
ISOMORPHISMS OF SPACES OF AFFINE CONTINUOUS

COMPLEX FUNCTIONS

JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Abstract. Let X and Y be compact convex sets such that their each extreme

point is a weak peak point. We show that extX is homeomorphic to extY
provided there exists a small-bound isomorphism of the space A(X,C) of con-

tinuous affine complex functions on X onto A(Y,C). Further, we generalize

results of Cengiz and Jarosz to the context of compact convex sets.

1. Introduction

We work within the framework of real or complex vector spaces and write F for
the respective field R or C. Further we write T for the set {λ ∈ C; |λ| = 1}.

First we recall several notions. If X is a compact convex set in a locally convex
space, we write A(X,F) for the space of all affine continuous F-valued functions on
X endowed with the sup-norm. Let extX stand for the set of all extreme points of
X. If K is compact (Hausdorff) topological space, let C(K,F) stand for the space
of all continuous F-valued functions on K endowed with the sup-norm.

We identify the dual space (C(K,F))∗ with the space M(K,F) of all Radon
measures on K. We write M+(K) for positive Radon measures and M1(K) for
probability Radon measures on K.

A point x in a compact convex set X is called a weak peak point if

(1.1)

given ε ∈ (0, 1) and an open set U ⊂ X containing x, there exists a in

the unit ball BA(X,C) of A(X,C) such that |a| < ε on extX \ U and

a(x) > 1− ε.

For any µ ∈ M1(X) there exists a unique point r(µ) ∈ X such that µ(a) =
a(r(µ)), a ∈ A(X,C), see [2, Proposition I.2.1]. We call r(µ) the barycenter of µ.
A function f : X → F satisfies the barycentric formula (or is called strongly affine)
if µ(f) = f(r(µ)), µ ∈M1(X).

If µ, ν ∈M+(X), then µ ≺ ν if µ(k) ≤ ν(k) for each convex continuous function
k on X. A measure µ ∈ M+(X) is maximal if µ is ≺-maximal. A measure
µ ∈M(X,F) is called boundary if its total variation |µ| is maximal.

By the Choquet–Bishop–de-Leeuw representation theorem (see [2, Theorem I.4.8]),
for each x ∈ X there exists a maximal measure µ ∈ M1(X) with r(µ) = x. If this
measure is uniquely determined for each x ∈ X, the set X is called a simplex. It is
called a Bauer simplex if, moreover, the set extX is closed. In this case, the space
A(X,F) is isometric to the space C(extX,F) (see [2, Theorem II.4.3]).
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On the other hand, given a space C(K,F), it is isometric to the space A(M1(K),F)
([2, Corollary II.4.2]).

The classical Banach-Stone theorem asserts that, given a pair of compact spaces
K and L, they are homeomorphic provided C(K) is isometric to C(L) (see [13,
Theorem 3.117]).

This can be reformulated in the framework of compact convex sets as follows:
If X,Y are Bauer simplices and A(X,F) is isometric to A(Y,F), then extX is
homeomorphic to extY .

By a result of Lazar in [24], for simplices X,Y , the spaces A(X,R) and A(Y,R)
are isometric only if X is affinely homeomorphic to Y .

A result of Rao (see [28]) precisely describes isometries of A(X,C) for a simplex
X.

A remarkable generalization of the Banach-Stone theorem was given by Amir [3]
and Cambern [6]. They showed that compact spaces K, L are homeomorphic if
there exists an isomorphism T : C(K,F)→ C(L,F) with ‖T‖ ·

∥∥T−1
∥∥ < 2. Alterna-

tive proofs were given by Cohen [10] and Drewnowski [12].
A reformulation of this result for simplices reads as follows: Given Bauer sim-

plices X and Y , the sets extX and extY are homeomorphic, provided there exists
an isomorphism T : A(X,F)→ A(Y,F) with ‖T‖ ·

∥∥T−1
∥∥ < 2.

This theorem was improved by Chu and Cohen in [8], who proved that for
compact convex sets X and Y , the sets extX and extY are homeomorphic provided
there exists an isomorphism T : A(X,R)→ A(Y,R) with ‖T‖ ·

∥∥T−1
∥∥ < 2 and one

of the following conditions hold:
(i) X and Y are simplices such that their extreme points are weak peak points;
(ii) X and Y are metrizable and their extreme points are weak peak points;
(iii) extX and extY are closed and extreme points of X and Y are split faces.
In [25], it was showed that extreme points of X and Y are homeomorphic, pro-

vided there exists an isomorphism T : A(X,R) → A(Y,R) with ‖T‖ ·
∥∥T−1

∥∥ < 2,
extreme points are weak peak points and both extX and extY are Lindelöf sets.

In [11] the same result is proved without the assumption of the Lindelöf property.
It turns out that this result is in a sense optimal since the bound 2 cannot be

improved (see [9]) and the assumption on weak peak points cannot be omitted (see
[17]).

The first main result of our paper is a variant of [11, Theorem 2.1] for complex
spaces. It reads as follows.

Theorem 1.1. Let X,Y be compact convex sets and let T : A(X,C)→ A(Y,C) be
an isomorphism satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2.

If each point of extX and extY is a weak peak point, extX is homeomorphic to
extY .

2. Isomorphisms with a small bound

Before embarking on the proof of Theorem 1.1 we recall several notions.
If X is a compact convex set, a face F ⊂ X is called a split face if the comple-

mentary set F ′ (i.e., the union of all faces disjoint from F ) is convex and X is a
direct convex sum of F and F ′, i.e., every point in X can be uniquely represented
as a convex combination of a point in F and a point in F ′ (see [2, p. 133]). If F is a
closed split face, then the upper envelope of the characteristic function χF defined
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as
χ∗F (x) = inf{a(x); a ∈ A(X,R), a > χF }, x ∈ X,

is upper semicontinuous and affine, F = (χ∗F )−1(1) and F ′ = (χ∗F )−1(0), see [2,
Proposition II.6.5 and Proposition II.6.9]. Moreover, the family {a ∈ A(X,R); χF <
a} is downward directed.

In what follows, we consider the weak∗-topology on (A(X,C))∗, and we under-
stand X as a subset of B(A(X,C))∗ via the evaluation mapping, i.e., x(f) = f(x),
f ∈ A(X,C), x ∈ X.

The proof of Theorem 1.1 follows the strategy of the proof of [8], but we use
[11, Corollary 1.3(b)] as the main tool. Thus we need the key Lemma 2.4 which
allows us to represent upper semicontinuous affine function on X as elements of
(A(X,C))∗∗.

We start with a lemma describing extreme points of B(A(X,C))∗ , see also Lemma 1
in [19].

Lemma 2.1. Let X be a compact convex set. Then

extB(A(X,C))∗ = T · extX.

Proof. We denote K = B(A(X,C))∗ . First we prove that extK ⊂ T ·X. Since T ·X
is compact, by the Milman theorem it is enough to show that co (T ·X) = K.

