Variable density Navier-Stokes equations 2 Weak and strong solutions

E. Fernández-Cara (Univ. of Sevilla, Spain)

Prague, May-June 2011

Contents

1 Weak solutions. Global existence

- Formulation of the problem and existence result
- Sketch of the proof
- Stationary solutions

2 Strong solutions and regularity results

- A global-local regularity result
- Other results and open questions

Weak solutions. Global existence Strong solutions and regularity results Formulation of the problem and existence result Sketch of the proof Stationary solutions

Weak solutions. Global existence Formulation of the problem and existence result

Equations:

$$\begin{pmatrix} \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \rho \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0$$

Initial conditions:

$$ho(\mathbf{x}, 0) =
ho^0(\mathbf{x})$$
 in Ω
 $\mathbf{u}(\mathbf{x}, 0) = \mathbf{u}^0(\mathbf{x})$ in Ω

Boundary conditions:

$$\mathbf{u} = 0$$
 on $\partial \Omega \times (0, T)$

For the moment ...

Weak solutions. Global existence Formulation of the problem and existence result

The basic Hilbert spaces: $H = \{ \mathbf{v} \in L^{2}(\Omega)^{3} : \nabla \cdot \mathbf{v} \equiv 0, \quad \mathbf{v} \cdot \mathbf{n}|_{\partial\Omega} = 0 \}$ $V = \{ \mathbf{v} \in H_{0}^{1}(\Omega)^{3} : \nabla \cdot \mathbf{v} \equiv 0 \}$ One has $V \hookrightarrow H \cong H' \hookrightarrow V', V' \cong H^{-1}(\Omega)^{3} / \nabla L^{2}(\Omega)$ Remember: Ω is bounded

Theorem:

Data: T > 0, $\rho_0 \in L^{\infty}(\Omega)$ with $\rho_0 \ge 0$, $\mathbf{u}_0 \in H$, $\mathbf{f} \in L^1(0, T; L^2)$ Then $\exists \rho \in L^{\infty}(Q), \mathbf{u} \in L^2(0, T; V), p \in W^{-1,\infty}(0, T; L^2)$ such that

- $\rho \mathbf{u} \in L^{\infty}(0, T; L^2) \cap N^{1/4,2}(0, T; W^{-1,3})$, $\inf_{\Omega} \rho_0 \le \rho \le \sup_{\Omega} \rho_0$
- The variable density NS equations hold in Q (for some p)

•
$$ho\mid_{t=0}=
ho_0$$
 in H^{-1} and $ho \mathbf{u}\mid_{t=0}=
ho_0\mathbf{u}_0$ in V'

Weak solutions. Global existence Additional properties and questions:

Behavior of ρ :

$$\begin{split} \rho &\in L^{\infty}(Q) \cap C^{0}([0,T];L^{p}(\Omega)) \quad \forall p < +\infty, \quad \rho_{t} \in L^{\infty}(0,T;H^{-1}(\Omega)) \\ |\{\mathbf{x} \in \Omega : a \leq \rho(\mathbf{x},t) \leq b\}| \text{ is independent of } t \; \forall a,b \end{split}$$

DiPerna-PL Lions, renormalized solution Thus: ρ_0 takes m (or ∞) values \Rightarrow The same for all $\rho(\cdot, t)$

Energy inequalitites:

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\rho\mid\mathbf{u}\mid^{2}+\mu\int_{\Omega}\mid\nabla\mathbf{u}\mid^{2}\leq\int_{\Omega}\rho\mathbf{u}\cdot\mathbf{f}$$

$$\frac{1}{2}\int_{\Omega}\rho\mid \mathbf{u}\mid^{2}+\mu\iint_{\Omega\times(0,t)}\mid \nabla\mathbf{u}\mid^{2}\leq\frac{1}{2}\int_{\Omega}\rho_{0}\mid \mathbf{u}_{0}\mid^{2}+\iint_{\Omega\times(0,t)}\rho\mathbf{u}\cdot\mathbf{f}$$

