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Abstract We show that the measure of non-compactness of the limiting embed-
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1 Introduction

In this paper we study the measure of non-compactness of embeddings, but it can
be defined for any linear mapping. This notion was firstly introduced by Gohberg,
Goldenstein, and Markus (1957).

Definition 1.1 Let X and Y be Banach spaces and let T be a continuous linear
mapping from X into Y . Let us denote the open unit ball in X centered at origin
by BX . We define the measure of non-compactness of T as

β(T ) := inf

{
r > 0:

T (BX) can be covered by finitely
many open balls with radius r

}
.

It can be easily shown, that
0 ≤ β(T ) ≤ ‖T‖ (1)

and that the mapping T is compact if and only if β(T ) = 0.
Measure of non-compactness can be also defined as the limit of entropy num-

bers ek, where

ek(T ) := inf

ε > 0: there exist cj ∈ Y , such that T (BX) ⊆
2k−1⋃
j=1

BY (cj , ε)

 .
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For the history and further properties of the entropy numbers and measure of
non-compactness we refer the reader to the books (Edmunds and Evans, 1987)
and (Edmunds and Triebel, 1996) and the references given there. Measure of non-
compactness characterizes the geometry of the mapping and entropy numbers are
closely related to eigenvalues. The study of entropy numbers was encouraged by the
Carl’s inequality (see (Carl and Triebel, 1980) and (Carl, 1981)), which implies
that for the compact mapping there is a simple inequality between eigenvalues
and entropy numbers. Some interesting results concerning embeddings and other
measures of non-compactness can be found in (Lang and Musil, 2018).

Furthermore, for entropy numbers and a pair of continuous linear maps R and S
it holds that ek+l−1(R◦S) ≤ ek(R)·el(S). Some interesting maps can be expressed
as a composition of compact operator and embedding, hence it is useful to know
more about the entropy numbers for classical embeddings. For some illustrations
how can this be applied see (Edmunds and Triebel, 1996).

In particular we are concerned with the measure of non-compactness of the
Sobolev embeddings. In the paper (Hencl, 2003) it was proven, that the measure of

non-compactness of the classical embedding of W k,p
0 (Ω) into Lp

∗
(Ω) for 1 ≤ p < d

k
is equal to its norm, i.e.

β
(
Id : W k,p

0 (Ω)→ Lp
∗
(Ω)

)
= ‖Id : W k,p

0 (Ω)→ Lp
∗
(Ω)‖. (2)

In this paper we formulate and prove a general result about measure of non-
compactness of embeddings of Banach spaces. It can be easily applied to simplify
the proof of the case of embedding of Sobolev space into Lebesgue space. Moreover
it can be applied to the case of embedding of Sobolev-Lorentz space into Lorentz
space. The importance of these spaces and embeddings can be seen for example
in (Stein, 1981) and (Kauhanen et al., 1999).

Theorem 1.2 (Non-compactness of embedding into Lorentz spaces) Let
d ≥ 2, k ∈ N, k < d, 1 ≤ p < d

k , denote p
∗ = dp

d−kp and let 1 ≤ q <∞. Let either

p > 1 or p = q = 1. Let Ω be an open subset of Rd with Lipschitz boundary. Then

β
(
Id : W k

0 L
p,q(Ω)→ Lp

∗,q(Ω)
)

= ‖Id : W k
0 L

p,q(Ω)→ Lp
∗,q(Ω)‖.

We prove this result in Section 3. In the Section 4 we show, that the measure
of non-compactness can be smaller than the norm, i.e. we prove the following
proposition.

Proposition 1.3 It holds, that

β
(
Id : W 1,1

0 ((0, 1))→ C((0, 1))
)

=
1

4
<

1

2
= ‖Id : W 1,1

0 ((0, 1))→ C((0, 1))‖.

2 Preliminaries

2.1 Notation

We shall denote by Ω an open subset of Rd, by |•| the Lebesgue measure in Rd
and by χE the characteristic function of the set E.
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In a Banach space X we denote the open ball with center x and radius r by
BX(x, r), and the open unit ball centered at origin will be denoted by BX , i.e.
BX = BX(0, 1).

Let γ be a multi-index, i.e. a finite sequence of non-negative integers. If we
denote γ = (γ1, γ2, . . . , γd), then we define the norm of γ by

|γ| := γ1 + γ2 + · · ·+ γd.

