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Abstract. The regularized analytical continuation method (RAC) proved to be a very
powerful method for determination of resonance energies and resonance widths of several
atomic and molecular systems including large systems of biological importance. For
correct applications of the RAC method the knowledge of the asymptotic behavior of the
basic ingredient of the method, the coupling function λ(κ), is important. In this paper
we find the correct asymptotic form of λ(κ) for broad class of realistic potentials and for
nonzero values of the angular momentum. To the best of our knowledge this problem
has never been studied before.

1. Introduction

Resonances in non-relativistic quantum mechanics are defined as solutions of the
Schrödinger equation

(1) −
d2ψl(r)

dr2 +
l(l + 1)

r2 ψl(r) + U(r)ψl(r) = k2ψl(r)

l = 0, 1, 2, ... satisfying the Siegert boundary conditions [1]

(2) ψl(0) = 0,
ψ
′

l(R)
ψl(R)

= ik,
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where R is a distance from the origin at which the interaction U(r) = 0. It is important to
mention that the eigenvalue k enters the boundary condition Eq.(2) and thus the problem
to find the eigenvalue k is nonlinear. Generally all the eigenvalues can be divided into
three groups [2]:

• Im k > 0, Re k = 0, bound states. These states are easily calculated because the
solution ψl(r) ∈ L2.
• Im k < 0, Re k = 0, virtual states
• Im k < 0, Re k , 0, resonance states.

Both resonance and virtual states are difficult to calculate because the solution ψl(r) at
large distances oscillates and exponentially increases.

Recently the so-called method of regularized analytical continuation [3] was proposed
and has been successfully applied to a broad range of systems from atomic resonances
to resonances formed by collisions of electrons with large molecules [4], [5], [6]. It is well
known that the process of analytical continuation represents an ill-posed problem. It is
the purpose of this paper to improve the accuracy and stability of the RAC method by
studying the analytical features of the so-called coupling function. Rigorous mathemat-
ical proof of asymptotic behavior of the coupling function λ(κ) is provided for a broad
class of potentials for nonzero values of the angular momentum l.

1.1. RAC method. The essence of the RAC method consists in changing the strength of
the potential U(r)

(3) U(r)→ (1 + λ)U(r)

so that the resonance states are analytically continued into the bound state region. In
the bound state region we have

(4) −
d2ψl(r)

dr2 +
l(l + 1)

r2 ψl(r) + (1 + λ)U(r)ψl(r) = −κ2ψl(r)

where the energy E is negative, E = k2 = −κ2, k = iκ and ψl(r) ∈ L2. The energy E = −κ2

depends now also on the strength parameter λ, i.e. κ = κ(λ) and similarly we can define
the inverse function λ = λ(κ). The resonances are then found by solving the equation

(5) λ(κ) = 0.

As mentioned above the potential U(r) is assumed to be of short-range (i.e. decaying
faster than any negative power of r as r → +∞). As a typical example we can imagine
the potential in the form of the Gaussian potential

(6) U(r) = ae−br2
, a < 0.

This potential has been used in nuclear physics as a potential model in the theory of
nucleon-nucleon scattering (see e.g. [7]) as well as in quantum chemistry. Several low-
energy (small κ) approximate expression of the function λ(κ) have been proposed [8],
[9], [10] but it seems impossible to compute λ(κ) exactly.
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The lowest RAC approximation, the [2/1] approximation, is

(7) λ[2/1](κ) = λ0
κ2 + 2α2κ + α4 + β2

α4 + β2 + 2α2κ
.

This function has two complex conjugate zeros

κ1,2 = −α2
± iβ.

or in k-space
k1,2 = ±β − iα2

and obviously describes one pair of resonances with the energy E = β2
− α4 and width

Γ = 4α2β. The parameters α and β have direct physical meaning determining the real and
imaginary parts of the resonance energy. To get the resonance parameters this function
has to be fitted to the input data. The standard way is to minimize the following
functional

(8) χ2 =

N∑
i=1

∣∣∣λ(κi) − λi

∣∣∣2.
where N is the number of input points {λi} and the corresponding bound state energies
{Ei = −κ2

i }. The function λ(κ) in the [2/1] approximation, Eq.(7), increases linearly as
κ→∞.