Assuming the contrary, there exist s ∈ K \ co (T ·X), α ∈ R, and f ∈ A(X,C)
such that

Re s(f) > α > sup {Re r(f); r ∈ co (T ·X)} .
Let µ ∈ BM(X,C) be a Hahn-Banach extension of s. Since

Re tf(x) < α, t ∈ T, x ∈ X,
we obtain |f(x)| < α, x ∈ X. Then

α < Re s(f) = Reµ(f) ≤
∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | d |µ| <
∫
X

α d |µ| = α

gives a contradiction. Thus extK ⊂ T ·X.
Now we show that extK = T · extX. Let s ∈ extK be given. Then s = tx for

some t ∈ T and x ∈ X. If x = 1
2 (x1 + x2) for some distinct points x1, x2 ∈ X, then

s =
1

2
(tx1 + tx2) ,

where tx1 6= tx2. Thus s /∈ extK, which is impossible. This proves “⊂”.
On the other hand, let tx = 1

2 (s1 + s2) for some t ∈ T, x ∈ extX and s1, s2 ∈ K.

Then x = 1
2

(
t−1s1 + t−1s2

)
. Let µ1, µ2 ∈ BM(X,C) be Hahn-Banach extensions of

t−1s1 and t−1s2, respectively. Then

f(x) =
1

2
(µ1(f) + µ2(f)) , f ∈ A(X,C).

If µ = 1
2 (µ1 + µ2), then µ(1) = 1 = ‖µ‖, and thus µ ∈ M1(X). Further, x is

the barycenter of µ. Since x ∈ extX, we obtain that µ = εx, the Dirac measure
centered at the point x. Since

µ1(1) = µ2(1) = ‖µ1‖ = ‖µ2‖ ,
it follows that µ1 = µ2 = εx, and thus t−1s1 = t−1s2 = x. Thus s1 = s2 = tx and
tx ∈ extK.
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This proves “⊃” and finishes the proof. �

Lemma 2.2. Let µ ∈M1(K) be a probability measure on a compact space K and
let {fj}j∈J be a bounded downward directed net of functions in C(K,R) converging
to a function f . Then for any g ∈ C(K,C) it holds

lim
j∈J

∫
K

gfj dµ =

∫
K

gf dµ.

Proof. It is known (see [15, Corollary 414B]), that for a bounded downward directed
net {hj}j∈J in C(K,R) pointwise converging to h we have µ(h) = limj∈J µ(hj). We

decompose g =
∑3
k=0 i

kgk, where g0, . . . , g3 ∈ C(K,R) positive, and apply this fact
to the bounded downward directed nets {gkfj}j∈J , k = 0, . . . , 3, and obtain

µ(gf) =
3∑
k=0

ikµ(gkf) =

3∑
k=0

ik lim
j∈J

µ(gkfj) = lim
j∈J

µ(gfj).

�

If K is a compact topological space and T is a topological space, a function
f : K → T is said to be of the first Borel class if, for each U ⊂ T open, the set
f−1(U) can be written as a countable union of differences of closed sets in K, see
[30, Definition 3.2]. In case of T = R, any semicontinuous function is of the first
Borel class.

Lemma 2.3. Let K be a compact topological space. If f1, f2 : K → C are two
functions of the first Borel class, then their product

h : x ∈ K 7→ f1(x)f2(x) ∈ C

is of the first Borel class as well.

Proof. Consider the mappings f : x ∈ K 7→ (f1(x), f2(x)) ∈ C2 and φ : (y, z) ∈
C2 7→ yz ∈ C. Since φ is continuous and h = φ ◦ f , it is enough to show that the
mapping f is of the first Borel class. To this end, let U be a countable basis of C
and U1, U2 ∈ U . Write

f−1
i (Ui) =

⋃
n∈N

(Hn
i \ Fni ), i = 1, 2,

where Fni , H
n
i ⊆ K are closed sets. Then

f−1(U1 × U2) = f−1
1 (U1) ∩ f−1

2 (U2) = (
⋃
n∈N

(Hn
1 \ Fn1 )) ∩ (

⋃
m∈N

(Hm
2 \ Fm2 )) =

=
⋃

n,m∈N
(Hn

1 \ Fn1 ) ∩ (Hm
2 \ Fm2 ) =

⋃
n,m∈N

(Hn
1 ∪Hm

2 ) \ (Fn1 ∪ Fm2 ).

Further, any open subset V of C2 may be written as a countable union of sets
Ri of the form Ri = U1

i × U2
i , where U1

i , U
2
i ∈ U . Thus we have that f−1(V ) can

be written as a countable union of differences of closed sets in K, i.e., f is of the
first Borel class. �

Lemma 2.4. Let X be a compact convex set and f : X → R be an upper semicon-
tinuous affine function. Then the following assertions hold.

(a) There exists an element a∗∗ ∈ (A(X,C))∗∗ such that a∗∗(x) = f(x), x ∈ X.
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(b) If {aj}j∈J is a bounded downward directed net in A(X,R) satisfying

f(x) = lim
j∈J

aj(x) = inf
j∈J

aj(x), x ∈ X,

then aj → a∗∗ weak∗.
(c) The function a∗∗ is of the first Borel class on T ·X.
(d) For each µ ∈M1(T ·X), it holds µ(a∗∗) = a∗∗(r(µ)).
(e) The function a∗∗ is of the first Borel class on any rB(A(X,C))∗ , r > 0.
(f) There is only one element a∗∗ ∈ (A(X,C))∗∗ extending f .

Proof. (a) Since f is upper semicontinuous and affine, it is bounded (see e.g. [27,
Lemma 4.20 and Theorem 4.21]). Hence we may assume that −M < f < M for
some constant M > 0. By [27, Proposition 4.12],

f(x) = inf {a(x); a ∈ A(X,R), f < a ≤M} , x ∈ X,

in other words, the downward directed net {a ∈ A(X,R), f < a ≤M} converges
pointwise to f . We consider the family

{a ∈ A(X,R); f < a ≤M}

as a net of elements in (A(X,C))∗∗. We claim that this net converges weak∗ to an
element a∗∗ ∈ (A(X,C))∗∗.

Indeed, let s ∈ A(X,C)∗ be given. We extend s by the Hahn-Banach theorem to

an element µ ∈M(X,C) with ‖µ‖ = ‖s‖ and write µ =
∑3
k=0 i

kckµk, where ck ≥ 0
and µk ∈M1(X), k = 0, . . . , 3. Let xk be the barycenter of µk, k = 0, . . . , 3. Then

s(a) = µ(a) =

3∑
k=0

ikckµk(a) =

3∑
k=0

ikcka(xk), a ∈ A(X,C).

Since the net {a(xk); a ∈ A(X,R), f < a ≤M} converges to f(xk) for each k =
0, . . . , 3, the net {s(a); a ∈ A(X,R), f < a ≤M} converges.

