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Abstract. A comprehensive approach to Sobolev-type embeddings, involving arbitrary rearrangement-
invariant norms on the entire Euclidean space Rn, is offered. In particular, the optimal target space in
any such embedding is exhibited. Crucial in our analysis is a new reduction principle for the relevant
embeddings, showing their equivalence to a couple of considerably simpler one-dimensional inequalities.
Applications to the classes of the Orlicz-Sobolev and the Lorentz-Sobolev spaces are also presented.
These contributions fill in a gap in the existing literature, where sharp results in such a general setting
are only available for domains of finite measure.

1. Introduction

An embedding theorem of Sobolev type amounts to a statement asserting that a certain degree of
integrability of the (weak) derivatives of a function entails extra integrability of the function itself.
A basic formulation concerns the space of weakly differentiable functions W 1,p(Rn), endowed with
the norm ‖u‖W 1,p(Rn) = ‖u‖Lp(Rn) + ‖∇u‖Lp(Rn). Membership of u in W 1,p(Rn) guarantees that

u ∈ L
np
n−p (Rn) if 1 ≤ p < n, or u ∈ L∞(Rn), if p > n. Since np

n−p > p, this is locally a stronger property

than the a priori assumption that u ∈ Lp(Rn), but it is weaker, and hence does not add any further
information, near infinity.
The same phenomenon occurs in a higher-order version of this result for Wm,p(Rn), the Sobolev space
of those m-times weakly differentiable functions u such that the norm

(1.1) ‖u‖Wm,p(Rn) =

m∑
k=0

‖∇ku‖Lp(Rn)

is finite. Here, ∇ku denotes the vector of all derivatives of u of order k, and, in particular, ∇1u stands
for ∇u and ∇0u for u. Indeed, one has that

(1.2) Wm,p(Rn)→

{
L

np
n−mp (Rn) ∩ Lp(Rn) if 1 ≤ m < n and 1 ≤ p < n

m ,

L∞(Rn) ∩ Lp(Rn) if either m ≥ n, or 1 ≤ m < n and p > n
m .

Embedding (1.2) is still valid if Rn is replaced with an open subset Ω with finite measure and regular
boundary. The intersection with Lp(Ω) is irrelevant in the target spaces of the resulting embedding,

and L
np

n−mp (Ω), or L∞(Ω) are optimal among all Lebesgue target spaces. By contrast, no optimal
Lebesgue target space exists in (1.2).

The existence of optimal target spaces in the Sobolev embedding for Wm,p(Rn) can be restored
if the class of admissible targets is enlarged, for instance, to all Orlicz spaces. This class allows to
describe different degrees of integrability – not necessarily of power type – locally and near infinity.
The use of Orlicz spaces naturally emerges in the borderline missing case in (1.2), corresponding to
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the exponents 1 < p = n
m , and enables one to cover the full range of exponent m and p. The resulting

embedding takes the form

(1.3) Wm,p(Rn)→ LB(Rn),

where LB(Rn) is the Orlicz space associated with a Young function B obeying

B(t) ≈


t

np
n−mp if 1 ≤ p < n

m

et
n

n−m
if 1 < p = n

m

∞ otherwise

near infinity, B(t) ≈ tp near zero.

Here, ≈ denotes equivalence in the sense of Young functions – see Section 2.
Actually, embedding (1.3) is equivalent to (1.2) if either 1 ≤ p < n

m , or m ≥ n, or 1 ≤ m < n and
p > n

m . The case when 1 < p = n
m is a consequence of a result of [32, 35, 39], which, for m = 1, is also

contained in [38].
The space LB(Rn) is the optimal (i.e. smallest) target in (1.3) among all Orlicz spaces. However,
embedding (1.3) can still be improved when either 1 ≤ p < n

m , or 1 < p = n
m , provided that the class

of admissible target spaces is further broadened. For instance, if 1 ≤ p < n
m , then

(1.4) Wm,p(Rn)→ L
np

n−mp ,p(Rn) ∩ Lp(Rn),

where L
np

n−mp ,p(Rn) is a Lorentz space. The intersection space in (1.4) is the best possible among
all rearrangement-invariant spaces. A parallel result can be shown to hold in the limiting situation
corresponding to 1 < p = n

m , and involves spaces of Lorentz-Zygmund type.
This follows as a special case of the results of the present paper, whose purpose is to address

the problem of optimal embeddings, in the whole of Rn, for Sobolev spaces built upon arbitrary
rearrangement-invariant spaces. Precisely, given any rearrangement-invariant space X(Rn), we find
the smallest rearrangement-invariant space Y (Rn) which renders the embedding

(1.5) WmX(Rn)→ Y (Rn)

true. Here, WmX(Rn) denotes the m-th order Sobolev type space built upon X(Rn), and equipped
with the norm defined as in (1.1), with Lp(Rn) replaced with X(Rn). A rearrangement-invariant space
is, in a sense, a space of measurable functions endowed with a norm depending only on the measure
of the level sets of the functions. A precise definition will be recalled in the next section.

Questions of this kind have been investigated in the literature in the case when Rn is replaced with
a domain of finite measure. The optimal target problem has been solved in full generality for these
domains in [18, 24]. Apart from the examples mentioned above, few special instances are known in
the entire Rn. In this connection, let us mention that first-order sharp Orlicz-Sobolev embeddings in
Rn are established in [12], and that the paper [40] contains the borderline case corresponding to the
choice m = 1 and p = n, that is excluded in (1.4).
We also warn that the available results concerning more classical inequalities for compactly supported
functions in Rn, which involve norms depending only on the highest-order derivatives of trial functions,
should not be confused with ours. Indeed, a major novelty of our work is to deal with the substantially
different situation when full Sobolev norms come into play.

A key result in our approach is what we call a reduction principle, asserting the equivalence between
a Sobolev embedding of the form (1.5), and a couple of one-dimensional inequalities involving the
representation norms of X(Rn) and Y (Rn) on (0,∞). This is the content of Theorem 3.3.

The optimal rearrangement-invariant target space Y (Rn) for WmX(Rn) in (1.5) is exhibited in
Theorem 3.1. The conclusion shows that the phenomenon recalled above for the standard Sobolev
spaces Wm,p(Rn) carries over to any space WmX(Rn): no higher integrability of a function near
infinity follows from membership of its derivatives in X(Rn), whatever rearrangement-invariant space
is X(Rn). Loosely speaking, the norm in the optimal target space behaves locally like the optimal
target norm for embeddings of the space WmX(Rn) with Rn replaced by a bounded subset, and like
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the norm of X(Rn) near infinity. We stress that, since the norm in X(Rn) is not necessarily of integral
type, a precise definition of the norm of the optimal target space is not straightforward, and the proofs
of Theorems 3.1 and 3.3 call for new ingredients compared to the finite-measure framework.

Theorems 3.1 and 3.3 can be applied to derive optimal embeddings for customary and unconven-
tional spaces of Sobolev type. In particular, we are able to identify the optimal Orlicz target and the
optimal rearrangement-invariant target in Orlicz-Sobolev embeddings (Theorems 3.5 and 3.9), and
the optimal rearrangement-invariant target in Lorentz-Sobolev embeddings (Theorem 3.11).

2. Background

Let E ⊂ Rn be a Lebesgue measurable set. We denote byM(E) the set of all Lebesgue measurable
functions u : E → [−∞,∞]. Here, vertical bars | · | stand for Lebesgue measure. We also define
M+(E) = {u ∈ M(E) : u ≥ 0}, and M0(E) = {u ∈ M(E) : u is finite a.e. in E}. The non-increasing
rearrangement u∗ : [0,∞)→ [0,∞] of a function u ∈M(E) is defined as

u∗(s) = inf{t ≥ 0 : |{x ∈ E : |u(x)| > t}| ≤ s} for s ∈ [0,∞).

We also define u∗∗ : (0,∞)→ [0,∞] as

u∗∗(s) =
1

s

∫ s

0
u∗(r) dr for s ∈ (0,∞).

The operation of rearrangement is neither linear, nor sublinear. However,

(2.1) (u+ v)∗(s) ≤ u∗(s/2) + v∗(s/2) for s > 0,

for every u, v ∈M+(E).
Let L ∈ (0,∞]. We say that a functional ‖ · ‖X(0,L) :M+(0, L)→ [0,∞] is a function norm if, for

every f , g and {fk} in M+(0, L), and every λ ≥ 0, the following properties hold:

(P1) ‖f‖X(0,L) = 0 if and only if f = 0 a.e.; ‖λf‖X(0,L) = λ‖f‖X(0,L);
‖f + g‖X(0,L) ≤ ‖f‖X(0,L) + ‖g‖X(0,L);

(P2) f ≤ g a.e. implies ‖f‖X(0,L) ≤ ‖g‖X(0,L);
(P3) fk ↗ f a.e. implies ‖fk‖X(0,L) ↗ ‖f‖X(0,L);
(P4) ‖χF‖X(0,L) <∞ for every set F ⊂ (0, L) of finite measure;
(P5) for every set F ⊂ (0, L) of finite measure there exists a positive constant CF such that∫

F f(s) ds ≤ CF‖f‖X(0,L) for every f ∈M+(0, L).