If one virtual state is added to the pair of resonances we get a [3/1] PA

(9) λ[3/1](κ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ)
α4 + β2 + κ(2α2 + δ2(α4 + β2))

.

In this case we have one additional parameter -δ to fit. This parameter determines the
energy of the virtual state Ev = −δ−4. Now the function λ(κ) behaves as κ2 at large κ.

The same set of resonance parameters, i.e. α, β, δ, is described by the [3/2] approxima-
tion

(10) λ[3/2](κ) = λ0
(κ2 + 2α2κ + α4 + β2)(1 + δ2κ)

α4 + β2 + κ(2α2 + δ2(α4 + β2)) + µκ2 .

The asymptotics is now linear. Higher approximations are constructed in a similar
manner. For example to incorporate two resonances in the fit we can write

(11) λ[4/1](κ) = λ0
(κ2 + 2α2κ + α4 + β2)(κ2 + 2γ2κ + γ4 + δ2)

(α4 + β2)(γ4 + δ2)(1 + µκ)
.

The λ[4/1] approximation increases as κ3 at large κ. The question now is which one of
the proposed approximations represents the function λ(κ) optimally?

It is obvious that for a stable and accurate analytical continuation the knowledge of
the asymptotic behavior is essential. In the following we prove that for a broad class of
potentials and nonzero values of the angular momentum l the function λ(κ) increases as
a second power of κ at large κ.
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2. The main result

In this part we formulate and prove the main result, i.e. the asymptotic behavior of
the coupling function λ(κ). Let us consider equation (4) but we write λ instead of 1 + λ
(this shift does not change the asymptotic behaviour) and t instead of r (we work in
polar coordinates below and using r would be confusing). So, we rewrite (4) as

(P) ψ′′(t) = A(t)ψ(t), A(t) =
l(l + 1)

t2 + κ2 + λV(t).

If l and V are fixed, then for any κ ∈ R we denote

Λ(κ) =
{
λ ∈ R : ∃ ψ ∈ C2((0,+∞)) satisfying (P) & ψ . 0 & lim

t→0+
ψ(t) = 0 = lim

t→+∞
ψ(t)

}
and

λ(κ) = inf Λ(κ) (with λ(κ) = +∞ if Λ(κ) is empty).

Theorem 1. Let l ∈ (0,+∞) and let V : [0,+∞) → R be a continuous function satisfying
limt→+∞V(t) = 0,

∫ +∞

1
V(t)dt < +∞, and −m0 = mint≥0 V(t) < 0. Denote C0 = 1

m0
. Then for

every κ0 > 0 there exists C1 > 0 such that

(12) C0κ
2
≤ λ(κ) ≤ C1κ

2

holds for every κ > κ0.

Remark 1. In fact, the asymptotics of λ(κ), κ → +∞ is close to C0κ2. More precisely, for
any small ε > 0 there exists κ0 such that (12) holds for all κ > κ0 with C1 = C0 + ε. We
can see this from (18) since we can take m very close to m0 and then κ0 so large that

C1 =
1
m

(
1 +

l(l + 1) + aω2

aκ2
0

)
<

1
m0

+ ε.

2.1. Proof of the main result. We start with two lemmas. The first lemma speaks about
the equation y′′ = a(t)y with a(t) < 0. In this case, the solutions oscillates around zero
and the first lemma estimates the speed of these oscillations. The second lemma speaks
about the case a(t) > 0, in particular about asymptotic behavior of solutions as t→ +∞.