By setting

a∗∗(s) = lim {s(a); a ∈ A(X,R), f < a ≤M} , s ∈ (A(X,C))∗,

we obtain a linear functional on (A(X,C))∗.
To conclude the proof it is enough to show that it is bounded. Considering

s ∈ (A(X,C))∗ as above, let µ ∈M(X,C) be again a Hahn-Banach extension of s,

i.e., ‖µ‖ = ‖s‖. Then we can decompose µ as µ =
∑3
k=0 i

kckµk, where ck ≥ 0 and
µk ∈M1(X), k = 0, . . . , 3, and, moreover, c0 + c1 + c2 + c3 ≤ 2 ‖µ‖.

Then the inequalities

|a∗∗(s)| = |lim {s(a); a ∈ A(X,R), f < a ≤M}|

=

∣∣∣∣∣lim
{

3∑
k=0

ikcka(r(µk)); a ∈ A(X,R), f < a ≤M

}∣∣∣∣∣
≤

3∑
k=0

ckM ≤ 2M ‖µ‖ = 2M ‖s‖

imply the boundedness of a∗∗, i.e., a∗∗ ∈ (A(X,C))∗∗.
(b) Let {aj}j∈J be a bounded downward directed net in A(X,R) pointwise con-

verging to f on X. Given s ∈ (A(X,C))∗, we extend s to µ ∈ M(X,C) as above



6 JAKUB RONDOŠ AND JIŘÍ SPURNÝ

and write µ =
∑3
k=0 i

kckµk, where ck ≥ 0, µk ∈M1(X). Then

a∗∗(s) = lim {s(a); a ∈ A(X,R), f < a ≤M} =

3∑
k=0

ikckf(r(µk))

=

3∑
k=0

ikck lim
j∈J

aj(r(µk)) = lim
j∈J

(
3∑
k=0

ikckr(µk)

)
(aj) = lim

j∈J
s(aj).

(c) We remind that we understand X as a subset of (A(X,C)∗, and we consider
a homeomorphic mapping ϕ : T×X → T ·X defined by ϕ(t, x) = tx, (t, x) ∈ T×X.

Then the function h : T ×X → C defined as h(t, x) = tf(x), (t, x) ∈ T ×X, as
a product of a continuous function and a function of the first Borel class, is of the
first Borel class as well by Lemma 2.3.

Thus a∗∗ = h ◦ ϕ−1 is of the first Borel class on T ·X also.
(d) Let µ ∈ M1(T · X) be given. Then its barycenter r(µ) belongs to the set

BA(X,C)∗ . We denote ν = ϕ−1µ ∈ M1(T × X) and pick a bounded downward
directed net {aj}j∈J in A(X,R) converging to f .

Then we have using Lemma 2.2 and (b)

µ(a∗∗) = (ϕν)(a∗∗) = ν(a∗∗ ◦ ϕ) = ν(h) = lim
j∈J

∫
T×X

taj(x) dν(t, x)

= lim
j∈J

∫
T·X

aj dµ = lim
j∈J

aj(r(µ)) = a∗∗(r(µ)).

(e) We first show that a∗∗ is of the first Borel class on B(A(X,C))∗ . To this end
we recall that

extB(A(X,C))∗ ⊂ T ·X.
We know from (d) that the function a∗∗ satisfies the barycentric formula for each
µ ∈M1(extB(A(X,C))∗). By [29, Theorem 3.3], a∗∗ is strongly affine on B(A(X,C))∗ .

Since a∗∗ is of the first Borel class on extB(A(X,C))∗ , [26, Theorem 3.5] implies that
a∗∗ is of the first Borel class on B(A(X,C))∗ .

If r > 0 is arbitrary, we realize that rB(A(X,C))∗ is affinely homeomorphic to
B(A(X,C))∗ and a∗∗ is linear. Hence a∗∗ is of the first Borel class on rB(A(X,C))∗ .

(f) It is enough to show that, given a∗∗ ∈ (A(X,C))∗∗, a∗∗ = 0 provided a∗∗ = 0
on X. Let s ∈ (A(X,C))∗ be arbitrary. We extend s to an element µ ∈ M(X,C)

and write µ =
∑3
k=0 i

kckµk, where ck ≥ 0, µk ∈ M1(X), k = 0, . . . , 3. Then

s =
∑3
k=0 i

kckr(µk), and thus

a∗∗(s) =

3∑
k=0

ikcka
∗∗(r(µk)) = 0.

Hence a∗∗ = 0 as needed. �

Next we need a decomposition lemma which is well known for real spaces A(X,R).

Lemma 2.5. Let X be a compact convex set and F ⊂ X be a closed split face. Let
F ′ be the complementary face of F . Then (A(X,C))∗ = spanF ⊕`1 spanF ′.

Proof. Let s ∈ (A(X,C))∗ be given. We extend s to µ ∈M(X,C) which is bound-
ary (see [19, Theorem], [18] and [16, Theorem 1.2]). Then |µ| (χF ) = |µ| (χ∗F ) (see
[2, Proposition I.4.5 and the subsequent Remark]), and thus µ is carried by the

set {χF = χ∗F } = F ∪ F ′. We write µ|F =
∑3
k=0 i

kckµk and µ|F ′ =
∑3
k=0 i

kdkνk,
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where ck, dk ≥ 0, µk ∈ M1(F ) and νk ∈ M1(F ′), k = 0, . . . , 3. Let xk = r(µk),
yk = r(νk), k = 0, . . . , 3. By [2, Corollary II.6.11], xk ∈ F and yk ∈ F ′. Thus

sF =

3∑
k=0

ikckxk ∈ spanF, sF ′ =

3∑
k=0

ikdkyk ∈ spanF ′

and for a ∈ A(X,C) we have

s(a) = µ(a) = µ|F (a) + µ|F ′(a) =

3∑
k=0

ikcka(xk) +

3∑
k=0

ikdka(yk) = sF (a) + sF ′(a).

Thus s = sF + sF ′ ∈ spanF + spanF ′.
Further, ‖sF ‖ ≤ ‖µ|F ‖ and ‖sF ′‖ ≤ ‖µ|F ′‖, and thus

‖s‖ = ‖µ‖ = ‖µ|F ‖+ ‖µ|F ′‖ ≥ ‖sF ‖+ ‖sF ′‖ .
Hence ‖s‖ = ‖sF ‖+ ‖sF ′‖.

Let s ∈ spanF ∩ spanF ′. Then there exists ck ≥ 0, dk ≥ 0, xk ∈ F , yk ∈ F ′,
k = 0, . . . , 3, such that

s = (c0x0 − c1x1) + i(c2x2 − c3x3) = (d0y0 − d1y1) + i(d2y2 − d3y3).

If we apply s to an arbitrary a ∈ A(X,R), we obtain

(c0x0 − c1x1)(a) = (d0y0 − d1y1)(a), (c2x2 − c3x3)(a) = (d2y2 − d3y3)(a).

Thus
c0x0 − c1x1 = d0y0 − d1y1, c2x2 − c3x3 = d2y2 − d3y3.

An application of s to a constant function 1 yields

c = c0 + d1 = d0 + c1, d = c2 + d3 = d2 + c3.