Weak solutions. Global existence Sketch of the proof (I): semi-Galerkin

A Schauder basis in
$$V$$
, $\{\mathbf{w}^1, \ldots, \mathbf{w}^m, \cdots\}$, orthonormal in H
 $V^m := [\mathbf{w}^1, \ldots, \mathbf{w}^m]$, $\mathbf{u}_0^m \in V^m$ and $\rho_0^m \in C^1(\overline{\Omega})$ such that
 $\frac{1}{m} + \inf_{\Omega} \rho_0 \leq \rho_0^m \leq \frac{1}{m} + \sup_{\Omega} \rho_0$, $\mathbf{u}_0^m \to u_0$ in H , $\rho_0^m \to \rho_0$ weakly-* in L^∞

Semi-Galerkin approximation — The *m*-th problem:

$$\rho^{m} \in C^{1}(\overline{Q}), \ \mathbf{u}^{m} \in C^{1}([0, T]; V^{m})$$

$$\rho_{t}^{m} + \mathbf{u}^{m} \cdot \nabla \rho^{m} = 0 \quad \text{in} \quad Q, \quad \rho^{m} \mid_{t=0} = \rho_{0}^{m}$$

$$\int_{\Omega} \left\{ \rho^{m} (\mathbf{u}_{t}^{m} + (\mathbf{u}^{m} \cdot \nabla) \mathbf{u}^{m} - \mathbf{f}^{m}) \cdot \mathbf{v} + \mu \nabla \mathbf{u}^{m} : \nabla \mathbf{v} \right\} = 0 \quad \forall \mathbf{v} \in V^{m}$$

$$\mathbf{u}^{m} \mid_{t=0} = \mathbf{u}_{0}^{m}$$

An ODE of dimension *m* coupled to a PDE EXISTENCE: For fixed \mathbf{w}^m , the PDE for ρ^m with $\mathbf{u}^m = \mathbf{w}^m$ can be easily solved $\mathbf{w}^m \mapsto \rho^m \mapsto \mathbf{u}^m$ possesses fixed points (estimates below + compactness)

Weak solutions. Global existence Sketch of the proof (II): uniform estimates

 ρ^m is bounded in $L^{\infty}(Q)$.

Energy estimates ($\mathbf{v} = \mathbf{u}^m$, computations):

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} \rho^{m} | \mathbf{u}^{m} |^{2} + \mu \int_{\Omega} | \nabla \mathbf{u}^{m} |^{2} = \int_{\Omega} \rho^{m} \mathbf{u}^{m} \cdot \mathbf{f}^{m}$$
$$\frac{1}{2} \int_{\Omega} \rho^{m} | \mathbf{u}^{m} |^{2} + \mu \iint_{\Omega \times (0,t)} | \nabla \mathbf{u}^{m} |^{2} \leq \frac{1}{2} \int_{\Omega} \rho_{0} | \mathbf{u}_{0} |^{2} + \iint_{\Omega \times (0,t)} \rho^{m} \mathbf{u}^{m} \cdot \mathbf{f}^{m}$$

Consequences:

 \mathbf{u}^m is bounded in $L^2(0, T; V)$ $(\rho^m)^{1/2}\mathbf{u}^m$ is bounded in $L^{\infty}(0, T; L^2)$ and $L^2(0, T; L^6)$

Weak solutions. Global existence Sketch of the proof (II): uniform estimates

Other estimates:

$$\rho_t^m \text{ is bounded in } L^{\infty}(0, T; H^{-1}) \text{ and } L^2(0, T; W^{-1,6})$$

$$\begin{cases} \mid \frac{d}{dt} \int_{\Omega} \rho^m \mathbf{u}^m \cdot \mathbf{v} \mid \leq \|g_m\| \nabla \mathbf{v}\|_{L^2} & \forall \mathbf{v} \in V^m \\ \text{with } g_m = C \|\rho^m \mathbf{f}^m\|_{L^2} + C \|\rho^m \mathbf{u}^m \mathbf{u}^m - \mu \nabla \mathbf{u}^m\|_{L^2}, \quad \|g_m\|_{L^1(0,T)} \leq C \\ & \|\tau_h(\rho^m \mathbf{u}^m) - \rho^m \mathbf{u}^m\|_{L^2(0,T-h;W^{-1,3})} \leq C h^{1/4} \end{cases}$$

and thus

$$\rho^m \mathbf{u}^m$$
 is bounded in $N^{1/4,2}(0, T; W^{-1,3})$

Weak solutions. Global existence Sketch of the proof (II): uniform estimates

All these estimates together with compactness results:

$$\begin{split} \rho^{m} \text{ is bounded in } L^{\infty}(Q) \\ \rho^{m}_{t} \text{ is bounded in } L^{\infty}(0, T; H^{-1}) \cap L^{2}(0, T; W^{-1,6}) \\ \text{Hence: } \rho^{m} \in \text{ compact set in } C^{0}([0, T]; \tilde{X}) \text{ whenever } L^{\infty} \hookrightarrow \tilde{X} \\ \mathbf{u}^{m} \text{ is bounded in } L^{2}(0, T; V) \\ \rho^{m}\mathbf{u}^{m} \text{ is bounded in } L^{\infty}(0, T; L^{2}) \cap L^{2}(0, T; L^{6}) \\ \rho^{m}\mathbf{u}^{m} \text{ is bounded in } N^{1/4,2}(0, T; W^{-1,3}) \\ \text{Hence: } \rho^{m}\mathbf{u}^{m} \in \text{ compact set in } C^{0}([0, T]; \hat{X}) \text{ whenever } L^{2} \hookrightarrow \tilde{X} \\ \rho^{m}\mathbf{u}^{m} \text{ is bounded in } L^{4/3}(0, T; L^{2}) \end{split}$$

Weak solutions. Global existence

Sketch of the proof (III): convergent subsequences, taking limits and ...

- \exists convergent subsequences
- Taking limits in the equations:

 $\begin{array}{l} \rho^{m}\mathbf{u}^{m} \rightarrow \chi_{1} \text{ in } L^{2}(0,T;L^{6}) - \text{weak (for instance)} \\ \rho^{m}\mathbf{u}^{m}\mathbf{u}^{m} \rightarrow \chi_{2} \text{ in } L^{4/3}(0,T;L^{2}) - \text{weak} \end{array}$

From compactness: $\chi_1 = \rho \mathbf{u}$ and $\chi_2 = \rho \mathbf{u} \mathbf{u}$ and all terms converge

• Taking limits in the initial conditions:

 $\rho \in C^0([0, T]; H^{-1}) \text{ and } \rho^m|_{t=0} \to \rho|_{t=0} \text{ in } H^{-1} - \text{weak}$ (in fact: $\rho \in C^0([0, T]; \tilde{X})$ whenever $L^{\infty} \hookrightarrow \tilde{X}$) For any $\mathbf{v} \in V$, $\int_{\Omega} \rho \mathbf{u} \mathbf{v} \in C^0([0, T])$ and $\int_{\Omega} \rho^m \mathbf{u}^m \mathbf{v}|_{t=0} \to \int_{\Omega} \rho \mathbf{u} \mathbf{v}|_{t=0}$ CONSEQUENCES:

- $ho\in L^\infty(Q)$, $\mathbf{u}\in L^2(0,\,T;\,V)$, etc.
- The boundary and initial conditions are satisfied

•
$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

•
$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} - \rho \mathbf{f} \in W^{-1,\infty}(\mathbf{0}, T; H^{-1})$$
 and

$$\langle (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} - \rho \mathbf{f}, \mathbf{v} \rangle = 0 \ \forall \mathbf{v} \in V$$

Formulation of the problem and existence result <mark>Sketch of the proof</mark> Stationary solutions

Weak solutions. Global existence Sketch of the proof (III): convergent subsequences, taking limits and ...

To find *p*, we apply De Rham's lemma: If $S \in \mathcal{D}'(\Omega; E)^3$ and $\langle S, \varphi \rangle = 0$ for all $\varphi \in \mathcal{D}(\Omega)^3$ with $\nabla \cdot \varphi \equiv 0$, then *S* is a gradient: $S = \nabla q$. Furthermore:

$$S \in W^{r,p}(\Omega; E)^3 \Rightarrow q \in W^{r+1,p}(\Omega; E)$$

(A complete proof in [Simon, 2011])

Set $S := (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} - \rho \mathbf{f}$ Then $S \in W^{-1,\infty}(0, T; H^{-1}(\Omega)^3) \cong H^{-1}(\Omega; W^{-1,\infty}(0, T))^3$ and

$$\langle S, \mathbf{v} \rangle = 0 \ \forall \mathbf{v} \in V$$

Hence $S = -\nabla p$ with $p \in L^2(\Omega; W^{-1,\infty}(0, T)) \cong W^{-1,\infty}(0, T; L^2(\Omega))$ Better regularity for p?

