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A time optimal control problem
The problem and the goals

The problem{
Minimize I (v, ρ,u) = 1

2T ∗(v,u; ue , δ)2 + b
2

∫∫
ω×(0,T0)

|v|2

Subject to v ∈ Uad, (v, ρ,u) solves (NS)-ρ in Ω× (0,T0)
Here: ue ∈ H, δ > 0, b > 0,
Uad ⊂ L2(ω × (0,T ))3 is non-empty, closed and convex,
T ∗(v,u; ue , δ) := inf{ T̂ : ‖u(· , T̂ )− ue‖ ≤ δ }
(eventually, we can have I (v, ρ,u) = +∞)

(ρu)t +∇ · (ρuu) +∇p = µ∆u + v1ω, ∇ · u = 0, (x, t) ∈ Ω× (0,T0)
ρt +∇ · (ρu) = 0, (x, t) ∈ Ω× (0,T0)
u = 0, (x, t) ∈ ∂Ω× (0,T0)
ρ|t=0 = ρ0, (ρu)|t=0 = ρ0u0, x ∈ Ω

The goals

Existence, optimality (characterization) and algorithms

From now on: ρ0 ≥ α > 0 a.e.
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A time optimal control problem
Optimizing the time of control: existence

Theorem:

Assume: inf I (v, ρ,u) < +∞ Then: existence

Idea of the proof:

Uad is weakly closed in L2(ω × (0,T0))N , I is coercive
The task: prove lower semicontinuity, i.e.

vm → v∗ weakly ⇒ lim infm→+∞ T ∗m ≥ T ∗

Otherwise: it can be assumed that T ∗m → T̃ < T ∗ and then
(u∗(· , T̃ )− ue , z)L2 ≤ δ‖z‖ ∀z ∈ V , an absurd

Indeed,
|(u(· , T̃ )− ue , z)L2 | ≤ |(u(· , T̃ )− u(· ,T ∗m), z)L2 |

+|(u(· ,T ∗m)− um(· ,T ∗m), z)L2 |+ |(um(· ,T ∗m)− ue , z)L2 |
But um → u strongly in C 0([0,T ]; V ′)
Also, u(· ,T ∗m)→ u(· , T̃ )
Finally, |(um(· ,T ∗m)− ue , z)L2 | ≤ ‖um(· ,T ∗m)− ue‖L2‖z‖L2 ≤ δ‖z‖L2

(by the definition of T ∗m)
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A time optimal control problem
Optimizing the time of control: optimality

Theorem:

Assume: inf I (v, ρ,u) < +∞, (T ∗, v) is an optimal solution with
associated state (ρ,u), t 7→ u∗(· , t) is C 1 in [T ∗ − κ,T ∗],
(u∗(· ,T ∗)− ue ,ut(· ,T ∗))L2 < 0
Then: ∃λ ∈ R,∃(η,w, β) such that

−ρwt − ρ(u · ∇)w + ρ(∇u)tw +∇β
= µ∆w + ρ∇η, ∇ ·w = 0, (x, t) ∈ Ω× (0,T ∗),

−ηt − u · ∇η + (ut + (u · ∇)u) ·w = 0, (x, t) ∈ Ω× (0,T ∗),
w = 0, (x, t) ∈ ∂Ω× (0,T ∗),
η|t=T∗ = 0, w|t=T∗ = λ(u|t=T∗ − ue), x ∈ Ω,∫∫

ω×(0,T∗)

(w + bv) · (v′ − v) ≥ 0 ∀v′ ∈ Uad, v ∈ Uad

T ∗ = P[0,T0] (−λ(u(· ,T ∗)− ue ,ut(· ,T ∗))L2)

‖u(· ,T ∗)− ue‖L2 = δ
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A time optimal control problem
Additional comments

• Explanation:
We use some kind of “partial derivatives” with respect to v and T ∗

λ and (η,w, β) are Lagrange multipliers
• On the assumptions:
The assumption on T ∗ serves to discard trivial cases
The other assumptions play the role of qualification hypotheses (needed

in general in this context)
They can be show to be reasonable
• Work in progress:
Using the optimality system to deduce iterative algorithms . . .
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Controllability
Formulation of the problems

The general controllability question:

Fix Ω, ω, T and a desired property at T :
u(· ,T ) ∈ UT for some UT ⊂ H

Then, is it true that, for any (ρ0,u0) we can find v that produces a state
satisfying this desired property?

