Variable density Navier-Stokes equations 4 Other control results and related questions

E. Fernández-Cara (Univ. of Sevilla, Spain)

Prague, May-June 2011

E. Fernández-Cara Variable density Navier-Stokes equations 4

Contents

- A time optimal control problem
 - The problem and the goals
 - The results

2 Controllability

- Formulation of the problems
- The constant density case
- Ideas for the variable density case

Other results and questions

A time optimal control problem

The problem

Minimize
$$I(\mathbf{v}, \rho, \mathbf{u}) = \frac{1}{2} T^* (\mathbf{v}, \mathbf{u}; \mathbf{u}_e, \delta)^2 + \frac{b}{2} \iint_{\omega \times (0, T_0)} |\mathbf{v}|^2$$

Subject to $\mathbf{v} \in \mathcal{U}_{ad}$, $(\mathbf{v}, \rho, \mathbf{u})$ solves (NS)- ρ in $\Omega \times (0, T_0)$ Here: $\mathbf{u}_e \in H, \ \delta > 0, \ b > 0,$ $\mathcal{U}_{ad} \subset L^2(\omega \times (0, T))^3$ is non-empty, closed and convex, $T^*(\mathbf{v}, \mathbf{u}; \mathbf{u}_e, \delta) := \inf\{ \hat{T} : \|\mathbf{u}(\cdot, \hat{T}) - \mathbf{u}_e\| \le \delta \}$ (eventually, we can have $I(\mathbf{v}, \rho, \mathbf{u}) = +\infty$)

$$\begin{array}{l} (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla p = \mu \Delta \mathbf{u} + \mathbf{v} \mathbf{1}_{\omega}, \ \nabla \cdot \mathbf{u} = 0, \ (\mathbf{x}, t) \in \Omega \times (0, T_0) \\ \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0, \ (\mathbf{x}, t) \in \Omega \times (0, T_0) \\ \mathbf{u} = 0, \ (\mathbf{x}, t) \in \partial \Omega \times (0, T_0) \\ \rho|_{t=0} = \rho_0, \ (\rho \mathbf{u})|_{t=0} = \rho_0 \mathbf{u}_0, \ \mathbf{x} \in \Omega \end{array}$$

The goals

Existence, optimality (characterization) and algorithms

From now on: $\rho_0 \ge \alpha > 0$ a.e.

A time optimal control problem Optimizing the time of control: existence

Theorem:

Assume: inf $I(\mathbf{v}, \rho, \mathbf{u}) < +\infty$ Then: existence

Idea of the proof:

 \mathcal{U}_{ad} is weakly closed in $L^2(\omega \times (0, T_0))^N$. I is coercive The task: prove lower semicontinuity, i.e. $v^m \rightarrow v^*$ weakly $\Rightarrow \liminf_{m \rightarrow +\infty} T^*_m > T^*$ Otherwise: it can be assumed that $T_m^* \to \tilde{T} < T^*$ and then $(\mathbf{u}^*(\cdot, \tilde{T}) - \mathbf{u}_e, \mathbf{z})_{L^2} < \delta \|\mathbf{z}\| \ \forall \mathbf{z} \in V$, an absurd Indeed. $|(\mathbf{u}(\cdot, T) - \mathbf{u}_e, \mathbf{z})_{L^2}| \leq |(\mathbf{u}(\cdot, T) - \mathbf{u}(\cdot, T_m^*), \mathbf{z})_{L^2}|$ $+|(\mathbf{u}(\cdot, T_m^*) - \mathbf{u}^m(\cdot, T_m^*), \mathbf{z})_{12}| + |(\mathbf{u}^m(\cdot, T_m^*) - \mathbf{u}_e, \mathbf{z})_{12}||$ But $\mathbf{u}^m \to \mathbf{u}$ strongly in $C^0([0, T]; V')$ Also, $\mathbf{u}(\cdot, T_m^*) \rightarrow \mathbf{u}(\cdot, T)$ Finally, $|(\mathbf{u}^{m}(\cdot, T_{m}^{*}) - \mathbf{u}_{e}, \mathbf{z})_{L^{2}}| \leq ||\mathbf{u}^{m}(\cdot, T_{m}^{*}) - \mathbf{u}_{e}||_{L^{2}} ||\mathbf{z}||_{L^{2}} \leq \delta ||\mathbf{z}||_{L^{2}}$ (by the definition of T_m^*)

The problem and the goals The results

A time optimal control problem Optimizing the time of control: optimality

Theorem:

Assume:
$$\inf I(\mathbf{v}, \rho, \mathbf{u}) < +\infty, (T^*, \mathbf{v})$$
 is an optimal solution with
associated state $(\rho, \mathbf{u}), t \mapsto \mathbf{u}^*(\cdot, t)$ is C^1 in $[T^* - \kappa, T^*],$
 $(\mathbf{u}^*(\cdot, T^*) - \mathbf{u}_e, \mathbf{u}_t(\cdot, T^*))_{L^2} < 0$
Then: $\exists \lambda \in \mathbb{R}, \exists (\eta, \mathbf{w}, \beta)$ such that
$$\begin{cases} -\rho \mathbf{w}_t - \rho(\mathbf{u} \cdot \nabla) \mathbf{w} + \rho(\nabla \mathbf{u})^t \mathbf{w} + \nabla \beta \\ = \mu \Delta \mathbf{w} + \rho \nabla \eta, \quad \nabla \cdot \mathbf{w} = 0, \quad (\mathbf{x}, t) \in \Omega \times (0, T^*), \\ -\eta_t - \mathbf{u} \cdot \nabla \eta + (\mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u}) \cdot \mathbf{w} = 0, \quad (\mathbf{x}, t) \in \Omega \times (0, T^*), \\ \mathbf{w} = 0, \quad (\mathbf{x}, t) \in \partial \Omega \times (0, T^*), \\ \eta|_{t=T^*} = 0, \quad \mathbf{w}|_{t=T^*} = \lambda(\mathbf{u}|_{t=T^*} - \mathbf{u}_e), \quad \mathbf{x} \in \Omega, \\ \iint_{\omega \times (0, T^*)} (\mathbf{w} + b\mathbf{v}) \cdot (\mathbf{v}' - \mathbf{v}) \ge 0 \quad \forall \mathbf{v}' \in \mathcal{U}_{ad}, \quad \mathbf{v} \in \mathcal{U}_{ad} \\ T^* = P_{[0, T_0]} (-\lambda(\mathbf{u}(\cdot, T^*) - \mathbf{u}_e, \mathbf{u}_t(\cdot, T^*))_{L^2}) \end{cases}$$

 $\|\mathbf{u}(\cdot, T^*) - \mathbf{u}_e\|_{L^2} = \delta$

DQA

A time optimal control problem

• Explanation:

We use some kind of "partial derivatives" with respect to **v** and T^* λ and $(\eta, \mathbf{w}, \beta)$ are Lagrange multipliers

• On the assumptions:

The assumption on T^* serves to discard trivial cases

The other assumptions play the role of qualification hypotheses (needed

in general in this context)

They can be show to be reasonable

• Work in progress:

Using the optimality system to deduce iterative algorithms

Controllability Formulation of the problems

The general controllability question:

Fix Ω , ω , T and a desired property at T: $\mathbf{u}(\cdot, T) \in \mathbf{U}_T$ for some $\mathbf{U}_T \subset H$ Then, is it true that, for any (ρ_0, \mathbf{u}_0) we can find \mathbf{v} that produces a state satisfying this desired property?

(more difficult than optimal control) Attention: we only require something for $\mathbf{u}(\cdot, T)$!

Particular choices of $\boldsymbol{U}_{\mathcal{T}}$ – Comments:

- U_T = an arbitrary singleton: exact controllability (EC) Not to be expected if $\omega \neq \Omega$
- U_T = an arbitrary ball: approximate controllability (AC) True for similar linear systems
- U_T = an arbitrary final state (p
 , u
)|_{t=T}: EC to the trajectories Stronger than AC — True for similar linear problems
- $U_T = \{0\}$: null controllability (NC)

Controllability The constant density case

We begin by considering NS fluids

$$\begin{cases} \mathbf{y}_t + (\mathbf{y} \cdot \nabla)\mathbf{y} - \Delta \mathbf{y} + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, \ \nabla \cdot \mathbf{y} = \mathbf{0}, \ (\mathbf{x}, t) \in Q \\ \mathbf{y} = \mathbf{0}, \ (\mathbf{x}, t) \in \Sigma \\ \mathbf{y}|_{t=0} = \mathbf{y}_0, \ \mathbf{x} \in \Omega \end{cases}$$

Essentially, no general global controllability result, even in this case

Theorem (local EC to the trajectories for NS):

Assume: $(\overline{\mathbf{y}}, \overline{p})$ is an uncontrolled L^{∞} solution to Navier-Stokes:

$$\begin{cases} \overline{\mathbf{y}}_t - \Delta \overline{\mathbf{y}} + (\overline{\mathbf{y}} \cdot \nabla) \overline{\mathbf{y}} + \nabla \overline{p} = 0 & \text{in } Q \\ \nabla \cdot \overline{\mathbf{y}} = 0 & \text{in } Q, \dots \end{cases}$$

