Variable density Navier-Stokes equations 3
 Uniqueness and optimal control results

E. Fernández-Cara (Univ. of Sevilla, Spain)

Prague, May-June 2011

Contents

(1) Uniqueness

- A partial result
- Additional comments and questions
(2) Optimal control
- Formulation of the problems
- Existence
- Characterization of optimality
- Further comments and questions

Uniqueness
 A partial result

No satisfactory general result for $N=2$ (???) Minimal regularity hypotheses? Uniqueness for $N=2$ and some particular structure of ρ_{0} ?

Uniqueness

A partial result

Theorem:

Assume: $\rho_{0} \geq \alpha>0,(\bar{\rho}, \overline{\mathbf{u}}, \bar{p})$ is a solution with $\nabla \bar{\rho}, \nabla \overline{\mathbf{u}}, \overline{\mathbf{u}}_{t} \in L^{2}\left(L^{\infty}\right)$, $\bar{\rho}, \overline{\mathbf{u}} \in C^{0}(\bar{Q})$. Then $\mathbf{u}=\overline{\mathbf{u}}$ a.e.

Sketch of the proof:

(A) Energy identity for ($\bar{\rho}, \overline{\mathbf{u}}$):

$$
\frac{1}{2} \int_{\Omega} \bar{\rho}|\overline{\mathbf{u}}|^{2}+\mu \iint_{\Omega \times(0, t)}|\nabla \overline{\mathbf{u}}|^{2}=\frac{1}{2} \int_{\Omega} \rho_{0}\left|\mathbf{u}_{0}\right|^{2}+\iint_{\Omega \times(0, t)} \overline{\rho \mathbf{u}} \cdot \mathbf{f}
$$

(B) Energy inequality for (ρ, \mathbf{u}) :

$$
\frac{1}{2} \int_{\Omega} \rho|\mathbf{u}|^{2}+\mu \iint_{\Omega \times(0, t)}|\nabla \mathbf{u}|^{2} \leq \frac{1}{2} \int_{\Omega} \rho_{0}\left|\mathbf{u}_{0}\right|^{2}+\iint_{\Omega \times(0, t)} \rho \mathbf{u} \cdot \mathbf{f}
$$

(C) Motion equation for ($\bar{\rho}, \overline{\mathbf{u}})$:

$$
\iint_{\Omega \times(0, t)}\left\{\bar{\rho}\left(\overline{\mathbf{u}}_{t}+(\overline{\mathbf{u}} \cdot \nabla) \overline{\mathbf{u}}-\mathbf{f}\right) \cdot \mathbf{u}+\mu \nabla \overline{\mathbf{u}}: \nabla \mathbf{u}\right\}=0
$$

(D) Motion equation for (ρ, \mathbf{u}) :

$$
\iint_{\Omega \times(0, t)}\left\{\rho\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\mathbf{f}\right) \cdot \overline{\mathbf{u}}+\mu \nabla \mathbf{u}: \nabla \overline{\mathbf{u}}\right\}=0
$$

$(A)+(B)-(C)-(D)$ leads to \ldots

Uniqueness

$$
\begin{aligned}
& \left(\int_{\Omega} \rho|\mathbf{u}-\overline{\mathbf{u}}|^{2}\right)(t)+\mu \iint_{\Omega \times(0, t)}|\nabla \mathbf{u}|^{2} \\
& \quad \leq \iint_{\Omega \times(0, t)}\left(A(s)|\mathbf{u}-\overline{\mathbf{u}}|^{2}+B_{\varepsilon}(s)|\rho-\bar{\rho}|^{2}\right)+\varepsilon \iint_{\Omega \times(0, t)}|\mathbf{u}-\overline{\mathbf{u}}|^{2}
\end{aligned}
$$

with $A, B_{\varepsilon} \in L^{\infty}(0, T)$.
Transport equations for ρ and $\bar{\rho}$:

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}|\rho-\bar{\rho}|^{2}=\int_{\Omega} \nabla \bar{\rho} \cdot(\mathbf{u}-\overline{\mathbf{u}})(\rho-\bar{\rho})
$$

Consequences:

$$
\begin{gathered}
\left(\int_{\Omega}|\rho-\bar{\rho}|^{2}\right)(t) \leq C \iint_{\Omega \times(0, t)}|\mathbf{u}-\overline{\mathbf{u}}|^{2} \forall t \\
\left(\int_{\Omega} \rho|\mathbf{u}-\overline{\mathbf{u}}|^{2}\right)(t)+\mu \iint_{\Omega \times(0, t)}|\nabla \mathbf{u}|^{2} \leq \iint_{\Omega \times(0, t)} C(s)|\mathbf{u}-\overline{\mathbf{u}}|^{2}
\end{gathered}
$$

with $C \in L^{\infty}(0, T)$ and \ldots

Uniqueness

Additional comments and questions:

- No satisfactory for $N=2$!