(more difficult than optimal control)
Attention: we only require something for u(· ,T )!
Particular choices of UT – Comments:

• UT = an arbitrary singleton: exact controllability (EC)
Not to be expected if ω 6= Ω
• UT = an arbitrary ball: approximate controllability (AC)
True for similar linear systems
• UT = an arbitrary final state (ρ,u)|t=T : EC to the trajectories
Stronger than AC — True for similar linear problems
• UT = {0}: null controllability (NC)
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The constant density case

We begin by considering NS fluids yt + (y · ∇)y −∆y +∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q
y = 0, (x, t) ∈ Σ
y|t=0 = y0, x ∈ Ω

Essentially, no general global controllability result, even in this case

Theorem (local EC to the trajectories for NS):

Assume: (y, p) is an uncontrolled L∞ solution to Navier-Stokes:{
yt −∆y + (y · ∇)y +∇p = 0 in Q
∇ · y = 0 in Q, . . .

Then: ∃ε > 0 such that, whenever ‖y0 − y(· , 0)‖L2N−2 ≤ ε,
∃(v, y, p) with y(x,T ) = y(x,T )
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The constant density case

The global AC was conjectured by J.-L. Lions in 1990
To our knowledge: global results only known for modified systems

Global AC and EC to the trajectories for linearized NS:
yt + (y · ∇)y) + (y · ∇)y −∆y +∇p = v1ω, (x, t) ∈ Q
∇ · y = 0, (x, t) ∈ Q
y = 0, (x, t) ∈ Σ
y|t=0 = y0, x ∈ Ω

AC for some nonlinear approximations [Fabre, 1996]: yt + (TM(y) · ∇)y −∆y +∇p = v1ω, ∇ · y = 0, (x, t) ∈ Q
y = 0, (x, t) ∈ Σ
y|t=0 = y0, x ∈ Ω

AC with other (slip) boundary conditions and N = 2 [Coron, 1996]
NC for N = 2, manifold without boundary, [Coron-Fursikov, 1996]
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Idea of the proof of the local result (I): Stokes{

yt + (a · ∇)y) + (y · ∇)a−∆y +∇p = v1ω, ∇ · y = 0,
y(· , 0) = y0 . . .{

−ϕt − Dϕ · a−∆ϕ+∇q = 0, ∇ · ϕ = 0
ϕ(· ,T ) = ϕT . . . with a ∈ L∞

For this linear problem:

NC ⇔ EC to the trajectories ⇔ Observability:∫
Ω

|ϕ(x, 0)|2 ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt ∀ϕT ∈ H

The main tool for observability: Carleman estimates∫∫
Q
ρ−2|ϕ|2 dx dt ≤ C

∫∫
ω×(0,T )

ρ−2|ϕ|2 dx dt ∀ϕT ∈ H

ρ(x , t) ∼ eρ0(x)/(T−t), depending on ω, Ω, T

Carleman + Dissipativity ⇒ Observability (hence, Stokes is NC)
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Idea of the proof of the local result (II): Carleman

Proof of Carleman:
Technical; several difficulties: heat-like, pressure-like, . . .{

−ϕt − Dϕ · a−∆ϕ+∇q = g , ∇ · ϕ = 0
ϕ(· ,T ) = ϕT + Dirichlet conditions

Set
I (ϕ) :=

∫∫
Q ρ
−2|ϕ|2 +

∫∫
Q ρ
−2|∇ϕ|2 +

∫∫
Q ρ
−2
(
|∇ϕt |2 + |∆ϕ|2

)
Then:

I (ϕ) ≤ C
∫∫
ω×(0,T )

ρ−2|ϕ|2 + C
∫∫

Q ρ
−2|∇q|2 + . . .

≤ C
∫∫
ω×(0,T )

ρ−2|ϕ|2 + C
∫∫
ω×(0,T )

ρ−2|q|2 + εI (ϕ) + . . .

≤ C
∫∫
ω×(0,T )

ρ−2|ϕ|2 + 2εI (ϕ) + . . .

Here we use a ∈ L∞
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Idea of the proof of the local result (III): Reformulation and Liusternik’s theorem

Reformulation of the problem, y = y + u:{
ut + (y · ∇)u + (u · ∇)y + (u · ∇)u−∆u +∇p = v1ω, etc.
u(· , 0) = u0 := y0 − ŷ(· , 0), u(· ,T ) = 0

That is to say:
A(v,u, p) := (ut + · · · − v1ω,u(· , 0)) = (0,u0), (v,u, p) ∈ Y
Here, Y is a space of triplets (v,u, p) that vanish at t = T and . . .