Here, and in what follows, χF denotes the characteristic function of a set F .
If, in addition,

(P6) ‖f‖X(0,L) = ‖g‖X(0,L) whenever f∗ = g∗,

we say that ‖ · ‖X(0,L) is a rearrangement-invariant function norm.
The fundamental function ϕX : (0, L)→ [0,∞) of a rearrangement-invariant function norm ‖·‖X(0,L)

is defined as

(2.2) ϕX(s) = ‖χ(0,s)‖X(0,L) for s ∈ (0, L).

If ‖·‖X(0,L) and ‖·‖Y (0,L) are rearrangement-invariant function norms, then the functional ‖·‖(X∩Y )(0,L),
defined by

‖f‖(X∩Y )(0,L) = ‖f‖X(0,L) + ‖f‖Y (0,L) ,

is also a rearrangement-invariant function norm.
With any rearrangement-invariant function norm ‖ · ‖X(0,L) is associated another functional on

M+(0, L), denoted by ‖ · ‖X′(0,L), and defined as

‖g‖X′(0,L) = sup
f ∈ M+(0, L)
‖f‖X(0,L) ≤ 1

∫ L

0
f(s)g(s) ds
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for g ∈M+(0, L). It turns out that ‖ · ‖X′(0,L) is also a rearrangement-invariant function norm, which
is called the associate function norm of ‖ · ‖X(0,L). Also,

‖f‖X(0,L) = sup
g ∈ M+(0, L)
‖g‖X′(0,L) ≤ 1

∫ L

0
f(s)g(s) ds = ‖f‖X′′ (0,L)

for every f ∈M+(0, L).
The generalized Hölder inequality∫ L

0
f(s)g(s) ds ≤ ‖f‖X(0,L)‖g‖X′(0,L)

holds for every f ∈M+(0, L) and g ∈M+(0, L).
Given any t > 0, the dilation operator Eλ is defined at f ∈M(0, L) by

(Eλf)(s) =

{
f(s/λ) if s ∈ (0, λL)

0 if s ∈ [λL,L) .

The inequality

‖Eλf‖X(0,L) ≤ max{1, 1/λ}‖f‖X(0,L)

holds for every rearrangement-invariant function norm ‖ · ‖X(0,L), and for every f ∈M+(0, L).
A “localized” notion of a rearrangement-invariant function norm will be needed for our purposes.

The localized rearrangement-invariant function norm of ‖ · ‖X(0,∞) is denoted by ‖ · ‖
X̃(0,1)

and defined

as follows. Given a function f ∈ M+(0, 1), we call f̃ its continuation to (0,∞) by 0 outside (0, 1),
namely

f̃(t) =

{
f(s) if s ∈ (0, 1),

0 if s ∈ [1,∞).

Then, we define the functional ‖ · ‖
X̃(0,1)

by

(2.3) ‖f‖
X̃(0,1)

= ‖f̃‖X(0,∞)

for f ∈M+(0, 1). One can verify that ‖ · ‖
X̃(0,1)

is actually a rearrangement-invariant function norm.

Given a measurable set E ⊂ Rn and a rearrangement-invariant function norm ‖ · ‖X(0,|E|), the space
X(E) is defined as the collection of all functions u ∈M(E) such that the quantity

‖u‖X(E) = ‖u∗‖X(0,|E|)

is finite. The functional ‖·‖X(E) defines a norm on X(E), and the latter is a Banach space endowed with
this norm, called a rearrangement-invariant space. Moreover, X(E) ⊂M0(E) for any rearrangement-
invariant space X(E).

The rearrangement-invariant space X ′(E) built upon the function norm ‖ · ‖X′(0,|E|) is called the
associate space of X(E).

Given any rearrangement-invariant spaces X(E) and Y (E), one has that

(2.4) X(E)→ Y (E) if and only if Y ′(E)→ X ′(E),

with the same embedding norms.
We refer the reader to [4] for a comprehensive treatment of rearrangement-invariant spaces.
In remaining part of this section, we recall the definition of some rearrangement-invariant function

norms and spaces that, besides the Lebesgue spaces, will be called into play in our discussion.
Let us begin with the Orlicz spaces, whose definition makes use of the notion of Young function. A
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Young function A : [0,∞) → [0,∞] is a convex (non trivial), left-continuous function vanishing at 0.
Any such function takes the form

(2.5) A(t) =

∫ t

0
a(τ)dτ for t ≥ 0,

for some non-decreasing, left-continuous function a : [0,∞)→ [0,∞] which is neither identically equal
to 0, nor to ∞. The Orlicz space built upon the Young function A is associated with the Luxemburg
function norm defined as

‖f‖LA(0,L) = inf

{
λ > 0 :

∫ L

0
A

(
f(s)

λ

)
ds ≤ 1

}
for f ∈ M+(0, L). In particular, given a measurable set E ⊂ Rn, one has that LA(E) = Lp(E) if
A(t) = tp for some p ∈ [1,∞), and LA(E) = L∞(E) if A(t) =∞χ(1,∞)(t).

A Young function A is said to dominate another Young function B near infinity [resp. near zero]
[resp. globally] if there exist positive constants c > 0 and t0 > 0 such that

B(t) ≤ A(c t) for t ∈ (t0,∞) [t ∈ [0, t0)] [t ∈ [0,∞)] .

The functions A and B are called equivalent near infinity [near zero] [globally] if they dominate each
other near infinity [near zero] [globally]. Equivalence of the Young functions A and B will be denoted
by A ≈ B.
If |E| =∞, then

LA(E)→ LB(E) if and only if A dominates B globally .

If |E| <∞, then

LA(E)→ LB(E) if and only if A dominates B near infinity .

Given 1 ≤ p, q ≤ ∞, we define the Lorentz functional ‖ · ‖Lp,q(0,L) by

‖f‖Lp,q(0,L) =
∥∥∥f∗(s)s 1

p
− 1
q

∥∥∥
Lq(0,L)

for f ∈M+(0, L). This functional is a rearrangement-invariant function norm provided that 1 ≤ q ≤ p,
namely when q ≥ 1 and the weight function s

1
p
− 1
q is non-increasing. In general, it is known to be

equivalent, up to multiplicative constants, to a rearrangement-invariant function norm if (and only
if) either p = q = 1, or 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = q = ∞. The rearrangement-invariant
space on a measurable set E ⊂ Rn, built upon the latter rearrangement-invariant function norm, is
the standard Lorentz space Lp,q(E). Thus, Lp,q(E) consists of all functions u ∈ M(E) such that the
functional ‖u‖Lp,q(E), defined as

(2.6) ‖u‖Lp,q(E) = ‖u∗‖Lp,q(0,|E|)
is finite.
The notion of Lorentz functional can be generalized on replacing the function s

1
p
− 1
q by a more general

weight w(s) ∈M+(0, L) in (2.6). The resulting functional is classically denoted by ‖ · ‖Λq(w)(0,L), and
reads

‖f‖Λq(w)(0,L) = ‖f∗(t)w(t)‖Lq(0,L)

for f ∈ M+(0, L). A characterization of those exponents q and weights w for which the latter
functional is equivalent to a rearrangement-invariant function norm is known. In particular, when
q ∈ (1,∞), this is the case if and only if there exists a positive constant C such that

sq
∫ L

s

w(r)q

rq
dr ≤ C

∫ s

0
w(r)q dr for 0 < s < L
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[33, Theorem 2]. Moreover, ‖ · ‖Λ1(w)(0,L) is equivalent to a rearrangement-invariant function norm if
and only if there exists a constant C such that

1

s

∫ s

0
w(t) dt ≤ C

r

∫ r

0
w(t) dt for 0 < r ≤ s < L

[10, Theorem 2.3]. Finally, ‖ · ‖Λ∞(w)(0,L) is equivalent to a rearrangement-invariant function norm if
and only if there exists a constant C such that∫ s

0

dr

w(r)
≤ Cs

w(s)
for 0 < s < L.

This follows from a result of [34, Theorem 3.1]. In any of these cases, we shall denote by Λq(w)(E)
the corresponding rearrangement-invariant space on a measurable set E ⊂ Rn.
A further extension of the notion of the Lorentz functional ‖ · ‖Λq(w)(0,L) is obtained when the role
of the function norm ‖ · ‖Lq(0,L) is played by a more general Orlicz function norm ‖ · ‖LA(0,L). The

resulting functional will be denoted by ‖ · ‖ΛA(w)(0,L), and defined as

‖f‖ΛA(w)(0,L) = ‖f∗(s)w(s)‖LA(0,L)

for f ∈ M+(0, L). A complete characterization of those Young functions A and weights w for which
the functional ‖ · ‖ΛA(w)(0,L) is equivalent to a rearrangement-invariant function norm seems not to be
available in the literature. However, this functional is certainly equivalent to a rearrangement-invariant
function norm whenever the weight w is equivalent, up to multiplicative constants, to a non-increasing
function. This is the only case that will be needed in our applications. For such a choice of weights
w, we shall denote by ΛA(w)(E) the corresponding rearrangement-invariant space on a measurable set
E ⊂ Rn.
A comprehensive treatment of Lorentz type functionals can be found in [11] and [31].