Minimal regularity hypotheses on $(\bar{\rho}, \overline{\mathbf{u}})$? Can we have only $\rho_{0} \geq 0$?

- Another strategy: Duality

Let $(\bar{\rho}, \overline{\mathbf{u}}),(\rho, \mathbf{u})$ be two solutions. Set $(\sigma, \mathbf{w}):=(\rho-\bar{\rho}, \mathbf{u}-\overline{\mathbf{u}})$

$$
\left.\begin{array}{l}
E(\rho, \mathbf{u})=0 \\
E(\bar{\rho}, \overline{\mathbf{u}})=0
\end{array}\right\} \Rightarrow \tilde{E}(\rho, \mathbf{u}, \bar{\rho}, \overline{\mathbf{u}})(\sigma, \mathbf{w})=0 \quad(\text { linear in }(\sigma, \mathbf{w}))
$$

Task: $N(\tilde{E}(\rho, \mathbf{u}, \bar{\rho}, \overline{\mathbf{u}}))=\{0\}$, equivalent to $R\left(\tilde{E}(\rho, \mathbf{u}, \bar{\rho}, \overline{\mathbf{u}})^{*}\right)$ is dense Therefore: try to solve a linear problem with RHS in a dense subspace Same requirements on (ρ, \mathbf{u}), $(\bar{\rho}, \overline{\mathbf{u}}) \ldots$

Uniqueness

Additional comments and questions:

- Many other questions can be considered. For instance: how "large" is the set of uniqueness data? An "entropy condition" ensuring uniqueness (maybe together with $N=2$ and/or $\mathbf{u} \in L^{r}\left(0, T ; L^{s}\right)$)?, etc.

Optimal control

$$
\left\{\begin{array}{l}
\text { Minimize } J(\mathbf{v}, \rho, \mathbf{u}) \\
\text { Subject to } \mathbf{v} \in \mathcal{U}_{\mathrm{ad}}, \quad(\mathbf{v}, \rho, \mathbf{u}) \text { solves NS- } \rho
\end{array}\right.
$$

- The state equation is NS- ρ :

$$
\left\{\begin{array}{l}
(\rho \mathbf{u})_{t}+\nabla \cdot(\rho \mathbf{u u})+\nabla p=\mu \Delta \mathbf{u}+\mathbf{v} 1_{\omega}, \quad \nabla \cdot \mathbf{u}=0, \quad(\mathbf{x}, t) \in Q \\
\rho_{t}+\nabla \cdot(\rho \mathbf{u})=0, \quad(\mathbf{x}, t) \in Q \\
\mathbf{u}=0, \quad(\mathbf{x}, t) \in \Sigma \\
\left.\rho\right|_{t=0}=\rho_{0},\left.\quad(\rho \mathbf{u})\right|_{t=0}=\rho_{0} \mathbf{u}_{0}, \quad \mathbf{x} \in \Omega
\end{array}\right.
$$

- The constraints: $\mathbf{v} \in \mathcal{U}_{\mathrm{ad}} \subset L^{2}(\omega \times(0, T))^{N}$, closed and convex

Optimal control

Some particular cases:

- Cost:

$$
\begin{gathered}
J(\mathbf{v}, \rho, \mathbf{u})=\iint_{Q}\left(\frac{a}{2}\left|\mathbf{u}-\mathbf{u}_{d}\right|^{2}+\frac{a^{\prime}}{2}\left|\rho-\rho_{d}\right|^{2}\right)+\frac{b}{2} \iint_{\omega \times(0, T)}|\mathbf{v}|^{2} \\
J(\mathbf{v}, \rho, \mathbf{u})=\int_{\Omega}\left(\frac{a}{2}\left|\mathbf{u}(\mathbf{x}, T)-\mathbf{u}_{e}\right|^{2}+\frac{a^{\prime}}{2}\left|\rho(\mathbf{x}, T)-\rho_{e}\right|^{2}\right)+\frac{b}{2} \iint_{\omega \times(0, T)}|\mathbf{v}|^{2}
\end{gathered}
$$

