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We prove that hereditarily Lindelöf space which is Fσδ in some compactification 
is absolutely Fσδ . In particular, this implies that any separable Banach space is 
absolutely Fσδ when equipped with the weak topology.
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1. Introduction

Throughout the paper, all spaces will be Tychonoff. Central to the topic of our paper is the following 
definition:

Definition 1.1. Let X be a Tychonoff topological space. We say that X is an Fσδ space if there exists a 
compactification cX of X, such that X ∈ Fσδ(cX).

We say that X is an absolute Fσδ space (or that X is absolutely Fσδ) if X ∈ Fσδ(cX) holds for every 
compactification cX of X.

Note that X is absolutely Fσδ if and only if X ∈ Fσδ(Y ) holds for every Tychonoff topological space Y
in which X is embedded.
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If, in the above definition, we replace the class Fσδ by Gδ, we get the definition of the well known 
concept of Čech-completeness – however, in such a case the situation is less complicated, because every 
Čech-complete space is automatically absolutely Gδ. Internal characterization Čech-complete spaces was 
given by Zdeněk Frolík, who also gave a characterization of Fσδ spaces in terms of complete sequences of 
covers (see Definition 4.3 below). He then asked for a description of those spaces which are absolutely Fσδ

(Problem 1 in [5]), and this problem is still open.
However, Frolík did not know whether there actually exist non-absolute Fσδ spaces. This part of the 

problem was solved later by Talagrand, who found an example of such a space ([12]). Thus, we formulate 
Frolík’s problem as follows:

Problem 1.2. Among all Fσδ spaces, describe those which are absolutely Fσδ.

If we are unable to completely determine the answer to Problem 1.2, the next best thing to do is to find 
a partial answer to Problem 1.3 for as many spaces as possible.

Problem 1.3. Let X be a (possibly non-absolute) Fσδ space. Describe those compactifications of X in which 
it is Fσδ.

In Section 3.2, we give a partial answer to Problem 1.3 by showing that if a X is Fσδ in some compactifica-
tion cX, it is automatically Fσδ in all larger compactifications (which is easy) and also in all compactification 
which are not much smaller than cX (see Corollary 3.4 for the details).

In Proposition 4.5 we give a partial answer to Problem 1.2 by finding a sufficient condition for a space 
to be absolutely Fσδ. This condition is similar in flavor to Frolík’s characterization of Fσδ spaces. Applying 
this result, we get that hereditarily Lindelöf Fσδ spaces are absolutely Fσδ (Theorem 4.1) and that separable 
Banach spaces are absolutely Fσδ in the weak topology (Corollary 4.2).

In the rest of the introductory section we collect some known results and background information.
We could adapt Definition 1.1 for the lower classes of Borel hierarchy, where we have the following 

standard results. Their proof consists mostly of using the fact that continuous image of a compact space is 
compact.

Remark 1.4. Let X be a topological space.

1. X is absolutely closed ⇐⇒ X is compact.
2. X is absolutely Fσ ⇐⇒ X is σ-compact.
3. X is absolutely open ⇐⇒ X is locally compact.
4. X is absolutely Gδ ⇐⇒ X is Čech-complete.

In the first two cases, X being closed (Fσ) in some compactification automatically implies that X is closed 
(Fσ) in every Tychonoff space where it is embedded. For open and Gδ spaces, we only get that X is open 
(Gδ) in those Tychonoff spaces where it is densely embedded.

As shown in [12], not every Fσδ space is absolutely Fσδ. This means that the class of Fσδ sets is the 
first one for which it makes sense to study Problem 1.3, which is one of the reasons for our interest in this 
particular class. However, Talagrand’s is the only result of this kind (as far as the authors are aware of), 
and not much else is known about ‘topologically’ absolute Fσδ spaces. In [9], topological absoluteness is 
studied for general F-Borel classes, providing more examples based on Talagrand’s construction and also 
some theoretical results.