If c = 0, then c0 = c1 = d0 = d1 = 0, and thus c0x0 − c1x1 = 0. Otherwise we have
the following equality

c0
c
x0 +

d1

c
y1 =

d0

c
y0 +

c1
c
x1.

Since X is a direct convex sum of F and F ′, these convex combinations must be
equal, i.e.,

c0x0 = c1x1, d1y1 = d0y0.

Hence c0x0 − c1x1 = 0.
Similarly we handle the second term c2x2−c3x3 = d2y2−d3y3 and obtain s = 0.
Thus (A(X,C))∗ = spanF ⊕`1 spanF ′.

�

Lemma 2.6. Let X be a compact convex set and f : X → C be an affine function
of the first Borel class. Then

sup
x∈X
|f(x)| = sup

x∈extX
|f(x)| .

Proof. It is proved in [23, Theorem 2.3] that every complex function of the first
Borel class on a compact space has the point of continuity property. For the rest
of the proof see [11, Corollary 1.5(b)].

�

Lemma 2.7. Let x be a weak peak point of a compact convex set X. Then {x} is
a split face of X.
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Proof. Suppose that x is a weak peak point. First we prove that x is an extreme
point. To this end, let µ ∈ M1(X) be a maximal measure representing x. For
the proof that x is extreme it is enough to show that µ = εx, the Dirac measure
centered at the point x. We fix an arbitrary closed neighborhood U of x and ε > 0.
Then there is a function a ∈ BA(X,C) satisfying

a(x) > 1− ε and |a| < ε on extX \ U.
Since a is continuous and U is closed, it even holds that |a| ≤ ε on the set extX\U ⊆
extX \ U . So, since µ is maximal measure, we have by [2, Proposition I.4.6]

1− ε < a(x) ≤
∫
X

|a|dµ =

∫
extX

|a|dµ =

∫
U

|a|dµ+

∫
extX\U

|a|dµ ≤ µ(U) + ε.

In other words, µ(U) > 1 − 2ε. Since ε > 0 is chosen arbitrarily, we have that
µ(U) = 1. Hence µ(V ) = 1 for each closed neighborhood V of x. From this it easily
follows that µ = εx.

For the fact that x is actually a split face it is enough to follow the proof of [8,
Proposition 1].

�

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. We write 〈·, ·〉 for the duality mapping. We write A =
A(X,C) and B = A(Y,C).

We assume that there exist c′ ∈ R such that 1 < c′ < 2 and ‖T‖ < 2 and
‖Ta‖ > c′ ‖a‖ for all a ∈ A \ {0} (otherwise we would find 1 < c′ < 2 such that
‖T‖ ·

∥∥T−1
∥∥ < 2

c′ < 2 and consider the mapping c′
∥∥T−1

∥∥T ; see [8, p. 76]). We fix
c ∈ R satisfying 1 < c < c′.

Claim 1.: For any a∗∗ ∈ A∗∗\{0} and b∗∗ ∈ B∗∗\{0} we have ‖T ∗∗a∗∗‖ > c ‖a∗∗‖
and

∥∥(T−1)∗∗b∗∗
∥∥ > 1

2 ‖b
∗∗‖.

Indeed, for a∗∗ ∈ A∗∗ \ {0} we have

‖a∗∗‖ =
∥∥(T−1)∗∗T ∗∗a∗∗

∥∥ ≤ (c′)−1 ‖T ∗∗a∗∗‖ < c−1 ‖T ∗∗a∗∗‖ .
The second inequality is analogous.
For each x ∈ extX we consider the function fx = χ∗{x}. Since {x} is a split face,

fx is an upper semicontinuous affine function on X. We extend fx using Lemma 2.4
to an element a∗∗x ∈ A∗∗. By Lemma 2.4(e), a∗∗x is of the first Borel class on any
ball in A∗.

Analogously we define for y ∈ extY the function gy and the element b∗∗y ∈ B∗∗.
We define mappings ρX and ρY as follows:

(2.1)
ρX(x) =

{
y ∈ extY ;

∣∣〈x, (T−1)∗∗b∗∗y 〉
∣∣ > 1

2

}
, x ∈ extX, and

ρY (y) = {x ∈ extX; |〈y, T ∗∗a∗∗x 〉| > c} , y ∈ extY.

Claim 2. ρX and ρY are mappings.
Let x ∈ extX be such that there exist distinct points y1, y2 ∈ extY with∣∣〈(T−1)∗x, b∗∗yi 〉

∣∣ =
∣∣〈x, (T−1)∗∗b∗∗yi 〉

∣∣ > 1

2
, i = 1, 2.

Using Lemma 2.5 we write

(T−1)∗x = λ1y1 + µ1 = λ2y2 + µ2,
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where λ1, λ2 ∈ C, µ1 ∈ span{y1}′ and µ2 ∈ span{y2}′. Then

1

2
<
∣∣〈(T−1)∗x, b∗∗yi 〉

∣∣ =
∣∣〈λiyi, b∗∗yi 〉+ 〈µi, b∗∗yi 〉

∣∣ = |λi| , i = 1, 2.

Since

1 ≥
∥∥(T−1)∗x

∥∥ = |λi|+ ‖µi‖ >
1

2
+ ‖µi‖ , i = 1, 2,

we obtain

1 > ‖µ1‖+ ‖µ2‖ ≥ ‖µ1 − µ2‖ = ‖λ1y1 − λ2y2‖ = |λ1|+ |λ2| > 1,

i.e., a contradiction.
Analogously we show that ρY (y) is at most single-valued.

Let X̂ and Ŷ denote the domain of ρX and ρY , respectively.

Claim 3.: The mappings ρX : X̂ → extY and ρY : Ŷ → extX are surjective.
Let y ∈ extY be given. We assume that

∣∣〈x, (T−1)∗∗b∗∗y 〉
∣∣ ≤ 1

2 for each x ∈ extX
and seek a contradiction.

We show that the element (T−1)∗∗b∗∗y ∈ A∗∗ is of the first Borel class on BA∗ .
Indeed, we know that b∗∗y is of the first Borel class on any ball in B∗, in particular

on 2BB∗ . Since (T−1)∗ is a weak∗-weak∗ homeomorphism, (T−1)∗(BA∗) ⊂ 2BB∗

and (T−1)∗∗b∗∗y = b∗∗y ◦ (T−1)∗, it follows that (T−1)∗∗b∗∗y is of the first Borel class
on BA∗ as well.

By Lemma 2.6,

1

2
≤ 1

2

∥∥b∗∗y ∥∥ < ∥∥(T−1)∗∗b∗∗y
∥∥ = sup

a∗∈extBA∗

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣

= sup
a∗∈T·extX

∣∣〈a∗, (T−1)∗∗b∗∗y 〉
∣∣ = sup

x∈extX

∣∣〈x, (T−1)∗∗b∗∗y 〉
∣∣

≤ 1

2
.

This contradiction implies that ρX is surjective.
Analogously we check that ρY is surjective.

Claim 4.: We have X̂ = extX and Ŷ = extY and ρY (ρX(x)) = x, x ∈ extX,
and ρX(ρY (y)) = y, y ∈ extY .