- Constraints:

$$
\begin{aligned}
& \mathcal{U}_{\mathrm{ad}}=L^{2}(\omega \times(0, T))^{N} \\
& \mathcal{U}_{\mathrm{ad}}=\left\{\mathbf{v} \in L^{2}(\omega \times(0, T))^{N}:|\mathbf{v}| \leq M \text { a.e. }\right\} \\
& \mathcal{U}_{\mathrm{ad}}=\left\{\mathbf{v} \in L^{2}(\omega \times(0, T))^{N}: \mathbf{v}=\sum_{i=1}^{l} \mathbf{v}^{i}(\mathbf{x}) 1_{\left(t_{i}, \tau_{i}\right)}(t) \text { a.e., } \mathbf{v}^{i} \in L^{2}\right\} \\
& \text { where } M>0 \text { and the } t_{i} \text { and } \tau_{i} \text { satisfy } 0 \leq t_{1}<\tau_{1}<\cdots<t_{\boldsymbol{l}}<\tau_{I} \leq T
\end{aligned}
$$

- Goals:
(1) Existence, uniqueness
(2) Characterization: find a system necessarily satisfied by any optimal solution
(3) Computation: provide iterative algorithms that produce sequences of controls \mathbf{v}^{m} that converge to a solution

Optimal control

Existence - A general result

Theorem:

Assume:
(1) $\mathcal{U}_{\mathrm{ad}} \subset L^{2}(\omega \times(0, T))^{N}$ is non-empty, closed and convex
(2) J is sequentially weakly lower semi-continuous
(3) Either $\mathcal{U}_{\mathrm{ad}}$ is bounded or J is coercive in \mathbf{v}

Then: existence
Can be applied to the particular cases above ... Uniqueness?

Optimal control

Characterization of optimality:

Theorem:

Assume: $\mathcal{U}_{\mathrm{ad}} \subset L^{2}(\omega \times(0, T))^{N}$ is non-empty, closed and convex, $J \equiv \iint_{Q}\left(\frac{a}{2}\left|\mathbf{u}-\mathbf{u}_{d}\right|^{2}+\frac{a^{\prime}}{2}\left|\rho-\rho_{d}\right|^{2}\right)+\frac{b}{2} \iint_{\omega \times(0, T)}|\mathbf{v}|^{2},(\mathbf{v}, \rho, \mathbf{u})$ is optimal
Then: $\exists(\eta, \mathbf{w}, \beta)$ such that:

$$
\begin{aligned}
& \left\{\begin{array}{l}
-\rho \mathbf{w}_{t}-\rho(\mathbf{u} \cdot \nabla) \mathbf{w}+\rho(\nabla \mathbf{u})^{T} \mathbf{w}+\nabla \beta \\
\quad=\mu \Delta \mathbf{w}+\rho \nabla \eta+a\left(\mathbf{u}-\mathbf{u}_{d}\right), \quad \nabla \cdot \mathbf{w}=0, \quad(\mathbf{x}, t) \in Q \\
-\eta_{t}-\mathbf{u} \cdot \nabla \eta+\left(\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right) \cdot \mathbf{w}=a^{\prime}\left(\rho-\rho_{d}\right), \quad(\mathbf{x}, t) \in Q \\
\mathbf{w}=0, \quad(\mathbf{x}, t) \in \Sigma, \\
\left.\eta\right|_{t=T}=0,\left.\quad(\eta \mathbf{w})\right|_{t=T}=0, \quad \mathbf{x} \in \Omega
\end{array}\right. \\
& \quad \iint_{\omega \times(0, T)}(\mathbf{w}+b \mathbf{v}) \cdot\left(\mathbf{v}^{\prime}-\mathbf{v}\right) \geq 0 \quad \forall \mathbf{v}^{\prime} \in \mathcal{U}_{\mathrm{ad}}, \quad \mathbf{v} \in \mathcal{U}_{\mathrm{ad}}
\end{aligned}
$$

Optimal control

Characterization of optimality:

Idea of the proof (I): the key idea
Set $\mathbf{y}(\mathbf{v}):=(\rho, \mathbf{u})$ (the state) and assume regularity. Then $j(\mathbf{v}):=J(\rho, \mathbf{u}, \mathbf{v})=F(\mathbf{y}(\mathbf{v}), \mathbf{v})$ and

$$
\left\langle j^{\prime}(\mathbf{v}), \mathbf{v}^{\prime}-\mathbf{v}\right\rangle \geq 0 \quad \forall \mathbf{v}^{\prime} \in \mathcal{U}_{\mathrm{ad}}
$$