Lemma 2 (a variant of Sturm’s Theorem). Let I be an interval, ω > 0 and q : I → (ω2,+∞)
be a continuous function. Assume that y, z : I→ R are solutions to

y′′ + q(t)y = 0, z′′ + ω2z = 0, resp.

Let (σ, φ), (ρ, θ) satisfy

y(t) = σ(t) cosφ(t), y′(t) = ωσ(t) sinφ(t)
z(t) = ρ(t) cosθ(t), z′(t) = ωρ(t) sinθ(t)

for all t ∈ I.
Then φ(t) < φ(t0) − ω(t − t0) holds for all t ∈ I, t > t0.
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Proof. The equations for angles φ, θ read

(13)
φ′ = −

q(t)
ω

cos2 φ − ω sin2 φ = −ω −
q(t) − ω2

ω
cos2 φ,

θ′ = −ω cos2 θ − ω sin2 θ = −ω.

Therefore, (θ(t) − φ(t))′ ≥ 0 and the equality holds only in the points where cosφ(t) = 0.
Such points are isolated due to φ′ ≤ −ω, so θ − φ is increasing on I. Hence, φ(t) <
φ(t0) + θ(t) − θ(t0) = φ(t0) − ω(t − t0). �

Lemma 3 ([14], Corollary XI.9.2). Let µ > 0 and
∫
∞

q(t)dt < +∞. Then there exist solutions
u0, u1 to

(14) u′′ = [µ2 + q(t)]u

satisfying

u0 ∼ −
u′0
µ
∼ e−µt, u1 ∼

u′1
µ
∼ eµt

as t→ +∞.

Obviously, u0, u1 are linearly independent, so any solution to (14) is of the form
au0 + bu1 and there is a one-dimensional subspace of solutions vanishing at +∞. In the
proof of the main result we will need that if q depends continuously on a parameter λ,
then the subspace of vanishing solutions depends on λ continuously. We formulate the
statement precisely in Theorem 4 and we postpone its proof to the next subsection.

Theorem 4 (Continuous dependence of a stable subspace). Let us consider a problem

(15) u′′ = [µ2 + ϕ(t, λ)]u

with µ > 0 andϕ being a continuous function on (a,+∞)×(0,+∞) for some a ∈ R. Assume that
there exists t0 > a such that for any fixed interval [c,C] ⊂ (0,+∞) there exists ϕ0 ∈ L1((t0,+∞))
such that |ϕ(t, λ)| ≤ ϕ0(t) for all t ≥ t0 and λ ∈ [c,C].

Let λn → λ0 > 0, T > a and let un, n = 0, 1, 2, . . . be non-zero solutions to (15) with λ = λn
respectively and limt→+∞ un(t) = 0. Let ω > 0. If ρn, θn are such that un(T) = ρn cosθn,
u′n(T) = ωρn sinθn. Then limn→∞ θn = θ0 (mod 2π).

Let us now prove Theorem 1.

Proof of Theorem 1. First of all, let κ, λ ∈ R, κ > 0 be arbitrary. We observe that the
equation (P) is linear of second order with A being a continuous function on (0,+∞), so
for every t0 > 0 and every ψ0, ψ1 ∈ R there exists a unique solution satisfying ψ(t0) = ψ0,
ψ′(t0) = ψ1 and the solution is defined on (0,+∞). Moreover, the set of all solutions to
(P) forms a linear space of dimension 2.

It follows from Lemma 3 with µ = κ2 and q(t) = 1
t2 l(l + 1) + λV(t) that there exists a

non-zero solution ψ∞ to (P) with limt→+∞ψ∞(t) = 0 (and obviously all multiples of ψ∞
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have this property). Let us now investigate behavior of solutions at zero. We substitute
ω(s) = ψ(e−s), then

ω′(s) = −e−sψ′(e−s),

ω′′(s) = e−2sψ′′(e−s) + e−sψ′(e−s)

and the equation for ω reads

ω′′(s) = e−2s

(
l(l + 1)

e−2s + κ2 + λV(e−s)
)
ψ(e−s) + e−sψ′(e−s)

=
(
l(l + 1) + κ2e−2s + λV(e−s)e−2s

)
ω(s) − ω′(s)

i.e.,
ω′′(s) + ω′(s) −

(
l(l + 1) + κ2e−2s + λV(e−s)e−2s

)
ω(s) = 0.