Let y ∈ Ŷ be given. We want to show that ρX(ρY (y)) = y, i.e., that

(2.2)
∣∣〈ρY (y), (T−1)∗∗b∗∗y 〉

∣∣ > 1

2
.

We have

d = sup
x∈extX

∣∣〈x, (T−1)∗∗b∗∗y 〉
∣∣ = sup

s∈T·extX

∣∣〈s, (T−1)∗∗b∗∗y 〉
∣∣ =

=
∥∥(T−1)∗∗b∗∗y

∥∥ > 1

2

∥∥b∗∗y ∥∥ ≥ 1

2
.

Since c > 1, we have d > max{dc ,
1
2}. Hence there exists x ∈ extX such that∣∣〈x, (T−1)∗∗b∗∗y 〉

∣∣ > max

{
d

c
,

1

2

}
≥ 1

2
.

Thus y = ρX(x).
Assume that (2.2) does not hold. Then ρY (y) 6= x. By Claim 3 there exists

ŷ ∈ Ŷ such that ρY (ŷ) = x. Then ŷ ∈ {y}′, and thus 〈ŷ, b∗∗y 〉 = 0. We write

T ∗ŷ = λx+ µ, λ ∈ C, µ ∈ span{x}′.
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Then
0 = 〈ŷ, b∗∗y 〉 = 〈ŷ, T ∗∗(T−1)∗∗b∗∗y 〉 = 〈T ∗ŷ, (T−1)∗∗b∗∗y 〉

= 〈λx, (T−1)∗∗b∗∗y 〉+ 〈µ, (T−1)∗∗b∗∗y 〉.
Since x = ρY (ŷ), we have

c < |〈ŷ, T ∗∗a∗∗x 〉| = |〈T ∗ŷ, a∗∗x 〉| = |〈λx+ µ, a∗∗x 〉| = |λ| .
Since

‖µ‖+ |λ| = ‖T ∗ŷ‖ < 2 ‖ŷ‖ = 2,

we obtain ‖µ‖ < 2− c. By putting everything together we get

d < |λ| d
c
< |λ|

∣∣〈x, (T−1)∗∗b∗∗y 〉
∣∣ =

∣∣〈λx, (T−1)∗∗b∗∗y 〉
∣∣

=
∣∣〈µ, (T−1)∗∗b∗∗y 〉

∣∣ ≤ d ‖µ‖ ≤ d(2− c) < d,

a contradiction. Thus (2.2) holds, which means that ρX(ρY (y)) = y, y ∈ Ŷ .

Now, let x ∈ extX be given. Then there exists y ∈ Ŷ such that ρY (y) = x.

Then y = ρX(ρY (y)) = ρX(x), which means that x ∈ X̂.

Let y ∈ extY be given. Then we can find x ∈ X̂ = extX with ρX(x) = y and

further we can select ŷ ∈ Ŷ such that ρY (ŷ) = x. Then

y = ρX(x) = ρX(ρY (ŷ)) = ŷ ∈ Ŷ .

Hence Ŷ = extY .
Finally, if x ∈ extX, we find y ∈ extY with ρY (y) = x and obtain

ρY (ρX(x)) = ρY (ρX(ρY (y))) = ρY (y) = x.

Till now we have proved that ρX : extX → extY is a bijection with ρY being
its inverse. Now we use the assumption on weak peak points to check that ρX is
a homeomorphism. To this end it is enough to follow the proof of [8, Theorem 7],
see also the proof of Theorem 4.1. �

3. Cardinality of extreme points

The second result of our paper generalizes a theorem of Cengiz [7] who proved
that a pair of locally compact spaces K,L have the same cardinality provided
C0(X,F) is isomorphic to C0(Y,F).

We show in Theorem 3.2 the same result in the framework of compact convex
sets. Before its proof we need the following lemma on finite-dimensional compact
convex sets.

Lemma 3.1. Let X be a compact convex set in a finite-dimensional space and let
each point of extX be a split face. Then the set extX is finite and X is a simplex.

Proof. We identify X with a subset of Rm for a suitable m ∈ N.
First we show that the set extX is finite. Assuming the contrary, there is a

sequence {xn}∞n=1 of distinct points in extX converging to a point x ∈ X. By the
Minkowski theorem (see e.g. [2, Corollary I. 6.13] or [27, Theorem 2.11]), x belongs
to the convex hull of extX, thus there exist finite sequences {λi}ki=1 in (0, 1] and
{zi}ki=1 in extX such that

k∑
i=1

λi = 1 and x =

k∑
i=1

λizi.
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Now, the function χ∗z1 is affine, and hence continuous. Since {z1} is a closed split
face and χ∗z1 = 0 on extX \ {z1}, the sequence of real numbers {χ∗z1(xn)}∞n=n0

is
identically zero for some suitable n0 ∈ N. So, by the continuity of χ∗z1 we have
χ∗z1(x) = 0. On the other hand, it holds by the affinity of χ∗z1 that

χ∗z1(x) = χ∗z1

(
k∑
i=1

λizi

)
≥ λ1χ

∗
z1(z1) = λ1 > 0,

which gives a contradiction. Thus extX is a finite set.
Now we show that X is a simplex. We write extX = {xi}ki=1. We fix an element

x ∈ X \ extX and assume that there are two convex combinations

x =

n∑
i=1

λixi =

n∑
i=1

µixi,

where λi, µi ∈ [0, 1), i = 1, . . . , n. Fix arbitrary j ∈ {1, . . . , n}. By the assumption,
{xj} is a split face. Since {xi; i 6= j} is contained in the complementary face {xj}′
and

x = λjxj + (1− λj)
∑
i 6=j

λi
1− λj

xj = µjxj + (1− µj)
∑
i 6=j

µi
1− µj

xj ,

from the uniqueness of the decomposition of X to {xj} and {xj}′ we obtain λj = µj .
Thus x is a unique convex combination of extreme points of X, from which it

follows that X is a simplex. This finishes the proof. �

Theorem 3.2. Let X,Y be compact convex sets such that A(X,C), A(Y,C) are
isomorphic. If each point of extX and extY is a split face, then the cardinality of
extX is equal to the cardinality of extY .

Proof. First we suppose that the space A(X,C) is finite-dimensional. Then also
A(Y,C) is finite-dimensional, with dim(A(Y,C)) = dim(A(X,C)), and also the sets
X and Y are finite-dimensional as well. By Lemma 3.1 we have that X is a Bauer
simplex with finitely many extreme points, and so it holds that

A(X,C) = C(extX,C) = `∞(extX,C),

and the same holds for Y . Thus

|extX| = dim(`∞(extX,C)) = dim(`∞(extY,C)) = |extY | .
Now suppose that the space A(X,C) (and hence also the space A(Y,C)) is

infinite-dimensional. Let T : A(X,C)→ A(Y,C) be an isomorphism. We will show
that |extX| ≤ |extY |.