For suitable f : Ω ⊆ Rd → R we denote the weak (distributional) derivative by

Dγf(x) :=
∂|γ|f

∂γ1x1∂γ2x2 · · · ∂γdxd
(x).

By W k,p
0 (Ω) we denote the set of functions form the Sobolev space W k,p(Ω)

with zero traces. If not stated otherwise we use the norm

‖f‖Wk,p(Ω) :=

 ∑
|γ|≤k

∫
Ω

|Dγg(x)|p dx

 1
p

.

Let f be a measurable function from Ω to R. By f∗ we denote the distribution
function, that is

f∗(s) := | {x ∈ Ω : |f(x)| > s} |,

where |•| denotes the Lebesgue measure in Rd. By f∗ we denote the non-increasing
rearrangement, that is

f∗(t) := inf {s > 0: f∗(s) ≤ t} .

For further properties of non-increasing rearrangement see for example (Stein and
Weiss, 1971). By f∗∗ we denote the double star operator defined as

f∗∗(t) :=
1

t

∫ t

0

f∗(s), t ∈ (0,∞).

Furthermore we denote {f > s} := {x ∈ Ω : f(x) > s}. We denote it analogously
for other types of (in)equalities (<,≥,≤,=).

Let m, q ∈ R. If 1 ≤ q ≤ m < ∞ then we use in the Lorentz space Lm,q(Ω)
the norm

‖f‖Lm,q(Ω) :=

(∫ ∞
0

(
t

1
m · f∗(t)

)q dt

t

) 1
q

and if 1 ≤ m < q <∞ then we use in the Lorentz space Lm,q(Ω) the norm

‖f‖L(m,q)(Ω) :=

(∫ ∞
0

(
t

1
m · f∗∗(t)

)q dt

t

) 1
q

.

For introduction to Lorentz spaces see e.q. (Stein and Weiss, 1971).
In the Sobolev-Lorentz space W kLm,q(Rd) we use the norm

‖f‖WkLm,q(Ω) :=

 ∑
|γ|≤k

‖Dγf‖qLm,q(Ω)

 1
q

.



4 Ondřej Bouchala

If 1 ≤ m < q <∞ we use in this definition ‖•‖L(m,q)(Ω) instead of ‖•‖Lm,q(Ω). For

1 ≤ m, q <∞ we denote by W k
0 L

m,q(Ω) the set

W k
0 L

m,q(Ω) :=
{
f : Ω → R : f̃ ∈W kLm,q(Rd)

}
,

where

f̃(x) :=

{
f(x) if x ∈ Ω and

0 if x ∈ Rd \Ω.

2.2 Sobolev and Lorentz spaces

We recall this well known fact about the Sobolev spaces.

Proposition 2.1 Let f : Rd → R have weak derivatives up to the order k and let
|γ| ≤ k. Let us denote fK(x) := f(Kx) for K ∈ (0,∞). Then

DγfK(x) = K|γ|(Dγf)(Kx) = K|γ|(Dγf)K(x).

We need the following easy observation about the non-increasing rearrange-
ment and double star operator.

Proposition 2.2 Let g : Rd → R be a measurable function. Let K ∈ (0,∞) and
let us denote gK(x) := g(Kx). Then

(gK)∗ (t) = g∗(Kdt) and

(gK)∗∗ (t) = g∗∗(Kdt).

Proof From the definition of the distribution function and change of variables
y = Kx it follows, that

(gK)∗ (s) = | {|gK | > s} |

=

∫
{|gK(x)|>s}

1 dx =

∫
{|g(Kx)|>s}

1 dx

=

∫
{|g(y)|>s}

1

Kd
dy

=
g∗(s)

Kd
.

Therefore

(gK)∗ (t) = inf {s > 0: (gK)∗(s) ≤ t}

= inf
{
s > 0: g∗(s) ≤ Kdt

}
= g∗(Kdt).