Denoting u(s) = e
1
2 sω(s) we obtain

u′′(s) = e
1
2 s

(
ω′′(s) + ω′(s) +

1
4
ω(s)

)
= e

1
2 s

((
l(l + 1) + κ2e−2s + λV(e−s)e−2s

)
ω(s) +

1
4
ω(s)

)
,

i.e.,

(16) u′′(s) =
(
l(l + 1) +

1
4

+ κ2e−2s + λV(e−s)e−2s
)

u(s).

Now, we can apply Lemma 3 with λ =
√

1
4 + l(l + 1) and q(s) = κ2e−2s +λV(e−s)e−2s (which

is integrable at +∞ since V is bounded in a neighborhood of zero) and we get solutions

ω0(s) = e−
1
2 su0(s) ∼ e

(
−

√
1
4 +l(l+1)− 1

2

)
s
, ω1(s) = e

1
2 su1(s) ∼ e

(
−

√
1
4 +l(l+1)− 1

2

)
s

as s → +∞. Let us denote ψ0(t) = ω0(− ln t). Then limt→0+ψ0(t) = 0 (and obviously all
multiples of ψ0 have this poperty).

We are looking for solutions vanishing simultaneously at zero and infinity, so we
would like to have ψ∞ = cψ0 for some c ∈ R. By uniquenes of solutions, it is enough
to show that ψ∞(t1) = cψ0(t1) and ψ′

∞
(t1) = cψ′0(t1) for one (arbitrary) t1 ∈ (0,+∞),

which means φ0(t1) = φ∞(t1) + 2nπ where n is an integer and (ρ0, φ0), resp. (ρ∞, φ∞) are
representations of (ψ0, ψ′0), resp. (ψ∞, ψ′∞) in the generalized polar coordinates

(17)
ψ0 = ρ0 cosφ0, ψ′0 = ωρ0 sinφ0
ψ∞ = ρ∞ cosφ∞, ψ′

∞
= ωρ∞ sinφ∞

(the value of ω > 0 is set below and it depends on the potential V only).
Since mint∈[0,+∞) V(t) < 0, there exist m > 0 and an interval [a, b] (with 0 < a < b < +∞)

such that V(t) < −m on [a, b]. Let us study the problem (P) in the generalized polar
coordinates (17) with ω = 2π

b−a on the interval I = [a, b]. Put α0 = φ0(a) ∈ [0, 2π) and, since
φ∞(b) is determined uniquely up to the period 2π, we may choose α1 = φ∞(b) in such a
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way that α0 > α1 ≥ α0 − 2π. We show that for large λ, φ0(b) < φ∞(b) and for small λ the
opposite inequality holds. Further, we show that the dependence of φ0(b) and φ∞(b) on
λ is continuous. Then we conclude that there exists a λ between the upper and lower
bound for which φ0(b) = φ∞(b), and thus we find a solution vanishing at zero and also
at infinity.

Let us denote

λ̄(κ) =
1
m

(
l(l + 1)

a2 + κ2 + ω2

)
Then for λ = λ̄(κ) and all t ∈ [a, b] we have

A(t) =
l(l + 1)

t2 + κ2 + λ̄(κ)V(t) <
l(l + 1)

a2 + κ2
− λ̄(κ)m = −ω2.

Now, we can apply Lemma 2 with y(t) = ψ0(t), q(t) = −A(t) > ω2 and t0 = a. Lemma 2
yields φ0(b) < φ0(a) − ω(b − a) = α0 − 2π ≤ α1 = φ∞(b).