Several authors have investigated slightly different notions of absoluteness for Fσδ spaces. Recall that in 
separable metrizable setting, Fσδ sets coincide with alg (F ) sets (where alg (F ) is the algebra generated 
σδ



46 O. Kalenda, V. Kovařík / Topology and its Applications 233 (2018) 44–51
by closed sets). As shown in [7], the class of alg (F )σδ sets is absolute (in the sense that if a set is in 
alg (F )σδ (cX) for some compactification cX, it is automatically of this same class in every Tychonoff space 
where it is embedded).

In [11] and [8], the authors study metric spaces which are absolutely Fσδ ‘in a metric sense’ – that is, 
X ∈ Fσδ(Y ) for every metrizable space Y in which X is embedded. In [8], the authors give a characterization 
of ‘metric absoluteness’ for Fσδ spaces in terms of complete sequences of covers – namely that X is absolutely 
Fσδ in the metric sense if and only if it has a complete sequence of σ-discrete closed covers.

Unfortunately, this result is not useful in our setting, because Talagrand’s space is an example of non-
metrizable space, which does have such a complete sequence, but it is not absolutely Fσδ (in our – topological 
– sense).

In [9], it is shown that if a metric space is separable, its complexity is automatically absolute even in the 
topological sense. For Fσδ spaces, this is a special case of Theorem 4.1.

2. Compactifications

We recall the standard definitions of compactifications and their partial ordering. By compactification
of a topological space X we understand a pair (cX, ϕ), where cX is a compact space and ϕ is a home-
omorphic embedding of X onto a dense subspace of cX. Symbols cX, dX and so on will always denote 
compactifications of X.

Compactification (cX, ϕ) is said to be larger than (dX, ψ), if there exists a continuous mapping f : cX →
dX, such that ψ = f ◦ϕ. We denote this as cX � dX. Recall that for a given T3 1/2 topological space X, its 
compactifications are partially ordered by � and Stone–Čech compactification βX is the largest one.

Often, we encounter a situation where X ⊂ cX and the corresponding embedding is identity. In this 
case, we will simply write cX instead of (cX, id|X). Lastly, whenever we write symbols cX or dX, we will 
automatically assume that they denote some compactifications of X. Much more about this topic can be 
found in many books – for a more recent one, see for example [3].

In the introduction, we defined the notion of being an Fσδ space and an absolute Fσδ space. Having defined 
the partial order � on the class of compactifications of X, we note the basic facts related to Problem 1.3. 
The proof of this remark consists of using the fact that continuous preimage of an Fσδ set is an Fσδ set.

Remark 2.1. For a topological space X, we have the following:

• X is an Fσδ space ⇐⇒ X ∈ Fσδ(βX);
• X is an absolute Fσδ space ⇐⇒ X ∈ Fσδ(cX) for every cX;
• X ∈ Fσδ(dX), cX � dX =⇒ X ∈ Fσδ(cX).

Notation 2.2. Let X be a topological space, suppose that two of its compactifications satisfy dX 	 cX and 
that ϕ : cX → dX is the mapping which witnesses this fact. We denote

F (cX, dX) :=
{
ϕ−1 (x)

∣∣ x ∈ dX, ϕ−1 (x) is not a singleton
}
.

In this sense, every compactification dX smaller than cX corresponds to some disjoint system F of 
compact subsets of cX \ X. Conversely, some disjoint systems of compact subsets of cX \ X correspond 
to quotient mappings, which correspond to compactifications smaller than cX. Not every such system F
corresponds to a compactification, but surely every finite (disjoint, consisting of compact subsets of cX \X) 
F does.

3. Fσδ spaces

In this section, we will list some results related to Fσδ spaces.
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3.1. Banach spaces

Unless otherwise specified, a Banach space X (resp. its second dual), will always be equipped with weak 
(resp. w�) topology. In [1], a Banach space X is said to be Fσδ if it is an Fσδ subset of X��. Note that the 
space X�� is always σ-compact, so it is Fσ in βX��. Consequently, any Fσδ Banach space is automatically 
an Fσδ space (in the sense of Definition 1.1).

