Many people would sooner die than think - in fact they do.

Bertrand Russell
.... tHinking many things with the clearest conviction to my greatest satisfaction, which I would never have courage to sang. Immanuel Kant

Nor should it be considered rash not to be satisfied with those opinions that have become common. No one should be scorned in physical disputes for not holding to opinions which happens to please other people best

Galileo, Galilei

Gibbs Potential Approach: (G)

- Suppose the Helmholtz potential is a convex function of the logarithinic strain, then the Helmholtz potential and Gibbs potential are related by a Legendre transformations:

$$
\underset{\sim}{T}=\rho \frac{\partial \psi}{\partial(\ln V)} \Longrightarrow \underset{\sim}{s}=\frac{\partial \psi}{\partial(\ln V)}
$$

Then

$$
\psi=G-\frac{\partial G}{\partial S} \cdot \underset{\sim}{S} \quad, \quad \ln \underset{\sim}{V}=\frac{\partial G}{\partial S}
$$

- However, there are bodies for which the Helmholtz potential or Gibbs potential can even be defined.
- Cannot define Helmholtz potential corresponding to

- We can however define a Gibbs potential through

$$
G=\frac{a}{2}\left\{\left(s^{2}+k^{2}-2 s k\right)\langle s-k\rangle-s^{2}\right\}
$$

where

$$
\begin{aligned}
\langle x\rangle^{n} & =(\max (x, 0))^{n} \\
\varepsilon & =-\frac{\partial G}{\partial s}= \begin{cases}s & x<k \\
k & x \geqslant k\end{cases}
\end{aligned}
$$

- We shall now consider the Gibbs potential Approach.

$$
G=G(\underset{\sim}{s}, \theta)
$$

$$
\text { - } \begin{aligned}
G(S, S) & =G\left(Q \underset{\sim}{S} Q^{\top}, \theta\right) \quad \forall Q \in \theta \\
\Rightarrow G & =G\left(\hat{I}_{1}, \hat{I}_{2}, \hat{I}_{3}, \theta\right), \\
\hat{I}_{1} & =\operatorname{tr} \underset{\sim}{S}, \hat{I}_{2}=\frac{1}{2}(\operatorname{tr} \underset{\sim}{S})^{2}, \hat{I}_{3}=\frac{1}{3}\left(t_{r} S_{\sim}^{3}\right) \\
\psi & =G-\frac{\partial G}{\partial S} \cdot \underset{\sim}{S} ; \\
\varepsilon & =G-\frac{\partial G}{\partial S} \cdot \underset{\sim}{S}-\theta \frac{\partial G}{\partial \theta} ; \\
\eta & =-\frac{\partial G}{\partial \theta} \cdot
\end{aligned}
$$

- Energy equation reduces to

$$
\begin{gathered}
-\rho \theta \frac{d}{d t}\left[\frac{\partial G}{\partial \theta}\right]=\rho T-\operatorname{div} \underset{\sim}{q}+\rho \xi \\
\xi=\underset{\sim}{s} \cdot \underset{\sim}{D}+\underset{\sim}{s} \cdot\left\{\frac{\partial^{2} G}{\partial s^{2}}[\dot{\sim}]\right\}
\end{gathered}
$$

- It can then be shown that

$$
\begin{aligned}
& \xi=s \cdot(\underset{\sim}{D}-\underset{\sim}{\mathbb{C}} \underset{\sim}{\dot{S}}) \\
& \underset{\sim}{\mathbb{C}}=-\frac{\partial^{2} G}{\partial S^{2}}=\sum_{i, j=1}^{3}\left\{G_{i j} \underset{\sim}{S^{i-1}} \otimes{\underset{\sim}{s}}^{j-1}\right\}-G_{, 2} \frac{\mathbb{T}}{\sim}+G, 3 \stackrel{A}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& G_{, i}=\frac{\partial G}{\partial \hat{I_{i}}}, \\
& (\mathbb{I})_{i j k l}=\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j e}, \\
& (A)_{i j k l}=\delta_{i k} s_{j e}+\delta_{i j} S_{k l} .
\end{aligned}
$$

- D and are frame-indifferent \dot{S} is not frame-indifferent. Howerer $\underset{\sim}{s} \cdot \mathbb{C}_{\sim}^{S} \underset{\sim}{0}$ is frame-indifferent.
- It can be shown that

$$
\underset{\sim}{S} \cdot \mathbb{C}[S A-A S]=0
$$

for any tensor A.

