
A REMARK ON FUNCTIONS CONTINUOUS ON ALL LINES

LUDĚK ZAJÍČEK

Abstract. We prove that each linearly continuous function f on Rn (i.e., each func-
tion continuous on all lines) belongs to the first Baire class, which answers a problem
formulated by K.C. Ciesielski and D. Miller (2016). The same result holds also for f
on an arbitrary Banach space X, if f has moreover the Baire property. We also prove
(extending a known finite-dimensional result) that such f on a separable X is continuous
at all points outside a first category set which is also null in any usual sense.

1. Introduction

Separately continuous functions on Rn (i.e., functions continuous on all lines parallel to
an coordinate axis) and also linearly continuous functions (i.e., functions continuous on
all lines) were investigated in a number of articles, see the survey [1].

Recall here Lebesgue result of [4] which asserts that

(1.1) each separately continuous function on Rn belongs to the (n− 1)-th Baire class.

We prove (see Theorem 3.5 below) that each linearly continuous function f with the
Baire property on a Banach space X belongs to the first Baire class. Of course, if X is
infinite-dimensional, then there exists an (everywhere) discontinuous linear functional f
on X (which is linearly continuous), which shows that, in Theorem 3.5, it is not possible
to omit the assumption that f has the Baire property. However, using Lebesgue result
(1.1), we obtain that each linearly continuous function f on Rn belongs to to the first
Baire class, which answers [1, Problem 2, p. 12].

The natural question how big can be the set D(f) of all discontinuity points of a
separately (resp. linearly) continuous function were considered in several works, see [1].

A complete characterization of sets D(f) for separately continuous functions in Rn was
given in [2] (and independently in [8]), cf. [1]. This characterization, in particular, shows
that D(f) is a first category set, but it can have positive Lebesgue measure (even its
complement can be Lebesgue null).

Slobodnik proved in [8] that, for each linearly continuous f on Rn,

(1.2) D(f) is contained in a countable union of Lipschitz hypersurfaces,

in particular, the Hausdorff dimension of D(f) is at most (n−1) (and so D(f) is Lebesgue
null). We show that (1.2) holds also in each separable Banach space X under the addi-
tional assumption that f has the Baire property. Consequently D(f) is null in any usual
sense, in particular it is Aronszajn null and Γ-null.
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2. Preliminaries

In the following, by a Banach space we mean a real Banach space. If X is a Banach
space, we set SX := {x ∈ X : ‖x‖ = 1}. The symbol B(x, r) will denote the open ball
with center x and radius r. The oscillation of a function f at a point x will be denoted
by osc(f, x).

Let X be a Banach space, ∅ 6= G ⊂ X an open set and f : G → R a function. Then
we say that f is linearly continuous, if the restriction f �L∩G is continuous for each line
L ⊂ X intersecting G.

We will essentially use the following well-known characterization of Baire class one
functions (see e.g. [5, Theorem 2.12]).

Lemma 2.1. Let X be a strong Baire metric space and f : X → R a function. Then the
following conditions are equivalent. h

(i) f is a Baire class one function.
(ii) For every nonempty closed set F ⊂ X and for every real numbers α < β, the

sets {z ∈ F : f(z) ≤ α} and {z ∈ F : f(z) ≥ β} cannot be dense in F
simultaneously.

Recall that X is called strong Baire if every closed subspace of X is a Baire space. Thus
each topologically complete metric space (and so each Gδ subspace of a complete space)
is strong Baire.

We will use the classical Baire terminology concerning his category theory. So com-
plements of first category sets (= meager sets) are called residual (= comeager) sets and
sets of the second category are those which are not of the first category. We will need
the following well-known fact which follows e.g. from [3, § 10, (7) and (11)] (cf. the text
below (11)).

Lemma 2.2. If M is a second category subset of a metric space X, then there exists an
open set ∅ 6= U ⊂ X such that M ∩ V is of the second category for each open ∅ 6= V ⊂ U .

In a metric space (X, ρ), the system of all sets with the Baire property is the smallest
σ-algebra containing all open sets and all first category sets. We will say that a mapping
f : (X, ρ1) → (Y, ρ2) has the Baire property if f is measurable with respect to the σ-
algebra of all sets with the Baire property. In other words, f has the Baire property, if
and only if f−1(B) has the Baire property for all Borel sets B ⊂ Y (see [3, § 32]). We
will need the following fact (see e.g. [3, § 32, II]).

Lemma 2.3. If Y is separable, then f has the Baire property, if and only there exists a
residual set R in X such that the restriction f �R is continuous.

Let X be a Banach space, x ∈ X, v ∈ SX and δ > 0. Then we define the open cone
C(x, v, δ) as the set of all y 6= x for which ‖v − y−x

‖y−x‖‖ < δ.