On the other hand, let −m0 be the minimum of V on (0,+∞) and

λ(κ) =
κ2

m0
.

Then for any λ ∈
[
0, λ(κ)

]
and all t > 0 we have

A(t) =
l(l + 1)

t2 + κ2 + λV(t) > κ2
− λm0 ≥ 0.

Therefore, positive solutions to (P) are convex and negative solutions are concave. It
follows thatφ0 ∈ (0, π2 ) for all t > 0 orφ0 ∈ (π, 3π

2 ) for all t > 0 andφ∞ ∈ (π2 , π) for all t > 0 or
φ∞ ∈ ( 3π

2 , 2π) for all t > 0. Since we have chosen φ0(a) and φ∞(b) such that φ0(a) > φ∞(b),
we haveφ0(b) > φ∞(b) (φ0 stays in the same segment for all t). As a consequence, equality
φ0(b) = φ∞(b) cannot occur for λ ∈

[
0, λ(κ)

]
, so λ(κ) = inf Λ(κ) > λ(κ).

If φ∞(b) and φ0(b) depend continuously on λ, then we have existence of the desired
λ ∈

[
λ(κ), λ̄(κ)

]
for which φ0(b) = φ∞(b), which implies that λ(κ) = inf Λ(κ) satisfies

κ2

m0
= λ(κ) ≤ λ(κ) ≤ λ̄(κ) =

λ̄(κ)
κ2 κ2,

so the statement of the theorem is proved with C0 = 1
m0

and

(18) C1 = sup
κ∈[κ0,+∞)

λ̄(κ)
κ2 =

1
m

sup
κ∈[κ0,+∞)

(
1 +

l(l + 1) + aω2

aκ2

)
=

1
m

(
1 +

l(l + 1) + aω2

aκ2
0

)
.

To prove the continuous dependence we apply Theorem 4. In case of φ∞, we rewrite
(P) in the form of (15) with ϕ(t, λ) = λV(t), which is obviously a continuous function
of two variables and |ϕ(t, λ)| ≤ ϕ0(t) holds with ϕ0 = C|V(t)| (which is integrable on
(a,+∞)) for all λ ∈ [c,C] ⊂ (0,+∞). So, Theorem 4 can be applied and φ∞(b) depends
continuously on λ. In case of φ0, we apply Theorem 4 to equation (16). In this case, we
have ϕ(t, λ) = κ2e−2t + λV(e−t)e−2t which is again a continuous function of two variables
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and |ϕ(t, λ)| ≤ ϕ0(t) holds with ϕ0(t) = e−2t(κ2 + C|V(0)|) for all λ ∈ [c,C] ⊂ (0,+∞).
Therefore, by Theorem 4, the angle (in generalized polar coordinates) corresponding to
the vector (u0(T)),u′0(T)) for T = − ln(b) depends continuously on λ. Since the trans-
formation (u0(T),u′0(T)) 7→ (ψ0(e−T), ψ′0(e−T)) is linear and continuous, also the angle of
(ψ0(e−T), ψ′0(e−T)) (this angle is exactly φ0(b)) depends continuously on λ. �

2.2. Proof of Theorem 4. In this section we prove Theorem 4 in a sequence of lemmas.
We assume throughout this section that assumptions of Theorem 4 hold.

First observe that every λ > 0 the function ϕ(· , λ) belongs to L1((1,+∞)), so by [14,
Theorem X.17.2] there exist solutions u0, u1 to (15) satisfying

u0(t) = e−µt[1 + o(1)], u′0(t) = e−µt[−µ + o(1)],

u1(t) = eµt[1 + o(1)], u′1(t) = eµt[µ + o(1)].

Consequently, any solution to (15) is of the form (a + o(1))eµt + (b + o(1))e−µt. It follows

Lemma 5. For any b ∈ R there exists a unique solution u to (15) satisfying limt→+∞ eµtu(t) = b
(it is the solution bu0).

