Variable density Navier-Stokes equations 1 Physical origin and first results and questions

E. Fernández-Cara (Univ. of Sevilla, Spain)

Prague, May-June 2011

Preliminaries

The outline:

- Motivation. First results and questions: Existence,
- Weak and strong solutions, regularity
- Partial uniqueness Optimal control problems
- Other control results Final comments and questions

Some relevant contributors t the theory:

Khazhikhov, Antontsev, Ladyzhenskaya, J-L Lions, Simon, Salvi, P-L Lions, . . .

The main references:

[Panton, 1984], [Zeidler, Vol. 4, 1988], [Chorin-Marsden, 1993], [P-L Lions, 1996], [Braz-EFC-Rojas, 2011] and others ...

4 日 5 - 4 周 5 - 4 戸 5 - 4 戸 5

Contents for today

The fundamental problem in fluid mechanics

- Hypotheses and goal
- Trajectories and the transport lemma
- Universal laws
- Additional comments

2 Weak solutions. Global existence

- Formulation of the problem and existence result
- Additional properties and questions

Hypothenes and goal Trajectories and the transport lemma Universal laws Additional comments

The fundamental problem in fluid mechanics Hypotheses and goal — The physicist's viewpoint

ASSUMPTIONS:

- The physicist viewpoint:
- **2** A medium fills the points of $\Omega \subset \mathbb{R}^3$ (bounded) during [0, T]
- **③** ∃ sufficiently regular $\rho \ge 0$, $\mathbf{u} = (u_1, u_2, u_3)$ and w > 0 such that

$$m(W, t) = \int_{W} \rho(\mathbf{x}, t) \, d\mathbf{x}$$
$$\mathbf{p}(W, t) = \int_{W} (\rho \mathbf{u})(\mathbf{x}, t) \, d\mathbf{x}$$
$$E(W, t) = \int_{W} \left(\frac{1}{2}\rho|\mathbf{u}|^{2} + \rho w\right)(\mathbf{x}, t) \, d\mathbf{x}$$

for all measurable $W \subset \Omega$ and t.

THE GOAL:

FPM: Assume: the mechanical state at t = 0 and the physical properties are known. Then, determine the mechanical state for all t.

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

The fundamental problem in fluid mechanics Trajectories and the transport lemma

The trajectories:

$$\left\{ egin{array}{ll} \dot{\mathbf{y}} = \mathbf{u}(\mathbf{y},t) \ \mathbf{y}(0) = \mathbf{x}. \end{array}
ight. \qquad \mathcal{O} = \left\{ \left(\mathbf{x},t
ight) : \mathbf{0} \leq t < T_*(\mathbf{x})
ight\}$$

Assume (for simplicity) $\mathcal{O} = \Omega \times [0, T)$ Define $\mathbf{Y} : \mathcal{O} \mapsto \mathbb{R}^N$, with $\mathbf{Y}(\mathbf{x}, t) = \mathbf{y}(t) \quad \forall (\mathbf{x}, t) \in \mathcal{O}$ Define $W_t := \{\mathbf{Y}(\mathbf{x}, t) : \mathbf{x} \in W\}$ for all $W \subset \Omega$ and all t

Lemma:

Assume: $f = f(\mathbf{x}, t)$ is C^1 , $W \subset \Omega$ and $F(t) := \int_{W_t} f(\mathbf{y}, t) d\mathbf{y}$ Then: F is C^1 and

$$\frac{dF}{dt}(t) = \int_{W_t} \left(f_t + \nabla \cdot (f\mathbf{u})\right)(\mathbf{y}, t) \, d\mathbf{y} \quad \forall t$$

3 N

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

The fundamental problem in fluid mechanics Universal laws

Mass conservation:

$$\frac{d}{dt} \left(\int_{W_{\mathbf{t}}} \rho(\mathbf{x}, t) \, d\mathbf{x} \right) = 0 \quad \forall W, \quad \forall t$$

Linear momentum conservation:

$$\frac{d}{dt}\left(\int_{W_t} (\rho \mathbf{u})(\mathbf{x},t) \, d\mathbf{x}\right) = \mathbf{F}(W_t,t)$$