The following easy inequality is well known (see e.g. [6, Lemma 5.1]):

(2.1) if v, w ∈ X \ {0}, then

∥∥∥∥ v

‖v‖
− w

‖w‖

∥∥∥∥ ≤ 2

‖v‖
‖v − w‖.

We will need the following special case of [7, Lemma 2.4]. It can be proved by the
Kuratowski-Ulam theorem (as is noted in [7]), but the proof given in [7] is more direct.

Lemma 2.4. Let U be an open subset of a Banach space X. Let M ⊂ U be a set residual
in U and z ∈ U . Then there exists a line L ⊂ X such that z is a point of accumulation
of M ∩ L.
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3. Baire class one

Lemma 3.1. Let X be a Banach space, ∅ 6= G ⊂ X an open set and let f : G → R be
a linearly continuous function having the Baire property. Then for each η > 0 there exist
u ∈ SX , δ > 0 and p ∈ N such that

(3.1) |f(y)− f(x)| ≤ η whenever y ∈ C(x, u, δ) ∩B(x, 1/p).

Proof. Let x ∈ X and η > 0 be given; we can and will suppose that x = 0. For each
k ∈ N, set

Sk := {v ∈ SX : |f(x+ tv)− f(x)| ≤ η for each 0 < t < 1/k.}

Since SX is clearly covered by all sets Sk, by the Baire theorem (in SX) we can choose
p ∈ N such that Sp is a second category set (in SX). So Lemma 2.2 implies that we
can find u ∈ SX and δ > 0 such that Sp ∩ V is of the second category in SX whenever
∅ 6= V ⊂ SX ∩B(u, δ) is an open subset in SX . Set

U := C(0, u, δ) ∩B(0, 1/p) and M := {y ∈ U : |f(y)− f(x)| ≤ η}.

Then (3.1) is equivalent to the equality M = U .
We will first prove that M is residual in U . To this end consider the product metric

space

U∗ := (SX ∩B(u, δ))× (0, 1/p)

and the mapping

ϕ : U∗ → U, ϕ((v, t)) := tv.

Then ϕ is clearly a homeomorphism (with ϕ−1(z) = (z/‖z‖, ‖z‖) for z ∈ U). Since f has
the Baire property, we obtain that M has the Baire property in G (and consequently also
in U). Therefore M∗ := ϕ−1(M) has the Baire property in U∗. Consequently (cf. e.g. [3,
§ 11, IV, Corollary 2]), to prove that M∗ is residual in U∗, it is sufficient to prove that
M∗ ∩ (V ×G) is of the second category in U∗ whenever ∅ 6= V ⊂ SX ∩B(u, δ) is an open
subset of SX and ∅ 6= G ⊂ (0, 1/p) is open. To prove this last statement, observe that the
definition of Sp implies that

(Sp ∩ V )×G ⊂M∗ ∩ (V ×G).

Further, since Sp ∩ V is of the second category in SX ∩ B(u, δ) and G is of the second
category in (0, 1/p), we obtain (see e.g. [3, § 22, V, Corollary 1b]) that M∗ ∩ (V ×G) is
of the second category in U∗.

Thus we have proved that M∗ is residual in U∗ and consequently M is residual in U .
Now consider an arbitrary z ∈ U . By Lemma 2.4 there exists a line L ⊂ X and points
zn ∈M ∩L∩U with zn → z. Since the restriction of f to L∩U is continuous, we obtain
f(zn)→ f(z), and consequently z ∈M . So M = U , which implies (3.1). �

Lemma 3.2. Let X be a Banach space, u ∈ SX , 0 < δ ≤ 1 and 0 < ξ < δ/2. Then, for
each x, y ∈ X with ‖x− y‖ < δξ/4, we have

(i) z := y + (ξ/2)u ∈ C(x, u, δ) ∩B(x, δ) and

(ii) C(x, u, δ) ∩B(x, δ) ∩ C(y, u, δ) ∩B(y, δ) 6= ∅.

Proof. Since

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ ≤ ξ

2
+
δξ

4
≤ δ

4
+
δ

4
< δ,
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we have z ∈ B(x, δ). Since

‖z − x‖ ≥ ‖z − y‖ − ‖y − x‖ ≥ ξ

2
− ξ

4
> 0,

we can apply (2.1) to v := (ξ/2)u = z − y and w := z − x 6= 0. Because ‖w − v‖ =
‖y − x‖ < δξ/4, the inequality (2.1) gives∥∥∥∥u− w

‖w‖

∥∥∥∥ =

∥∥∥∥ v

‖v‖
− w

‖w‖

∥∥∥∥ < 2

ξ/2
· δξ

4
= δ.