The second statement follows, as

(gK)∗∗ (t) :=
1

t

∫ t

0

(gK)∗(s) ds =
1

t

∫ t

0

g∗(Kds) ds

=
1

Kd

1

t

∫ Kdt

0

g∗(s) ds =: g∗∗(Kdt).

ut
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Corollary 2.3 Let g : Rd → R have weak derivatives up to the order k, |γ| ≤ k
and let K > 0. Let us denote gK(x) := g(K · x). Then by Proposition 2.1 we have

(Dγ(gK))∗ (t) =
(
K|γ| · (Dγg)K

)∗
(t) = K|γ| · (Dγg)∗(Kdt) and

(Dγ(gK))∗∗ (t) =
(
K|γ| · (Dγg)K

)∗∗
(t) = K|γ| · (Dγg)∗∗(Kdt).

Lemma 2.4 Let f and g be two measurable functions from Ω ⊆ Rd to R with
disjoint supports and let s > 0. Then

(f + g)∗(s) = f∗(s) + g∗(s).

Proof Clearly

(f + g)∗(s) = | {|f + g| > s} |
= | {|f | > s} ∪ {|g| > s} |
= | {|f | > s} |+ | {|g| > s} |
= f∗(s) + g∗(s).

ut

The key element in the proof of the main Theorem 1.2 is the following proposition.
The proof can be found in (Malý, 2003, Lemma 3.10). For the convenience of the
reader we include it. It is well-known that for m, q ∈ [1,∞) it holds that

‖f‖qLm,q(Ω) = m

∫ ∞
0

sq−1[f∗(s)]
q
m ds. (3)

Proposition 2.5 Let Ω ⊆ Rd, 1 ≤ q ≤ m and let f1 and f2 be two functions
from Lm,q(Ω) with disjoint support. Then

‖f1‖mLm,q(Ω) + ‖f2‖mLm,q(Ω) ≤ ‖f1 + f2‖mLm,q(Ω).

Proof If q = m, then ‖•‖Lm,q(Ω) = ‖•‖Lm(Ω) and the inequality holds because for
f1 and f2 with disjoint supports we have

‖f1 + f2‖mLm(Ω) =

∫
Ω

|f1 + f2|m =

∫
Ω

|f1|m +

∫
Ω

|f2|m = ‖f1‖mLm(Ω) + ‖f2‖mLm(Ω).

So we may assume that q < m. From Lemma 2.4 we know that

(f1)∗ + (f2)∗ = (f1 + f2)∗.

Hölder’s inequality for measure sq−1 ds yields(∫ ∞
0

sq−1(fj)
q
m
∗ (s) ds

)m
q

=

(∫ ∞
0

sq−1

(
(fj)

q
m
∗ (s)(f1 + f2)

q(q−m)

m2

∗ (s)

)(
(f1 + f2)

q(m−q)

m2

∗

)
ds

)m
q

≤
(∫ ∞

0

sq−1(fj)∗(s)(f1 + f2)
q
m
−1

∗ (s) ds

)(∫ ∞
0

sq−1(f1 + f2)
q
m
∗ (s) ds

)m
q
−1
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for j = 1, 2. We apply (3) and sum over j to get with the help of q < m that

m
−m

q

2∑
j=1

‖fj‖mLm,q(Ω) =
2∑
j=1

(∫ ∞
0

sq−1(fj)
q
m
∗ (s) ds

)m
q

≤
(∫ ∞

0

sq−1(f1 + f2)
q
m
∗ (s) ds

)m
q
−1 2∑

j=1

(∫ ∞
0

sq−1(fj)∗(s)(f1 + f2)
q
m
−1

∗ (s) ds

)
=

(∫ ∞
0

sq−1(f1 + f2)
q
m
∗ (s) ds

)m
q

= m
−m

q ‖f1 + f2‖mLm,q(Ω).

ut

For the case q > m analogous statement holds as well, but with different power.
For that we need the elementary inequality

(a+ b)p ≥ ap + bp, (4)

which holds for a, b ≥ 0 and 1 ≤ p <∞.

Proposition 2.6 Let Ω ⊆ Rd, 1 ≤ m < q <∞ and let f and g be two functions
from Lm,q(Ω) with disjoint supports. Then

‖f‖qLm,q(Ω) + ‖g‖qLm,q(Ω) ≤ ‖f + g‖qLm,q(Ω).