3. Main results

Our first main result exhibits the optimal rearrangement-invariant space into which any assigned
arbitrary-order Sobolev space is embedded. Given an open set Ω in Rn and any rearrangement-
invariant space X(Ω), the m-th order Sobolev type space WmX(Ω) is defined as

Wm(X)(Ω) = {u ∈ X(Ω) : u is m-times weakly differentiable, and |∇ku| ∈ X(Ω) for k = 1, . . . ,m}.
The space WmX(Ω) is a Banach space endowed with the norm given by

(3.1) ‖u‖WmX(Ω) =

m∑
k=0

‖∇ku‖X(Ω)

for u ∈ Ω. In (3.1), and in what follows, the rearrangement-invariant norm of a vector is understood
as the norm of its length.

Given a rearrangement-invariant space X(Rn), we say that Y (Rn) is the optimal rearrangement-
invariant target space in the Sobolev embedding

(3.2) WmX(Rn)→ Y (Rn)

if it is the smallest one that renders (3.2) true, namely, if for every rearrangement-invariant space
U(Rn) such that WmX(Rn) → U(Rn), one has that Y (Rn) → U(Rn). The construction of the
optimal space Y (Rn) in (3.2) requires a few steps. A first ingredient is the function norm ‖ · ‖Z(0,1)

obeying

‖g‖Z′(0,1) = ‖s
m
n g∗∗(s)‖

X̃′(0,1)
for g ∈M(0, 1),(3.3)

where the localized rearrangement-invariant function norm ‖ · ‖
X̃(0,1)

is defined as in (2.3), and ‖ ·
‖
X̃′(0,1)

stands for its associated function norm. The function norm ‖ · ‖Z(0,1) determines the optimal

rearrangement-invariant space in the Sobolev embedding for the space WmX̃(Ω) in any regular open
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set in Rn (with |Ω| = 1), see [18, 24].
Next, we extend ‖ · ‖Z(0,1) to a function norm ‖ · ‖Xm(0,∞) on (0,∞) by setting

(3.4) ‖f‖Xm(0,∞) = ‖f∗‖Z(0,1) for f ∈M(0,∞).

The optimal rearrangement-invariant target space Y (Rn) in embedding (3.2) is the space Xm
opt(Rn)

defined as

(3.5) Xm
opt(Rn) = (Xm ∩X)(Rn).

One has that

{u ∈ Xm(Rn) : |supp u| <∞} ⊂ X(Rn).

This follows via Proposition 4.1, Section 4. Hence, if |supp u| < ∞, then u ∈ Xm
opt(Rn) if and only

if u ∈ Xm(Rn). In this sense the optimal space Xm
opt(Rn) is determined by Xm(Rn) locally, and by

X(Rn) near infinity.

Theorem 3.1 (Optimal Sobolev embedding). Let n ≥ 2, m ∈ N, and let X(Rn) be a rearrangement-
invariant space. Then

(3.6) WmX(Rn)→ Xm
opt(Rn) ,

where Xm
opt(Rn) is the space defined by (3.5). Moreover, Xm

opt(Rn) is the optimal rearrangement-
invariant target space in (3.6).

Theorem 3.1 has the following consequence.

Corollary 3.2 (Supercritical Sobolev embedding). Let n ≥ 2, m ∈ N, and let X(Rn) be
a rearrangement-invariant space such that

(3.7) ‖χ(0,1)(s)s
−1+m

n ‖X′(0,∞) <∞.

(In particular, this is always the case when m ≥ n, whatever is X(Rn).) Then Xm
opt(Rn) = (L∞ ∩

X)(Rn), up to equivalent norms. Namely,

(3.8) WmX(Rn)→ (L∞ ∩X)(Rn) ,

and (L∞ ∩X)(Rn) is the optimal rearrangement-invariant target space in (3.8).

Our second main result is a reduction theorem for Sobolev embeddings on the entire Rn.

Theorem 3.3 (Reduction principle). Let X(Rn) and Y (Rn) be rearrangement-invariant spaces.
Then

(3.9) WmX(Rn)→ Y (Rn)

if and only if there exists a constant C such that

(3.10)

∥∥∥∥χ(0,1)(s)

∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Y (0,∞)

≤ C‖χ(0,1)f‖X(0,∞)

and

(3.11) ‖χ(1,∞)f‖Y (0,∞) ≤ C‖f‖X(0,∞)

for every non-increasing function f : (0,∞)→ [0,∞).

Remark 3.4. In fact, inequality (3.10) turns out to hold for every non-increasing nonnegative function
f if and only if it holds for every nonnegative function f – see [18, Corollary 9.8].
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In the remaining part of this section we present applications of our general results to two important
families of Sobolev type spaces: the Orlicz-Sobolev and the Lorentz-Sobolev spaces. In the light of
Corollary 3.2, we shall mainly restrict our attention to the case when m < n.

Let us begin with embeddings for Orlicz-Sobolev spaces built upon a Young function A. The
notation Wm,A(Rn) will also be adopted instead of WmLA(Rn). This kind of spaces is of use in
applications to the theory of partial differential equations, whose nonlinearity is not necessarily of
power type, which also arise in mathematical models for diverse physical phenomena – see e.g. [1, 3,
5, 6, 7, 8, 9, 22, 25, 26, 28, 36, 37, 41].
We first focus on embeddings of WmLA(Rn) into Orlicz spaces. We show that an optimal target space
in this class always exists, and we exhibit it explicitly.
Define the function H n

m
: [0,∞)→ [0,∞) as

(3.12) H n
m

(τ) =

(∫ τ

0

(
t

A(t)

) m
n−m

dt

)n−m
n

for τ ≥ 0,

and the Young function A n
m

as

(3.13) A n
m

(t) = A
(
H−1

n
m

(t)
)

for t ≥ 0,

where H−1
n
m

denotes the (generalized) left-continuous inverse of H n
m

(see [13, 15]).

Theorem 3.5 (Optimal Orlicz target in Orlicz-Sobolev embeddings). Let n ≥ 2, m ∈ N, and
let A be a Young function. Assume that m < n, and let A n

m
be the Young function defined by (3.13).

Let Aopt be a Young function such that

Aopt(t) ≈

{
A(t) near 0

A n
m

(t) near infinity .

Then

(3.14) Wm,A(Rn)→ LAopt(Rn),

and LAopt(Rn) is the optimal Orlicz target space in (3.14).

Remark 3.6. In equations (3.12) and (3.13), we may assume, without loss of generality, that

(3.15)

∫
0

(
t

A(t)

) m
n−m

dt <∞ ,

so that H n
m

is well defined. Indeed, since only the behavior of A n
m

, and hence of H n
m

, near infinity

is relevant in view of our result, A can be replaced in (3.12) and (3.13) (if necessary) by a Young
function equivalent near infinity, which renders (3.15) true. Any such a replacement results into an
equivalent function A n

m
near infinity.

Remark 3.7. Notice that, if

(3.16)

∫ ∞( t

A(t)

) m
n−m

dt <∞ ,

then H−1
n
m

(t) =∞ for large t, and equation (3.13) has accordingly to be interpreted as A n
m

(t) =∞ for

large t.

Remark 3.8. Condition (3.16) can be shown to agree with (3.7) when X(Rn) = LA(Rn), and em-
bedding (3.14) recovers the conclusion of Corollary 3.2 in this case. Indeed, by Remark 3.7, under
assumption (3.7) one has that

Aopt(t) ≈

{
A(t) if t ∈ [0, 1]

∞ if t ∈ (1,∞) .
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Owing to Lemma 5.2 below, the resulting Orlicz target space LAopt(Rn) coincides with (L∞∩LA)(Rn).
Hence, the target space LAopt(Rn) is in fact also optimal among all rearrangement-invariant spaces in
(3.14).

We next determine the optimal target space for embeddings of Wm,A(Rn) among all rearrangement-
invariant spaces. Such a space turns out to be a Lorentz-Orlicz space defined as follows.
Let A be a Young function. In the light of Remark 3.8, we may restrict our attention to the case when
m < n, and

(3.17)

∫ ∞( t

A(t)

) m
n−m

dt =∞ .

Define the Young function Â by

(3.18) Â(t) =

∫ t

0
â(τ) dτ for t ≥ 0,

where

â−1(s) =

∫ ∞
a−1(s)

(∫ t

0

(
1

a(τ)

) m
n−m

dτ

)− n
m dt

a(t)
n

n−m

 m
m−n

for s ≥ 0 ,

and a is the function appearing in (2.5). Notice that condition (3.15) is equivalent to requiring that

(3.19)

∫
0

(
1

a(τ)

) m
n−m

dτ <∞ .

Thus, by a reason analogous to that explained in Remark 3.6, there is no loss of generality in assuming
(3.19).