Consequently z ∈ C(x, u, δ) and so (i) follows.
Since z ∈ C(y, u, δ) ∩B(y, δ), (i) implies (ii). �

The following result is not labeled as a theorem, since it will be generalized to all
Banach spaces.

Proposition 3.3. Let X be a separable Banach space, ∅ 6= G ⊂ X an open set and let
f : G → R be a linearly continuous function having the Baire property. Then f belongs
to the first Baire class.

Proof. We can suppose dimX > 1. Suppose to the contrary that f is not in the first
Baire class. Then by Lemma 2.1 there exists a set ∅ 6= F ⊂ G closed in G and reals α < β
such that the both sets

A := {z ∈ F : f(z) ≤ α} and B := {z ∈ F : f(z) ≥ β}
are dense in F . Set η := (1/7)(β − α). Now choose a dense sequence (un)∞1 in SX and,
for each n ∈ N, set

Pn := {x ∈ F : |f(y)− f(x)| ≤ η whenever y ∈ C(x, un, 1/n) ∩B(x, 1/n)}.
Lemma 3.1 implies that F =

⋃∞
1 Pn. Indeed, for each x ∈ F we can choose u ∈ SX ,

δ > 0 and p ∈ N for which (3.1) holds. Further choose n > p such that 1/n < δ/2 and
‖un − u‖ < δ/2. Then clearly

C(x, un, 1/n) ∩B(x, 1/n) ⊂ C(x, u, δ) ∩B(x, 1/p)

and consequently x ∈ Pn by (3.1).
Since F is closed in G, the Baire theorem in F holds and thus there exists k ∈ N such

that Pk is not nowhere dense in F . Therefore there exist c ∈ F and 0 < r < 1/(32k2)
such that Pk is dense in B(c, r) ∩ F .

Now choose y ∈ A ∩ B(c, r) and y∗ ∈ B ∩ B(c, r). Since f is linearly continuous, we
can choose 0 < ξ < 1/(2k) such that

(3.2) f(z) ≤ α + η for z := y + (ξ/2)uk.

Further choose x ∈ Pk ∩ B(c, r) with ‖y − x‖ < ξ/(4k). Applying Lemma 3.2 (i) with
u := uk and δ := 1/k we obtain that z ∈ C(x, uk, 1/k) ∩ B(x, 1/k), and consequently
|f(z)− f(x)| ≤ η since x ∈ Pk. So (3.2) gives f(x) ≤ α + 2η.

Proceeding quite analogously as above (working now with y∗ and B instead of y and
A) we find x∗ ∈ Pk ∩ B(c, r) with f(x∗) ≥ β − 2η. Since 0 < r < 1/(32k2), we have
‖x−x∗‖ < 1/(16k2). So we can apply Lemma 3.2 (ii) with u := uk, δ := 1/k, ξ := 1/(4k),
x and y := x∗ to find a point

b ∈ C(x, uk, 1/k) ∩B(x, 1/k) ∩ C(x∗, uk, 1/k) ∩B(x∗, 1/k).

Since x, x∗ ∈ Pk, we have |f(b) − f(x)| ≤ η, |f(b) − f(x∗)| ≤ η, and therefore β − 3η ≤
f(b) ≤ α + 3η. Consequently β − α ≤ 6η which contradicts the choice of η. �
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Since each function from (n− 1)-th Baire class has the Baire property, Lebesgue result
(1.1) and Proposition 3.3 give the following main result of the present note which answers
[1, Problem 2].

Theorem 3.4. Each linearly continuous function on Rn belongs to the first Baire class.

Using easy “separable reduction” arguments, we obtain that the assumption of separa-
bility of X in Proposition 3.3 can be deleted.

Theorem 3.5. Let X be an arbitrary Banach space, ∅ 6= G ⊂ X an open set and let
f : G → R be a linearly continuous function having the Baire property. Then f belongs
to the first Baire class.

Proof. Suppose to the contrary that f is not in the first Baire class. Then by Lemma 2.1
there exist a set ∅ 6= F ⊂ G closed in G and reals α < β such that the both sets

A := {z ∈ F : f(z) ≤ α} and B := {z ∈ F : f(z) ≥ β}
are dense in F .

Now we will define inductively a nondecreasing sequence (Mn)∞n=1 of countable subsets
of F . We set M1 := {a}, where a ∈ F is an arbitrarily chosen point. If n > 1 and
a countable set Mn−1 is defined, we choose for each point µ ∈ Mn−1 sequences (aµk)∞k=1,
(bµk)∞k=1 converging to µ with aµk ∈ A and bµk ∈ B, k ∈ N. Then we set

Mn := Mn−1 ∪
⋃

µ∈Mn−1

⋃
k∈N

{aµk , b
µ
k}.