An important class of Banach spaces are the spaces which are weakly compactly generated (WCG). 
Recall that a Banach space X is said to be WCG, if there exists a set K ⊂ X which is weakly compact, 
such that span(K) is dense in (X, || · ||). Clearly all separable spaces and all reflexive spaces are WCG. The 
canonical example of non-separable non-reflexive WCG space is the space c0(Γ) for uncountable index set Γ. 
For more information about WCG spaces, see for example [2]. The reason for our interest in WCG spaces 
is the following result ([13, Theorem 3.2]):

Proposition 3.1. Any WCG space is an Fσδ Banach space.

In fact, even every subspace of a WCG space is Fσδ in its second dual. Talagrand has found an example 
of an Fσδ Banach space which is not a subspace of a WCG space [13]. This space belongs to a more general 
class of weakly K-analytic spaces. A problem which had been open for a long time is whether every weakly 
K-analytic space is an Fσδ Banach space. A counterexample has been found in [1] (as well as some sufficient 
conditions for a weakly K-analytic space to be an Fσδ Banach space). The problem which still remains 
unsolved is whether weakly K-analytic spaces are topologically Fσδ.

3.2. Topological spaces

Proposition 3.2. Suppose that X ∈ Fσδ (cX) and dX 	 cX. Then X ∈ Fσδ (dX) holds if and only if there 
exists a sequence (Hn)n of Fσ subsets of cX, such that

(∀F ∈ F (cX, dX)) (∃n ∈ N) : X ⊂ Hn ⊂ cX \ F.

Proof. Denote by ϕ the map witnessing that dX 	 cX.
=⇒ : Assume that X =

⋂
Fn, where the sets Fn are Fσ in dX. Denote Hn := ϕ−1(Fn). Clearly, Hn ⊂ cX

are Fσ sets containing X. Let F be F (cX, dX), that is, F = ϕ−1(y) for some y ∈ dX\X. By the assumption, 
we have X ⊂ Fn ⊂ dX \ {y} for some n ∈ N. By definition of ϕ, we get the desired result:

X = ϕ−1 (X) ⊂ ϕ−1 (Fn) ⊂ ϕ−1 (dX \ {y}) = ϕ−1 (X) \ ϕ−1 (y) = X \ F.

⇐=: Let the sequence of sets Hn ⊂ cX be as in the proposition. We know that X =
⋂
Fn for some Fσ

sets Fn. We now receive sets F ′
n := ϕ(Fn) and H ′

n := ϕ(Hn), n ∈ N, all of which are Fσ in dX. Clearly, we 
have

X ⊂
⋂

F ′
n ∩

⋂
H ′

n.

For the converse inclusion, let y ∈ dX \ X. If ϕ−1(y) is a singleton, we have ϕ−1(y) ⊂ cX \ Fn for some 
n ∈ N, and therefore y /∈ ϕ(Fn) = F ′

n. If ϕ−1(y) is not a singleton, then ϕ−1(y) ∈ F (cX, dX), so there 
exists some n ∈ N, such that Hn ⊂ X \ ϕ−1(y). In this case, we have y /∈ ϕ(Hn) = H ′

n. �
Since any Fσδ space is Lindelöf, we can make use of the following lemma, which follows immediately from 

[10, Lemma 14].
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Lemma 3.3. Let X be a Lindelöf subspace of a compact space L. Then for every compact set K ⊂ L \ X, 
there exists H ∈ Fσ (L), such that X ⊂ H ⊂ L \K.

Once we have Lemma 3.3, Proposition 3.2 yields the following corollary, which gives a partial answer to 
Problem 1.3:

Corollary 3.4. Suppose that X is an Fσδ subspace of cX and dX 	 cX. Then X is Fσδ in dX as well, 
provided that the family F (cX, dX) is at most countable.

In particular, this implies that there exists no such thing as a “minimal compactification in which X
is Fσδ” (unless, of course, X is locally compact).

4. Hereditarily Lindelöf spaces

In this section, we present the following main result:

Theorem 4.1. Every hereditarily Lindelöf Fσδ space is absolutely Fσδ.