Theorem 3.9 (Optimal rearrangement-invariant target in Orlicz-Sobolev embeddings).
Let n ≥ 2 and m ∈ N, and let A be a Young function. Assume that m < n, and condition (3.17) is

fulfilled, and let Â be the Young function given by (3.18). Let E be a Young function such that

E(t) ≈

{
A(t) near 0

Â(t) near infinity .

and let v : (0,∞)→ (0,∞) be the function defined as

(3.20) v(s) =

{
s−

m
n if s ∈ (0, 1)

1 if s ∈ [1,∞).

Then

(3.21) Wm,A(Rn)→ ΛE(v)(Rn),

and the Orlicz-Lorentz space ΛE(v)(Rn) is the optimal rearrangement-invariant target space in (3.21).

Example 3.10. We focus here on Orlicz-Sobolev spaces built upon a special family of Orlicz spaces,
called Zygmund spaces and denoted by Lp(logL)α(Rn), where either p = 1 and α ≥ 0, or p > 1 and
α ∈ R. They are associated with a Young function equivalent to tp(1 + log+ t)

α, where log+(t) =
max{log t, 0}. Of course, Lp(logL)0(Rn) = Lp(Rn).
Owing to Theorem 3.5 and [15, Example 3.4], one has that

WmLp(logL)α(Rn)→ LG(Rn) ,



10 ANGELA ALBERICO, ANDREA CIANCHI, LUBOŠ PICK AND LENKA SLAVÍKOVÁ

where

G(t) ≈


t

np
n−mp (log t)

nα
n−mp if 1 ≤ p < n

m

et
n

n−m−αm
if p = n

m , α <
n
m − 1

ee
t

n
n−m

if p = n
m , α = n

m − 1

∞ otherwise

near infinity, G(t) ≈ tp near zero.

Moreover, LG(Rn) is optimal among all Orlicz spaces.
Furthermore, by Theorem 3.9 and [15, Example 3.10],

WmLp(logL)α(Rn)→ ΛE(v)(Rn) ,

where v is given by (3.20), and

E(t) ≈


tp(log t)α if 1 ≤ p < n

m

t
n
m (log t)α−

n
m if p = n

m , α <
n
m − 1

t
n
m (log t)−1(log(log t))−

n
m if p = n

m , α = n
m − 1

near infinity, E(t) ≈ tp near zero.

Moreover, the Orlicz-Lorentz space ΛE(v) is optimal among all rearrangement-invariant spaces. The
optimal rearrangement-invariant target space when either p > n

m , or p = n
m and α > n

m − 1 agrees

with the Orlicz space LG(Rn) with G defined as above, and hence with (L∞ ∩ Lp(logL)α)(Rn).

We conclude this section with an optimal embedding theorem for Lorentz-Sobolev spaces in Rn,
which relies upon Theorem 3.1.

Theorem 3.11 (Lorentz-Sobolev embeddings). (i) Let m < n, and either p = q = 1, or 1 < p <
n
m and 1 ≤ q ≤ ∞. Then

WmLp,q(Rn)→ Λq(w)(Rn),

where

w(s) =

{
s

1
p
− 1
q
−m
n if s ∈ (0, 1]

s
1
p
− 1
q if s ∈ (1,∞).

(ii) Let m < n and 1 < q ≤ ∞. Then

WmL
n
m
,q(Rn)→ Λq(w)(Rn),

where

w(s) =

{
s
− 1
q (1 + log 1

s )−1 if s ∈ (0, 1]

s
m
n
− 1
q if s ∈ (1,∞).

(iii) Let either m > n, or m ≤ n and p > n
m , or m ≤ n, p = n

m and q = 1. Then

WmLp,q(Rn)→ ΛE(w)(Rn),

where

w(s) =

{
1 if s ∈ (0, 1]

s
1
p
− 1
q if s ∈ (1,∞),

and

E(t) =

{
tq if t ∈ (0, 1]

∞ if t ∈ (1,∞).

Moreover, in each case, the target space is optimal among all rearrangement-invariant spaces.
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4. Proofs of the main results

Let ‖ · ‖X(0,∞) be a rearrangement-invariant function norm, and let ‖ · ‖
X̃(0,1)

be its localized

rearrangement-invariant function norm on (0, 1) given by (2.3). The rearrangement-invariant function
norm ‖ · ‖Z(0,1) defined as in (3.3) is the optimal one for which the Hardy type inequality

(4.1)

∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Z(0,1)

≤ C‖f‖
X̃(0,1)

holds with some positive constant C independent of nonnegative functions f ∈ X̃(0, 1), see [24,
Theorem A]. The following proposition tells us that such a norm is always at least as strong as that

of X̃(0, 1).

Proposition 4.1. Let n ≥ 2 and let m ∈ N. Assume that ‖ · ‖X(0,∞) is a rearrangement-invariant
function norm, and let ‖ · ‖Z(0,1) be rearrangement-invariant function norm defined as in (3.3). Then

(4.2) Z(0, 1)→ X̃(0, 1).

Proof. Embedding (4.2) is equivalent to

(4.3) X̃ ′(0, 1)→ Z ′(0, 1).

By the very definition of Z(0, 1), embedding (4.3) is in turn equivalent to the inequality

(4.4) ‖s
m
n f∗∗(s)‖

X̃′(0,1)
≤ C‖f‖

X̃′(0,1)

for some constant C and for every f ∈M+(0, 1). It is easily verified that the operator

M+(0, 1) 3 f(s) 7→ s
m
n f∗∗(s) ∈M+(0, 1)

is sublinear, and bounded in L1(0, 1) and in L∞(0, 1). An interpolation theorem by Calderón [4,
Theorem 2.12, Chapter 3] then tells us that it is bounded in any rearrangement-invariant space.
Hence, inequality (4.4) follows. �

The next auxiliary result will be critical in the proof of the sharpness of our embeddings. Through-
out, we shall use the relation & [.] between two expressions to denote that the former bounds [is
bounded by] the latter, up to a positive constant. The notation ' is adopted to denote that the rela-
tions & and . hold simultaneously. Notice the different meanings of the relation ' and the relation
≈ of equivalence between Young functions introduced in Section 2.

Proposition 4.2. Let ‖·‖X(0,∞) and ‖·‖U(0,∞) be rearrangement-invariant function norms. Let α > 0
and let L > 0. Assume that

(4.5)

∥∥∥∥χ(L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
U(0,∞)

≤ C1

(
‖f‖X(0,∞) +

∥∥∥∥∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

)
for some constant C1, and for every non-increasing function f ∈ M+(0,∞). Then there exists a
constant C2 such that

(4.6) ‖g∗χ(2L,∞)‖U(0,∞) ≤ C2‖g‖X(0,∞)

for every g ∈M+(0,∞).

Proof. Let f be as in the statement. Assume, in addition, that f is constant on (0, 2L), and denote
by f0 ∈ R the constant value of f on (0, 2L). If s ≥ 2L, then∫ ∞
s

f(r)rα−1 dr ≥
∫ 2s

s
f(r)rα−1 dr ≥ f(2s)

∫ 2s

s
rα−1 dr = (2α − 1)

sα

α
f(2s) ≥ (2α − 1)

(2L)α

α
f(2s) .
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Furthermore, if s ∈ (0, L), then∫ ∞
s

f(r)rα−1 dr ≥
∫ 2L

L
f(r)rα−1 dr =

1

α
[(2L)α − Lα] f0 .

Thus,

‖f(s)‖X(0,∞) . ‖f(2s)‖X(0,∞) ≤ ‖f(2s)χ(2L,∞)(s)‖X(0,∞) + ‖f(2s)χ(0,2L)(s)‖X(0,∞)(4.7)

.

∥∥∥∥χ(2L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

+ f0

∥∥χ(0,2L)

∥∥
X(0,∞)

.

∥∥∥∥χ(2L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

+ f0

∥∥χ(0,L)

∥∥
X(0,∞)

.

∥∥∥∥χ(2L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

+

∥∥∥∥χ(0,L)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

.

∥∥∥∥∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

.

Inequalities (4.5) and (4.7) imply that

(4.8)

∥∥∥∥χ(L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
U(0,∞)

.

∥∥∥∥∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

.

Consider functions f of the form

f =
k∑
i=1

aiχ(0, bi) with ai ≥ 0 and bi ≥ 2L .

For this choice of f , one has that∫ ∞
s

f(r)rα−1 dr =

k∑
i=1

χ(0,bi)(s)
ai
α

(bαi − sα) for s > 0,

whence ∥∥∥∥∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
X(0,∞)

.

∥∥∥∥ k∑
i=1

χ(0,bi)(s) aib
α
i

∥∥∥∥
X(0,∞)

.