To this end, let y ∈ extY be fixed. For each x ∈ extX we consider the upper
semicontinuous affine function fx = χ∗{x} and its extension a∗∗x ∈ (A(X,C))∗∗, see

Lemma 2.4. Let λy(x) = 〈T ∗y, a∗∗x 〉. We claim that the set

Xy = {x ∈ extX; λy(x) 6= 0}
is at most countable. Indeed, let s = T ∗y and µ ∈M(X,C) be a boundary measure
extending s. Let x ∈ extX be arbitrary. Let {aj}j∈J be a bounded downward
directed net of functions in A(X,R) converging to fx = χ∗{x}. Then we have

µ({x}) = µ(χ{x}) = µ(χ∗{x}) = lim
j∈J

µ(aj) = lim
j∈J
〈s, aj〉

= lim
j∈J
〈T ∗y, aj〉 = 〈T ∗y, a∗∗x 〉 = λy(x).



12 JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Since ‖µ‖ <∞, µ({x}) 6= 0 for at most countably many x ∈ extX.
Now we prove that for each x ∈ extX there exists y ∈ extY such that x ∈ Xy.

To this end, we assume the contrary. Let x ∈ extX be such that

〈T ∗y, a∗∗x 〉 = 0, y ∈ extY.

Using the same argument as in the proof of Theorem 1.1, Lemma 2.6 yields

0 = sup
y∈extY

|〈T ∗y, a∗∗x 〉| = sup
y∈extY

|〈y, T ∗∗a∗∗x 〉| = sup
s∈T·extY

|〈s, T ∗∗a∗∗x 〉|

= sup
s∈B(A(Y,C))∗

|〈s, T ∗∗a∗∗x 〉| = ‖T ∗∗a∗∗x ‖ 6= 0,

i.e., a contradiction.
Now both the spaces A(X,C) and A(Y,C) are infinite-dimensional, and thus the

sets extX and extY are infinite. Indeed, if extX were finite, by the minimum prin-
ciple we would obtain that the space A(X,C) ⊂ `∞(extX,C) is finite-dimensional.

Now, since we have extX =
⋃
y∈extY Xy, we get |extX| ≤ |extY |.

By reversing the role of X and Y we obtain the converse inequality, which con-
cludes the proof. �

4. Continuous images of extreme points

Our next result deals with isomorphisms that are not generally surjective. The
starting point is a result of Jarosz [20] who proved that if K,L are locally compact
spaces, A ⊂ C0(K,C) is an extremely regular closed subspace and T : A→ C0(L,C)
satisfies ‖T‖ ·

∥∥T−1
∥∥ < 2, then K is a continuous image of a subset of L. (The

assumption of the extreme regularity of A reminds the definition of a weak peak
point, see [20]).

Theorem 4.1. Let X,Y be compact convex sets such that each point of extX is
a weak peak point. If T : A(X,C) → A(Y,C) is an into isomorphism satisfying

‖T‖ ·
∥∥T−1

∥∥ < 2, then there exists a set Ŷ ⊂ extY and a continuous surjective

mapping ϕ : Ŷ → extX.

Lemma 4.2. Let A,B be Banach spaces and T : A → B be a bounded operator
satisfying for some c > 0 estimate ‖Ta‖ ≥ c ‖a‖, a ∈ A. Then

‖T ∗∗a∗∗‖ ≥ c ‖a∗∗‖ , a∗∗ ∈ A∗∗.

Proof. Since

‖T ∗∗a∗∗‖ = sup
b∗∈BB∗

|〈b∗, T ∗∗a∗∗〉| = sup
b∗∈BB∗

|〈T ∗b∗, a∗∗〉| ,

it is enough to show that T ∗(BB∗) ⊃ cBA∗ .
Let a∗ ∈ cBA∗ be given. Then the functional c∗ ∈ (Rng T )∗ defined as 〈Ta, c∗〉 =

〈a, a∗〉, a ∈ A, is well defined and is of norm 1. Indeed, if ‖Ta‖ ≤ 1, then ‖a‖ ≤ 1
c ,

and thus

|〈Ta, c∗〉| = |〈a, a∗〉| ≤ ‖a∗‖ ‖a‖ ≤ c1

c
= 1.

Let b∗ ∈ BB∗ be a Hahn-Banach extension of c∗. Then T ∗b∗ = a∗, and thus
a∗ ∈ T ∗(BB∗). This finishes the proof. �
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Proof of Theorem 4.1. We follow the proof of Theorem 1.1. We write A = A(X,C)
and B = A(Y,C). Again we consider 1 < c < c′ < 2 and T such that ‖T‖ < 2 and
‖Ta‖ ≥ c′ ‖a‖, a ∈ A.

By Lemma 4.2 we have

‖T ∗∗a∗∗‖ > c ‖a∗∗‖ , a∗∗ ∈ A∗∗ \ {0}.
Let fx and a∗∗x be as in the proof of Theorem 1.1. Again we define

ρ(y) = {x ∈ extX; |〈y, T ∗∗a∗∗x 〉| > c} , y ∈ extY.

Claim 1. ρ is a mapping. Indeed, let x1, x2 ∈ extX be such that
∣∣〈y, T ∗∗a∗∗xi

〉
∣∣ > c

for some y ∈ extY . We write

T ∗y = λixi + µi,

where λi ∈ C and µi ∈ span{xi}′, i = 1, 2. Then

c <
∣∣〈T ∗y, a∗∗xi

〉
∣∣ =

∣∣〈λixi, a∗∗xi
〉
∣∣ = |λi| , i = 1, 2,

and

2 > ‖T ∗y‖ = |λi|+ ‖µi‖ > c+ ‖µi‖ , i = 1, 2,

yield

2(2− c) > ‖µ1‖+ ‖µ2‖ ≥ ‖µ1 − µ2‖ = ‖λ1x1 − λ2x2‖ = |λ1|+ |λ2| > 2c.

But this contradicts the inequality c > 1.

Let Ŷ denote the domain of ρ.
Claim 2. ρ is surjective. Assume that for some x ∈ extX we have c ≥

|〈y, T ∗∗a∗∗x 〉|, y ∈ extY . Then we have as in the proof of Theorem 1.1

c ≥ sup
y∈extY

|〈y, T ∗∗a∗∗x 〉| = sup
s∈T·extY

|〈s, T ∗∗a∗∗x 〉|

= sup
s∈BB∗

|〈s, T ∗∗a∗∗x 〉| = ‖T ∗∗a∗∗x ‖ > c ‖a∗∗x ‖ ≥ c,

i.e., a contradiction.

Claim 3. ρ : Ŷ → extX is continuous. We modify the proof of [8, Theorem 7].
Let F ⊂ extX be a closed set and let F = extX ∩H for some closed set H ⊂ X.
We want to prove that ρ−1(F ) is closed in Ŷ .

