
SMALL-BOUND ISOMORPHISMS OF FUNCTION SPACES

JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Abstract. Let F = R or C. For i = 1, 2, let Ki be a locally compact (Haus-

dorff) topological space and let Hi be a closed subspace of C0(Ki,F) such that
each point of the Choquet boundary ChKi of Hi is a weak peak point. We

show that if there exists an isomorphism T : H1 →H2 with ‖T‖ ·
∥∥T−1

∥∥ < 2,

then ChK1 is homeomorphic to ChK2. Next we provide a one-sided version
of this result. Finally we prove that under the assumption on weak peak points

the Choquet boundaries have the same cardinality provided H1 is isomorphic

to H2.

1. Introduction

We work within the framework of real or complex vector spaces and write F for
the respective field R or C. Further, let SF stand for the set {λ ∈ F; |λ| = 1}. For a
compact (Hausdorff) space K, let C(K,F) stand for the space of all continuous F-
valued functions on K, and for a locally compact (Hausdorff) space K, let C0(K,F)
denote the space of all continuous F-valued functions vanishing at infinity. We
consider both these spaces endowed with the sup-norm. For a compact space K,
we identify the dual space (C(K,F))∗ with the spaceM(K,F) of all F-valued Radon
measures on K. Unless stated otherwise, we consider M(K,F) endowed with the
weak∗ topology given by this duality. We further write M1(K) for probability
Radon measures on K and M+(K) for positive Radon measures on K. Let εx
stand for the Dirac measure at the point x ∈ K.

We start with the classical Banach-Stone theorem asserting that, given a pair of
compact spaces K and L, they are homeomorphic provided C(K,F) is isometric to
C(L,F) (see [15, Theorem 3.117]).

A remarkable generalization of the Banach-Stone theorem was given by Amir
[3] and Cambern [7]. They showed that compact spaces K and L are homeomor-
phic if there exists an isomorphism T : C(K,F) → C(L,F) with ‖T‖ ·

∥∥T−1
∥∥ < 2.

Alternative proofs were given by Cohen [12] and Drewnowski [14].
Chu and Cohen provided in [10] a very nice generalization of these results in

the context of affine continuous functions on compact convex sets. In order to
explain their results we need a bit of terminology. By a compact convex set we
mean a compact convex subset of a locally convex (Hausdorff) space. Let A(X,F)
be the space of all continuous F-valued affine functions on a compact convex set
X endowed with the sup-norm. If X is a compact convex set, for any µ ∈ M1(X)
there exists a unique point r(µ) ∈ X such that µ(a) = a(r(µ)), a ∈ A(X,C), see [2,
Proposition I.2.1]. We call r(µ) the barycenter of µ. If µ, ν ∈ M+(X), then µ ≺ ν
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if µ(k) ≤ ν(k) for each convex continuous function k on X. A measure µ ∈M+(X)
is maximal if µ is ≺-maximal.

By the Choquet–Bishop–de-Leeuw representation theorem (see [2, Theorem I.4.8]),
for each x ∈ X there exists a maximal measure µ ∈ M1(X) with r(µ) = x. If this
measure is uniquely determined for each x ∈ X, the set X is called a simplex. It
is called a Bauer simplex if, moreover, the set extX of extreme points of X is
closed. In this case, the space A(X,F) is isometric to the space C(extX,F) (see [2,
Theorem II.4.3]). On the other hand, given a space C(K,F), it is isometric to the
space A(M1(K),F) ([2, Corollary II.4.2]).

A reformulation of the result of Amir and Cambern for simplices reads as follows:
Given Bauer simplices X and Y , the sets extX and extY are homeomorphic,
provided there exists an isomorphism T : A(X,F)→ A(Y,F) with ‖T‖ ·

∥∥T−1
∥∥ < 2.

The aforementioned Chu and Cohen proved in [10] that for compact convex sets
X and Y , the sets extX and extY are homeomorphic provided there exists an
isomorphism T : A(X,R)→ A(Y,R) with ‖T‖ ·

∥∥T−1
∥∥ < 2 and one of the following

conditions hold:
(i) X and Y are simplices such that their extreme points are weak peak points;
(ii) X and Y are metrizable and their extreme points are weak peak points;
(iii) extX and extY are closed and extreme points of X and Y are split faces.
A point x ∈ X is a weak peak point if given ε ∈ (0, 1) and an open set U ⊂ X

containing x, there exists a in the unit ball BA(X,R) of A(X,R) such that |a| < ε
on extX \ U and a(x) > 1− ε, see [10, p. 73].

In [28], it was showed that extreme points of X and Y are homeomorphic, pro-
vided there exists an isomorphism T : A(X,R) → A(Y,R) with ‖T‖ ·

∥∥T−1
∥∥ < 2,

extreme points are weak peak points and both extX and extY are Lindelöf sets.
In [13] the same result is proved without the assumption of the Lindelöf property

and paper [30] provides the analogous result for the case of complex functions.
It turns out that this result is in a sense optimal since the bound 2 cannot be
improved (see [11], where a pair of nonhomeomorphic compact spaces K1,K2 for
which there exists an isomorphism T : C(K1,R)→ C(K2,R) with ‖T‖·

∥∥T−1
∥∥ = 2 is

constructed) and the assumption on weak peak points cannot be omitted (see [19],
where the author constructs for each ε ∈ (0, 1) a pair of simplices X1, X2 such that
extX1 is not homeomorphic to extX2 but there is an isomorphism T : A(X1,R)→
A(X2,R) with ‖T‖ ·

∥∥T−1
∥∥ < 1 + ε).