Then: $\exists \varepsilon > 0$ such that, whenever $\|\mathbf{y}^0 - \overline{\mathbf{y}}(\cdot, 0)\|_{L^{2N-2}} \le \varepsilon$, $\exists (\mathbf{v}, \mathbf{y}, p)$ with $\mathbf{y}(\mathbf{x}, T) = \overline{\mathbf{y}}(\mathbf{x}, T)$

ヨート

Controllability The constant density case

The global AC was conjectured by J.-L. Lions in 1990 To our knowledge: global results only known for modified systems

• Global AC and EC to the trajectories for linearized NS:

$$\begin{cases} \mathbf{y}_t + (\overline{\mathbf{y}} \cdot \nabla)\mathbf{y}) + (\mathbf{y} \cdot \nabla)\overline{\mathbf{y}} - \Delta \mathbf{y} + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, \ (\mathbf{x}, t) \in Q \\ \nabla \cdot \mathbf{y} = 0, \ (\mathbf{x}, t) \in Q \\ \mathbf{y} = 0, \ (\mathbf{x}, t) \in \Sigma \\ \mathbf{y}|_{t=0} = \mathbf{y}_0, \ \mathbf{x} \in \Omega \end{cases}$$

• AC for some nonlinear approximations [Fabre, 1996]:

$$\begin{cases} \mathbf{y}_t + (\mathcal{T}_M(\mathbf{y}) \cdot \nabla) \mathbf{y} - \Delta \mathbf{y} + \nabla \rho = \mathbf{v} \mathbf{1}_{\omega}, \ \nabla \cdot \mathbf{y} = \mathbf{0}, \ (\mathbf{x}, t) \in Q \\ \mathbf{y} = \mathbf{0}, \ (\mathbf{x}, t) \in \Sigma \\ \mathbf{y}|_{t=0} = \mathbf{y}_0, \ \mathbf{x} \in \Omega \end{cases}$$

• AC with other (slip) boundary conditions and N = 2 [Coron, 1996] NC for N = 2, manifold without boundary, [Coron-Fursikov, 1996]

Formulation of the problems The constant density case deas for the variable density case

Controllability Idea of the proof of the local result (I): Stokes

$$\begin{cases} \mathbf{y}_t + (\mathbf{a} \cdot \nabla)\mathbf{y} + (\mathbf{y} \cdot \nabla)\mathbf{a} - \Delta \mathbf{y} + \nabla p = \mathbf{v}\mathbf{1}_{\omega}, \ \nabla \cdot \mathbf{y} = 0 \\ \mathbf{y}(\cdot, 0) = \mathbf{y}_0 \quad \dots \\ \begin{cases} -\varphi_t - D\varphi \cdot \mathbf{a} - \Delta\varphi + \nabla q = 0, \ \nabla \cdot \varphi = 0 \\ \varphi(\cdot, T) = \varphi^T \quad \dots \quad \text{with } \mathbf{a} \in L^{\infty} \end{cases}$$

For this linear problem:

 $\mathsf{NC} \Leftrightarrow \mathsf{EC}$ to the trajectories $\Leftrightarrow \mathsf{Observability}:$

$$\int_{\Omega} |\varphi(\mathbf{x},0)|^2 \leq C \iint_{\omega \times (0,T)} |\varphi|^2 \, d\mathbf{x} \, dt \quad \forall \varphi^T \in H$$

The main tool for observability: Carleman estimates

$$\iint_{Q} \rho^{-2} |\varphi|^2 \, d\mathbf{x} \, dt \leq C \iint_{\omega \times (0,T)} \rho^{-2} |\varphi|^2 \, d\mathbf{x} \, dt \quad \forall \varphi^{\mathsf{T}} \in H$$

 $ho(x,t)\sim e^{
ho_{f 0}(x)/(au-t)}$, depending on ω , Ω , T

Carleman + Dissipativity \Rightarrow Observability (hence, Stokes is NC)

Controllability Idea of the proof of the local result (II): Carleman

Proof of Carleman:

Technical; several difficulties: heat-like, pressure-like, ...

$$\begin{cases} -\varphi_t - D\varphi \cdot \mathbf{a} - \Delta\varphi + \nabla q = g, \quad \nabla \cdot \varphi = 0\\ \varphi(\cdot, T) = \varphi^T + \text{Dirichlet conditions} \end{cases}$$

