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Insertion of C1¥ or Cy.2 Functions
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Abstract. We prove that for a normed linear space X, if f; : X — R is
continuous and semiconvex with modulus w, fo : X — R is continuous and
semiconcave with modulus w and f; < f, then there exists f € C1%(X) such
that f1 < f < fs. Using this result we prove a generalization of Ilmanen lemma
(which deals with the case w(t) = t) to the case of an arbitrary nontrivial
modulus w. This generalization (where a Cllo’f function is inserted) gives a
positive answer to a problem formulated by A. Fathi and M. Zavidovique in
2010.

Keywords: Ilmanen lemma, semiconvex function with general modulus, C1*
function

Faculty of Mathematics and Physics, Sokolovska 83, 186 75 Praha 8, Karlin,
Czechia

1 Introduction

Suppose A C R™ is a convex set. We say that f : A — R is classically semiconvex
if there exists C' > 0 such that the function z — f(x)+ C|x|?, z € A, is convex.
We say that f : A — R is classically semiconcave if — f is classically semiconvex.
T. Ilmanen proved the following result (so called Ilmanen lemma) [I, proof of
4F from 4G, p. 199].

Ilmanen lemma. Let G C R" be an open set and f1, fo : G — R. Suppose that
f1 < f2 and that for every a € G there exists r > 0 such that U := U(a,r) C G,
f1 lu Is classically semiconvex and fo |y is classically semiconcave. Then there
exists f € Cl’l(G) such that fi < f < fs.

loc

Alternative proofs of Ilmanen lemma can be found in [B] and [FZ].

We will work with semiconvex, resp. semiconcave, functions with general
modulus (see Definition 2.2 and cf. [CS, Definition 2.1.1]). Note that the clas-
sically semiconvex functions coincide with semiconvex functions with modulus
w(t) = Ct where C > 0.

A. Fathi and M. Zavidovique ([FZ, Problem 5.1]) asked if Ilmanen lemma
can be generalized to the case of a general modulus w.

More precisely, suppose that G C R™ is an open set, w a modulus and
f1, f2 : G — R are continuous functions such that f; < fo and for every a € G
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there exist C,r > 0 such that f1 [y(q,r) is semiconvex with modulus Cw and
f2 [U(a,r) 18 semiconcave with modulus Cw. Then the question is whether there

exists f € CLY(G) with fi < f < fo.

We prove (see Theorem 4.5) that the answer is positive if the modulus w
satisfies liminf; ,o+ w(t)/t > 0 (even if G is an open subset of a Hilbert space).
Note (see implication (2) below) that if liminf; 04 w(t)/t = 0, then fi, resp.
fa, is convex, resp. concave, on every convex A C G. In such a case it is well
known that the answer is negative for many open G.

The proof of Theorem 4.5 is based on Corollary 3.2 which is a special case
of Theorem 3.1 (which has a short and quite simple proof).

Corollary 3.2 can be equivalently reformulated (without using the symbol
SC¥(X)) in the following way. Suppose that X is a normed linear space, w a
modulus and f1, fo : X — R are continuous functions such that f; is semiconvex
with modulus w, fs is semiconcave with modulus w and f; < fa. Then there
exists f € C1¥(X) such that f; < f < fo.

So, Corollary 3.2 generalizes [B, Theorem 2].

2 Preliminaries
If X is a normed linear space, then we set U(a,r) := {z € X : ||z — a|| < r},
ac€X,r>0,and alsosupp f :={x € X : f(z) #0}, f: X = R.

Notation 2.1. We denote by M the set of all w : [0,00) — [0,00) which are
non-decreasing and satisfy lim; o4 w(t) = 0.

Definition 2.2. Let X be a normed linear space, A C X a convex set and

w € M.

e We say that f: A — R is semiconvex with modulus w if

fAz+ (1 =Ny) <Af(z) + (1 =) f(y) + A0 = Mz = yllw(llz —yl)
for every z,y € A and X € [0,1].

e We say that f : A — R is semiconcave with modulus w if —f is semiconvex
with modulus w.

e We denote by SC¥(A) the set of all f : A — R which are semiconvex
with modulus Cw for some C > 0. We denote by —SC¥(A) the set of all
f:A— Rsuch that —f € SC¥(A).