As a corollary of the theorems for affine functions results on selfadjoint function
spaces were obtained in [30]. More precisely, given a pair of selfadjoint closed
spaces Hi ⊂ C(K,C) containing constant functions and separating points of Ki, i =
1, 2, their Choquet boundaries are homeomorphic provided points in the Choquet
boundaries are weak peak points and there exists an isomorphism T : H1 → H2

with ‖T‖ ·
∥∥T−1

∥∥ < 2 (see [30, Theorem 5.3]).
The aim of the present paper is to extend this result to the case of locally compact

spaces and general function spaces. So we need only to assume that, for i = 1, 2,
Hi is a closed subspace of C0(Ki,F) for some locally compact space Ki such that
each point of the Choquet boundary ChKi is a weak peak point. We recall that
x ∈ Ki is a weak peak point if for a given ε ∈ (0, 1) and a neighborhood U of x
there exists a function h ∈ BHi

such that h(x) > 1− ε and |h| < ε on ChKi \ U .
We show that if there exists an isomorphism T : H1 → H2 with ‖T‖ ·

∥∥T−1
∥∥ < 2,

the Choquet boundaries of K1 and K2 are homeomorphic. (We recall that, given a
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closed subspace H ⊂ C0(K,F) for some locally compact space K, a point x ∈ K is
in the Choquet boundary ChK if the point evaluation functional φ(x) defined as
φ(x)(h) = h(x), h ∈ H, is an extreme point of BH∗ .)

Thus the main result of our paper is the following theorem.

Theorem 1.1. For i = 1, 2, let Hi be a closed subspace of C0(Ki,F) for some
locally compact space Ki. Assume that each point of ChKi is a weak peak point
and let T : H1 → H2 be an isomorphism satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2. Then ChK1

is homeomorphic to ChK2.

We refer the reader to [26] and [24] for results on function algebras in the spirit
of the above theorem. The case of vector-valued Banach-Stone type theorem is
treated e.g. in [5], [17], [25], [8], [6] or [1].

The next result considers isomorphisms that are not generally surjective. Jarosz
showed in [23] that if K1,K2 are locally compact spaces, A ⊂ C0(K1,C) is an
extremely regular closed subspace and a not necessarily surjective isomorphism
T : A → C0(K2,C) satisfies ‖T‖ ·

∥∥T−1
∥∥ < 2, then K1 is a continuous image of a

subset of K2. An analogous result for function spaces reads as follows.

Theorem 1.2. For i = 1, 2, let Hi be a closed subspace of C0(Ki,F) for some
locally compact space Ki. Assume that each point of ChK1 is a weak peak point
and let T : H1 → H2 be an into isomorphism satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2. Then

there exists a set L ⊂ ChK2 and a continuous surjective mapping ϕ : L→ ChK1.

In [9], it is proved that locally compact spaces K1,K2 have the same cardinality
provided C0(K1,F) is isomorphic to C0(K2,F). We generalize this result to the
context of function spaces by proving the following theorem.

Theorem 1.3. For i = 1, 2, let Hi be a closed subspace of C0(Ki,F) for some
locally compact space Ki. Assume that each point of ChKi is a weak peak point
and let T : H1 → H2 be an isomorphism. Then the cardinality of ChK1 is equal to
the cardinality of ChK2.

It has turned out that we can use the basic strategy of the proofs in [30] (which
in turn are adapted from [10]), however, some adjustments have to be made. The
outcome of these adjustments is even some simplification of the methods used in
[30]. More precisely, we work directly with functions in M(K,F)∗ instead of H∗∗,
see Lemmas 2.6 and 2.7. This allows to use the standard decomposition of measures
and thus we can avoid e.g. [30, Lemma 2.5]. Also, the construction of a “peaking”
function a∗∗x in Lemma 2.6 is simpler then the one in [30, Lemma 2.4].

2. Auxiliary results

This section collects auxiliary lemmas needed for the proofs of the main results.

Lemma 2.1. Let H be a closed subspace of C(K,F) for some compact space K and
φ : K → BH∗ be the evaluation mapping. Then

extBH∗ ⊂ SF · φ(ChK).

Proof. By [16, Corollary 2.3.6],

extBH∗ ⊂ {λφ(x); |λ| = 1, x ∈ K} .
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Let s ∈ extBH∗ be given. Then s = λφ(x) for some λ ∈ F with |λ| = 1 and x ∈ K.
We want to prove that φ(x) ∈ extBH∗ . Assuming the contrary, there exist distinct
points s1, s2 ∈ BH∗ such that φ(x) = 1

2 (s1 + s2). Then λs1 6= λs2 and

s = λφ(x) =
1

2
(λs1 + λs2)

is not an extreme point of BH∗ . This contradiction finishes the proof. �

The following lemma is a very particular result on representing functionals by
means of measures carried by the Choquet boundary. We refer the reader to [22],
[18], [20], [32], [4] or [31] for related results.

Lemma 2.2. Let H be a subspace of C(K,F) for some compact space K. Then
for any s ∈ H∗ there exists a measure µ ∈ M(ChK,F) such that µ = s on H and
‖µ‖ = ‖s‖.

Proof. Let s ∈ H∗ be given. We write A ⊂ C(ChK,F) for the space {h|ChK ; h ∈
H}. By [16, Theorem 2.3.8], for each h ∈ H there exists x ∈ ChK such that
|h(x)| = ‖h‖. Thus the restriction mapping r : H → A given by r(h) = h|ChK is
an isometric isomorphism and we can define t ∈ A∗ be the formula

t(a) = s(h), h ∈ H satisfies h|ChK = a, a ∈ A.