Weak solutions. Global existence More results and questions:

- \bullet Of course, a similar 2D result holds, bounded open $\Omega \subset \mathbb{R}^2$
- Extension to density-dependent C_b^0 viscosity: $\mu = \mu(\rho)$: OK For $\mu = \mu(\rho, p)$? An open question
- Extension to unbounded Ω (and for $\Omega = \mathbb{R}^3$): OK Introduce Ω_R , with $\Omega_R \to \Omega$ as $R \to +\infty$ and solve in $\Omega_R \times (0, T)$ We get: $\|\rho_R\|_{L^{\infty}(Q_R)} \leq C$, inf $\rho_0 \leq \rho_R \leq \sup \rho_0$,

$$\|\rho_{R}\mathbf{u}_{R}\|_{L^{\infty}(0,T;L^{2}(\Omega_{R}))}+\|\nabla\mathbf{u}_{R}\|_{L^{2}(Q_{R})}+\|\rho_{R}\mathbf{u}_{R}\mathbf{u}_{R}\|_{L^{4/3}(0,T;L^{2}(\Omega_{R}))}\leq C$$

 $\|(\widetilde{\rho}_{R})_{t}\|_{L^{\infty}(0,T;H^{-1}(\omega))}+\|\widetilde{\rho}_{R}\widetilde{\mathbf{u}}_{R}\|_{N^{1/4,2}(0,T;W^{-1,3}(\omega))}\leq C \quad \forall \omega\subset\subset\Omega$

Sufficient to take limits ...

Other (better) results for $\Omega = \mathbb{R}^3$ (Next Lecture ...)

Weak solutions. Global existence More results and questions:

• Other boundary conditions? A delicate point

$$\mathbf{u} = \mathbf{a}$$
 on $\partial \Omega \times (0, T), \quad \rho = \overline{\rho}$ on Σ_{in}

where **a** is sufficiently smooth, $\overline{\rho} \ge 0$ and

$$\Sigma_{ ext{in}} = \{\, (\mathbf{x},t) \in \partial \Omega imes (\mathbf{0},\mathcal{T}) : \mathbf{a}(\mathbf{x},t) \cdot \mathbf{n}(\mathbf{x}) < 0 \,\}$$

• The behavior of two immiscible fluids: Assume: $\rho_0 = \alpha$ in Ω_1 , $\rho_0 = \beta$ in Ω_2 (a partition of Ω), $\mathbf{f} \equiv \text{Const.}$ Then: identify the asymptotic limit of ρ and \mathbf{u} (stratified system) [P-L Lions, Masmoudi, ...] Weak solutions. Global existence Strong solutions and regularity results Formulation of the problem and existence result Sketch of the proof Stationary solutions

Weak solutions. Global existence Stationary solutions

The problem:

$$\begin{cases} \nabla \cdot (\rho \mathbf{u}) = 0, \quad \nabla \cdot \mathbf{u} = 0\\ \rho(\mathbf{u} \cdot \nabla)\mathbf{u} - \mu \Delta \mathbf{u} + \nabla p = \rho \mathbf{f}\\ \mathbf{u}|_{\partial \Omega} = 0 \end{cases}$$

Comments and questions:

- ∃ many solutions
- The goal: add a condition that provides uniqueness for large μ (?)
- Something on ρ . The mass distribution function M with

$$M(s) = |\{ \mathbf{x} \in \Omega : \rho(\mathbf{x}) \le s \}|?$$

(\nearrow , right-continuous, $M(s) = 0 \ \forall s < 0, \ M(\lambda) = |\Omega|, \lambda > 0$) An interesting open question

A global-local regularity result Other results and open questions

Strong solutions and regularity results A global-local result for N = 2/N = 3

Theorem:

As before, with
$$0 < \alpha \le \rho_0 \le \beta$$
 a.e., $\mathbf{u}_0 \in V$, $\mathbf{f} \in L^2(Q)$
Then: $\mathbf{u} \in L^2(0, T_*; H^2) \cap C^0([0, T_*]; V)$, $\mathbf{u}_t \in L^2(0, T_*; H)$
Moreover: $T_* = T$ if $N = 2$. Also, $p \in L^2(H^1)$...