On the other hand,∥∥∥∥χ(L,∞)(s)

∫ ∞
s

f(r)rα−1 dr

∥∥∥∥
U(0,∞)

&

∥∥∥∥χ(L,∞)(s)

k∑
i=1

χ(
0,
bi
2

)(s)ai(bαi − sα)

∥∥∥∥
U(0,∞)

(4.9)

&

∥∥∥∥χ(L,∞)(s)
k∑
i=1

χ(
0,
bi
2

)(s)ai (bαi − (bi/2)α)

∥∥∥∥
U(0,∞)

&

∥∥∥∥χ(L,∞)(s)
k∑
i=1

χ(
0,
bi
2

)(s)aibαi ∥∥∥∥
U(0,∞)

'
∥∥∥∥χ(L,∞)

(
s/2
) k∑
i=1

χ(
0,
bi
2

) (s/2) aib
α
i

∥∥∥∥
U(0,∞)

'
∥∥∥∥χ(2L,∞)(s)

k∑
i=1

χ(0,bi)(s)aib
α
i

∥∥∥∥
U(0,∞)

.
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Inequalities (4.8) and (4.9) imply, via an approximation argument, that

(4.10) ‖χ(2L,∞) g‖U(0,∞) . ‖g‖X(0,∞)

for every non-increasing function g ∈ M+(0,∞) that is constant on (0, 2L). Observe that property
(P3) of rearrangement-invariant function norms plays a role in the approximation in question.

Assume now that g is any function in M+(0,∞). An application of (4.10) with g replaced by
g∗(2L)χ(0,2L) + g∗χ(2L,∞) yields∥∥χ(2L,∞)g

∗∥∥
U(0,∞)

=
∥∥χ(2L,∞)g

∗(2L)χ(0,2L) + g∗χ(2L,∞)

∥∥
U(0,∞)

(4.11)

.
∥∥g∗(2L)χ(0,2L) + g∗χ(2L,∞)

∥∥
X(0,∞)

≤ ‖g∗‖X(0,∞) = ‖g‖X(0,∞) .

Hence, inequality (4.6) follows. �

A key step towards the general embedding theorem of Theorem 3.1 is a first-order embedding,
for somewhat more general non-homogeneous Sobolev type spaces defined as follows. Given two
rearrangement-invariant function norms ‖ · ‖X(0,∞) and ‖ · ‖Y (0,∞), we define the space W 1(X,Y )(Rn)
as

W 1(X,Y )(Rn) = {u ∈ X(Rn) : u is weakly differentiable in Rn, and |∇u| ∈ Y (Rn)}
endowed with the norm

‖u‖W 1(X,Y )(Rn) = ‖u‖X(Rn) + ‖∇u‖Y (Rn).

Theorem 4.3 (Non-homogeneous first-order Sobolev embeddings). Let ‖ · ‖X(0,∞) and ‖ ·
‖Y (0,∞) be rearrangement-invariant function norms. Let ‖ · ‖Y 1(0,∞) be defined as in (3.4), with m = 1
and X(Rn) replaced by Y (Rn). Then

(4.12) W 1(X,Y )(Rn)→ (Y 1 ∩X)(Rn) .

Proof. We begin by showing that there exists a constant C such that

(4.13) ‖u‖Y 1(Rn) ≤ C‖∇u‖Y (Rn)

for every function u such that |suppu| ≤ 1 and |∇u| ∈ Y (Rn). Indeed, a general form of the Pólya-Szegö
principle on the decrease of gradient norms under spherically symmetric symmetrization ensures that,
for any such function u, the decreasing rearrangement u∗ is locally absolutely continuous in (0,∞),
and

(4.14) ‖∇u‖Y (Rn) ≥ nω
1
n
n

∥∥s 1
n′ u∗′(s)

∥∥
Y (0,∞)

,

where ωn denotes the Lebesgue measure of the unit ball in Rn – see e.g. [16, Lemma 4.1]. Moreover,
there exists a constant C such that∥∥s 1

n′ u∗′(s)
∥∥
Y (0,∞)

=
∥∥s 1

n′ u∗′(s)
∥∥
Ỹ (0,1)

≥ C
∥∥∥∥∫ 1

s
u∗′(r) dr

∥∥∥∥
Z(0,1)

= C‖u∗(s)‖Z(0,1) = ‖u‖Y 1(Rn),(4.15)

where the first equality holds since u∗ vanishes in (1,∞), the inequality is a consequence of the Hardy
type inequality (4.1), the second equality holds since u∗(1) = 0, and the last inequality by the very
definition of the norm in Y 1(Rn). Inequality (4.13) is a consequence of (4.14) and (4.15).
Now, let u ∈W 1(X,Y )(Rn) such that

(4.16) ‖u‖W 1(X,Y )(Rn) ≤ 1.

Then,

(4.17) 1 ≥ ‖u‖X(Rn) ≥ t ‖χ{|u|>t}‖X(Rn) = t ϕX(|{|u| > t}|) for t > 0,
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where ϕX is the fundamental function of ‖ · ‖X(0,∞) defined as in (2.2). Let ϕ−1
X denote its generalized

left-continuous inverse. One has that

lim
t→0+

ϕ−1
X (t) = 0,

and

ϕ−1
X (ϕX(t)) ≥ t for t > 0.

Therefore, by (4.17),

|{|u| > t}| ≤ ϕ−1
X

(
ϕX(|{|u| > t}|)

)
≤ ϕ−1

X (1/t) for t > 0.

Hence,

|{|u| > t}| ≤ ϕ−1
X (1/t) for t > 0.

Choose t0 such that ϕ−1
X (1/t0) ≤ 1, whence

|{|u| > t0}| ≤ 1.

Let us decompose the function u as u = u1 + u2, where u1 = sign(u) min{|u|, t0} and u2 = u− u1. By
standard properties of truncations of Sobolev functions, we have that u1, u2 ∈ W 1(X,Y ). Moreover,
‖u1‖L∞(Rn) ≤ t0, and |{|u2| > 0}| = |{|u| > t0}| ≤ 1. We claim that there exist positive constants c1

and c2 such that

‖u1‖Y 1(Rn) ≤ c1,(4.18)

and

‖u2‖Y 1(Rn) ≤ c2.(4.19)

Inequality (4.18) is a consequence of the fact that

‖u1‖Y 1(Rn) ≤ t0 ‖1‖Y 1(Rn) <∞ ,

where the last inequality holds thanks to the definition of the norm ‖·‖Y 1(Rn). Inequality(4.19) follows
from inequalities (4.13) and (4.16). From (4.18), (4.19) and (4.16) we infer that

‖u‖X(Rn) + ‖u‖Y 1(Rn) ≤ ‖u‖X(Rn) + ‖u1‖Y 1(Rn) + ‖u2‖Y 1(Rn) ≤ ‖u‖X(Rn) + c1 + c2 ≤ 1 + c1 + c2

for every function u fulfilling (4.16). This establishes embedding (4.12). �

We are now in a position the accomplish the proof of Theorem 3.1.

Proof of Theorem 3.1. We shall prove by induction on m that

(4.20) ‖u‖Xm(Rn) ≤ C‖u‖WmX(Rn)

for some constant C, and for every u ∈ WmX(Rn). This inequality, combined with the trivial
embedding WmX(Rn)→ X(Rn), yields embedding (3.6).
If m = 1, then inequality (4.20) is a straightforward consequence of Theorem 4.3 applied in the special
case when Y (Rn) = X(Rn). Now, assume that (4.20) is fulfilled for somem ∈ N. Let u ∈Wm+1X(Rn).
By induction assumption applied to the function uxi for i = 1, . . . , n,

‖uxi‖Xm(Rn) ≤ C‖uxi‖WmX(Rn) ≤ C ′‖u‖Wm+1X(Rn)

for some constants C and C ′. Consequently,

(4.21) ‖∇u‖Xm(Rn) ≤ C‖u‖Wm+1X(Rn)

for some constant C. From Theorem 4.3 with Y (Rn) = Xm(Rn), and inequality (4.21), we obtain

(4.22) ‖u‖(Xm)1(Rn) ≤ C
(
‖u‖X(Rn) + ‖∇u‖Xm(Rn)

)
≤ C ′‖u‖Wm+1X(Rn)

for some constants C and C ′. From [18, Corollary 9.6] one can deduce that

(4.23) ‖u‖(Xm)1(Rn) ' ‖u‖Xm+1(Rn)
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for every u ∈ Wm+1X(Rn). Inequality (4.20), with m replaced by m + 1, follows from (4.22) and
(4.23).
It remains to prove the optimality of the space (Xm ∩ X)(Rn). Assume that U(Rn) is another
rearrangement-invariant space such that

WmX(Rn)→ U(Rn).