Then ‖t‖ = ‖s‖. Using the Hahn-Banach theorem we find a measure

µ ∈ (C(ChK,F))∗ =M(ChK,F)

such that ‖µ‖ = ‖t‖ and t = µ on A. Then ‖µ‖ = ‖s‖ and

µ(h) =

∫
ChK

hdµ = t(h|ChK) = s(h), h ∈ H.

This finishes the proof. �

The important topological notion is that of a function of the first Borel class.
Thus we recall that, given a pair of topological spaces K,L, a function f : K → L
is of the first Borel class if f−1(U) is a countable union od differences of closed sets
in K for any U ⊂ L open (see [33] or [29, Definition 5.13]). We just mention that,
if L = R, any semicontinuous function f : K → R is of the first Borel class.

Lemma 2.3. Let L1, . . . , Ln be compact convex sets in a locally convex space and
L = co (L1 ∪ · · · ∪ Ln). Let f : L→ F be an affine function such that f |Li

is of the
first Borel class for each i = 1, . . . , n. Then f is of the first Borel class on L.

Proof. Let

∆ =

{
λ ∈ [0,∞)n;

n∑
i=1

λi = 1

}
and

H = L1 × · · · × Ln ×∆.

Let further g : H → F be defined as

g(x1, . . . , xn, λ) =

n∑
i=1

λif(xi), (x1, . . . , xn, λ) ∈ H.
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By the proof of [29, Theorem 5.10], g is of the first Borel class on H. We consider
a continuous surjection ϕ : H → L defined as

ϕ(x1, . . . , xn, λ) =

n∑
i=1

λixi, (x1, . . . , xn, λ) ∈ H.

Since f is affine on L, we obtain f ◦ ϕ = g. By [29, Theorem 5.16], f is of the first
Borel class on L. �

Lemma 2.4. Let K be a compact space and f : K → F be a bounded function of

the first Borel class. Then f̂ : M(K,F)→ F defined as

f̂(µ) = µ(f), µ ∈M(K,F),

is of the first Borel class on any ball rBM(K,F), r > 0.

Proof. We provide a proof for the case of complex measures, the easier case of real
measures would be done similarly. Assume first that f is real. By [29, Proposition

5.30], f̂ is of the first Borel class on M1(K). Let L1 = 2M1(K), L2 = −2M1(K),
L3 = 2iM1(K) and L4 = −2iM1(K). Since Li is affinely homeomorphic toM1(K)

and f̂ is linear, f̂ is of the first Borel class on each Li, i = 1, . . . , 4. By the
decomposition of a complex measure we obtain

BM(K,F) ⊂ L = co (L1 ∪ L2 ∪ L3 ∪ L4) .

By linearity it is enough to prove that f̂ is of the first Borel class on L. But this
follows from Lemma 2.3.

If f : K → C, we have f = f1 + if2, where f1, f2 are real bounded functions of
the first Borel class. Then the function

f̂(µ) = µ(f) = µ(f1) + iµ(f2) = f̂1(µ) + if̂2(µ), µ ∈ BM(K,F),

is of the first Borel class as well. (Indeed, since the functions µ 7→ f̂1 and µ 7→ if̂2(µ)
are of the first Borel class, their sum is easily seen to be of the first Borel class as
well, see e.g. the proof of [29, Theorem 5.10].) �

Lemma 2.5. Let H be a closed subspace of C(K,F) for some compact space K.
Let x ∈ K be a weak peak point. Then for any

µ ∈M(ChK,F) ∩H⊥

holds µ(χ{x}) = 0.

Proof. Let µ ∈ M(ChK,F) ∩ H⊥ be arbitrary and ε > 0 be given. We write
µ = λεx + ν, where ν({x}) = 0. Let U be a closed neighborhood of x such that
|ν| (U) < ε. Using the assumption we find h ∈ BH with h(x) > 1 − ε and |h| < ε
on ChK \ U . Then |h| ≤ ε on

ChK \ U ⊂ ChK \ U,
and thus ∣∣µ(χ{x})

∣∣ =
∣∣µ(χ{x})− µ(h)

∣∣ ≤ ∣∣λεx(χ{x} − h)
∣∣+ |ν(h)|

≤ |λ| (1− h(x)) +

∫
ChK∩U

|h| d |ν|+
∫

ChK\U
|h| d |ν|

≤ |λ| ε+ ε+ ε ‖ν‖ ≤ ε(1 + ‖µ‖).
Hence µ(χ{x}) = 0. �
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Lemma 2.6. Let H be a closed subspace of C(K,F) for some compact space K and
let π : M(ChK,F) → H∗ be the restriction mapping. Let x ∈ K be a weak peak
point. For each µ ∈ M(ChK,F) we define χ̂{x}(µ) = µ(χ{x}). Then there exists
a∗∗x ∈ H∗∗ such that a∗∗x ◦ π = χ̂{x}.

Proof. The element χ̂{x} is contained in (M(ChK,F))∗. In order to find the re-

quired element a∗∗x ∈ H∗∗ it is enough to realize that for any µ ∈M(ChK,F)∩H⊥
we have µ(χ{x}) = 0 (see Lemma 2.5). Thus we can define

a∗∗x (s) = χ̂{x}(µ), µ ∈ π−1(s), s ∈ H∗.
This finishes the proof. �

Given a Banach space E with its dual E∗, we write 〈·, ·〉 : E × E∗ → F for the
duality mapping.

Lemma 2.7. Let H be a closed subspace of C(K,F) for some compact space K

and π : M(ChK,F)→ H∗ be the restriction mapping. Let f̂ ∈ (M(ChK,F))∗ and

a∗∗ ∈ H∗∗ satisfy f̂ = a∗∗ ◦ π.