The tasks:
• Prove that A : Y 7→ Z is well defined and C 1 near zero
(good definitions of Y and Z ) and
• A′(0, 0, 0) is onto (solve a NC problem for the linearized problem)
OK, provided y ∈ L∞ and ‖y0 − y(· , 0)‖L2N−2 is small

Notice:

For a global result, we need A′(v,u, p) bijective for all (v,u, p), with
‖(A′)−1‖ uniformly bounded (global inversion). This is unknown
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Ideas for the variable density case


(ρu)t +∇ · (ρuu) +∇p = µ∆u + v1ω, ∇ · u = 0, (x, t) ∈ Q,
ρt +∇ · (ρu) = 0, (x, t) ∈ Q,
u = 0, (x, t) ∈ Σ,
ρ|t=0 = ρ0, (ρu)|t=0 = ρ0u0, x ∈ Ω,

With similar arguments:

Theorem (local EC to stationary solutions):

Assume: (ρ,u, p) is a stationary solution with ρ ≥ α > 0, ρ,u ∈W 1,∞

Then: ∃ε > 0 such that, whenever ‖ρ0 − ρ‖L∞ + ‖u0 − u‖V ≤ ε,
∃(v, ρ,u, p) with u(· ,T ) = u(· ,T )

Work in progress: EC to nonstationary trajectories . . .
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• An inverse problem: Identification of the shape of a body
Find D from Ω, (ϕ,ψ) and α, with

(ρu)t +∇ · (ρuu) +∇p = µ∆u, (x, t) ∈ (Ω \ D)× (0,T )
∇ · u = 0, (x, t) ∈ (Ω \ D)× (0,T )
ρt +∇ · (ρu) = 0, (x, t) ∈ (Ω \ D)× (0,T )
u = ϕ, (x, t) ∈ Σ, ρ = ψ, (x, t) ∈ Σin
u = 0, (x, t) ∈ ∂D × (0,T )
ρ|t=0 = ρ0, (ρu)|t=0 = ρ0u0, x ∈ Ω \ D

σ(u, p) · n := (−p Id + ν(∇u + t∇u)) · n = α on γ ⊂ Ω

Main questions: uniqueness, stability, reconstruction
Work in progress, several satisfactory results for NS . . .
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Geometric inverse problem for fluids

Inverse problem

Find a rigid body D
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Other results and questions
• Besov spaces and Kato-like results (another approach)
Based on heat kernel, contractive mappings, [Fujita-Kato, 1964]
Suitable for Ω = RN , scale invariant spaces E . Typical result for NS:

Theorem:

Asume: Ω = RN , u0 ∈ E , f ≡ 0
∃T∗ > 0 and ∃̇ u ∈ C 0([0,T∗]; E ) and ‖u‖E small ⇒ T∗ = T

OK with E = Ḣ1/2, LN , ḂN/2−1
2,1 , . . . In particular:

E = BMO−1 [Koch-Tataru]
Other “very weak” spaces [Chemin-Ghallager, 2009]
A result from [Danchin, 2007] for NS-ρ (still not optimal):

Theorem:

Take F := ḂN/2
2,1 × ḂN/2−1

2,1 , (ρ−1
0 ,u0) ∈ F , with ‖ρ−1

0 ‖ḂN/2
2,1
≤ κ(N)

∃T∗ > 0 and ∃̇ (ρ−1,u) ∈ C 0([0,T∗]; F ); ‖(ρ0,u0)‖F small ⇒ T∗ = T

Recall: ḂN/2
2,1 ↪→ ḢN/2 ∩ L∞. For large ‖ρ−1

0 ‖ḂN/2
2,1

, open question!

E. Fernández-Cara Variable density Navier-Stokes equations 4



A time optimal control problem
Controllability

Other results and questions

Some references:

• For the physical motivation, basic tools and NS results:
[Panton, 1984], [Zeidler, 1988], [Chorin-Marsden, 1993]
[Temam, 2001], [Constantin-Foias, 1989], [Tartar, 2006],
[Lemarié-Rieusset, 2002]∗, [Simon, 2011]∗

• For NS-ρ theory (existence, uniqueness, regularity):
[P-L Lions, 1996], [Braz-EFC-Rojas, 2011]∗

• For results concerning control and inverse problems:
[J-L Lions, 1969], [Gunzburger, 2003], [Glowinski-Lions-He, 2008],
[Fursikov, 2005], [Fursikov-Imanuvilov, 1995], [EFC-Guerrero, 2006]∗,
[Coron, 2007]∗

∗ . . . and the references therein
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THANK YOU VERY MUCH
BYE!
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