Then there exists a constant C such that

(4.24) ‖u‖U(Rn) ≤ C‖u‖WmX(Rn)

for every u ∈WmX(Rn). We have to show that

(X ∩Xm)(Rn)→ U(Rn),

or, equivalently, that

(4.25) ‖f‖U(0,∞) ≤ C
(
‖f‖X(0,∞) + ‖f‖Xm(0,∞)

)
for some constant C, and every f ∈M+(0,∞). Inequality (4.25) will follow if we show that

(4.26) ‖f∗χ(0,1)‖U(0,∞) ≤ C‖f‖Xm(0,∞)

and

(4.27) ‖f∗χ(1,∞)‖U(0,∞) ≤ C‖f‖X(0,∞)

for some constant C, and for every f ∈M+(0,∞).
Let B be the ball in Rn, centered at 0, such that |B| = 1. We claim that inequality (4.24) implies that

(4.28) ‖v‖U(B) ≤ C‖v‖WmX(B)

for some constant C, and for every v ∈ WmX(B). Here, X(B) and U(B) denote the rearrangement-
invariant spaces built upon the function norms ‖·‖

X̃(0,1)
and ‖·‖

Ũ(0,1)
defined as in (2.3). To verify this

claim, one can make use of the fact that there exists a bounded extension operator T : WmX(B) →
WmX(Rn) [19, Theorem 4.1]. Thus,

(4.29) ‖Tv‖WmX(Rn) ≤ C‖v‖WmX(B)

for some constant C and for every v ∈WmX(B). Coupling (4.24) with (4.29) we deduce that

‖v‖U(B) = ‖Tv‖U(B) ≤ ‖Tv‖U(Rn) ≤ C‖Tv‖WmX(Rn) ≤ C ′‖v‖WmX(B)

for some constants C and C ′, and for every v ∈WmX(B). Hence, inequality (4.28) follows.
Inequality (4.28) in turn implies that

(4.30)

∥∥∥∥∫ 1

s
g(r)r−1+m

n dr

∥∥∥∥
Ũ(0,1)

≤ C‖g‖
X̃(0,1)

for some positive constant C, and every g ∈ M+(0, 1). This implication can be found in the proof of
[24, Theorem A]. For completeness, we provide a proof hereafter, that also fixes some details in that
of [24].
Let us preliminarily note that we can restrict our attention to the case when m < n. Indeed, if m ≥ n,
inequality (4.30) holds with ‖ ·‖

Ũ(0,1)
= ‖ ·‖L∞(0,1), and hence for every rearrangement-invariant norm

‖ · ‖U(0,∞).
Given any bounded function f ∈M+(0, 1), define

(4.31) u(x) =

∫ 1

ωn|x|n

∫ 1

s1

∫ 1

s2

· · ·
∫ 1

sm−1

f(sm)s
−m+m

n
m dsm · · · ds1 for x ∈ B.
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Set M = ω
− 1
n

n . We need to derive a pointwise estimate for |Dmu|. As a preliminary step, consider
any function v : B → [0,∞) given by

v(x) = g(|x|) for x ∈ B,

where g : (0,M)→ [0,∞) is an m-times weakly differentiable function. One can show that every `-th
order derivative of v, with 1 ≤ ` ≤ m, is a linear combination of terms of the form

xα1 . . . xαig
(j)(|x|)

|x|k
for a.e. x ∈ B,

where α1, . . . , αi ∈ {1, . . . , n}, and

1 ≤ j ≤ `, 0 ≤ i ≤ `, k − i = `− j.
Here, g(j) denotes the j-th order derivative of g. As a consequence,

(4.32)
m∑
`=1

|∇`v(x)| ≤ C
m∑
`=1

∑̀
k=1

|g(k)(|x|)|
|x|`−k

for a.e. x ∈ B.

Next, consider functions g defined by

g(s) =

∫ 1

ωnsn

∫ 1

s1

. . .

∫ 1

sm−1

f(sm)s
−m+m

n
m dsm . . . ds1 for s ∈ (0,M),

where f is as in (4.31). It can be verified that, for each 1 ≤ k ≤ m− 1, the function g(k)(s) is a linear
combination of functions of the form

sjn−k
∫ 1

ωnsn

∫ 1

sj+1

. . .

∫ 1

sm−1

f(sm)s
−m+m

n
m dsm . . . dsj+1 for s ∈ (0,M),

where j ∈ {1, 2, . . . , k}, whereas g(m)(s) is a linear combination of functions of the form

(4.33) sjn−m
∫ 1

ωnsn

∫ 1

sj+1

. . .

∫ 1

sm−1

f(sm)s
−m+m

n
m dsm . . . dsj+1 for s ∈ (0,M),

where j ∈ {1, 2, . . . ,m− 1}, and of the function f(ωns
n). Note that, if j = m− 1, then the expression

in (4.33) has to be understood as

s(m−1)n−m
∫ 1

ωnsn
f(sm)s

−m+m
n

m dsm for s ∈ (0,M).

As a consequence of these formulas, we can infer that, if 1 ≤ k ≤ m− 1, then

(4.34) |g(k)(s)| .
k∑
j=1

sjn−k
∫ 1

ωnsn
f(r)r−j+

m
n
−1dr for s ∈ (0,M),

and

(4.35) |g(m)(s)| .
m−1∑
j=1

sjn−m
∫ 1

ωnsn
f(r)r−j+

m
n
−1dr + f(ωns

n) for a.e. s ∈ (0,M).

From equations (4.32), (4.34) and (4.35) one can deduce that

|Dmu(x)| . f(ωn|x|n) +

∫ 1

ωn|x|n
f(s)s−1+m

n ds+
m−1∑
j=1

|x|jn−m
∫ 1

ωn|x|n
f(s)s−j+

m
n
−1ds(4.36)

for a.e. x ∈ B. On the other hand, by Fubini’s theorem,

(4.37) u(x) =

∫ 1

ωn|x|n
f(s)s−m+m

n
(s− ωn|x|n)m−1

(m− 1)!
ds & χ(0,1)(2ωn|x|n)

∫ 1

2ωn|x|n
f(s)s

m
n
−1 ds
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for x ∈ B. The following chain holds:∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Ũ(0,1)

.

∥∥∥∥χ(0, 1
2

)(t)

∫ 1

2s
f(r)r−1+m

n dr

∥∥∥∥
Ũ(0,1)

. ‖u‖U(B) . ‖Dmu‖X(B)(4.38)

. ‖f‖
X̃(0,1)

+

∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
X̃(0,1)

+

m−1∑
j=1

∥∥∥∥sj−mn ∫ 1

s
f(r)r−j+

m
n
−1 dr

∥∥∥∥
X̃(0,1)

. ‖f‖
X̃(0,1)

.

Here, we have made use of (4.37), (4.24), (4.36), and of the boundedness of the operators

f(s) 7→ sj−
m
n

∫ 1

s
f(r)r−j+

m
n
−1 dr and f(s) 7→

∫ 1

s
f(r)r

m
n
−1 dr

on X̃(0, 1) for every j as above. The boundedness of these operators follows from Calderón inter-
polation theorem, owing to their boundedness in L1(0, 1) and L∞(0, 1). Inequality (4.30) follows
from (4.38). Inequality (4.30) implies, via the optimality of the norm ‖ · ‖Z(0,1) in (4.1), that

‖g‖
Ũ(0,1)

. ‖g‖Z(0,1)

for every g ∈ M+(0, 1). Given any function f ∈ M+(0,∞), we can apply the latter inequality to
f∗χ(0,1), and obtain

‖f∗χ(0,1)‖Ũ(0,1)
≤ C‖f∗χ(0,1)‖Z(0,1).

By (2.3) and (3.4), this entails (4.26).
Let us next focus on (4.27). Fix L > 0 and consider trial functions in (4.24) of the form

u(x) = ϕ(x′)ψ(x1)

∫ ∞
x1

∫ ∞
s1

· · ·
∫ ∞
sm−1

f(sm) dsm · · · ds1 for x ∈ Rn ,

where x = (x1, x
′), x′ ∈ Rn−1, x1 ∈ R. Here, f ∈M+(R) and has bounded support; ψ ∈ C∞(R), with

ψ = 0 in (−∞, L], ψ ≡ 1 in [2L,+∞), 0 ≤ ψ ≤ 1 in R; ϕ ∈ C∞0 (Bn−1
2 ), with ϕ = 1 in Bn−1

1 , where
Bn−1
ρ denotes the ball in Rn−1, centered at 0, with radius ρ. An application of Fubini’s theorem yields

u(x) = ϕ(x′)ψ(x1)

∫ ∞
x1

f(s)
(s− x1)m−1

(m− 1)!
ds for x ∈ Rn .

Thus,

u(x) ≥ χBn−1
1

(x′)
ψ(x1)

2m−1(m− 1)!

∫ ∞
2x1

f(s)sm−1 ds(4.39)

≥
χBn−1

1
(x′)χ(2L,∞)(x1)

2m−1(m− 1)!

∫ ∞
2x1

f(s)sm−1 ds for x ∈ Rn ,

and

(4.40) u(x) ≤
χBn−1

2
(x′)χ(L,∞)(x1)

(m− 1)!

∫ ∞
x1

f(s)sm−1 ds for x ∈ Rn .