To this end, we construct for each x ∈ extX \ F and y ∈ ρ−1(x) a function

hx,y ∈ A(X,C) as follows. Fix x ∈ extX \ F and y ∈ Ŷ with ρ(y) = x. Let V be a
closed neighborhood of x with V ∩H = ∅. We write T ∗y = λx+µ, where λ ∈ C and
µ ∈ span{x}′. Let µ =

∑n
j=1 rjxj , where rj ∈ C and xj ∈ {x}′. Let r =

∑n
j=1 |rj |

and µj be a maximal measure representing xj , j = 1, . . . , n. Let ε > 0 satisfy

ε < min

{
|λ| − c
r + |λ|

, c− 1

}
.

By [8, Proposition 1], there are closed neighborhoods Uj of x such that µj(Uj) <
ε
2 ,

j = 1, . . . , n. Let U = V ∩
⋂n
j=1 Uj . Since F ⊂ extX \ U , by the proof of [8,

Proposition 1] there exists a function hx,y ∈ A(X,C) such that

‖hx,y‖ ≤ 1, hx,y(x) > 1− ε and |hx,y| ≤ ε on F ∪ {x1, . . . , xn}.
Now we claim that

(4.1) ρ−1(F ) =
⋂

x∈extX\F

⋂
y∈ρ−1(x)

{
z ∈ Ŷ ; |〈Thx,y, z〉| ≤ c

}
.



14 JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Indeed, if y ∈ Ŷ \ ρ−1(F ), then we consider the function hx,y, where x = ρ(y) ∈
extX \ F . Then we write as above

T ∗y = λx+ µ = λx+

n∑
j=1

rjxj .

By the choice of the function hx,y we have

|〈Thx,y, y〉| = |〈hx,y, T ∗y〉| =

∣∣∣∣∣∣〈hx,y, λx+

n∑
j=1

rjxj〉

∣∣∣∣∣∣
≥ |λ| |1− ε| −

n∑
j=1

|rj | |〈hx,y, xj〉|

≥ |λ| |1− ε| − rε > c.

Hence

y /∈
⋂

x∈extX\F

⋂
y∈ρ−1(x)

{
z ∈ Ŷ ; |〈Thx,y, z〉| ≤ c

}
,

which shows inclusion “⊃” in (4.1).
For the proof of the reverse inclusion we select z ∈ ρ−1(F ) and let x ∈ extX \F

and y ∈ ρ−1(x) be arbitrary. Then ρ(z) ∈ F and, by the definition of ρ,

c <
∣∣∣〈z, T ∗∗a∗∗ρ(z)〉∣∣∣ =

∣∣∣〈T ∗z, a∗∗ρ(z)〉∣∣∣ .
Let

T ∗z = λρ(z) + µ,

where λ ∈ C and µ ∈ span{ρ(z)}′. Then

c <
∣∣∣〈λρ(z) + µ, a∗∗ρ(z)〉

∣∣∣ = |λ| ,

and thus

2 > ‖T ∗z‖ = |λ|+ ‖µ‖ > c+ ‖µ‖ .
From these estimates it follows

|〈Thx,y, z〉| = |〈hx,y, T ∗z〉| = |〈hx,y, λρ(z) + µ〉|
≤ |λ| ε+ (2− c) ≤ 2ε+ (2− c) < c.

Hence

z ∈
{
u ∈ Ŷ ; |〈Thx,y, u〉| ≤ c

}
and (4.1) is verified.

By (4.1), ρ−1(F ) is a closed subset of Ŷ , and thus ρ is continuous. This finishes
the proof. �

5. Isomorphisms of complex function spaces

This section uses the results of the previous sections to deduce analogous theo-
rems on selfadjoint function spaces. Throughout this section we consider a compact
(Hausdorff) space K and a closed subspace H ⊂ C(K,C) which contains constants
and separates points of K. By S(H) we denote the state space of H, i.e., the set

S(H) = {s ∈ H∗; ‖s‖ = s(1) = 1}
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endowed with the weak∗ topology. Let φ : K → S(H) be the evaluation mapping,
then φ homeomorphically embeds K into the compact convex set S(H). The Cho-
quet boundary ChHK of H is defined as

ChHK = {x ∈ K; φ(x) ∈ extS(H)} .

By [5, Theorem 2.2.8], extS(H) = φ(ChHK). Let Φ: H → A(S(H),C) be defined
as Φ(h)(s) = s(h), s ∈ S(H), h ∈ H. Then we have the following identification.

Lemma 5.1. Let H be a selfadjoint closed subspace of C(K,C) for some compact
space K such that H contains constants and separates points of K. Then the
mapping Φ is a isometric isomorphism of H onto A(S(H),C).

Proof. Clearly, Φ is linear and of norm 1. Since

‖h‖ ≥ ‖Φ(h)‖A(S(H),C) = sup
s∈S(H)

|s(h)| ≥ sup
x∈K
|h(x)| = ‖h‖ ,

Φ is an isometry. It remains to show that Φ is onto.
To this end, let f ∈ A(S(H),C) be given. Any s ∈ H∗ can be written as

s =
∑3
k=0 i

kaksk, where ak ≥ 0, sk ∈ S(H), k = 0, . . . , 3. We define f̃ : H∗ → C as

(5.1) f̃(s) =

3∑
k=0

ikakf(sk), s =

3∑
k=0

ikaksk, ak ≥ 0, sk ∈ S(H), k = 0, . . . , 3.

We have to check that this definition is correct, i.e., that

3∑
k=0

ikakf(sk) =

3∑
k=0

ikbkf(tk),

whenever
∑3
k=0 i

kaksk =
∑3
k=0 i

kbktk, ak, bk ≥ 0, sk, tk ∈ S(H), k = 0, . . . , 3.
So let

(5.2) (a0s0 − a1s1) + i(a2s2 − a3s3) = (b0t0 − b1t1) + i(b2t2 − b3t3).

Since any s ∈ S(H) can be extended by the Hahn-Banach theorem to a measure
µ ∈M1(K), s(Reh) ∈ R for each h ∈ H. (We remind that Reh, Imh ∈ H for each
h ∈ H since H is selfadjoint.) An application of (5.2) to the constant function 1
yields

a = a0 + b1 = b0 + a1, b = a2 + b3 = b2 + a3.

If a = 0, a0 = a1 = b0 = b1 = 0, and thus a0f(s0) − a1f(s1) = b0f(t0) − b1f(t1).
Otherwise we have for each h ∈ H equality

((a0s0 − a1s1) + i(a2s2 − a3s3)) (Reh) = ((b0t0 − b1t1) + i(b2t2 − b3t3)) (Reh),

which implies

(a0s0 − a1s1)(Reh) = (b0t0 − b1t1)(Reh), h ∈ H.

In other words,

a

(
a0

a
s0 +

b1
a
t1

)
(Reh) = a

(
b0
a
t0 +

a1

a
s1

)
(Reh), h ∈ H.

Since Imh ∈ H and Re(Imh) = Imh for each h ∈ H,

a0

a
s0 +

b1
a
t1 =

b0
a
t0 +

a1

a
s1.
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Since f is affine, we obtain

a0

a
f(s0) +

b1
a
f(t1) = f

(
a0

a
s0 +

b1
a
t1

)
= f

(
b0
a
t0 +

a1

a
s1

)
=
b0
a
f(t0) +

a1

a
f(s1),

i.e.,

a0f(s0)− a1f(s1) = b0f(t0)− b1f(t1).

