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ABSTRACT. We study the rough maximal bilinear singular integral

T ∗Ω( f ,g)(x) =sup
ε>0

∣∣∣∣∫Rn\B(0,ε)

∫
Rn\B(0,ε)

Ω((y,z)/|(y,z)|)
|(y,z)|2n f (x− y)g(x− z)dydz

∣∣∣∣ ,
where Ω is a function in L∞(S2n−1) with vanishing integral. We prove it is
bounded from Lp×Lq→ Lr, where 1 < p,q < ∞ and 1/r = 1/p+1/q. We also
discuss results for Ω ∈ Ls(S2n−1), 1 < s < ∞.
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1. INTRODUCTION

In this paper, we study the rough maximal bilinear singular integral. Singular
integral theory was initiated in the seminal work of Calderón and Zygmund [1].
Bilinear singular operators were introduced by Coifman and Meyer in [4] and the
theory was later developed by Grafakos and Torres in [11]. The boundedness of
the smooth maximal multilinear singular integrals was obtained also by Grafakos
and Torres in [10] via Cotlar type inequality. All these result were obtained for
operators with smooth kernels, while the problem of boundedness of the bilinear
rough singular integral remained open. Recently, in the paper of Grafakos, He and
Honzı́k [9], the following was proved: For an operator TΩ defined as

TΩ( f ,g)(x) = p.v.
∫
Rn

∫
Rn
|(y,z)|−2n

Ω((y,z)/|(y,z)|) f (x− y)g(x− z)dydz

where Ω is a function in Lq(S2n−1) with vanishing integral it holds that for q = ∞

we obtain boundedness for TΩ from Lp1(Rn)×Lp2(Rn) to Lp(Rn) where p1, p2 ∈
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(1,∞) and 1/p = 1/p1 + 1/p2. Also, for q = 2 it was proved that TΩ is bounded
from L2(Rn)×L2(Rn) to L1(Rn) and these two results were interpolated. These
results were obtained using a bilinear technique based on tensor-type wavelet de-
composition which we will briefly describe later on. In this paper we build on these
results and our goal is to describe similar properties of the maximal version of the
operator defined above.

2. NOTATION AND RESULTS

To fix notation, we assume q∈ (1,∞] and we let Ω in Lq(S2n−1) with
∫
S2n−1 Ωdσ =

0, where S2n−1 is the unit sphere in R2n. In this manuscript we will be working with
the bilinear singular integral operator associated with Ω by

(1) T ∗Ω( f ,g)(x) = sup
ε>0

∣∣∣∣∫Rn\B(0,ε)

∫
Rn\B(0,ε)

K(y,z) f (x− y)g(x− z)dydz,
∣∣∣∣

where f ,g are functions in the Schwartz class S(Rn),

K(y,z) = Ω((y,z)′)/|(y,z)|2n ,

and x′ = x/|x| for x ∈ R2n.
For q ∈ [1,∞] we denote q′ the conjugate index. We denote the set of positive

integers by N and we set N0 =N∪{0}. Finally, we adhere to the standard conven-
tion to denote by C a constant that depends only on inessential parameters of the
problem.

Let us now state the main results of this paper.

Theorem 1. For all n≥ 1, if Ω ∈ L∞(S2n−1), then, for T ∗
Ω

defined in (1), we have

(2) ‖T ∗Ω‖Lp1 (Rn)×Lp2 (Rn)→Lp(Rn) ≤C‖Ω‖∞

whenever 1 < p1, p2 < ∞ and 1/p = 1/p1 +1/p2.

For more general Ω, we get the following:

Theorem 2. For all n≥ 1, if Ω ∈ L2(S2n−1), then, for T ∗
Ω

defined in (1), we have

(3) ‖T ∗Ω‖L2(Rn)×L2(Rn)→L1(Rn) ≤C‖Ω‖2.

These two results give by interpolation:

Corollary 3. For all n≥ 1, if Ω ∈ Lq(S2n−1) with q ∈ (2,∞), then, for T ∗
Ω

defined
in (1), we have

(4) ‖T ∗Ω‖Lp1 (Rn)×Lp2 (Rn)→Lp(Rn) < ∞

whenever 1/p = 1/p1 +1/p2 and the point (1/p1,1/p2) lies inside the quadrilat-
eral with vertices (1/q,1/q), (1/q,1−1/q), (1−1/q,1−1/q) and (1−1/q,1/q).

Let us now give a brief introduction to wavelets which are the essential tool in
the paper [9] and will be used in this manuscript also.

The wavelet system is a form of a complete orthonormal system for L2 (Rn). For
our purposes we need product type smooth wavelets with compact supports, their
existence is due to Daubechies [5] and can also be found in Meyer’s book [13].
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The construction of such objects can be found in Triebel [15] and the existence of
a wavelet orthonormal base of L2

(
R2n
)

is described by the following statement.