(a) Then for any s ∈ H∗ and µ ∈ π−1(s) holds

〈s, a∗∗〉 = 〈µ, f̂〉.

(b) For any r > 0, if f̂ is of the first Borel class on rBM(ChK,F), then a∗∗ is

of the first Borel class on (rBH∗ ,weak∗).

Proof. (a) Given s ∈ H∗ and µ ∈ π−1(s), we realize that the dual mapping

π∗ : H∗∗ → (M(ChK,F))∗ satisfies π∗(a∗∗) = a∗∗ ◦ π = f̂ . Thus

〈s, a∗∗〉 = 〈π(µ), a∗∗〉 = 〈µ, π∗(a∗∗)〉 = 〈µ, f̂〉.
(b) For any r > 0, the mapping π : rBM(ChK,F) → rBH∗ is a weak∗-weak∗

continuous surjection (see Lemma 2.2). By [21, Theorem 10] (see also [29, Theo-

rem 5.26(d)]), if f̂ is of the first Borel class on rBM(ChK,F), a
∗∗ is of the first Borel

class on rBH∗ . �

Lemma 2.8. Let A be a closed subspace of C0(K,F) for some locally compact space
K. Let J = K ∪ {α} be the one-point compactification of K, where α is the point
at infinity. Let

B = {g ∈ C(J,F); g|K ∈ A & g(α) = 0}.
Then B is a closed subspace of C(J,F) isometric to A such that ChK = Ch J .

Proof. Clearly, any function a ∈ A has a unique extension ba ∈ B and the mapping
a 7→ ba is an isometric isomorphism. Thus B is a closed subspace of C(J,F).

Let φK : K → A∗ and φJ : J → B∗ be the evaluation mappings. Let x ∈ ChK
be given. Assume that φJ(x) = 1

2 (t1 + t2), where t1, t2 ∈ BB∗ are distinct. Then
si ∈ A∗ defined as si(a) = ti(ba), i = 1, 2, are of norm 1, distinct, and satisfy

1

2
(s1 + s2)(a) =

1

2
(t1 + t2)(ba) = φJ(x)(ba) = ba(x) = a(x) = φK(x), a ∈ A.

Thus φK(x) /∈ extBA∗ , a contradiction.
Conversely, let x ∈ Ch J be given. Since

φJ(α)(b) = b(α) = 0, b ∈ B,
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we have φJ(α) /∈ extBB∗ . Hence x ∈ K. If φK(x) = 1
2 (s1+s2) for some s1, s2 ∈ BA∗

distinct, then ti ∈ BB∗ defined as ti(b) = si(b|K), i = 1, 2, satisfy

1

2
(t1 + t2)(b) =

1

2
(s1 + s2)(b|K) = φK(x)(b|K) = b(x) = φJ(x)(b), b ∈ B.

Since t1, t2 are distinct, x /∈ Ch J , which is a contradiction. Hence the assertion
follows. �

Lemma 2.9. Let f : X → F be an affine function of the first Borel class on a
compact convex set. Then

sup
x∈X
|f(x)| = sup

x∈extX
|f(x)| .

Proof. The assertion follows from [13, Corollary 1.5] since any function of the first
Borel class has the point of continuity property (see [27, Theorem 2.3]). �

3. Proof of Theorem 1.1

The main strategy of the proof is originated by the proofs in [10], however, we
need to add some extra arguments provided by the previous lemmas. In particular,
Lemma 2.7 allows us to work directly with measures.

Proof of Theorem 1.1. We first assume that the spaces K1,K2 are compact. Sec-
ondly, we suppose that there exists c′ ∈ R such that 1 < c′ < 2 and ‖T‖ < 2 and
‖Th‖ > c′ ‖h‖ for all h ∈ H1 \ {0} (otherwise we would find 1 < c′ < 2 such that
‖T‖ ·

∥∥T−1
∥∥ < 2

c′ < 2 and consider the mapping c′
∥∥T−1

∥∥T ; see [10, p. 76]). We fix
c ∈ R satisfying 1 < c < c′.

Claim 1.: For any a∗∗ ∈ H∗∗1 \ {0} and b∗∗ ∈ H∗∗2 \ {0} we have ‖T ∗∗a∗∗‖ >
c ‖a∗∗‖ and

∥∥(T−1)∗∗b∗∗
∥∥ > 1

2 ‖b
∗∗‖.

For the proof see [30, Lemma 4.2]
For i = 1, 2, let πi : M(ChKi,F) → H∗i be the restriction mapping and let

φi : Ki → BH∗i be the evaluation mapping. For each x ∈ ChK1 we consider the

function χ{x}. Let χ̂{x} : M(ChK1) → F be defined as in Lemma 2.4 and let
a∗∗x ∈ H∗∗1 satisfies a∗∗x ◦ π1 = χ̂{x} (see Lemma 2.6). Then a∗∗x is of the first Borel
class on rBH∗1 for any r > 0, see Lemma 2.4 and 2.7(b). Analogously we define for
y ∈ ChK2 the function χ{y} and the element b∗∗y ∈ H∗∗2 .

We define mappings ρ1 and ρ2 as follows:

(3.1)
ρ1(x) =

{
y ∈ ChK2;

∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉
∣∣ > 1

2

}
, x ∈ ChK1,

ρ2(y) = {x ∈ ChK1; |〈φ2(y), T ∗∗a∗∗x 〉| > c} , y ∈ ChK2.