Proof Thanks to Lemma 2.4, (3) and (4) for p := q
m > 1 we have

‖f + g‖qLm,q(Ω) = m

∫ ∞
0

sq−1(f + g)
q
m
∗ (s) ds

= m

∫ ∞
0

sq−1(f∗ + g∗)
q
m (s) ds

≥ m
∫ ∞
0

sq−1(f∗)
q
m (s) ds+m

∫ ∞
0

sq−1(g∗)
q
m (s) ds

= ‖f‖qLm,q(Ω) + ‖g‖qLm,q(Ω).

ut

The embeddings between Sobolev-Lorentz spaces and Lorentz spaces we study
in the next sections are ensured by (Peetre, 1966) or (Malý and Pick, 2002).

Theorem 2.7 (Sobolev-Lorentz embedding) Let Ω ⊆ Rd be an open set with
Lipschitz boundary, d ≥ 2, k ∈ N, k < d. Let 1 < p < d

k and 1 ≤ q ≤ ∞. Denote

p∗ := dp
d−kp . Then

W k
0 L

p,q(Ω) ↪→ Lp
∗,q(Ω).

Remark 2.8
– The embedding holds even for p = q = 1.
– Let q > p > 1. The functionals ‖•‖Lp,q(Ω) and ‖•‖L(p,q)(Ω) are equivalent and

thus we may consider either of them in the definition of Lorentz or Sobolev-
Lorentz space in the embedding.
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3 Embeddings into Lorentz spaces

3.1 General theorem

To prove the main Theorem 1.2 we need a geometric assumption on the target
Lorentz space.

Definition 3.1 Let X be a Banach space of functions from Ω ⊆ Rd to R (set
of functions which form a Banach space) and let 1 ≤ m <∞. We say that X is
disjointedly m-superadditive, if there is a constant M > 0 such that for any
finite sequence of functions {fi}ki=1 ⊆ X with disjoint supports it holds, that

k∑
i=1

‖fi‖mX ≤M

∥∥∥∥∥
k∑
i=1

fi

∥∥∥∥∥
m

X

.

Furthermore we say that X is monotone if restricting decreases norm, that
is if E ⊆ Ω and f ∈ X, then

‖f · χE‖X ≤ ‖f‖X .

Remark 3.2 The Lebesgue spaces Lm and Lorentz spaces Lm,q are for 1 ≤ m <∞
clearly monotone.

If q ≤ m, then Proposition 2.5 implies that Lm,q (and therefore Lm) is dis-
jointedly m-superadditive with M = 1.

For q > m we must be a bit more careful, because the functional ‖•‖Lm,q(Ω) is
not a norm. But for m > 1 it is equivalent to the norm ‖•‖L(m,q)(Ω), and thanks to
Proposition 2.6 we know that for q <∞

k∑
i=1

‖fi‖qL(m,q) ≤
k∑
i=1

vq‖fi‖qLm,q ≤ vq
∥∥∥∥∥
k∑
i=1

fi

∥∥∥∥∥
q

Lm,q

≤ vqV

∥∥∥∥∥
k∑
i=1

fi

∥∥∥∥∥
q

Lm,q

,

where v and V are the constants from the equivalence of the functionals. Therefore
for∞ > q > m > 1 the space Lm,q equipped with the norm ‖•‖L(m,q) is disjointedly
q-superadditive.

Lemma 3.3 Let 1 ≤ m <∞, α > 0. Let X and Y be Banach spaces and let Y be
disjointedly m-superadditive and monotone function space. Let T : X → Y be a
continuous linear map. Assume that there exists a sequence of points {xi}∞i=1 ⊆ X,
such that the supports of T (xi) are pairwise disjoint and that

‖xi‖X < 1 and

‖T (xi)‖Y ≥ α.
(5)

Then β(T ) ≥ α.

Proof Denote fi := T (xi). From the continuity we know that

‖fi‖Y = ‖T (xi)‖Y ≤ ‖T‖ · ‖xi‖X ≤ ‖T‖. (6)

Suppose (for contradiction) that β(T ) < α. We can clearly find ε > 0 such that
β(T ) < α− ε. Let us fix n ∈ N big enough, such that

(
‖T‖+α

)m
< n

M ·ε
m, where

M is the constant from the disjoint m-superadditivity.
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From the definition of measure of non-compactness we know, that T (BX) is
covered by finitely many balls. Therefore for some functions {cj}kj=1 ⊆ Y we have

{fi}∞i=1 ⊆ T (BX) ⊆
k⋃
j=1

BY (cj , α− ε). (7)

We claim that for every j ∈ {1, . . . , k} there are at most n − 1 functions fi,
such that fi ∈ BY (cj , α− ε).