 $\mathbf{F} = \mathbf{F}_{ten} + \mathbf{F}_{ext}$, $\mathbf{F}_{ten} = \int_{\partial W_t} \mathbf{T}(W_t; \mathbf{x}, t) d\Gamma$ and $\mathbf{F}_{ext} = \int_{W_t} (\rho \mathbf{f})(\mathbf{x}, t) d\mathbf{x}$ We assume: $\mathbf{T} = \sigma \cdot \mathbf{n}$ for some (unknown) $\sigma = \sigma(\mathbf{x}, t)$ and \mathbf{f} is known

Energy conservation:

$$\frac{d}{dt} \left(\int_{W_t} \left(\frac{1}{2} \rho |\mathbf{u}|^2 + \rho w \right) d\mathbf{x} \right) = P(W_t, t),$$

$$\mathbf{T} \cdot \mathbf{u} d\mathbf{\Gamma} + \int_{W_t} (\rho \mathbf{f} \cdot \mathbf{u}) d\mathbf{x} + \int_{\partial W_t} (-\mathbf{q} \cdot \mathbf{n}) d\mathbf{x}$$

 $P = \int_{\partial W_t} (\mathbf{T} \cdot \mathbf{u}) \, d\Gamma + \int_{W_t} (\rho) \, d\Gamma$ We assume: **q** is unknown

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

The fundamental problem in fluid mechanics

Mass:

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \text{ in } \Omega \times (0, T)$$

Linear momentum:

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = \nabla \cdot \sigma + \rho \mathbf{f} \text{ in } \Omega \times (0, T)$$

Energy:

$$(\rho w)_t + \nabla \cdot (\rho w \mathbf{u}) = \sigma : \nabla \mathbf{u} - \nabla \cdot \mathbf{q} \text{ in } \Omega \times (0, T)$$

N + 2 PDE's for ρ , the u_i , the σ_{ij} , the q_i ($N^2 + 2N + 1$ unknowns)

b 4 3 b

-

Hypotheses and goal Trajectories and the transport lemma Universal lawa Additional comments

The fundamental problem in fluid mechanics Constitutive laws – Non-homogeneous incompressible viscous Newtonian fluids

Incompressible non-homogeneous Newtonian viscous fluids: Newtonian fluid: $\sigma = -p \operatorname{Id}_{\cdot} + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^t) - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \operatorname{Id}_{\cdot}$ Incompressible:

$$\frac{d}{dt}\left(\int_{W_{\mathbf{t}}} d\mathbf{x}\right) = 0 \quad \forall W \subset \Omega, \quad \forall t$$

From the transport lemma and the universal laws:

$$\begin{cases} \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0\\ (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla \rho = \rho \mathbf{f}\\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Simplifications: Navier-Stokes, Euler, ...

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

Incompressible non-homogeneous Newtonian viscous fluids Variable density Navier-Stokes equations

Equations:

$$\begin{cases} \rho_t + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0} \\ (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) - \mu \Delta \mathbf{u} + \nabla p = \rho \mathbf{f} \\ \nabla \cdot \mathbf{u} = \mathbf{0} \end{cases}$$

Initial conditions:

Boundary conditions:

$$\mathbf{u} = 0$$
 on $\partial \Omega \times (0, T)$

For the moment ...

12 M

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

Incompressible non-homogeneous Newtonian viscous fluids Now: The mathematician's viewpoint

- We do not know whether ∃ ρ, u and p satisfying this FIRST TASK: prove this
 A confirmation of the facts that we were not wrong before, the problem was not overdetermined, we did not introduce contradictory hypotheses, etc.
- Even if solutions exist, we do not know how many there are. SECOND TASK: prove that the solution is unique. This will show that the set of assumptions is complete.
- The solution can be *unstable* with respect to the data. THIRD TASK: prove *stability* (continuous dependence) This will show that the model is useful and its (numerical) resolution is meaningful
- It may be interesting to interact and get "desirable" solutions FOURTH TASK: control the system (for instance through f) This will lead to a system with good behavior

Hypotheses and goal Trajectories and the transport lemma Universal laws Additional comments

Additional comments Justification of Newton's law

$$\sigma = -\rho \operatorname{\mathsf{Id}}. + \mu (
abla \mathbf{u} +
abla \mathbf{u}^t) - rac{2}{3} \mu (
abla \cdot \mathbf{u}) \operatorname{\mathsf{Id}}.$$