Claim 2. ρ1 and ρ2 are mappings.
Let x ∈ ChK1 be such that there exist distinct points y1, y2 ∈ ChK2 with∣∣〈(T−1)∗φ1(x), b∗∗yi 〉

∣∣ =
∣∣〈φ1(x), (T−1)∗∗b∗∗yi 〉

∣∣ > 1

2
, i = 1, 2.

We find a measure νx ∈ M(ChK2,F) with π2(νx) = (T−1)∗φ1(x) and ‖νx‖ =∥∥(T−1)∗φ1(x)
∥∥. We write

νx = λ1εy1 + µ1 = λ2εy2 + µ2,
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where λ1, λ2 ∈ F, µ1({y1}) = µ2({y2}) = 0. Using Lemma 2.7(a) we obtain

1

2
<
∣∣〈(T−1)∗φ1(x), b∗∗yi 〉

∣∣ =
∣∣〈νx, χ̂{yi}〉∣∣ =

∣∣νx(χ{yi})
∣∣ =

=
∣∣(λiεyi + µi)(χ{yi})

∣∣ = |λi| , i = 1, 2.

Since y1 6= y2, we obtain

1 ≥
∥∥(T−1)∗φ1(x)

∥∥ = ‖νx‖ ≥ |λ1|+ |λ2| > 1,

i.e., a contradiction.
Analogously we show that ρ2(y) is at most single-valued for each y ∈ ChK2.
Let L1 and L2 denote the domain of ρ1 and ρ2, respectively.
Claim 3.: The mappings ρ1 : L1 → ChK2 and ρ2 : L2 → ChK1 are surjective.
Let y ∈ ChK2 be given. We assume that

∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉
∣∣ ≤ 1

2 for each
x ∈ ChK1 and seek a contradiction.

First we show that the element (T−1)∗∗b∗∗y ∈ H∗∗1 is of the first Borel class on
BH∗1 .

Indeed, we know that b∗∗y is of the first Borel class on any ball in H∗2, in particular

on 2BH∗2 . Since (T−1)∗ is a weak∗-weak∗ homeomorphism, (T−1)∗(BH∗1 ) ⊂ 2BH∗2
and (T−1)∗∗b∗∗y = b∗∗y ◦ (T−1)∗, it follows that (T−1)∗∗b∗∗y is of the first Borel class
on BH∗1 as well.

By Lemma 2.9 and 2.1 we have

1

2
≤ 1

2

∥∥b∗∗y ∥∥ < ∥∥(T−1)∗∗b∗∗y
∥∥ = sup

a∗∈BH∗1

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣

= sup
a∗∈extBH∗1

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣ ≤ sup

a∗∈SF·φ1(ChK1)

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣

= sup
x∈ChK1

∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉
∣∣ ≤ 1

2
.

This contradiction implies that ρ1 is surjective.
Analogously we check that ρ2 is surjective.
Claim 4.: We have L1 = ChK1 and L2 = ChK2 and ρ2(ρ1(x)) = x, x ∈ ChK1,

and ρ1(ρ2(y)) = y, y ∈ ChK2.
Let y ∈ L2 be given. We want to show that ρ1(ρ2(y)) = y, i.e., that

(3.2)
∣∣〈φ1(ρ2(y)), (T−1)∗∗b∗∗y 〉

∣∣ > 1

2
.

We have

d = sup
x∈ChK1

∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉
∣∣ = sup

a∗∈SF·φ1(ChK1)

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣ =

≥ sup
a∗∈extBH∗1

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣ = sup

a∗∈BH∗1

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣

=
∥∥(T−1)∗∗b∗∗y

∥∥ > 1

2

∥∥b∗∗y ∥∥ ≥ 1

2
.

Since c > 1, we have d > max{dc ,
1
2}. Hence there exists x ∈ ChK1 such that∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉

∣∣ > max

{
d

c
,

1

2

}
≥ 1

2
.

Thus y = ρ1(x).
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Assume that (3.2) does not hold. Then ρ2(y) 6= x. By Claim 3 there exists
ŷ ∈ L2 such that ρ2(ŷ) = x. Then ŷ 6= y. We find µŷ ∈ M(ChK1,F) such that
‖µŷ‖ = ‖T ∗φ2(ŷ)‖ and π1(µŷ) = T ∗φ2(ŷ). We write

µŷ = λεx + µ, λ ∈ F, µ ∈M(ChK1,F) with µ({x}) = 0.

By Lemma 2.7(a),

〈λφ1(x) + π1(µ), (T−1)∗∗b∗∗y 〉 = 〈π1(µŷ), (T−1)∗∗b∗∗y 〉 = 〈T ∗φ2(ŷ), (T−1)∗∗b∗∗y 〉
= 〈φ2(ŷ), T ∗∗(T−1)∗∗b∗∗y 〉 = 〈φ2(ŷ), b∗∗y 〉 = 〈εŷ, χ̂y〉
= χy(ŷ) = 0.

Since x = ρ2(ŷ), we have

c < |〈φ2(ŷ), T ∗∗a∗∗x 〉| = |〈T ∗φ2(ŷ), a∗∗x 〉| = |〈π1(µŷ), a∗∗x 〉| = |〈λεx + µ, χ̂x〉| = |λ| .