Indeed, suppose for contradiction that there are n distinct numbers i1, . . . , in
and in fact any ball with center C and radius (α− ε) such that

fi1 , . . . , fin ∈ BY (C,α− ε). (8)

Let Sr denote the support of fir , S :=
⋃

1≤r≤n Sr. Put C̃ = C · χS and note

that clearly ‖fi − C̃‖Y ≤ ‖fi − C‖Y because of the monotonicity of Y . Therefore
without loss of generality we may assume, that C is supported in S.

We observe that Sr are disjoint and therefore we can write C as sum of func-
tions Cr := C · χSr

which have disjoint supports, i.e. C =
∑

1≤r≤n Cr.

The monotonicity of Y and (8) give us

‖fir − Cr‖Y ≤ ‖fir − C‖Y ≤ (α− ε).

Using this and (5) we estimate for each 1 ≤ r ≤ n

‖Cr‖Y ≥ ‖fir‖Y − ‖fir − Cr‖Y ≥ α− (α− ε) = ε.

Thanks to the disjoint m-superadditivity of Y we obtain the estimate

‖C‖mY =

∥∥∥∥∥
n∑
r=1

Cr

∥∥∥∥∥
m

Y

≥ 1

M

n∑
r=1

‖Cr‖mY ≥
1

M
nεm >

(
‖T‖+ α

)m
.

Using this, (8) and (6) we get

α− ε ≥ ‖C − fi1‖Y ≥ ‖C‖Y − ‖fi1‖Y ≥
(
‖T‖+ α

)
− ‖T‖ = α,

which is a contradiction.

We proved that inside every ball in (7) there are at most n−1 functions fi. But
that contradicts the fact that there are infinitely many functions fi and finitely
many balls. ut

Remark 3.4 Let X(Rd) be a space of functions from Rd to R and let Ω be an open
subset of Rd. We denote

X0(Ω) :=
{
f ∈ X(Rd) : f(x) = 0 for x ∈ Rd \Ω

}
.

We furthermore denote ‖f‖X0(Ω) := ‖f‖X0(Rd).
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Theorem 3.5 (Non-compactness of embedding) Let Ω be an open subset of
Rd and let X0(Ω) and Y (Ω) be two Banach spaces of functions from Ω to R. Let
a ∈ (0,∞) and assume the following conditions:

(i) The space X0(Ω) is continuously embedded into Y (Ω) and

‖Id : X0(Ω)→ Y (Ω)‖ = a. (9)

(ii) The space X0(B) is continuously embedded into Y (B) for any open ball B ⊆
Ω and

‖Id : X0(B)→ Y (B)‖ = a. (10)

(iii) The space Y (Ω) is monotone and disjointedly m-superadditive.

Denote by I the embedding of X0(Ω) into Y (Ω). (The condition (i) states that it
is continuous and ‖I‖ = a.) Then

β(I) = ‖I‖.

Proof We claim that β(I) ≥ a. To prove that we find sequence of pairwise disjoint
balls Bi(xi, ri) ⊆ Ω. Fix δ > 0. For every i ∈ N there is a function gi ∈ X(Bi),
such that

‖gi‖X0
< 1 and

‖gi‖Y > a− δ.

The space Y (Ω) is monotone and disjointedly m-superadditive, so we can harness
Lemma 3.3 applied to T = I, xi = gi and α = a − δ to get β(I) ≥ a − δ. We
conclude by sending δ to 0.

Thanks to inequalities (1), i.e. β(I) ≤ ‖I‖, we can conclude with

a ≤ β(I) ≤ ‖I‖ = a.

ut

3.2 Embedding of Sobolev-Lorentz spaces

The measure of non-compactness depends on the norm. If q ≤ m we consider the
norm ‖•‖Lm,q and if q > m we use ‖•‖L(m,q) .

Proof (of Theorem 1.2) Let us denote the embedding of W k
0 L

p,q(Ω) into Lp
∗,q(Ω)

by I. Let us denote

ar := ‖Id : W k
0 L

p,q (B(c, r))→ Lp
∗,q(B(c, r))‖

for B(c, r) ⊆ Rd. Clearly ar does not depend on c ∈ Rd. Clearly we have ar ≥ as
for r > s > 0. We claim that ar = as and we denote this value by a (that is for
example a := a1).