If G is an open subset of a normed linear space and w € M, then we denote
by C**(G) the set of all Fréchet differentiable f : G — R such that f’ is
uniformly continuous with modulus Cw for some C' > 0, and we denote by
CL¥(@) the set of all f: G — R which are locally G,

The following lemma is well known and follows directly from the definition

(for (iv) cf. [CS, Proposition 2.1.5]).
Lemma 2.3. Let X, A and w be as in Definition 2.2. Then the following hold.
(i) Let f : A — R. Then f is semiconvex with modulus w if and only if f is

semiconvex with modulus w on every line, i.e. for every z,h € X, ||h| =1,
the function t — f(z +1th), t € {t € R: x +th € A}, is semiconvex with
modulus w.



(ii) Let f : X — R be semiconvex with modulus w and let z € X. Then the
function x — f(z + z), x € X, is semiconvex with modulus w.

(iii) Let fi1, fo : A — R be semiconvex with modulus w, let aq,as € [0,00) and
let ag € R. Then a; f1 + as fo + as is semiconvex with modulus (a1 + ag)w.

(iv) Let S C R” be such that every s € S is semiconvex with modulus w and
f(z) :==sup{s(z) : s € S} € R, x € A. Then the function f is semiconvex
with modulus w.

The notion of semiconvex functions is (up to a multiplicative constant) equiv-
alent to the notion of strongly paraconvex functions (for definition see [R1]).
More precisely, suppose that A is a convex subset of a normed linear space,
f:A—> R we M and set a(t) ;= tw(t), t € [0,00), then (cf. [DZ1, Theorem
4.16])

f € SCY(A) & f is strongly «(-)-paraconvex. (1)

We also have
(f € SCY(A), liminf w(t)/t = O) = f is convex. (2)
t—0+

For this implication see [R1, Proposition 7] (the proof is not quite rigorous but
one can easily correct it) or [DZ1, Corollary 3.6]. Hence we may (and sometimes
will) consider only the case liminf; o4 w(t)/t > 0. Note that for w € M we
have

litrgoigfw(t)/t >0« (Vd €[0,00))(3IM € (0,00))(Vt € [0,d]) t < Mw(t). (3)
We will need the following two propositions. The first one was proved in
[DZ2, Proposition 2.8].

Proposition 2.4. Let I C R be an open interval, w € M and let f : I — R be
continuous. Then the following hold.

(i) If f semiconvex with modulus w, then f' (x) € R for every x € I and
fi(er) = fl(ze) < 2w(we — 1), x1,20 € T2y < o

(i) If fi () € R for every x € I and
() = fi(ze) Sw(ze — 1), 1,22 € T2 < 29,

then f is semiconvex with modulus w.

Proposition 2.5. Let X be a normed linear space, A C X an open convex set
and f € |J,cn SC¥(A). Then the following conditions are equivalent.

(i) f is locally Lipschitz.
(ii) f is continuous.
(iii) f is locally bounded.

Proof. Obviously (i) = (ii) = (iii). If (iii) holds, then (i) holds by (1) and [R1,
Proposition 5]. O



We will need the following theorem whose part (i) is well known. Part (ii)
is essentially known at least in its local version (see [CS, Theorem 3.3.7, p. 60],
[FF, Theorem A.19] and [JTZ, Theorem 6.1]) but the present version is probably
new.

Theorem 2.6. Let X be a normed linear space, A C X an open convex set and
w € M. Then the following hold (where C'(A) denotes the set of all continuous
fiA—=R).

(i) CY¥(A) C C(A)NSC¥(A)N (—=SC¥(A)).
(ii) If A= X or A is bounded, then
Ch(A) = C(A)NSC*(A) N (—=SC¥(A)). (4)

Proof. (i) It follows easily from Lemma 2.3 (i) and [CS, Proposition 2.1.2]. It
can be also deduced from Lemma 2.3 (i) and Proposition 2.4 (ii).