Since

‖µ‖+ |λ| = ‖µŷ‖ = ‖T ∗φ2(ŷ)‖ < 2 ‖φ2(ŷ)‖ = 2,

we obtain ‖µ‖ < 2− c. By putting everything together we get

d < |λ| d
c
< |λ|

∣∣〈φ1(x), (T−1)∗∗b∗∗y 〉
∣∣ =

∣∣〈λφ1(x), (T−1)∗∗b∗∗y 〉
∣∣

=
∣∣〈π1(µ), (T−1)∗∗b∗∗y 〉

∣∣ ≤ d ‖µ‖ ≤ d(2− c) < d,

a contradiction. Thus (3.2) holds, which means that ρ1(ρ2(y)) = y, y ∈ L2.
Now, let x ∈ ChK1 be given. Then there exists y ∈ L2 such that ρ2(y) = x.

Then y = ρ1(ρ2(y)) = ρ1(x), which means that x ∈ L1.
Let y ∈ ChK2 be given. Then we can find x ∈ L1 = ChK1 with ρ1(x) = y and

further we can select ŷ ∈ L2 such that ρ2(ŷ) = x. Then

y = ρ1(x) = ρ1(ρ2(ŷ)) = ŷ ∈ L2.

Hence L2 = ChK2.
Finally, if x ∈ ChK1, we find y ∈ ChK2 with ρ2(y) = x and obtain

ρ2(ρ1(x)) = ρ2(ρ1(ρ2(y))) = ρ2(y) = x.

Till now we have proved that ρ1 : ChK1 → ChK2 is a bijection with ρ2 being
its inverse. Now we use the assumption on weak peak points to check that ρ1 is a
homeomorphism.

Claim 5.: The mapping ρ2 is continuous.
Let F ⊂ ChK1 be a nonempty closed set and let F = ChK1∩H for some closed

set H ⊂ K1. Obviously we may assume that F 6= ChK1. We want to prove that
ρ−1

2 (F ) is closed in ChK2.
To this end, we construct for each x ∈ ChK1 \ F a function hx ∈ H1 as follows.

Fix x ∈ ChK1 \F and y ∈ ChK2 with ρ2(y) = x. Let V be a closed neighborhood
of x with V ∩ H = ∅. We write T ∗φ2(y) = π1(µx), where µx ∈ M(ChK1,F)
satisfies ‖µx‖ = ‖T ∗φ2(y)‖. Let µx = λεx + ν, where λ ∈ F and ν ∈ M(ChK1,F)
satisfies ν({x}) = 0. Since ρ2(y) = x,

c < |〈φ2(y), T ∗∗a∗∗x 〉| = |T ∗φ2(y), a∗∗x 〉| = |〈π1(µx), a∗∗x 〉| =
∣∣µx(χ{x})

∣∣ = |λ| .

Let ε > 0 satisfy

ε < min

{
|λ| − c
|λ|+ 3

, c− 1

}
.
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We select a compact set A ⊂ ChK1 such that x /∈ A and |ν| (ChK1 \A) < ε and let
U ⊂ V be a closed neighborhood of x satisfying U ∩ A = ∅. Using the assumption
on weak peak points we select hx ∈ BH1 with hx(x) > 1 − ε and |hx| < ε on
ChK1 \ U . Then |hx| ≤ ε on F ∪A since |hx| ≤ ε on

ChK1 \ U ⊃ ChK1 \ U ⊃ F ∪A.

Now we claim that

(3.3) ρ−1
2 (F ) =

⋂
x∈ChK1

{z ∈ ChK2; |Thx(z)| ≤ c} .

Indeed, let y ∈ ChK2 \ ρ−1
2 (F ) be given. Then we consider the function hx,

where x = ρ2(y) ∈ ChK1 \ F . Using the inequality ‖µx‖ ≤ 2 we then have

|Thx(y)| = |〈Thx, φ2(y)〉| = |〈hx, T ∗φ2(y)〉| = |µx(hx)| = |λhx(x) + ν(hx)|

≥ |λ| (1− ε)−
∫

ChK1

|hx| d |ν|

= |λ| (1− ε)−
∫

ChK1\A
|hx| d |ν| −

∫
A

|hx| d |ν|

≥ |λ| (1− ε)− ε− ε ‖ν‖ ≥ |λ| (1− ε)− 3ε > c,

which shows the inclusion “⊃” in (3.3).
For the proof of the reverse inclusion we select z ∈ ρ−1

2 (F ) and let x ∈ ChK1 \F
be arbitrary. Then ρ2(z) ∈ F and, by the definition of ρ2,

c <
∣∣∣〈φ2(z), T ∗∗a∗∗ρ2(z)〉

∣∣∣ =
∣∣∣〈T ∗φ2(z), a∗∗ρ2(z)〉

∣∣∣ .
Let T ∗φ2(z) = π1(µz), where µz ∈ M(ChK1,F) satisfies ‖µz‖ = ‖T ∗φ2(z)‖. We
write µz = λερ2(z) +µ, where λ ∈ F and µ ∈M(ChK1,F) satisfies µ({ρ2(z)}) = 0.
Then

c <
∣∣∣〈π1(µz), a

∗∗
ρ2(z)〉

∣∣∣ =
∣∣µz(χ{ρ2(z)})

∣∣ = |λ| ,

and thus

2 > ‖T ∗φ2(z)‖ = ‖µz‖ = |λ|+ ‖µ‖ > c+ ‖µ‖ .
From these estimates it follows

|Thx(z)| = |〈hx, T ∗φ2(z)〉| =
∣∣(λερ2(z) + µ)(hx)〉

∣∣
≤ |λ| ε+ (2− c) ≤ 2ε+ (2− c) < c.

Hence

z ∈ {u ∈ ChK2; |Thx(u)| ≤ c}
and (3.3) is verified.

By (3.3), ρ−1
2 (F ) is a closed subset of ChK2, and thus ρ2 is continuous.