Assume that we already know that ar = a for every r > 0. The claims (i) and
(ii) from Theorem 3.5 follow immediately from Theorem 2.7 and the assumption
ar = a.
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The condition (iii) follows from the fact that Lp
∗,q(Ω) is monotone and dis-

jointedly m-superadditive thanks to Remark 3.2, where m = p∗ for p∗ ≥ q and
m = q for p∗ < q.

It remains to prove, that for r > s > 0 we have ar ≤ as, that is

‖Id : W k
0 L

p,q(B(0, r))→ Lp
∗,q(B(0, r))‖

≤ ‖Id : W k
0 L

p,q(B(0, s))→ Lp
∗,q(B(0, s))‖.

(11)

Because of different norms in Lorentz spaces we need to split the proof into three
parts depending on the value of q with respect to p and p∗, where p < p∗.

Part 1: q ≤ p < p∗

In this case on W k
0 L

p,q resp. Lp
∗,q we have the norm ‖•‖WkLp,q resp. ‖•‖Lp∗,q . Let

r > s > 0 and fix ε > 0. Then we find g ∈W k
0 L

p,q(B(0, r)) such that

‖g‖WkLp,q(B(0,r)) = 1 and

‖g‖Lp∗,q(B(0,r)) > ar − ε

and let us denote
h : B(0, s)→ R, h(x) = cg

(r
s
x
)
,

where c is a positive constant such that ‖h‖WkLp,q(B(0,s)) = 1. From Corollary 2.3
it follows, that

(Dγh)∗(t) = c ·
(r
s

)|γ|
· (Dγg)∗

((r
s

)d
t

)
.

This and the change of variables T =
(
r
s

)d
t give us

1 = ‖h‖q
WkLp,q(B(0,s))

=
∑
|γ|≤k

∫ ∞
0

(
t

1
p (Dγh)∗ (t)

)q dt

t

= cq
∑
|γ|≤k

∫ ∞
0

t
q
p
−1

[(r
s

)|γ|
· (Dγg)∗

((r
s

)d
t

)]q
dt

= cq
∑
|γ|≤k

∫ ∞
0

((s
r

)d
T

) q
p
−1 (r

s

)|γ|q [
(Dγg)∗ (T )

]q (s
r

)d
dt

=
cq(

r
s

)q( d
p
−k

) ∑
|γ|≤k

∫ ∞
0

(r
s

)|γ|q−kq (
T

1
p (Dγg)∗(T )

)q dT

T
.

Because |γ|q − kq ≤ 0, rs > 1 and ‖g‖q
Wk

0 L
p,q(B(0,r))

= 1 we can continue with

1 ≤ cq(
r
s

)q( d
p
−k

) ∑
|γ|≤k

∫ ∞
0

(
T

1
p (Dγg)∗(T )

)q dT

T
=

cq(
r
s

)q( d
p
−k

) . (12)

From Proposition 2.2 it follows, that

h∗(t) = c · g∗
((r

s

)d
t

)
.
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This combined with inequality (12) and change of variables T =
(
r
s

)d
t give us

‖h‖q
Lp∗,q =

∫ ∞
0

(
t

1
p∗ · h∗(t)

)q dt

t

=

∫ ∞
0

t
q
p∗−1 ·

(
c · g∗

((r
s

)d
t

))q
dt

=

∫ ∞
0

cq
((s

r

)d
T

) q
p∗−1 (

g∗(T )
)q (s

r

)d
dt

=
cq(

r
s

)d( q
p∗−1

)
+d
‖g‖q

Lp∗,q

≥

 cq(
r
s

)q( d
p
−k

)
 (ar − ε)q ≥ (ar − ε)q.

(13)

Therefore the function h proves that as ≥ ar − ε. Sending ε→ 0 gives us (11).

Part 2: p < q ≤ p∗

In this case we have the same norm on Lp
∗,q, but on W k

0 L
p,q we have the norm

‖•‖WkL(p,q) . The proof is the same as in the first case, just everywhere we wrote
‖•‖WkLp,q we now write ‖•‖WkL(p,q) and up to the equation (12) we use the double-
star operator ∗∗ instead of the rearrangement ∗. Note that by Corollary 2.3 the
double star operator ∗∗ scales in the same way as the rearrangement ∗.