Set

 $I(\varphi) := \iint_Q \rho^{-2} |\varphi|^2 + \iint_Q \rho^{-2} |\nabla \varphi|^2 + \iint_Q \rho^{-2} \left(|\nabla \varphi_t|^2 + |\Delta \varphi|^2 \right)$ Then:

$$\begin{split} I(\varphi) &\leq C \iint_{\omega \times (0,T)} \rho^{-2} |\varphi|^2 + C \iint_Q \rho^{-2} |\nabla q|^2 + \dots \\ &\leq C \iint_{\omega \times (0,T)} \rho^{-2} |\varphi|^2 + C \iint_{\omega \times (0,T)} \rho^{-2} |q|^2 + \varepsilon I(\varphi) + \dots \\ &\leq C \iint_{\omega \times (0,T)} \rho^{-2} |\varphi|^2 + 2\varepsilon I(\varphi) + \dots \end{split}$$

Here we use $\mathbf{a} \in L^{\infty}$

A time optimal control problem Controllability Other results and questions Ideas for the variable den

Controllability Idea of the proof of the local result (III): Reformulation and Liusternik's theorem

Reformulation of the problem, $\mathbf{y} = \overline{\mathbf{y}} + \mathbf{u}$:

 $\begin{cases} \mathbf{u}_t + (\overline{\mathbf{y}} \cdot \nabla)\mathbf{u} + (\mathbf{u} \cdot \nabla)\overline{\mathbf{y}} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \Delta \mathbf{u} + \nabla p = \mathbf{v}\mathbf{1}_{\omega}, \text{ etc.} \\ \mathbf{u}(\cdot, 0) = \mathbf{u}^0 := \mathbf{y}^0 - \hat{\mathbf{y}}(\cdot, 0), \quad \mathbf{u}(\cdot, T) = 0 \end{cases}$ That is to say: $\mathcal{A}(\mathbf{v}, \mathbf{u}, p) := (\mathbf{u}_t + \dots - \mathbf{v}\mathbf{1}_{\omega}, \mathbf{u}(\cdot, 0)) = (\mathbf{0}, \mathbf{u}^0), (\mathbf{v}, \mathbf{u}, p) \in Y$ Here, Y is a space of triplets $(\mathbf{v}, \mathbf{u}, p)$ that vanish at t = T and ...

The tasks:

- Prove that $\mathcal{A}: Y \mapsto Z$ is well defined and C^1 near zero (good definitions of Y and Z) and
- $\mathcal{A}'(0,0,0)$ is onto (solve a NC problem for the linearized problem) OK, provided $\overline{\mathbf{y}} \in L^{\infty}$ and $\|\mathbf{y}^0 - \overline{\mathbf{y}}(\cdot,0)\|_{L^{2N-2}}$ is small

Notice:

For a global result, we need $\mathcal{A}'(\mathbf{v}, \mathbf{u}, p)$ bijective for all $(\mathbf{v}, \mathbf{u}, p)$, with $\|(\mathcal{A}')^{-1}\|$ uniformly bounded (global inversion). This is unknown

Formulation of the problems The constant density case Ideas for the variable density case

Controllability Ideas for the variable density case

$$\begin{array}{l} \begin{pmatrix} (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla p = \mu \Delta \mathbf{u} + \mathbf{v} \mathbf{1}_{\omega}, & \nabla \cdot \mathbf{u} = 0, & (\mathbf{x}, t) \in Q, \\ \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0, & (\mathbf{x}, t) \in Q, \\ \mathbf{u} = 0, & (\mathbf{x}, t) \in \Sigma, \\ \rho|_{t=0} = \rho_0, & (\rho \mathbf{u})|_{t=0} = \rho_0 \mathbf{u}_0, & \mathbf{x} \in \Omega, \end{array}$$

With similar arguments:

Theorem (local EC to stationary solutions):

Assume: $(\overline{\rho}, \overline{\mathbf{u}}, \overline{\rho})$ is a stationary solution with $\overline{\rho} \ge \alpha > 0$, $\overline{\rho}, \overline{\mathbf{u}} \in W^{1,\infty}$ Then: $\exists \varepsilon > 0$ such that, whenever $\|\rho^0 - \overline{\rho}\|_{L^{\infty}} + \|\mathbf{u}^0 - \overline{\mathbf{u}}\|_{V} \le \varepsilon$, $\exists (\mathbf{v}, \rho, \mathbf{u}, p)$ with $\mathbf{u}(\cdot, T) = \overline{\mathbf{u}}(\cdot, T)$