Analogously we would verify that ρ1 is continuous.
This finishes the proof for the compact case. Now we assume that K1,K2 are

locally compact and consider their one-point compactifications Ji = Ki ∪ {αi},
where, for i = 1, 2, αi is the point representing infinity. The spaces Hi are then
closed subspaces of C(Ji,F) satisfying h(αi) = 0, h ∈ Hi. Since ChKi = Ch Ji by
Lemma 2.8, the assumption on weak peak points for Ch Ji is satisfied. Thus the
compact case implies the existence of a homeomorphism between ChJ1 and Ch J2.
Hence the theorem follows. �
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4. Proof of Theorem 1.2

Proof of Theorem 1.2. We follow the proof of Theorem 1.1. Again we may assume
that the spaces K1,K2 are compact, see Lemma 2.8. We consider 1 < c < c′ < 2
and T such that ‖T‖ < 2 and ‖Th‖ ≥ c′ ‖h‖, h ∈ H1.

By [30, Lemma 4.2] we have

‖T ∗∗h∗∗‖ > c ‖h∗∗‖ , h∗∗ ∈ H∗∗1 \ {0}.
For x ∈ ChK1, let χ{x} and a∗∗x be as in the proof of Theorem 1.1. Again we define

ρ(y) = {x ∈ ChK1; |〈φ2(y), T ∗∗a∗∗x 〉| > c} , y ∈ ChK2.

Claim 1. ρ is a mapping. Indeed, let x1, x2 ∈ ChK1 be distinct such that∣∣〈φ2(y), T ∗∗a∗∗xi
〉
∣∣ > c for some y ∈ ChK2, i = 1, 2. We find µ ∈ M(ChK1,F) with

π1(µ) = T ∗φ2(y) and ‖µ‖ = ‖T ∗φ2(y)‖. We write

µ = λiεxi
+ µi,

where λi ∈ F and µi({xi}) = 0, i = 1, 2. By Lemma 2.7,

c <
∣∣〈T ∗φ2(y), a∗∗xi

〉
∣∣ =

∣∣〈µ, χ{xi}〉
∣∣ = |λi| , i = 1, 2.

Thus

2 > ‖T ∗φ2(y)‖ = ‖µ‖ ≥ |λ1|+ |λ2| > 2c

yields a contradiction with the inequality c > 1.
Let L denote the domain of ρ.
Claim 2. ρ is surjective. Assume that for some x ∈ ChK1 we have c ≥

|〈φ2(y), T ∗∗a∗∗x 〉|, y ∈ ChK2. Then we have as in the proof of Theorem 1.1

c ≥ sup
y∈ChK2

|〈φ2(y), T ∗∗a∗∗x 〉| = sup
s∈SF·φ2(ChK2))

|〈s, T ∗∗a∗∗x 〉|

= sup
s∈BH∗2

|〈s, T ∗∗a∗∗x 〉| = ‖T ∗∗a∗∗x ‖ > c ‖a∗∗x ‖ ≥ c,

i.e., a contradiction.
Claim 3. ρ : L → ChK1 is continuous. Let F ⊂ ChK1 be a closed set and let

F = ChK1∩H for some closed set H ⊂ K1. We may assume that F 6= ChK1. We
want to prove that ρ−1(F ) is closed in L.

To this end, we construct for each x ∈ ChK1 \ F and y ∈ ρ−1(x) a function
hx,y ∈ H1 as follows. Let V be a closed neighborhood of x with V ∩ H = ∅. We
write

T ∗φ2(y) = π1(µ) and µ = λεx + ν,

where µ ∈ M(ChK1,F) satisfies ‖µ‖ = ‖T ∗φ2(y)‖, λ ∈ F and ν({x}) = 0. Then
|λ| > c. Let ε > 0 satisfy

ε < min

{
|λ| − c
3 + |λ|

, c− 1

}
.

Let A ⊂ ChK1 \ {x} be a compact set satisfying |ν| (ChK1 \ A) < ε. Then there
exists a function hx,y ∈ H1 such that

‖hx,y‖ ≤ 1, hx,y(x) > 1− ε and |hx,y| ≤ ε on F ∪A.
Now we claim that

(4.1) ρ−1(F ) =
⋂

x∈ChK1\F

⋂
y∈ρ−1(x)

{z ∈ L; |Thx,y(z)| ≤ c} .
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Indeed, if y ∈ L \ ρ−1(F ), then we consider the function hx,y, where x = ρ(y) ∈
ChK1 \ F . Then we write as above

T ∗y = π1(µ) and µ = λεx + ν.

By the choice of the function hx,y we have

|Thx,y(y)| = |〈hx,y, T ∗φ2(y)〉| = |〈hx,y, λεx + ν〉|

≥ |λ| |1− ε| −
∫

ChK1\A
|hx,y| d |ν| −

∫
A

|hx,y| d |ν|

≥ |λ| (1− ε)− ε− ε ‖ν‖ > c.