- $\mathbf{F}_{ten}(W_t, t) = \int_{\partial W_t} \mathbf{T}(W_t; \mathbf{x}, t) d\Gamma$ by assumption Particular flows $\Rightarrow \exists \sigma$ with $\mathbf{T} = \sigma(\mathbf{x}, t)\mathbf{n}$ Conservation of angular momentum $\Rightarrow \sigma \equiv \sigma^T$
- Viscosity means friction of particles. Relevant when close particles have different velocities ⇒ σ depends on ρ, w and ∇u ^{∂σ}/_{∂w_{ij}} ≡ ^{∂σ}/_{∂w_{ij}} ∀i, j ⇒ σ depends on ρ, w and D = ∇u + ∇u^T

 Frame invariance ⇒ σ(R, D, R⁻¹) = R, σ(D), R⁻¹ ∀ orthogonal R
- Frame invariance $\Rightarrow \sigma(R \cdot D \cdot R^{-1}) \equiv R \cdot \sigma(D) \cdot R^{-1} \forall$ orthogonal R $\Rightarrow \sigma = a_0 \mathbf{Id}. + a_1 D + a_2 D^2$ for some $a_i = a_i(\rho, w, d_1, d_2, d_3)$ (Rivlin-Erickssen's theorem)
- Assume that $D \mapsto \Sigma(\rho, w, D)$ is affine. Then: $\sigma = -\rho \operatorname{Id.} + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^{t}) + \lambda(\nabla \cdot \mathbf{u}) \operatorname{Id.}$ Particular flows $\Rightarrow 3\lambda + 2\mu = 0$ (Stokes). Hence, ...

Weak solutions. Global existence Formulation of the problem and existence result

The basic Hilbert spaces: $H = \{ \mathbf{v} \in L^{2}(\Omega)^{3} : \nabla \cdot \mathbf{v} \equiv 0, \quad \mathbf{v} \cdot \mathbf{n} |_{\partial \Omega} = 0 \}$ $V = \{ \mathbf{v} \in H_{0}^{1}(\Omega)^{3} : \nabla \cdot \mathbf{v} \equiv 0 \}$ One has $V \hookrightarrow H \cong H' \hookrightarrow V', V' \cong H^{-1}(\Omega)^{3} / \nabla L^{2}(\Omega)$ Remember: Ω is bounded

Theorem:

Data: T > 0, $\rho_0 \in L^{\infty}(\Omega)$ with $\rho_0 \ge 0$, $\mathbf{u}_0 \in H$, $\mathbf{f} \in L^1(0, T; L^2)$ Then $\exists \rho \in L^{\infty}(Q), \mathbf{u} \in L^2(0, T; V), p \in W^{-1,\infty}(0, T; L^2)$ such that

- $\rho \mathbf{u} \in L^{\infty}(0, T; L^2) \cap N^{1/4,2}(0, T; W^{-1,3}) \inf_{\Omega} \rho_0 \le \rho \le \sup_{\Omega} \rho_0$ a.e.
- The variable density NS equations are satisfied in Q (for some p)
- $\rho \mid_{t=0} = \rho_0$ in H^{-1} and $\rho \mathbf{u} \mid_{t=0} = \rho_0 \mathbf{u}_0$ in V'

김 글 아이가 글 아이지

Formulation of the problem and existence result Additional properties and questions

Weak solutions. Global existence Additional properties and questions:

Behavior of ρ :

$$\begin{split} \rho \in L^{\infty}(Q) \cap C^{0}([0,T];L^{p}(\Omega)) \quad \forall p < +\infty, \quad \rho_{t} \in L^{\infty}(0,T;H^{-1}(\Omega)) \\ |\{\mathbf{x} \in \Omega : a \leq \rho(\mathbf{x},t) \leq b\}| \text{ is independent of } t \; \forall a,b \end{split}$$

DiPerna-PL Lions, renormalized solution Thus: ρ_0 takes m (or ∞) values \Rightarrow The same for all $\rho(\cdot, t)$

Energy inequalitites:

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\rho\mid\mathbf{u}\mid^{2}+\mu\int_{\Omega}\mid\nabla\mathbf{u}\mid^{2}\leq\int_{\Omega}\rho\mathbf{u}\cdot\mathbf{f}$$

$$\frac{1}{2} \int_{\Omega} \rho \mid \mathbf{u} \mid^{2} + \mu \iint_{\Omega \times (0,t)} \mid \nabla \mathbf{u} \mid^{2} \leq \int_{\Omega} \rho \mid \mathbf{u} \mid^{2} + \iint_{\Omega \times (0,t)} \rho \mathbf{u} \cdot \mathbf{f}$$

Weak solutions. Global existence More properties and guestions:

- What about p? Next Lecture ...
- \bullet Of course, a similar 2D result holds, bounded open $\Omega \subset \mathbb{R}^2$
- Extension to density-dependent viscosity: $\mu = \mu(\rho) (C_b^0$, strictly positive)

For $\mu = \mu(\rho, p)$? (an open question)

- Extension to unbounded Ω (and for $\Omega = \mathbb{R}^3$). Next Lecture ...
- Other boundary conditions?

 $\mathbf{u} = \mathbf{a}$ on $\partial \Omega imes (0, T)$ $ho = \overline{
ho}$ on Σ_{in}

where **a** is a (sufficiently smooth) vector-valued prescribed function and

$$\Sigma_{ ext{in}} = \{ \, (\mathbf{x},t) \in \partial \Omega imes (\mathbf{0},\mathcal{T}) : \mathbf{a}(\mathbf{x},t) \cdot \mathbf{n}(\mathbf{x}) < 0 \, \}$$

Weak solutions. Global existence More properties and questions:

• Parabolic regularization? The regularized system

$$\begin{cases} (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla p = \mu \Delta \mathbf{u} + \rho \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0, \quad (\mathbf{x}, t) \in Q \\ \rho_t + \nabla \cdot (\rho \mathbf{u}) - \varepsilon \Delta \rho = 0, \quad (\mathbf{x}, t) \in Q \\ \mathbf{u} = 0, \quad \partial \rho \mathbf{u} / \partial \mathbf{n} = 0, \quad (\mathbf{x}, t) \in \Sigma \\ \rho|_{t=0} = \rho_0, \quad (\rho \mathbf{u})|_{t=0} = \rho_0 \mathbf{u}_0, \quad \mathbf{x} \in \Omega \end{cases}$$

and then try to take limits as $\varepsilon \to 0^+$ Are solutions obtained this way unique? (a challenging open problem)

Weak solutions. Global existence More properties and questions:

• Solution in non-cylindrical domains?

$$\begin{cases} (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u}\mathbf{u}) + \nabla \rho = \mu \Delta \mathbf{u} + \mathbf{v} \mathbf{1}_{\omega}, \quad \nabla \cdot \mathbf{u} = 0, \quad \mathbf{x} \in \Omega(t), \ t \in (0, T) \\ \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0, \quad \mathbf{x} \in \Omega(t), \ t \in (0, T) \\ \mathbf{u} = 0, \quad \mathbf{x} \in \partial \Omega(t), \ t \in (0, T) \\ \rho|_{t=0} = \rho_0, \quad (\rho \mathbf{u})|_{t=0} = \rho_0 \mathbf{u}_0, \quad \mathbf{x} \in \Omega(0) \end{cases}$$

Elliptic regularization? $Q = \{ (\mathbf{x}, t) : \mathbf{x} \in \Omega(t), t \in (0, T) \};$ solve

$$\begin{aligned} & (-\varepsilon \mathbf{u}_{tt} - \mu \Delta \mathbf{u} + (\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla p = \mu \Delta \mathbf{u} + \rho \mathbf{f} \\ & -\varepsilon \rho_{tt} - \varepsilon \Delta p + \nabla \cdot \mathbf{u} = 0 \\ & -\varepsilon \rho_{tt} - \varepsilon \Delta \rho + \rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \\ & (+ \text{ appropriate boundary conditions for } \rho, \mathbf{u} \text{ and } p \text{ on } \partial Q \end{aligned}$$

Then: what happens as $\varepsilon \to 0^+$? A first step to solve free-boundary problems ..., $\Box \to \langle \Box \rangle \to \langle \Box \rangle \to \langle \Box \rangle$

THANK YOU VERY MUCH SEE YOU TOMORROW!

3