(ii) Let f € C(A)NSC¥(A) N (=SC¥(A)). By Proposition 2.5, f is locally
Lipschitz. Hence f and — f have nonempty Clarke subdifferential at every point
of A (cf. [CLSW, Proposition 1.5, p. 73]). Thus, by (1) and [R2, Theorem 3],
there exists C' > 0 such that for every x € A we can find ¢, 1, € X* with

f@+h) = f(z) = ¢a(h) = =Cllhllw(|[R]), heA-uz,
—f(z+h)+ f(2) = Pa(h) = =Cllhlw([[Rl)), heA-uz.

Adding these two inequalities together and using the standard argument we
obtain that ¢, = —¢,, * € A. Hence for every x € A

[f(z+h) = f(x) = ¢2(h)| < CllRlw([|]), heA-u,
and f'(r) = ¢,. Thus f € C1*(A) by [HJ, Corollary 126, p. 58]. O

Remark 2.7. [HJ, Corollary 126, p. 58] and the proof of Theorem 2.6 show
that (4) holds also for A such that there exists a € X, r > 0 and a sequence
(up,)22 4 in X such that ||u,| =n and U(a + uy,rn) C A for every n € N. But
(4) doesn’t hold for an arbitrary open convex set A ([K, Example 2.10, Remark
2.11]). However, if w(t) =t, t € [0,00), then (4) holds for any open convex A
(K, Theorem 2.9 (iv)]).

3 Insertion of a C'*“ function on the whole space

Here we prove the principal observation of this article. The main idea is based
on the choice of the function s in the proof of Theorem 3.1.

Theorem 3.1. Let X be a normed linear space, fi1, fo : X — R and wy,ws € M.
Suppose that fi is semiconvex with modulus wy, f3 is semiconcave with modulus
wo and f1 < fy. Denote by S the set of all s : X — R which are semiconvex
with modulus wy and satisfy s < fs. Then the function

f(z) :==sup{s(z) :s €S}, zeX,

is semiconvex with modulus wi, semiconcave with modulus wo and satisfies

< f< fe



Proof. Tt is clear that f; < f < f. By Lemma 2.3 (iv), f is semiconvex with
modulus w;. Now we will prove that f is semiconcave with modulus ws.

Let u,v € X and A € [0,1]. Set w := Au+ (1 — A\)v and define a function s
by

s()=Aflz —w+u)+ (1 =N f(zr—w+v)
A= M= ollws(lu o),z € X.

By Lemma 2.3 (ii), (iii), s is semiconvex with modulus Aw; + (1 — Nw; = wy.
Since fs is semiconcave with modulus wy, we have

s(@) S Ma(z —w+u)+ (1= A falz —w+v) = A1 = V) [u = vfjwz(llu — o))
< foAlz—wHu)+ (1= N)(z —w+v)) = fo(z), ze€X.

Hence s € S and consequently s < f. So
FOu+ (1 =XNv) = s(w) = Af(u) + (1= A) f(v) = A1 = NJu = vljwz(([u — v[])-
O

Corollary 3.2. Let X be a normed linear space, w € M, f; € SC¥(X) and
f2 € =SC¥(X). Suppose that f1, fo are continuous and fi; < fa. Then there
exists f € CY*(X) such that f; < f < f.

Proof. By Theorem 3.1 there exists f € SC¥(X) N (—SC¥(X)) such that f; <
f < fa2. Since f1, fo are continuous, f is locally bounded. Hence, by Proposition
2.5, f is continuous and thus, by Theorem 2.6, f € C1*(X) . O

o 1 .
4 Insertion of a Clo’ff function

In this section we will use Corollary 3.2 and partitions of unity to obtain a
version (Theorem 4.5) of Ilmanen lemma which works with locally semiconvex
and locally semiconcave functions defined on an open subset of a Hilbert space.
Recall that Theorem 4.5 gives a positive answer to a problem formulated by A.
Fathi and M. Zavidovique ([FZ, Problem 5.1]).

