p-p_{h}^{(m)}\right\| \leq C \eta^{(m)}
$$

with $C / c \sim O(1)$.
Refined stopping heuristic :

$$
\left\|\mathbf{e}^{(m)}\right\|_{E} \leq \frac{\sqrt{2}}{\gamma_{m}^{2}}\left\|\mathbf{r}^{(m)}\right\|_{M} \leq \eta^{(m)}
$$

Step flow: refined stopping heuristic

Square cavity flow: refined stopping heuristic

Square cavity flow: refined stopping heuristic

 iteration counts k_{*} vs spatial accuracy resolution| grid | k_{*} | η | $\left\\|\nabla \cdot \vec{u}_{h}\right\\|$ |
| ---: | :---: | :---: | :---: |
| uniform 8×8 | 10 | 9.71×10^{-1} | 2.97×10^{-2} |
| uniform 16×16 | 17 | 2.54×10^{-1} | 3.66×10^{-3} |
| uniform 32×32 | $\mathbf{2 1}$ | 6.51×10^{-2} | 4.56×10^{-4} |
| uniform 64×64 | $\mathbf{2 4}$ | 1.64×10^{-2} | 5.69×10^{-5} |
| | | $O\left(h^{2}\right)$ | $O\left(h^{3}\right)$ |

What have we achieved?

- Efficient linear algebra: convergence rate is independent of h.
- Black-box implementation: No parameters have to be estimated a priori!

What have we achieved?

- Efficient linear algebra: convergence rate is independent of h.
- Black-box implementation: No parameters have to be estimated a priori!

Further Reading ...
■ David Silvester \& Valeria Simoncini. EST MINRES: An optimal iterative solver for symmetric indefinite systems stemming from mixed approximation ACM Trans. Math. Softw., vol. 37 no. 4, 2010.