- So

$$
\xi=\underset{\sim}{S} \cdot\{\underset{\sim}{D}-\underset{\sim}{\mathbb{C}}[\underset{\sim}{[}(A S-S A)]\}
$$

- Pick

$$
\begin{aligned}
\underset{\sim}{A}=\underset{\sim}{w}=\frac{1}{2}\left(\underset{\sim}{L}-{\underset{\sim}{T}}^{\top}\right) \\
\xi=\underset{\sim}{s} \cdot\{\underset{\sim}{D}-\underset{\sim}{\mathbb{C}} \underset{\sim}{\nabla}\}
\end{aligned}
$$

$$
\nabla:=\dot{S}-(\underset{\sim}{W}-\underset{\sim}{s} \underset{\sim}{W})
$$

∇ - Jaumann Derivative.

- Let

$$
{\underset{\sim}{D}}_{p}:=\underset{\sim}{s} \cdot\{\underset{\sim}{\mathbb{C}} \underset{\sim}{\mathbb{C}} \underset{\sim}{\mathbb{S}}\} .
$$

- Then

$$
\xi=\underset{\sim}{s} \cdot{\underset{\sim}{p}}_{p} \geqslant 0
$$

- We need to pick constitutive equations for D_{p}. Suppose we pick constitutive equations of the form

$$
D_{\sim} p={\underset{\sim}{f}}^{f}\left(\sim, D_{\sim}\right) .
$$

These constitutive equations are thermodynamically admissible.

- Suppose the booty is incompressible; i.e.,

$$
\operatorname{tr}-\underset{\sim}{D}=0 .
$$

Then we need to pick

$$
G=G(\tau, \theta)
$$

\approx is the deviatoric part of s.

$$
\xi=\underset{\sim}{\tau} \cdot \mathbb{D}-\tau \cdot\left(\mathbb{N}_{1}[\underset{\sim}{\sim}]\right)
$$

- Let $J_{1}=\operatorname{tr} \tau, J_{2}=\frac{1}{2}\left(\operatorname{tr} \tau^{2}\right), J_{3}=\frac{1}{3}\left(t r \tau^{3}\right)$.

$$
\mathbb{1}_{1}=-\frac{\partial^{2} G}{\partial \tau^{2}}
$$

- $\underset{\sim}{\mathbb{E}}=-\left\{G_{1,22} \tau \otimes \tau+G_{1,23}\left[\tau \otimes \tau_{\sim_{\text {dev }}}^{2}+\tau_{\text {dev }}^{2} \otimes \tau\right] G_{1,33}\left(\tau_{\text {dev }}^{2} \otimes \tau_{\tau}^{2}{ }_{\text {dav }}\right)\right.$

$$
\begin{aligned}
& +G_{1,2} \frac{\hat{I}}{\sim}+G_{1,3} \stackrel{\hat{A}}{\sim} \\
\left(\frac{\hat{I I}}{\sim}\right)_{i j k e} & =\left(\frac{\pi}{\sim}\right)_{i j k e}-\frac{1}{3} \delta_{i j} \delta_{k e} \\
(\hat{A})_{i j k e}= & \tau_{l j} \delta_{i k}-2\left(\frac{\tilde{I}}{\sim}\right)_{i j k e}-\frac{1}{3} \tau_{k e} \delta_{i j}
\end{aligned}
$$

$\tau_{\sim}^{2}{ }^{2}$ is the deviatoric part of τ_{\sim}^{2}.

- Then

$$
\xi=\underset{\sim}{\tau} \cdot\left(\underset{\sim}{D}-\underset{\sim}{\mathbb{C}},\left[\frac{\nabla}{\tau}\right]\right)
$$

- Define

$$
\begin{aligned}
& D_{p}=\underset{\sim}{D}-\underset{\sim}{\mathbb{C}}\left[\frac{\pi}{\tau}\right]=\underset{\sim}{f}(\tau, D) . \\
& \tau \cdot{\underset{\sim}{D}}_{p} \geqslant 0 .
\end{aligned}
$$

- Examples

Suppose $G_{1}=-a J_{2}, f \underset{\sim}{f}=b \tau+c \tau_{\sim}^{2}$.
Then the constitutive equation reduces to

$$
\begin{aligned}
& \text { atitutive equation }=a \underset{\sim}{\tau}+b \tau+c \tau_{\sim}^{2} \text { - GIESEKUS MODEL. }
\end{aligned}
$$

- Suppose

$$
\underset{\sim}{f}=\tau Y(p)
$$

p-mean normal stress.
The, the constitutive equation reduces to Model.

- Suppose

$$
\underset{\sim}{f}=\frac{\tau}{Y\left(I_{2}\left(D_{\sim}\right)\right)}
$$

In this case the constitutive model reduces to

$$
\begin{aligned}
\underset{\sim}{D} & \left.=a \stackrel{\nabla}{\sim}+\frac{\tau}{Y\left(I_{2}(D)\right.}\right) \\
& \Rightarrow\left[Y\left(I_{2}(D)\right)\right] \underset{\sim}{D}=a Y_{2}\left(I_{2}(D)\right) \underset{\sim}{\tau}+\tau
\end{aligned}
$$

METQNER - DENN - WHITE Model.