Note that every Fσδ space is Lindelöf (because it is K-analytic), but the converse implication to Theo-
rem 4.1 does not hold – that is, not every absolutely Fσδ space is hereditarily Lindelöf. Indeed, any compact 
space which is not hereditarily normal is a counterexample. The proof of Theorem 4.1 will require some 
technical preparation, but we can state an immediate corollary for Banach spaces:

Corollary 4.2. Every separable Banach space is absolutely Fσδ (in the weak topology).

Proof. By Proposition 3.1, every separable Banach space X is Fσδ. The countable basis of the norm topology 
of X is a network for the weak topology. The proposition follows from the fact that spaces with countable 
network are hereditarily Lindelöf. �

We will need the notion of complete sequence of covers:

Definition 4.3 (Complete sequence of covers). Let X be a topological space. Filter on X is a family of subsets 
of X, which is closed with respect to supersets and finite intersections and does not contain the empty set. 
A point x ∈ X is said to be an accumulation point of a filter F on X, if each neighborhood of x intersects 
each element of F .

A sequence (Fn)n∈N
of covers of X is said to be complete, if every filter which intersects each Fn has an 

accumulation point in X.

The connection between this notion and our topic is explained by Proposition 4.4. Note that a cover of 
X is said to be closed (open, Fσ, disjoint) if it consists of sets which are closed in X (open, Fσ, disjoint). As 
a slight deviation from this terminology, a cover of X is said to be countable if it contains countably many 
elements.

Proposition 4.4. Any topological space X satisfies

1. X is Čech-complete ⇐⇒ X has a complete sequence of open covers,
2. X is Fσδ ⇐⇒ X has a complete sequence of countable closed covers

⇐⇒ X has a complete sequence of countable Fσ covers,
3. X is K-analytic ⇐⇒ X has a complete sequence of countable covers.
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The equivalence between first and second part of 2. is easy, and follows from Lemma 4.6. The remaining 
assertion are due to Frolík ([4], [5, Theorem 7] and [6, Theorem 9.3]). To get our main result, we will prove 
a statement which has a similar flavor:

Proposition 4.5. Any topological space with a complete sequence of countable disjoint Fσ covers is abso-
lutely Fσδ.

We will need the following observation:

Lemma 4.6. Let X be a topological space.

1. If (Fn)n∈N
is a complete sequence of covers on X and for each n ∈ N, the cover F ′

n is a refinement 
of Fn, then the sequence (F ′

n)n∈N
is complete.

2. If X has a complete sequence of countable closed (open, Fσ) covers, then it also has a complete sequence 
of countable closed (open, Fσ) covers (Fn)n∈N

, in which each Fn+1 refines Fn.

Proof. The first part follows from the definition of complete sequence of covers of X. For the second part, 
let (F ′

n)n∈N
be a complete sequence of covers of X. We define the new sequence of covers as the refinement 

of (F ′
n)n∈N

, setting F1 := F ′
1 and

Fn+1 := F ′
n+1 ∧ Fn := {F ′ ∩ F | F ′ ∈ F ′

n, F ∈ Fn+1} .

Clearly, the properties of being countable and closed (or Fσ) are preserved by this operation. �
The main reason for the use of complete sequences of covers is the following lemma:

Lemma 4.7. Let (Fn)n∈N
be a complete sequence of covers of X and cX a compactification of X. If a 

sequence of sets Fn ∈ Fn satisfies F1 ⊃ F2 ⊃ . . . , then 
⋂

n∈N
Fn

cX ⊂ X.