Work in progress: EC to nonstationary trajectories

Other results and questions

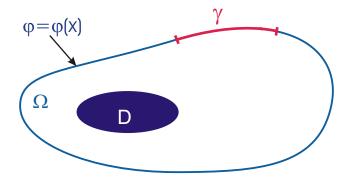
• An inverse problem: Identification of the shape of a body Find *D* from Ω , (φ, ψ) and α , with

$$\begin{cases} (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla \rho = \mu \Delta \mathbf{u}, \quad (\mathbf{x}, t) \in (\Omega \setminus \overline{D}) \times (0, T) \\ \nabla \cdot \mathbf{u} = 0, \quad (\mathbf{x}, t) \in (\Omega \setminus \overline{D}) \times (0, T) \\ \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0, \quad (\mathbf{x}, t) \in (\Omega \setminus \overline{D}) \times (0, T) \\ \mathbf{u} = \varphi, \quad (\mathbf{x}, t) \in \Sigma, \quad \rho = \psi, \quad (\mathbf{x}, t) \in \Sigma_{in} \\ \mathbf{u} = \mathbf{0}, \quad (\mathbf{x}, t) \in \partial D \times (0, T) \\ \rho|_{t=0} = \rho_0, \quad (\rho \mathbf{u})|_{t=0} = \rho_0 \mathbf{u}_0, \quad \mathbf{x} \in \Omega \setminus \overline{D} \end{cases}$$

$$\sigma(u,p)\cdot \mathbf{n} := (-p\operatorname{Id} + \nu(\nabla u + {}^t\nabla u))\cdot \mathbf{n} = \alpha \quad \text{on } \gamma \subset \Omega$$

Main questions: uniqueness, stability, reconstruction Work in progress, several satisfactory results for NS

Geometric inverse problem for fluids



Inverse problem Find a rigid body D E. Fernández-Cara Variable density Ravier-Stokes equations 4

Other results and questions

Besov spaces and Kato-like results (another approach)
 Based on heat kernel, contractive mappings, [Fujita-Kato, 1964]
 Suitable for Ω = ℝ^N, scale invariant spaces E. Typical result for NS:

Theorem:

Asume: $\Omega = \mathbb{R}^N$, $\mathbf{u}_0 \in E$, $\mathbf{f} \equiv \mathbf{0}$ $\exists T_* > 0 \text{ and } \exists \mathbf{u} \in C^0([0, T_*]; E) \text{ and } \|\mathbf{u}\|_E \text{ small } \Rightarrow T_* = T$

OK with $E = \dot{H}^{1/2}, L^N, \dot{B}_{2,1}^{N/2-1}, \dots$ In particular: $E = BMO^{-1}$ [Koch-Tataru] Other "very weak" spaces [Chemin-Ghallager, 2009] A result from [Danchin, 2007] for NS- ρ (still not optimal):

Theorem:

Take
$$F := \dot{B}_{2,1}^{N/2} \times \dot{B}_{2,1}^{N/2-1}$$
, $(\rho_0^{-1}, \mathbf{u}_0) \in F$, with $\|\rho_0^{-1}\|_{\dot{B}_{2,1}^{N/2}} \le \kappa(N)$

 $\exists T_* > 0 \text{ and } \dot{\exists} \ (\rho^{-1}, \mathbf{u}) \in C^0([0, T_*]; F); \ \|(\rho_0, \mathbf{u}_0)\|_F \text{ small} \Rightarrow T_* = T$

Recall: $\dot{B}_{2,1}^{N/2} \hookrightarrow \dot{H}^{N/2} \cap L^{\infty}$. For large $\|\rho_0^{-1}\|_{\dot{B}_{2,1}^{N/2}}$, open question!

Some references:

- For the physical motivation, basic tools and NS results: [Panton, 1984], [Zeidler, 1988], [Chorin-Marsden, 1993] [Temam, 2001], [Constantin-Foias, 1989], [Tartar, 2006], [Lemarié-Rieusset, 2002]*, [Simon, 2011]*
- For NS-ρ theory (existence, uniqueness, regularity): [P-L Lions, 1996], [Braz-EFC-Rojas, 2011]*
- For results concerning control and inverse problems: [J-L Lions, 1969], [Gunzburger, 2003], [Glowinski-Lions-He, 2008], [Fursikov, 2005], [Fursikov-Imanuvilov, 1995], [EFC-Guerrero, 2006]*, [Coron, 2007]*
- * ... and the references therein

THANK YOU VERY MUCH BYE!

E. Fernández-Cara Variable density Navier-Stokes equations 4

э

590