We will need the following obvious fact.

Fact 4.1. Let X,Y be normed linear spaces, A C X and f: A —-Y. If A is
bounded and f is uniformly continuous with some modulus w € M, then f is
bounded.

Lemma 4.2. Let X be a normed linear space, A C X a bounded open convex
set, w € M, g1 € CY¥(A) and go € SC¥(A). Suppose that g1 > 0, go is
Lipschitz and liminf;_,o4 w(t)/t > 0. Then g; - go € SC¥(A).

Proof. By Fact 4.1, ¢} is bounded and thus, by [HJ, Proposition 71, p. 29], ¢1
is Lipschitz. By the assumptions and Fact 4.1 we can find C' > 0 big enough
such that 0 < g1 < C, |g2| < C, ¢ is uniformly continuous with modulus Cw,
g2 is semiconvex with modulus Cw and g1, go are C-Lipschitz. By (3) there
exists M > 0 such that t < Mw(¢), t € [0,diam(A)]. We will show that g1 - g2
is semiconvex with modulus (2M + 3)C%w.



Let z,h € X, ||h]|=1. Set I :={t € R: z+th € A} and for i = 1,2 define
a function f;(¢) := g;(z + th), t € I. By Lemma 2.3 (i), it is sufficient to show
that fi - fo is semiconvex with modulus (2M + 3)C?w. Since g} is uniformly
continuous with modulus Cw, we easily obtain that fi(¢t) € R for every ¢t € I
and

|f{ tl)ff{(tgﬂ §Cw(t27t1)7 tl,tQ GI,tl StQ.
2

By Lemma 2.3 (i), f2 is semiconvex with modulus Cw and thus, by Proposition
4 (1), (f2).(t) € R for every t € I and
(t

(f2) (1) = (f2)) (t2) < 20w(ta —t1), ti,ta € It <to.

Clearly f1, fo are C-Lipschitz and hence also |f{| < C and |(f2)’,| < C. Thus
(f1- f2)".(t) € R for every t € I and

(frfa) (t1) = (frf2) (t2)
= fi(t) f2(t1) + fr(t1)(f2) (1) — filt2) fa(t2) — fi(ta)(f2) ) (t2)
= fit)(fa(tr) = fa(t2)) + f2(t2)(fi(t1) — fi(t2))
+ (f2)} () (fi(ta) = fr(ta)) + frt2)((f2)) (t1) — (f2)) (t2))
<Oty —t1) + C%w(ty — t1) + C%(ty — t1) + 2C%w(ty — t1)
< (2M +3)C%w(ty —t;)

for every t1,ty € I, t; < to. Hence f; - f3 is semiconvex with modulus (2M +
3)C?%w by Proposition 2.4 (ii). O

Lemma 4.3. Let X be a normed linear space, f : X — R and w € M. Suppose
that there exists an open convex set U C X such that supp f C U and f [y is
semiconvex with modulus w. Then f is semiconvex with modulus 2w.

Proof. By Lemma 2.3 (i) we may suppose that X = R. Then f is continuous
on U by [CS, Theorem 2.1.7]. Since supp f C U, it follows that f is continuous
and f’(z) = 0 for every x € R\ U. By Proposition 2.4 (i), fi (z) € R for every
x €U and

filar) = fila2) < 2w(@z —21) (5)
for every x1,x0 € U, 21 < 2. Let x1, 29 € R, 21 < xo. By Proposition 2.4 (ii)
it is enough to show that (5) holds. This is clear if z1, 29 € U or x1, 22 € R\ U.
Suppose that z; € R\ U and x2 € U. Then f'(x1) = 0 and there exists ¢ € U
such that 21 < ¢ < x5 and f'(c) = 0. Hence

Fi(zr) = fi(ze) = fi(e) = fi(22) < 2w(xs —¢) < 2w(xg — 21).
The case 21 € U, zo € R\ U is analogous. O

Lemma 4.4. Let X be a Hilbert space, a € X, r > 0 and w € M. Suppose
that liminf, ,oy w(t)/t > 0. Then there exists b € C1*(X) such that 0 < b < 1,
suppb C U(a,2r) and b=1 on U(a,r).