Part 3: p < p∗ < q

In this case on W k
0 L

p,q resp. Lp
∗,q we have the norm ‖•‖WkL(p,q) resp. ‖•‖L(p∗,q) .

The proof is again the same as in the second case, now we replace ‖•‖Lp∗,q with
‖•‖L(p∗,q) and we use ∗∗ instead of ∗ everywhere.

Remark 3.6 Let 1 ≤ q ≤ Q < ∞. Theorem 1.2 holds even for the embedding of
W k

0 L
p,q(Ω) into Lp

∗,Q(Ω), i.e. it’s measure of non-compactness is equal to it’s
norm.

Proof The validity of the embedding follows from Theorem 2.7 and embeddings
between Lorentz spaces, because

W k
0 L

p,q(Ω) ↪→ Lp
∗,q(Ω) ↪→ Lp

∗,Q(Ω).

The rest of the proof is analogous to the proof of Theorem 1.2, we only need
to raise the inequality (12) to the power of Qq and to replace q by Q in inequalities

(13).



12 Ondřej Bouchala

4 Embedding into the space of continuous functions

In this section we show that the measure of non-compactness of an embedding
can be smaller than its norm. For that we consider the Sobolev space W 1,1

0 ((0, 1))

equipped with the norm ‖u‖1,1 :=
∫ 1

0
|u′(x)|dx (where u′ is the weak derivative),

and the space of continuous functions C((0, 1)) equipped with the supremum norm
‖u‖∞ = supx∈(0,1) |f(x)|.

Proof (of Proposition 1.3) To show that the norm of the embedding is less or
equal 1

2 we observe that the norm in the Sobolev space is essentially total variation

and that the functions in W 1,1
0 ((0, 1)) have zero at the boundary, therefore their

supremum norm is at most 1
2 . To show that the norm is at least 1

2 it is enough to

consider the function 1
2 −

∣∣x− 1
2

∣∣ ∈ BW 1,1
0 ((0,1)).

To show that the measure of non-compactness is smaller or equal than 1
4 it is

enough to show that for every ε > 0 there are finitely many open balls in C((0, 1))
with radius 1

4 + ε that cover BW 1,1
0 ((0,1)).

We can choose finitely many points ci in
[
−1

2 ,
1
2

]
, such that any interval of

length 1
2 inside

[
−1

2 ,
1
2

]
is contained in one of the balls (intervals)

BR

(
ci,

1

4
+ ε

)
=

(
ci −

1

4
− ε, ci +

1

4
+ ε

)
.

We claim that the balls

BC((0,1))

(
ci,

1

4
+ ε

)
(where ci is a constant function) cover BW 1,1

0 ((0,1)).

x0 1

1
2

maxx∈[0,1] f(x)

minx∈[0,1] f(x)

f(x)

Consider arbitrary function f ∈ BW 1,1
0 ((0,1)). Thanks to (Brezis, 2013, The-

orem 8.2 and Theorem 8.12) we can without loss of generality assume that f is
(absolutely) continuous and f(0) = f(1) = 0. Because the total variation of func-
tion f is at most 1 we can easily deduce that maxx∈[0,1] f(x)−minx∈[0,1] f(x) ≤ 1

2 .

Therefore the range of f is an interval of length at most 1
2 inside [−1

2 ,
1
2 ], so thanks

to the choice of the points ci there is i such that f ∈ BC((0,1))(ci, 14 + ε).
It remains to prove that the measure of non-compactness is bigger or equal to

1
4 . To show that we need to prove that for every ε the set BW 1,1

0 ((0,1)) cannot be

covered by finitely many balls in C((0, 1)) with radius 1
4 − ε.
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Consider sequence of functions fn, n ∈ N, such that

fn

(
1

k

)
=

{
0 k ∈ N, n 6= k and
1
2 k ∈ N, n = k,

and each fn is linear between points 1
k , k ∈ N. It can be easily verified that the

norm of these functions in W 1,1
0 ((0, 1)) is one. And in every ball in C((0, 1)) with

radius 1
4 − ε is at most 1 of these functions, because for n 6= k it holds that

‖fn − fk‖∞ = 1
2 . ut
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