Proof. Fix x ∈
⋂

n∈N
Fn

cX . We observe that the family

B := {U ∩ Fn| U ∈ U (x) , n ∈ N}

is, by hypothesis, formed by nonempty sets and closed under taking finite intersections, therefore it is a 
basis of some filter F (note that this is the only step where we use the monotonicity of (Fn)n). Since every 
Fn belongs to both F and Fn, F must have some accumulation point y in X. If x and y were distinct, 
they would have some neighborhoods U and V with disjoint closures. This would imply that V ∈ U (y), 
U ⊃ U ∩ F1 ∈ F and V ∩ U , which contradicts the definition of y being an accumulation point of F . This 
means that x is equal to y and, in particular, x belongs to X. �

The property of being hereditarily Lindelöf will be used in the following way:

Lemma 4.8. Every hereditarily Lindelöf Fσδ space X has a complete sequence of countable disjoint Fσ covers.

Proof. Let (Fn)n be a complete sequence of countable closed covers of X (which exists by Proposition 4.4). 
To get the desired result, it suffices to show that each Fn admits a disjoint Fσ refinement (by 1. in 
Lemma 4.6).

Recall that in a hereditarily Lindelöf Tychonoff space, open sets are Fσ and consequently, closed sets 
are Gδ. Moreover, in any topological space, a countable cover by sets which are both Fσ and Gδ has a disjoint 
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countable refinement by sets of the same type (this is standard – simply enumerate the cover as {Cn| n ∈ N}
and define the refinement as {C̃n| n ∈ N}, where C̃n := Cn \(C1∪· · ·∪Cn−1)). From these two observations, 
the existence of the desired refinements is immediate. �

In order to get Theorem 4.1, it remains to prove Proposition 4.5:

Proof of Proposition 4.5. Let (Dn)n be a complete sequence of countable disjoint Fσ covers of X. Without 
loss of generality, we can assume (by Lemma 4.6) that each Dn+1 refines Dn. Also, let cX be a compactifi-
cation of X. Since cX is fixed, all closures will automatically be taken in this compactification.

We enumerate each cover as Dn = {Dn
m| m ∈ N} and write each of its elements as countable union of 

closed sets: Dn
m =

⋃
i D

n
m,i. We set D̃n :=

{
Dn

m,i| m, i ∈ N
}

and D̃ :=
⋃

n D̃n.
It is clear that X ⊂

⋂
n

⋃{
D| D ∈ D̃n

}
. Note that the set on the right hand side is Fσδ. The equality 

does not, in general, hold, but we can modify the right hand side using Lemma 3.3.
Indeed, suppose that x belongs to 

⋂
n

⋃{
D| D ∈ D̃n

}
, but not to X. By definition, such x satisfies 

x ∈ Dn
mn,in

⊂ Dn
mn

for some sequences (mn)n and (in)n. However, (Dn)n is a complete sequence of covers, 
so by Lemma 4.7 D1

m1
⊃ D2

m2
⊃ . . . does not hold. Since each Dn+1 refines Dn, the sets Dn+1

mn+1
and Dn

mn

must be disjoint for some n.
In particular, any such x satisfies x ∈ D ∩ E for some disjoint sets D, E ∈ D̃. Since both D and E are 

closed in X, we have D ∩E ⊂ cX \X. This means we can use Lemma 3.3 to obtain an Fσ subset HD,E of 
cX satisfying X ⊂ HD,E ⊂ cX \

(
D ∩ E

)
. We claim that

X =
⋂
n

⋃{
D| D ∈ D̃n

}
∩
⋂{

HD,E | D,E ∈ D̃ disjoint
}
.

By definition of HD,E , the set on the right side contains X, and the opposite inclusion follows from the 
observation above. Since D̃ is countable, the right hand side is Fσδ. This proves that X ∈ Fσδ (cX), which 
completes the proof (and also the whole section). �
5. Conclusion

We have shown that being hereditarily Lindelöf is a sufficient condition for an Fσδ space to be absolutely 
Fσδ – this is a fairly useful condition for applications. The problem of finding the description of absolute Fσδ

spaces remains yet unsolved, but we have gotten one step closer to the characterization: By Frolík’s result, 
absolutely Fσδ space must have a complete sequence of countable Fσ covers. If a space has such a sequence of 
covers which are also disjoint, then it must be absolutely Fσδ. Therefore, if the desired characterization can 
be formulated in terms of complete sequences of covers, it must be something between these two conditions.
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