Proof. Set g(x) := || —al/?>, # € X, and @(t) = t, t € [0,00). It is well
known that g € C1%(X), g is Lipschitz on U := U(a, ) and that we can find
f € CH?(R) such that 0 < f <1, supp f C (—1,4r?) and f =1 on [0, r?].

Set b = fog. Then clearly 0 < b < 1, suppb C U and b = 1 on U(a,r).
By Fact 4.1 and [HJ, Proposition 128, p. 59] we have b [p€ C1¥(U). Hence
b lye CH¥(U) by (3). Since suppb C U, we easily obtain that b € C1*(X). O



Theorem 4.5. Let X be a Hilbert space, G C X an open set, f1,fs: G — R
and w € M. Suppose that f1, f are continuous, fi < fa, iminf;_,oq w(t)/t > 0
and the following condition holds.

e For every a € G there exist r,C > 0 such that U := U(a,r) C G, f1 U
is semiconvex with modulus Cw and f> [y is semiconcave with modulus
Cw.

Then there exists f € CL¥(Q) such that fi < f < fo.

loc

Proof. We claim that for every a € G there exists r, > 0 and F, € C1¥(X)
such that U(a,r,) C G and

filz) < Fu(z) < fa(x), xeUla,ra). (6)

To prove this, choose a € G. By the assumptions and Proposition 2.5 there exists
rq > 0 such that U := U(a,2r,) C G, f1, f2 are Lipschitz on U, f; [y€ SC¥(U)
and fy [y€ —SC¥(U). By Lemma 4.4 there exists b € C**(X) such that b > 0,
suppb C U and b=1 on U(a,r,). For i = 1,2 we define a function

_Jou(@)fi(z), weUl,
bil@) = {0, ze X \U.

Then b1 < b, suppby C U, suppby C U and by, by are continuous. By Lemma
4.2 we have by [ype SC¥(U) and —by [pe SC¥(U). Thus by € SC¥(X) and
—by € SC¥(X) by Lemma 4.3. Hence, by Corollary 3.2, there exists F,, €
C1+(X) such that by < F, < by. Then (6) holds and we are done.

Since {U(a,r,) : @ € G} forms an open cover of G, we can, by [T, Theorem
3] and [KK, Lemma 2.5, find a locally finite C'*°-partition of unity Q on G
subordinated to {U(a,r,) : a € G}. So, for every ¢ € Q there exists ¢, € G
such that suppq C U(ag,7q,). Set

f@):=> q@)Fa,(x), z€G.

qeEQ

It follows from [HJ, Proposition 71, p. 29] that ¢, ¢’ and F, are locally Lipschitz
whenever ¢ € Q. Hence ¢ - F,, € CL¥(X), g € Q, by (3) and [HJ, Proposition

loc
129, p. 59]. Since Q is locally finite, it follows that f is well defined and
f € CL¥(G). Finally, for every z € G we have dgeot(@) fi(x) = fi(z),i= 1,2,

loc

and ¢(z) f1(z) < g(2)Fa, (z) < g(2) f2(2), ¢ € Q. Thus f1 < f < fo. O

Theorem 4.5 holds also for some non-Hilbertian Banach spaces as noted in
the following remark.

Remark 4.6. If, in the Theorem 4.5, X is a Banach space and G admits
locally finite C1“-partitions of unity, then the proof works essentially the same.
Moreover, it can be proved that if a Banach space X admits an equivalent norm
with modulus of smoothness of power type 2 (e.g. X = ¢P for p > 2) and w € M
is such that liminf; o4+ w(t)/t > 0, then every open G C X admits locally finite
Cl@-partitions of unity. The proof of this fact is quite technical and thus we
restricted ourself to the case of a Hilbert space.
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