Moreover, if 1 ≤ k ≤ m− 1, then

|∇ku(x)| . χBn−1
2

(x′)χ(L,∞)(x1)

k+1∑
j=1

∫ ∞
x1

∫ ∞
sj

∫ ∞
sj+1

· · ·
∫ ∞
sm−1

f(sm) dsm · · · dtj(4.41)
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= χBn−1
2

(x′)χ(L,∞)(x1)
k+1∑
j=1

∫ ∞
x1

f(sm)
(sm − x1)m−j

(m− j)!
dsm

. χBn−1
2

(x′)χ(L,∞)(x1)
k+1∑
j=1

∫ ∞
x1

f(sm)sm−jm dsm

. χBn−1
2

(x′)χ(L,∞)(x1)

∫ ∞
x1

f(s)sm−1 ds for a.e. x ∈ Rn

and, similarly,

(4.42) |∇mu(x)| . χBn−1
2

(x′)χ(L,∞)(x1)

(∫ ∞
x1

f(s)sm−1 ds+ f(x1)

)
for a.e. x ∈ Rn .

Now, observe that, if a function w ∈M+(Rn) has the form

w(x) = g(x1)χBn−1
N

(x′) for a.e. x ∈ Rn,

for some g ∈M+(R) and N > 0, then

|{x ∈ Rn : w(x) > t}| = ωn−1N
n−1|{x1 ∈ R : g(x1) > t}| for t > 0 ,

whence

(4.43) w∗(s) = g∗
(

s

ωn−1Nn−1

)
for s ≥ 0 .

From (4.39)–(4.43) we thus deduce that

(4.44) u∗(s) &

(
χ(2L,∞)( · )

∫ ∞
2( · )

f(τ)τm−1 dτ

)∗ (s
c

)
for s > 0

and

(4.45) |∇mu|∗(s) .
∫ ∞
c s

f(r)rm−1 dr + f∗(c s) for s > 0 ,

for some constant c > 0. Note that here we have made use of (2.1). An application of inequality
(4.24) yields, via (4.44), (4.45) and the boundedness of the dilation operator in rearrangement-invariant
spaces,

(4.46)

∥∥∥∥χ(4L,∞)(s)

∫ ∞
s

f(r)rm−1 dr

∥∥∥∥
U(0,∞)

.

∥∥∥∥∫ ∞
s

f(r)rm−1 dr

∥∥∥∥
X(0,∞)

+ ‖f‖X(0,∞)

for every f ∈ M+(0,∞) with bounded support. Now, if f is any function from M+(0,∞), one can
apply inequality (4.46) with f replaced by the function fχ(0,k), for k ∈ N, and pass to the limit as
k → ∞ to deduce (4.46). Note that property (P3) of function norms plays a role in this argument.
Finally, choosing L = 1

8 in (4.46) and applying Proposition 4.2 tell us that

‖f∗χ(1,∞)‖U(0,∞) . ‖f‖X(0,∞)

for every f ∈M+(0,∞), namely, (4.27). �

Proof of Corollary 3.2. Under assumption (3.7), the function norm ‖ · ‖Z(0,1), defined by (3.3), is
equivalent to ‖ · ‖L∞(0,1), up to multiplicative constants. Indeed,

‖g‖Z′(0,1) =

∥∥∥∥s−1+m
n

∫ s

0
g∗(r) dr

∥∥∥∥
X̃′(0,1)

≤
(∫ 1

0
g∗(r) dr

) ∥∥χ(0,1)(s)s
−1+m

n

∥∥
X′(0,∞)

≤ C‖g‖L1(0,1),
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for some constant C, and for every g ∈ M(0, 1). This chain establishes the embedding L1(0, 1) →
Z ′(0, 1). The converse embedding follows from (P5). Thus Z ′(0, 1) = L1(0, 1), whence Z(0, 1) =
L∞(0, 1). The coincidence of the space Xm

opt(Rn) with (L∞∩X)(Rn) then follows by the very definition
of the former. �

The last proof of this section concerns Theorem 3.3.

Proof of Theorem 3.3. Suppose that conditions (3.10) and (3.11) are in force. By Theorem 3.1,

WmX(Rn)→ (Xm ∩X)(Rn).

Thus, in order to prove (3.9), it suffices to show that

(4.47) (Xm ∩X)(Rn)→ Y (Rn).

Observe that inequality (3.10) can be written in the form∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Ỹ (0,1)

. ‖f‖
X̃(0,1)

for every non-increasing function f : (0, 1)→ [0,∞), where the function norms ‖ · ‖
X̃(0,1)

and ‖ · ‖
Ỹ (0,1)

are defined as in (2.3). By the optimality of the space Z(0, 1) in inequality (4.1), one has that

Z(0, 1)→ Ỹ (0, 1),

whence

(4.48) ‖g∗χ(0,1)‖Y (0,∞) . ‖g∗‖Z(0,1)

for any g ∈M+(0,∞). Owing to (4.48) and (3.11),

‖u‖(Xm∩X)(Rn) = ‖u‖X(Rn) + ‖u‖Xm(Rn) = ‖u∗‖X(0,∞) + ‖u∗‖Xm(0,∞) = ‖u∗‖X(0,∞) + ‖u∗‖Z(0,1)

& ‖u∗χ(1,∞)‖X(0,∞) + ‖u∗χ(0,1)‖Y (0,∞) ≥ ‖u∗‖Y (0,∞) = ‖u‖Y (Rn)

for any u ∈ (Xm ∩X)(Rn). Inequality (4.47) is thus established.
Conversely, assume that embedding (3.9) holds. Owing to the optimality of the rearrangement-

invariant target norm Xm
opt(Rn) in (3.1),

(Xm ∩X)(Rn)→ Y (Rn) .

By (3.4), the latter embedding implies that

(4.49) ‖f‖Y (0,∞) . ‖f‖X(0,∞) + ‖f∗‖Z(0,1)

for any f ∈M+(0,∞). In particular, applying this inequality to functions f of the form g∗χ(0,1), and
making use of Proposition 4.1 tell us that

‖g∗χ(0,1)‖Y (0,∞) . ‖g∗χ(0,1)‖X(0,∞) + ‖g∗‖Z(0,1) = ‖g∗‖
X̃(0,1)

+ ‖g∗‖Z(0,1) . ‖g∗‖Z(0,1).

In particular, ∥∥∥∥χ(0,1)(s)

∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Y (0,∞)

.

∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Z(0,1)

for every f ∈M+(0,∞). Since, by (4.1),∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
Z(0,1)

. ‖f‖
X̃(0,1)

= ‖χ(0,1)f‖X(0,∞)

for any non-increasing function f : (0,∞)→ [0,∞), inequality (3.10) follows. On the other hand, on
applying (4.49) to functions of the form f∗χ(1,∞), we obtain

‖f∗χ(1,∞)‖Y (0,∞) . ‖f∗χ(1,∞)‖X(0,∞) + f∗(1−)‖1‖Z(0,1)

. ‖f∗χ(1,∞)‖X(0,∞) + f∗(1−)‖χ(0,1)‖X(0,∞) . ‖f‖X(0,∞),
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namely (3.11). �

5. Proofs of Theorems 3.5, 3.9 and 3.11

The proofs of our results about Orlicz-Sobolev embeddings require a couple of preliminary lemmas.

Lemma 5.1. Let F and G be Young functions. Assume that there exist constants t0 > 0 and c > 0
such that

F (t) ≤ G(c t) if 0 ≤ t ≤ t0.
Let L ≥ 0. Then

(5.1) ‖f∗‖LF (L,∞) ≤ max
{
f∗(L)/t0, c ‖f∗‖LG(L,∞)

}
for every f ∈M(0,∞). In particular,

(5.2) (LG ∩ L∞)(0,∞)→ LF (0,∞).

Proof. If f∗(L) = 0, then f∗ = 0 in (L,∞), and (5.1) holds trivially. Since the case when f∗(L) =∞
is trivial as well, we can in fact assume that f∗(L) ∈ (0,∞). On replacing f with f

f∗(L) , we may

suppose that f∗(L) = 1. Let

λ = max
{

1/t0, c ‖f∗‖LG(L,∞)

}
.

Then, ∫ ∞
L

F

(
f∗(t)

λ

)
dt ≤

∫ ∞
L

G

(
c f∗(t)

λ

)
dt ≤

∫ ∞
L

G

(
f∗(t)

‖f∗‖LG(L,∞)

)
dt ≤ 1 ,

and hence

‖f∗‖LF (L,∞) ≤ max
{

1/t0, c ‖f∗‖LG(L,∞)

}
.

Inequality (5.2) is a consequence of (5.1), applied with L = 0, since ‖f‖L∞(0,∞) = f∗(0), and

‖f‖(LG∩L∞)(0,∞) ' max
{
‖f∗‖LG(0,∞), ‖f‖L∞(0,∞)

}
.

�

Lemma 5.2. Let F and G be Young functions such that

F dominates G near infinity.

Assume that the function H, defined as

H(t) =

{
G(t) if t ∈ [0, 1]

F (t) if t ∈ (1,∞) ,

is a Young function. Then

(5.3) ‖f∗‖LF (0,1) + ‖f∗‖LG(0,∞) ' ‖f∗‖LH(0,∞)

for every f ∈M(0,∞).