Estimates of \mathbf{u}_t for N = 2:

$$\begin{aligned} \|\rho^{1/2} \mathbf{u}_t\|^2 + \frac{\mu}{2} \frac{d}{dt} \|\nabla \mathbf{u}\|^2 &\leq C \|(\mathbf{u} \cdot \nabla) \mathbf{u}\| \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq C \|\mathbf{u}\|_{L^4} \|\nabla \mathbf{u}\|_{L^4} \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq C \|\mathbf{u}\|^{1/2} \|\nabla \mathbf{u}\| \|D^2 \mathbf{u}\|^{1/2} \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq \varepsilon \|\mathbf{u}_t\|^2 + C_{\varepsilon} \|\nabla \mathbf{u}\|^4 + \varepsilon \|D^2 \mathbf{u}\|^2 + C_{\varepsilon} \|\mathbf{f}\|^2 \end{aligned}$$

Estimates of \mathbf{u}_t for N = 3:

$$\begin{split} \|\rho^{1/2} \mathbf{u}_t\|^2 &+ \frac{\mu}{2} \frac{d}{dt} \|\nabla \mathbf{u}\|^2 \leq C \|(\mathbf{u} \cdot \nabla) \mathbf{u}\| \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq C \|\mathbf{u}\|_{L^6} \|\nabla \mathbf{u}\|_{L^3} \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq C \|\nabla \mathbf{u}\|^{3/2} \|D^2 \mathbf{u}\|^{1/2} \|\mathbf{u}_t\| + C \|\mathbf{f}\| \|\mathbf{u}_t\| \\ &\leq \varepsilon \|\mathbf{u}_t\|^2 + C_{\varepsilon} \|\nabla \mathbf{u}\|^6 + \varepsilon \|D^2 \mathbf{u}\|^2 + C_{\varepsilon} \|\mathbf{f}\|^2 \end{split}$$

Strong solutions and regularity results A global/local result for N = 2/N = 3

Estimates of D^2 **u** for N = 2:

$$\begin{split} -\mu \Delta \mathbf{u} + \nabla p &= \rho \mathbf{f} - \rho (\mathbf{u} \cdot \nabla) \mathbf{u} - \rho \mathbf{u}_t, \ \nabla \cdot \mathbf{u} = \mathbf{0}, \ \mathbf{u}|_{\partial \Omega} = \mathbf{0} \\ \text{Regarding this as a Stokes system at each } t: \end{split}$$

$$\begin{aligned} \|D^{2}\mathbf{u}\| &\leq C \|\rho \mathbf{f} - \rho(\mathbf{u} \cdot \nabla)\mathbf{u} - \rho \mathbf{u}_{t}\| \\ &\leq C \|\mathbf{f}\| + \|\mathbf{u}_{t}\| + C_{\delta} \|\nabla \mathbf{u}\|^{2} + \delta \|D^{2}\mathbf{u}\| \end{aligned}$$

Estimates of D^2 **u** for N = 3:

Arguing similarly:

$$\begin{aligned} \|D^{2}\mathbf{u}\| &\leq C \|\rho \mathbf{f} - \rho(\mathbf{u} \cdot \nabla)\mathbf{u} - \rho \mathbf{u}_{t}\| \\ &\leq C \|\mathbf{f}\| + \|\mathbf{u}_{t}\| + C_{\delta} \|\nabla \mathbf{u}\|^{3} + \delta \|D^{2}\mathbf{u}\| \end{aligned}$$

Conclusion:

$$\begin{split} \|\rho^{1/2}\mathbf{u}_t\|^2 + \frac{\mu}{2}\frac{d}{dt}\|\nabla\mathbf{u}\|^2 \\ &\leq C\varepsilon\|\mathbf{u}_t\|^2 + C_\varepsilon\|\nabla\mathbf{u}\|^\sigma + C_\varepsilon\|\mathbf{f}\|^2 \\ \end{split}$$
 where $\sigma = 4$ if $N = 2$ and $\sigma = 6$ if $N = 3$. Therefore ...

Weak solutions. Global existence Strong solutions and regularity results

Strong solutions and regularity results Other results and open questions

- Regularity results for $\mu = \mu(\rho)$ and/or inf $\rho_0 = 0$?
- Minimal hypotheses for (global) regularity of the kind

$$\mathbf{u}\in L^r(0,T;L^s),\quad \frac{2}{r}+\frac{3}{s}\leq 1?$$

• Minimal hypotheses for energy identity? All these questions are open

THANK YOU VERY MUCH SEE YOU TOMORROW!

E. Fernández-Cara Variable density Navier-Stokes equations 2

• • = • • = •