Hence

y /∈
⋂

x∈ChK1\F

⋂
u∈ρ−1(x)

{z ∈ L; |Thx,u(z)| ≤ c} ,

which shows the inclusion “⊃” in (4.1).
For the proof of the reverse inclusion we select z ∈ ρ−1(F ) and let x ∈ ChK1 \F

and y ∈ ρ−1(x) be arbitrary. Then ρ(z) ∈ F and, by the definition of ρ,

c <
∣∣∣〈φ2(z), T ∗∗a∗∗ρ(z)〉

∣∣∣ =
∣∣∣〈T ∗φ2(z), a∗∗ρ(z)〉

∣∣∣ .
Let

T ∗φ2(z) = π1(µ) and µ = λερ(z) + ν,

where µ ∈M(ChK1,F) satisfies ‖µ‖ = ‖T ∗φ2(z)‖, λ ∈ F and ν({ρ(z)}) = 0. Then

c <
∣∣∣〈π1(µ), a∗∗ρ(z)〉

∣∣∣ =
∣∣〈λερ(z) + ν, χ{ρ(z)}〉

∣∣ = |λ| ,

and thus

2 > ‖T ∗φ2(z)‖ = ‖µ‖ = |λ|+ ‖ν‖ > c+ ‖ν‖ .
From these estimates it follows

|Thx,y(z)| = |〈hx,y, T ∗φ2(z)〉| =
∣∣∣∣∫

ChK1

hx,y dµ

∣∣∣∣
≤ |λ| ε+ (2− c) ≤ 2ε+ (2− c) < c.

Hence

z ∈ {u ∈ L; |Thx,y(u)| ≤ c}
and (4.1) is verified.

By (4.1), ρ−1(F ) is a closed subset of L, and thus ρ is continuous. This finishes
the proof. �

5. Proof of Theorem 1.3

We start the proof of Theorem 1.3 by the following result imitating [30, Lemma 3.1]
for the case of function spaces.

Lemma 5.1. Let K be a compact space, H be a subspace of C(K,F) of finite
dimension and let each point of ChK be a weak peak point. Then ChK is finite
and H is isometrically isomorphic to `∞(ChK,F).
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Proof. Let x ∈ ChK be given. We show that there exists a function hx ∈ BH such
that hx(x) = 1 and hx = 0 on ChK \ {x}. To this end we consider net {hU,ε} in
BH, where U is a neighborhood of x, ε ∈ (0, 1) and hU,ε is a function satisfying
hU,ε(x) > 1−ε and |hU,ε| < ε on ChK \U . We consider the partial order on the set
of pairs (U, ε) given by (U1, ε1) ≤ (U2, ε2) provided U2 ⊂ U1 and ε2 < ε1. Since BH
is compact in the norm topology, the net {hU,ε} possesses a cluster point hx ∈ BH.
Then hx(x) = 1 and hx = 0 on ChK \ {x}.

From this observation now follows that ChK is finite. Indeed, assuming that
ChK contains infinite set {xn; n ∈ N}, the functions {hxn ; n ∈ N} are linearly
independent, which contradicts the assumption.

It remains to prove that the restriction mapping r : H → `∞(ChK,F) is a sur-
jective isometry. It is an isometry by the maximum principle [16, Theorem 2.3.8].
It is surjective, since any f ∈ `∞(ChK,F) can be written as

f =
∑

x∈ChK

f(x)hx|ChK ,

and thus h =
∑
x∈ChK f(x)hx satisfies r(h) = f . �

Proof of Theorem 1.3. Using Lemma 2.8 we may assume that K1,K2 are compact.
If H1 (and thus also H2) is finite-dimensional, we obtain from Lemma 5.1 the
equality

|ChK1| = dim(`∞(ChK1,F)) = dimH1 = dimH2

= dim(`∞(ChK2,F)) = |ChK2| .
From now on we may thus assume that both spaces are infinite-dimensional.

Let π1 : M(ChK1,F)→ H∗1 be the restriction mapping. For each x ∈ ChK1 we
consider the function χ{x}. Let χ̂{x} : M(ChK1)→ F be defined as in Lemma 2.4
and let a∗∗x ∈ H∗∗1 satisfies a∗∗x ◦π1 = χ̂{x} (see Lemma 2.6). Then a∗∗x is of the first
Borel class on rBH∗1 for any r > 0, see Lemmas 2.4 and 2.7(b).

For a fixed point y ∈ ChK2, let λy(x) = 〈T ∗φ2(y), a∗∗x 〉. We claim that the set

Xy = {x ∈ ChK1; λy(x) 6= 0}

is at most countable. Indeed, let s = T ∗φ2(y) and µ ∈M(ChK1,F) extends s. Let
x ∈ ChK1 be arbitrary. Using Lemma 2.7 we have

µ({x}) = µ(χ{x}) = 〈µ, χ̂{x}〉 = 〈T ∗φ2(y), a∗∗x 〉.

Since ‖µ‖ <∞, µ({x}) 6= 0 for at most countably many x ∈ ChK1.
Now we prove that for each x ∈ ChK1 there exists y ∈ ChK2 such that x ∈ Xy.

To this end, we assume the contrary. Let x ∈ ChK1 be such that

〈T ∗φ2(y), a∗∗x 〉 = 0, y ∈ ChK2.

Lemma 2.9 then yields

0 = sup
y∈ChK2

|〈T ∗φ2(y), a∗∗x 〉| = sup
y∈ChK2

|〈φ2(y), T ∗∗a∗∗x 〉| = sup
s∈SF·φ2(ChK2)

|〈s, T ∗∗a∗∗x 〉|

= sup
s∈BH∗2

|〈s, T ∗∗a∗∗x 〉| = ‖T ∗∗a∗∗x ‖ 6= 0,

i.e., a contradiction.
Now both the spacesH1 andH2 are infinite-dimensional, and thus the sets ChK1

and ChK2 are infinite. Indeed, if ChK1 were finite, by the maximum principle (see
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[16, Theorem 2.3.8]) we would obtain that the space H1 ⊂ `∞(ChK1,F) is finite-
dimensional.

Now, since we have ChK1 =
⋃
y∈ChK2

Xy, we get |ChK1| ≤ |ChK2|.
By reversing the role of K1 and K2 we obtain the converse inequality, which

concludes the proof. �
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