One has:

$$
\begin{aligned}
& \left\langle j^{\prime}(\mathbf{v}), \mathbf{v}^{\prime}-\mathbf{v}\right\rangle \\
& \quad=\left\langle F_{\mathbf{y}}(\mathbf{y}(\mathbf{v}), \mathbf{v}), \frac{d \mathbf{y}}{d \mathbf{v}}(\mathbf{v})\left(\mathbf{v}^{\prime}-\mathbf{v}\right)\right\rangle+\left\langle F_{\mathbf{v}}(\mathbf{y}(\mathbf{v}), \mathbf{v}), \mathbf{v}^{\prime}-\mathbf{v}\right\rangle \\
& =\left\langle\mathbf{p}(\mathbf{v})+F_{\mathbf{v}}(\mathbf{y}(\mathbf{v}), \mathbf{v}), \mathbf{v}^{\prime}-\mathbf{v}\right\rangle
\end{aligned}
$$

with $\mathbf{p}(\mathbf{v})=\frac{d \mathbf{y}}{d \mathbf{v}}(\mathbf{v})^{*} \cdot F_{\mathbf{y}}(\mathbf{y}(\mathbf{v}), \mathbf{v})$ (the so called adjoint state) Hence:

$$
\left\langle\mathbf{p}(\mathbf{v})+F_{\mathbf{v}}(\mathbf{y}(\mathbf{v}), \mathbf{v}), \mathbf{v}^{\prime}-\mathbf{v}\right\rangle \geq 0 \quad \forall \mathbf{v}^{\prime} \in \mathcal{U}_{\mathrm{ad}}
$$

Optimal control

Characterization of optimality:
Idea of the proof (II): the rigorous computations
Take $\mathbf{v}^{\prime}=\mathbf{v}+\alpha \mathbf{h}$ with $\alpha \in \mathbb{R}_{+}$(small), $\mathbf{h} \in L^{2}(\omega \times(0, T))^{N}, \mathbf{v}^{\prime} \in \mathcal{U}_{\mathrm{ad}}$. Let ($\rho^{\prime}, \mathbf{u}^{\prime}$) be a state associated to \mathbf{v}^{\prime}. Then

$$
\begin{aligned}
& J\left(\mathbf{v}^{\prime}, \rho^{\prime}, \mathbf{u}^{\prime}\right)-J(\mathbf{v}, \rho, \mathbf{u}) \\
& =\alpha\left(\iint_{Q}\left[a\left(\mathbf{u}-\mathbf{u}_{d}\right) \cdot \mathbf{y}+a^{\prime}\left(\rho-\rho_{d}\right) \sigma\right]+b \iint_{\omega \times(0, T)} \mathbf{v} \cdot \mathbf{h} d \mathbf{x} d t\right)+\alpha Z_{\alpha}
\end{aligned}
$$

with $Z_{\alpha} \rightarrow 0$.
After integration by parts:

$$
\iint_{Q}\left(a\left(\mathbf{u}-\mathbf{u}_{d}\right) \cdot \mathbf{y}+a\left(\rho-\rho_{d}\right) \sigma\right)=\iint_{\omega \times(0, T)} \mathbf{w} \cdot \mathbf{h}
$$

Consequence:

$$
\iint_{\omega \times(0, T)}(\mathbf{w}+b \mathbf{v}) \cdot \mathbf{h} \geq 0 .
$$

Optimal control

- A similar result holds when
$J \equiv \int_{\Omega}\left(\frac{a}{2}\left|\mathbf{u}(\mathbf{x}, T)-\mathbf{u}_{e}\right|^{2}+\frac{a^{\prime}}{2}\left|\rho(\mathbf{x}, T)-\rho_{e}\right|^{2}\right)+\frac{b}{2} \iint_{\omega \times(0, T)}|\mathbf{v}|^{2}$ Another interesting optimal control problem: Next Lecture
- The interest of the optimality system:
can be used to introduce iterative algorithms several ways The "gradient" of J at \mathbf{v} is given by

$$
\left\langle G(\mathbf{v}), \mathbf{v}^{\prime}\right\rangle=\iint_{\omega \times(0, T)}(\mathbf{w}+b \mathbf{v}) \cdot \mathbf{v}^{\prime}
$$

where \mathbf{w} solves, together with η and $\beta \ldots$

- Boundary control: similar ideas work (up to technical details)
- Density-dependent fluids and optimal control?

THANK YOU VERY MUCH SEE YOU TOMORROW AGAIN!