Proof. Define the rearrangement-invariant function norm ‖ · ‖X(0,∞) as

‖f‖X(0,∞) = ‖f∗‖LF (0,1) + ‖f∗‖LG(0,∞)

for f ∈M+(0,∞). Thanks to [4, Theorem 1.8, Chapter 1], equation (5.3) will follow if we show that

X(0,∞) = LH(0,∞)

as a set equality. Assume first that f ∈ X(0,∞). We have that

‖f∗‖LH(0,∞) ≤ ‖f∗‖LH(0,1) + ‖f∗‖LH(1,∞) . ‖f∗‖LF (0,1) + ‖f∗‖LH(1,∞) ,(5.4)
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where the second inequality holds sinceH is equivalent to F near infinity. By Lemma 5.1, ‖f∗‖LH(1,∞) <

∞ if f ∈ LG(0,∞). Thus, equation (5.4) implies that f ∈ LH(0,∞). Suppose next that f ∈ LH(0,∞).
Then

‖f∗‖LF (0,1) + ‖f∗‖LG(0,∞) ≤ ‖f∗‖LF (0,1) + ‖f∗‖LG(0,1) + ‖f∗‖LG(1,∞)(5.5)

. ‖f∗‖LF (0,1) + ‖f∗‖LG(1,∞)

. ‖f∗‖LH(0,1) + ‖f∗‖LG(1,∞) ,

where the second inequality holds since F dominates G near infinity, and the third one since F and
H agree near infinity. Since f ∈ LH(0,∞), then f ∈ LG(1,∞) by Lemma 5.1. Thus, the right-hand
side of (5.5) is finite, whence f ∈ X(0,∞). �

The main ingredients for a proof of Theorem 3.9 are now at our disposal.

Proof of Theorem 3.9. It suffices to show that

(5.6) ‖f‖(LA)mopt(0,∞) ' ‖v f∗‖LE(0,∞)

for f ∈ M+(0,∞). The sharp Orlicz-Sobolev embedding theorem on domains with finite measure
asserts that the optimal rearrangement-invariant function norm ‖ · ‖Z(0,1) in inequality (4.1), defined

as in (3.3) with X(0,∞) = LA(0,∞), obeys

(5.7) ‖f‖Z(0,1) = ‖s−
m
n f∗(s)‖

LÂ(0,1)

for f ∈M+(0, 1) [15, Theorem 3.7] (see also [14] for the case when m = 1). Hence, owing to Theorem
3.1,

‖f‖(LA)mopt(0,∞) = ‖s−
m
n f∗(s)‖

LÂ(0,1)
+ ‖f∗‖LA(0,∞)

for f ∈M+(0,∞). Thus, equation (5.6) will follow if we show that

(5.8) ‖s−
m
n f∗(s)‖

LÂ(0,1)
+ ‖f∗‖LA(0,∞) ' ‖v(s)f∗(s)‖LE(0,∞)

for f ∈M+(0,∞). Since the two sides of (5.8) define rearrangement-invariant function norms, by [4,
Theorem 1.8, Chapter 1] it suffices to prove that the left-hand side of (5.8) is finite if and only if the
right-hand side is finite. Assume that the left-hand side of (5.8) is finite for some f ∈M+(0,∞). We
have that

‖v(s)f∗(s)‖LE(0,∞) ≤ ‖v(s)f∗(s)‖LE(0,1) + ‖v(s)f∗(s)‖LE(1,∞)

= ‖s−
m
n f∗(s)‖LE(0,1) + ‖f∗‖LE(1,∞)

. ‖s−
m
n f∗(s)‖

LÂ(0,1)
+ ‖f∗‖LE(1,∞) ,

where the second inequality holds inasmuch as E and Â are equivalent near infinity. By Lemma 5.1,
‖f∗‖LE(1,∞) <∞, since we are assuming that ‖f∗‖LA(1,∞) <∞. Therefore, ‖v(s)f∗(s)‖LE(0,∞) <∞.

Suppose next that the right-hand side of (5.8) is finite. Then∥∥∥s−mn f∗(s)∥∥∥
LÂ(0,1)

+ ‖f∗‖LA(0,∞) ≤
∥∥∥s−mn f∗(s)∥∥∥

LÂ(0,1)
+ ‖f∗‖LA(0,1) + ‖f∗‖LA(1,∞)

.
∥∥∥s−mn f∗(s)∥∥∥

LÂ(0,1)
+
∥∥∥s−mn f∗(s)∥∥∥

LÂ(0,1)
+ ‖v(s)f∗(s)‖LA(1,∞)

. ‖v(s)f∗(s)‖LE(0,1) + ‖v(s)f∗(s)‖LA(1,∞) ,

where the second inequality holds by equation (5.7) and Proposition 4.1, and the last one since E and

Â are equivalent near infinity. Inasmuch as v f∗ ∈ LE(1,∞), one has that v f∗ ∈ LA(1,∞), by Lemma

5.1. Thus, ‖s−
m
n f∗(s)‖

LÂ(0,1)
+ ‖f∗‖LA(0,∞) <∞. �

Theorem 3.5 relies upon a specialization of the reduction principle of Theorem 3.3 to Orlicz spaces.
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Proposition 5.3 (Reduction principle for Orlicz spaces). Let A and B be Young functions.
Then

Wm,A(Rn)→ LB(Rn)

if and only if there exists a constant C such that

(5.9)

∥∥∥∥∫ 1

s
f(r)r−1+m

n dr

∥∥∥∥
LB(0,1)

≤ C‖f‖LA(0,1)

for every function f ∈M(0, 1), and

(5.10) A dominates B near 0.

Proof. By Theorem 3.3 and Remark 3.4, it suffices to show that condition (5.10) is equivalent to the
inequality

(5.11) ‖f‖LB(1,∞) ≤ C‖f‖LA(0,∞)

for some constant C, and for every non-increasing function f : (0,∞) → [0,∞). Assume that (5.10)
holds. Given any function f of this kind, we have that

‖f‖LA(0,1) ≥ f(1)/A−1(1).

Hence, owing to assumption (5.10), Lemma 5.1 implies that

‖f‖LB(1,∞) . max{f(1), ‖f‖LA(0,∞)} . ‖f‖LA(0,∞).

Inequality (5.11) is thus established.
Conversely, assume that inequality (5.11) is in force. Fix r > 1. An application of this inequality with
f = χ(0,r) yields

‖1‖LB(1,r) ≤ C ‖1‖LA(0,r) for r > 1,

namely

1

B−1( 1
r−1)

≤ C

A−1(1
r )

for r > 1.

Hence, (5.10) follows. �

Proof of Theorem 3.5. Since Aopt is equivalent to A n
m

near infinity, by [13, Inequality (2.7)] inequality

(5.9) holds with B = Aopt. Moreover, since Aopt is equivalent to A near zero, condition (5.10) is
satisfied with B = Aopt. Proposition 5.3 thus tells us that embedding (3.14) holds.
On the other hand, if B is any Young function such that Wm,A(Rn)→ LB(Rn), then, by Proposition
5.3, conditions (5.9) and (5.10) are fulfilled. The former ensures that A n

m
dominates B near infinity

– see [15, Proof of Theorem 3.1]. The latter tells us that A dominates B near 0. Altogether, Aopt

dominates B globally, whence LAopt(Rn)→ LB(Rn). �

Proof of Theorem 3.11. One has that (Lp,q(Rn))′ = Lp
′,q′(Rn), up to equivalent norms – see e.g. [4,

Chapter 4, Theorem 4.7]. Since
(
f̃
)∗

= f∗ for every f ∈M+(0, 1),

‖f‖
(̃Lp,q)

′
(0,1)
' ‖f‖Lp′,q′ (0,1).

Thus, on denoting by ‖·‖Z(0,1) the rearrangement-invariant function norm associated with ‖·‖Lp,q(0,∞)

as in (3.3), one has that

‖f‖Z′(0,1) ' ‖s
m
n f∗∗(s)‖Lp′,q′ (0,1)
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for f ∈M+(0, 1). Note that here there is some slight abuse of notation, since the functionals ‖·‖
L̃p,q(0,1)

and ‖ · ‖
L̃p,q

′
(0,1)

are, in general, only equivalent to rearrangement-invariant function norms. As shown

in [17, Proof of Theorem 5.1],

‖f‖Z(0,1) '


‖s

1
p
−m
n
− 1
q f∗(s)‖Lq(0,1) if p = q = 1, or 1 < p < n

m and 1 ≤ q ≤ ∞,
‖s−

1
q (log 2

s )−1f∗(s)‖Lq(0,1) if p = n
m and 1 < q ≤ ∞,

‖f∗‖L∞(0,1) if p > n
m , or p = n

m and q = 1, or m > n

for every f ∈M+(0, 1). By (3.5),

‖u‖(Lp,q)mopt(Rn) ≈ ‖u‖(Lp,q)m(Rn) + ‖u‖Lp,q(Rn) = ‖u∗‖Z(0,1) + ‖u∗‖Lp,q(0,∞)

= ‖u∗‖Z(0,1) + ‖s
1
p
− 1
q u∗(s)‖Lq(0,∞).

Hence, the conclusion follows, via an analogous argument as in the proof of equation (5.8).
�
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