Similarly we get

a2f(s2)− a3f(s3) = b2f(t2)− b3f(t3),

which shows that f̃ is by (5.1) well defined.

It follows from (5.1) that f̃ : H∗ → C is linear. Indeed, let s, t ∈ H∗ be given
and let

s =

3∑
k=0

ikaksk, t =

3∑
k=0

ikbktk,

where ak, bk ≥ 0, sk, tk ∈ S(H), k = 0, . . . , 3. We select u ∈ S(H) and define

uk =

{
ak

ak+bk
sk + bk

ak+bk
tk, ak + bk > 0,

u, ak = bk = 0,
and ck = ak + bk, k = 0, . . . , 3.

Then uk ∈ S(H) and

s+ t =

3∑
k=0

ikckuk.

Since f is affine on S(H), we obtain

f̃(s+ t) =

3∑
k=0

ikckf(uk) =

3∑
k=0

ik (akf(sk) + bkf(tk)) = f̃(s) + f̃(t).

It is even more straightforward to verify that f̃(λs) = λf̃(s), whenever s ∈ H∗
and λ ≥ 0, λ = −1, or λ = i. Thus f̃ is linear.

To check that f̃ is given by an element from H it is enough to verify its weak∗

continuity on H∗. Since f̃ is linear, it is enough to check its weak∗ continuity on
BH∗ (see [13, Corollary 3.94]). We assume that this is not the case and seek a
contradiction. So let {sj}j∈J be a net in BH∗ weak∗ converging to s ∈ BH∗ such

that
∣∣∣f̃(sj)− f̃(s)

∣∣∣ ≥ η for some η > 0. Using the Hahn-Banach theorem and

the decomposition of a complex measure we write each sj as sj =
∑3
k=0 i

kajks
j
k,

where ajk ≥ 0, sjk ∈ S(H) and a1
0 + aj1 + aj2 + aj3 ≤ 2. By compactness argument

we may assume that ajk → ak and sjk → sk in the weak∗ topology, k = 0, . . . , 3.

Then s =
∑3
k=0 i

kaksk. By the continuity of f on S(H), f(sjk) → f(sk) for each
k = 0, . . . , 3. But then

η ≤ lim
j∈J

∣∣∣f̃(sj)− f̃(s)
∣∣∣ = lim

j∈J

∣∣∣∣∣
3∑
k=0

ikajkf(sjk)−
3∑
k=0

ikakf(sk)

∣∣∣∣∣ = 0

gives a contradiction. Hence f̃ is weak∗ continuous on BH∗ , and thus on H∗.
Thus there exists an element h ∈ H such that f̃(s) = s(h), s ∈ H∗. In particular,

Φ(h) = f . �
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As in the first section we say that x ∈ K is a weak peak point if

(5.3)
given ε ∈ (0, 1) and an open set U ⊂ K containing x, there exists f ∈ BH
such that |f | < ε on ChHK \ U and f(x) > 1− ε.

Lemma 5.2. Let x ∈ K be a weak peak point in the sense of (5.3). Then φ(x) is
a weak peak point of S(H) in the sense of (1.1).

Proof. Suppose that x ∈ K is a weak peak point in the sense of (5.3), and that
we are given ε > 0 and an open neighborhood V of φ(x) in S(H). Then we have
that U = φ−1(V ) is an open neighborhood of x. So there exists f ∈ BH such that
|f | < ε on the set ChHK \ U and f(x) > 1− ε. We denote a = Φ(f) ∈ BA(S(H),C)

and we show that a is witnessing the fact that φ(x) is a weak peak point of S(H).
Firstly, we have that

a(φ(x)) = Φ(f)(φ(x)) = φ(x)(f) = f(x) > 1− ε.
Now, suppose that s ∈ extS(H)\V . There is y ∈ ChHK such that s = φ(y). Then
φ(y) /∈ V , and hence y /∈ U . Thus

|a(s)| = |Φ(f)(φ(y))| = |f(y)| < ε,

which concludes the proof. �

Now we can extend the results of the previous sections to the context of function
spaces.

Theorem 5.3. For i = 1, 2, let Ki be a compact space and Hi be a selfadjoint
closed subspace of C(Ki,C) which contains constants and separates points of Ki.
Let each point of ChHi

Ki be a weak peak point.
If there exists an isomorphism T : H1 → H2 satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2, then

ChH1 K1 is homeomorphic to ChH2 K2.

Proof. By the identification given by Lemma 5.1, the space A(S(H1),C) is isomor-
phic to A(S(H2),C) by an isomorphism T satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2. Moreover,

Lemma 5.2 allows us to use Theorem 1.1 to conclude that extS(H1) is homeomor-
phic to extS(H2). Hence the assertion follows. �

The next result is a corollary of Theorem 4.1.

Theorem 5.4. For i = 1, 2, let Ki be a compact space and Hi be a selfadjoint
closed subspace of C(Ki,C) which contains constants and separates points of Ki.
Let each point of ChHi

Ki be a weak peak point.
If there exists an into isomorphism T : H1 → H2 satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2,

then ChH1 K1 is continuous image of a subset of ChH2 K2.

An application of Theorem 3.2 yields the following result.

Theorem 5.5. For i = 1, 2, let Ki be a compact space and Hi be a selfadjoint
closed subspace of C(Ki,C) which contains constants and separates points of Ki.
Let each point of ChHi

Ki be a weak peak point.
If there exists an isomorphism T : H1 → H2, then ChH1

K1 has the same cardi-
nality as ChH2 K2.

We refer the reader to [22] and [21] for results on function algebras in the spirit
of the above theorems. The case of vector-valued Banach-Stone type theorem is
treated e.g. in [4], [14] or [1].
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[13] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory,
CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York,
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Paris Sér. A-B, 274 (1972), pp. A1222–A1224.

[19] O. Hustad, A norm preserving complex Choquet theorem, Math. Scand., 29 (1971), pp. 272–

278 (1972).
[20] K. Jarosz, Into isomorphisms of spaces of continuous functions, Proc. Amer. Math. Soc.,

90 (1984), pp. 373–377.

[21] , Perturbations of Banach algebras, vol. 1120 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1985.

[22] K. Jarosz and V. D. Pathak, Isometries and small bound isomorphisms of function spaces,
in Function spaces (Edwardsville, IL, 1990), vol. 136 of Lecture Notes in Pure and Appl.
Math., Dekker, New York, 1992, pp. 241–271.

[23] G. Koumoullis, A generalization of functions of the first class, Topology Appl., 50 (1993),
pp. 217–239.

[24] A. J. Lazar, Affine products of simplexes, Math. Scand., 22 (1968), pp. 165–175 (1969).

[25] P. Ludv́ık and J. Spurný, Isomorphisms of spaces of continuous affine functions on compact
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