Further, [14, proof of Lemma X.4.3] implies explicit estimates of the terms o(1) in the
above expressions. Let us reformulate (15) to see how [14, Lemma X.4.3] can be applied.
First, we write (15) as a first order system

U′ =

(
0 1
µ2 0

)
U +

(
0 0

ϕ(t, λ) 0

)
U

Further, we have (
0 1
µ2 0

)
=

(
1 1
−µ µ

) (
−µ 0
0 µ

) (1
2 −

1
2µ

1
2

1
2µ

)
= CJC−1.

Then substitution V(t) = eµtC−1U(t) yields

(19) V′ =

(
0 0
0 2µ

)
V +

1
2µ
ϕ(t, λ)

(
−1 −1
1 1

)
V

Assuming V = (y, z)T and adding one more (independent) equation x′ = −x we are in
the situation of [14, Lemma X.4.3] with ξ = (x, y, z)T, A1 = −1, A2 = 0, A3 = 2µ, F1 ≡ 0,
F2(t, ξ, λ) = − 1

2µϕ(t, λ)(y + z) = −F3(t, ξ, λ). We use assumptions on φ(t, λ) to get

‖F(t, ξ, λ)‖ ≤
1
µ
|ϕ(t, λ)||y + z| ≤

1
µ
ϕ0(t)‖ξ‖,

so ψ0 = 1
µϕ0(t) satisfies the assumptions of [14, Lemma X.4.3] for any λ ∈ [c,C]. By [14,

Lemma X.4.3] for any y∞ sufficiently small we find a solution V to (19) with limt→+∞V(t) =
(y∞, 0)T. Moreover, [14, proof of Lemma X.4.3] shows that

(20) |y(t) − y∞| ≤ 7|y∞|
∫
∞

t
ψ0(s)ds, |z(t)| ≤ 7τ(t)|y(t)|, for t ≥ t0
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where t0, τ(t) are independent of λ (they depend only on ψ0) and limt→+∞ τ(t) = 0. Since
our problem si linear, the assertion is also valid for large values of y∞. Inequalities (20)
yields uniform (in λ) estimates of ‖V(t)− (y∞, 0)T

‖ and consequently also for solutions u
of (15). In particular, we have

Lemma 6. Let y∞ ∈ R and C > c > 0. For λ ∈ [c,C] let uλ denote the unique solution
of (15) with limt→+∞ eµtuλ(t) = y∞. There exists T > a and K : [T,+∞) → (0,+∞) with
limt→+∞ K(t) = 0 such that

|eµtuλ(t) − y∞| + |eµtu′λ(t) + µy∞| ≤ K(t) for t ≥ T

for all λ ∈ [c,C]. In particular, limt→+∞ eµtu′λ(t) = −µy∞.

Proof. By the previous paragraph, for any λ ∈ [c,C] there exists a solution V = Vλ to (19)
satisfying (20). If T ≥ t0 (t0 from (20)) is so large that

∫ +∞

T
ψ0(s)ds ≤ 1

7 , then for t ≥ T we
have |y(t) − y∞| ≤ |y∞|, e.g. |y(t)| ≤ 2|y∞| and |z(t)| ≤ 14τ(t)|y∞|. Therefore,

|y(t) − y∞| + |z(t)| ≤ 7|y∞|
(∫ +∞

t
ψ0(s)ds + 2τ(t)

)
Then the corresponding(

uλ(t)
u′λ(t)

)
= U(t) = e−µtCV(t) = e−µt

(
y(t) + z(t)
−µy(t) + µz(t)

)
satisfies

|eµtuλ(t) − y∞| = |y(t) + z(t) − y∞| ≤ 7|y∞|
(∫ +∞

t
ψ0(s)ds + 2τ(t)

)
and

|eµtu′λ(t) + µy∞| = µ|y∞ − y(t) + z(t)| ≤ 7µ|y∞|
(∫ +∞

t
ψ0(s)ds + 2τ(t)