Setting

F̃ :=
⋃
n∈N

Mn ∩G,

we easily see that F̃ is a separable subset of F which is closed in F and

(3.3) both A ∩ F̃ and B ∩ F̃ are dense in F̃ .

Denote by X1 the closure of the linear span of F̃ . Then X1 is a closed separable subspace
of X. By Lemma 2.3 there exists a residual set R in G such that the restriction f �R is
continuous. [11, Lemma 4.6] implies that there exists a separable closed subspace X2 of X
such that X2 ⊃ X1 and R∩X2 is residual in X2. Consequently the function g := f �X2∩G
has the Baire property. Since g is linearly continuous on X2 ∩G, Proposition 3.3 implies
that g is in the first Baire class. But this contradicts Lemma 2.1, since X2 ∩ G is a
strong Baire space (even a topologically complete space), F̃ is closed in X2 ∩G and (3.3)
holds. �

4. Set of discontinuity points

In this short section we will show that Lemma 3.1 easily implies a Slobodnik’s result of
[8] (Corollary 4.3 below) and its analogues in infinite-dimensional Banach spaces. First
we recall some definitions and facts.

Let X be a Banach space. We say that A ⊂ X is a Lipschitz hypersurface if there
exists a 1-dimensional linear space F ⊂ X, its topological complement E and a Lipschitz
mapping ϕ : E → F such that A = {x+ ϕ(x) : x ∈ E}.

Recall (see [10, 4C]) that if X is separable, then each M ⊂ X which can be covered
by countably many Lipschitz hypersurfaces (note that such sets are sometimes called
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“sparse”, see [10]) is not only a first category set but is also Aronszajn (≡ Gauss) null
and Γ-null (in Lindenstrauss-Preiss sense).

A natural generalization of “sparse sets” to arbitrary (nonseparable) spaces are σ-cone
supported sets. Their definition (see e.g. [10, Definition 4.4]) works with cones defined
by a slightly different way than the cones C(x, v, δ) in Preliminaries; namely with cones
A(v, c) :=

⋃
λ>0 λ · B(v, c), where ‖v‖ = 1 and 0 < c < 1. However, for such v and c,

obviously C(0, v, c) ⊂ A(v, c) and (2.1) easily implies A(v, c/2) ⊂ C(0, v, c). Consequently
[10, Definition 4.4] can be equivalently rewritten as follows:

We say that a subset M of a Banach space X is cone supported if for each x ∈M there
exist v ∈ SX , δ > 0 and r > 0 such that M ∩ C(x, v, δ) ∩ B(x, r) = ∅. A set is called
σ-cone supported if it is a countable union of cone supported sets.

Recall that [9, Lemma 1] easily implies that if X is separable, then

(4.1) M ⊂ X is σ − cone supported if and only if

it can be covered by countably many Lipschitz hypersurfaces.

Theorem 4.1. Let X be an arbitrary Banach space, ∅ 6= G ⊂ X an open set and let
f : G → R be a linearly continuous function having the Baire property. Then the set
D(f) of all discontinuity points of f is σ-cone supported.

Proof. Denote Dn := {x ∈ G : osc(f, x) ≥ 1/n}, n ∈ N. Since D(f) =
⋃∞
n=1Dn, it is

sufficient to prove that each Dn is a cone supported set. To this end fix an arbitrary
n ∈ N and consider an arbitrary point x ∈ Dn. By Lemma 3.1 there exist v ∈ SX , δ > 0
and r > 0 such that

|f(y)− f(x)| ≤ 1

3n
whenever y ∈ C(x, v, δ) ∩B(x, r).

Consequently the oscillation of f on the open set C(x, v, δ)∩B(x, r) is at most 2/(3n) and
therefore Dn∩C(x, v, δ)∩B(x, r) = ∅. So we have proved that Dn is cone supported. �

Using (4.1), we obtain the following corollary.

Corollary 4.2. Let X be a separable Banach space, ∅ 6= G ⊂ X an open set and let
f : G→ R be a linearly continuous function having the Baire property. Then the set D(f)
of all discontinuity points of f can be covered by countably many Lipschitz hypersurfaces.
In particular, D(f) is a first category set which is Aronszajn null and also Γ-null.

We obtain also the following result which was proved by S.G. Slobodnik in [8] by an
essentially different way.

Corollary 4.3. Let ∅ 6= G ⊂ Rn be an open set and let f : G→ R be a linearly continuous
function. Then the set D(f) of all discontinuity points of f can be covered by countably
many Lipschitz hypersurfaces.

Proof. If G = Rn, it is sufficient to use Theorem 4.1 together with (1.1). If G is an open
interval we can use instead of (1.1) its generalization [3, § 31, V, Theorem 2]. Using this
special case, we easily obtain the general one, if we write G =

⋃
n∈N In, where In are open

intervals. �
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