)
and the Lemma is proved with K(t) = 7(1 + µ)|y∞|

(∫ +∞

t
ψ0(s)ds + 2τ(t)

)
→ 0. �

Lemma 7. Let λn → λ0 > 0 and let un be a solution to (15) with λ = λn satisfying
limt→+∞ eµtun(t) = 1. There exists T > a such that for every t0 > T there exists u0 such
that limn→∞ un(t0) = u0 and the solution u of (15) with λ = λ0 and u(t0) = u0 satisfies
limt→+∞ eµtu(t) = 1. Moreover, limn→∞ u′n(t0) = u′(t0).

Proof. Since λn → λ0 > 0 we can fix C > c > 0 and n0 such that λn ∈ [c,C] for all n ≥ n0.
Let us set y∞ = 1 and apply Lemma 6 to obtain ‖eµtun(t) − 1‖ ≤ K(t) for t ≥ T. Let us fix
t0 ≥ T.

1st step. Let us first assume that limn→∞ un(t0) = u0. If the solution u from the
lemma does not satisfy limt→+∞ eµtu(t) = 1, there is ε > 0 and a sequence tn ↗ +∞
such that ‖eµtnu(tn) − 1‖ > 2ε. However, for tm large enough we have ε > K(tm), i.e.
‖eµtmu(tm) − 1‖ > K(tm) + ε. On the other hand, ‖eµtmun(tm) − 1‖ ≤ K(tm) for all n ≥ n0,
which is a contradiction since un → u uniformly on compact intervals due to continuous
dependence on initial values and parameters.
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2nd step. Let us now assume, that limn→∞ un(t0) does not exist. Since the sequence
un(t0) is bounded (due to ‖eµtun(t)−1‖ ≤ K(t)), there exist two subsequences with different
limits u0 , ũ0. Applying the 1st step to these subsequences we conclude that solutions u,
ũ to (15) with λ = λ0 and initial values u(t0) = u0, resp. ũ(t0) = ũ0 satisfy limt→+∞ eµtu(t) =
1 = limt→+∞ eµtũ(t). However, by Lemma 5 we have u = ũ, so u0 = ũ0. This is a
contradiction.

By Lemma 6, we have limt→+∞ eµtu′n(t) = −µ and we can use the same arguments as
above for derivatives u′n, u′ instead of un, u to get limn→∞ u′n(t0) = u′(t0). �

Proof of Theorem 4. For any fixed λ > 0 and T > a there is a one-dimensional space of
solutions with the property limt→+∞ un(t) = 0. So, un is not uniquely determined but
θn is unique (up to a multiple of π). So, we can without loss of generality assume that
limt→+∞ eµtun(t) = 1, n = 0, 1, 2, . . . . By Lemma 7 we have un(t0) → u0(t0), u′n(t0) → u′0(t0)
for any t0 large enough. Continuous dependence on initial conditions and parameters
(un(t0)→ u0(t0), u′n(t0)→ u′0(t0) and λn → λ0) then implies un(T)→ u0(T), u′n(T)→ u′0(T)
for any T > a. Since (u0(T),u′0(T)) , (0, 0) (by uniqueness of solutions), convergence of
the angles θn → θ0 in generalized polar coordinates follows. �

3. Summary and results

In the applications of the RAC method and its variant the ACCC method, see for
example: [11], [12], [13], we observed that best results are obtained with approximations
satisfying the κ2 behavior at κ → ∞. The result obtained in this work puts our exper-
imental experience on a firmer footing. The approximations λ[3/1](κ) (Eq. (9)), λ[4/2](κ),
λ[5/3](κ), etc. are recommended and the approximations λ[3/2](κ) (Eq. (10)), λ[4/1](κ) (Eq.
(11)), etc. should be treated with caution because of their false asymptotic behavior.
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