Lemma 4. For any fixed k ∈ N there exist real compactly supported functions
ψF ,ψM ∈ Ck(R), which satisfy ‖ψF‖L2(R) = ‖ψM‖L2(R) = 1, for 0≤ α ≤ k we have∫
R xαψM(x)dx = 0, and, if ΨG is defined by

Ψ
G(~x) = ψG1(x1) · · ·ψG2n(x2n)

for G = (G1, . . . ,G2n) in the set

I :=
{
(G1, . . . ,G2n) : Gi ∈ {F,M}

}
,

then the family of functions⋃
~µ∈Z2n

[{
Ψ

(F,...,F)(~x−~µ)
}
∪

∞⋃
λ=0

{
2λn

Ψ
G(2λ~x−~µ) : G ∈ I \{(F, . . . ,F)}

}]
forms an orthonormal basis of L2(R2n), where~x = (x1, . . . ,x2n).

Le us now describe the basic decomposition of the kernel. Now we fix a smooth
function α in R+ such that α(t) = 1 for t ∈ (0,1], α(t) ∈ (0,1) for t ∈ (1,2) and
α(t) = 0 for t ∈ [2,∞) . For (y,z) ∈ R2n and j ∈ Z we introduce the function

β j(y,z) = α(2− j|(y,z)|)−α(2− j+1|(y,z)|).
We write β = β0 and we note that this is a function supported in [1/2,2]. We
denote ∆ j the Littlewood-Paley operator ∆ j f = F−1(β j f̂ ). Here and through-
out this paper F−1 denotes the inverse Fourier transform, which is defined via
F−1(g)(x) =

∫
Rn g(ξ )e2πix·ξ dξ = ĝ(−x), where ĝ is the Fourier transform of g.

We decompose the kernel K as follows: we denote Ki = βiK and we set Ki
j =

∆ j−iKi for i, j ∈ Z. Then we write

K =
∞

∑
j=−∞

K j,

where

K j =
∞

∑
i=−∞

Ki
j.

We also denote m j = K̂ j.
Then the operator can be written as

T ∗( f ,g)(x) = sup
ε>0

∑
j

∫
Rn\B(0,ε)

∫
Rn\B(0,ε)

K j(y,z) f (x− y)g(x− z)dydz.

We have the following lemma whose proof is known (see for instance [6]) and
is omitted.

Lemma 5. Given q ∈ (1,∞], Ω ∈ Lq(S2n−1), δ ∈ (0,1/q′) and ~ξ = (ξ1,ξ2) ∈ R2n

we have
|K̂0(~ξ )| ≤C‖Ω‖Lq min(|~ξ |, |~ξ |−δ )
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and for all multiindices α in Z2n with α 6= 0 we have

|∂ α K̂0(~ξ )| ≤Cα‖Ω‖Lq min(1, |~ξ |−δ ) .

We recall that M is the Hardy-Littlewood maximal function defined for locally
integrable functions f as

M f (x) = sup
r>0

1
|B(0,r)|

∫
B(0,r)

| f (x− y)|dy,

where x ∈ Rn.

3. FROM T ∗ TO T #

In this section we will show that to obtain the main results of this paper we can
equivalently instead of the operator T ∗ use the operator T # defined as follows. For
functions in the Schwartz class S(Rn) let us define

T # ( f ,g)(x) = sup
j∈Z

∣∣∣∣∣∑i> j

∫
R2n

Ki (y,z) f (x− y)g(x− z)dydz

∣∣∣∣∣ .
As already mentioned the above defined operator will be the essential tool that we
will be working with in this text.

The following two propositions is will give us immediately the statement of
Theorem 2.

Proposition 6. Let Ω ∈ L2(S2n−1), and for j ∈ Z consider the bilinear operator

T #
j ( f ,g)(x) = sup

k∈Z

∣∣∣∣∣∑i>k

∫
R2n

Ki
j(y,z) f (x− y)g(x− z)dydz

∣∣∣∣∣ .
If j ≥ 0, then T #

j is bounded from L2(Rn)×L2(Rn) to L1(Rn) with norm at most
C‖Ω‖L2 2−δ j, where δ is a fixed positive constant.

Furthermore, we can define an operator

T̃ # ( f ,g)(x) = sup
j∈Z

∣∣∣∣∣∑i> j

∫
R2n

∑
γ<0

Ki
γ (y,z) f (x− y)g(x− z)dydz

∣∣∣∣∣ .
Clearly

T # ( f ,g)(x)≤ T̃ # ( f ,g)(x)+ ∑
j≥0

T #
j ( f ,g)(x).

We have the following

Proposition 7. For Ω∈ L2(S2n−1), and for 1 < p1, p2 <∞ and 1/p = 1/p1+1/p2

the operator T̃ # is bounded from Lp1(Rn)×Lp2(Rn) to Lp(Rn).

Proof. Let us consider the kernel

K̃ = ∑
i∈Z

∑
γ<0

Ki
γ .
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It is easy to check that this is a smooth Calderón-Zygmund convolution kernel and
therefore we immediately get from the Cotlar inequality [10] the boundedness of
the maximal operator T ∗

K̃
. Next, we write

T̃ # ( f ,g)(x) = sup
j∈Z

∣∣∣∣∣∑i> j

∫
R2n

∑
γ<0

Ki
γ (y,z) f (x− y)g(x− z)dydz

∣∣∣∣∣
≤ T ∗K̃ ( f ,g)(x)+

sup
j∈Z

∣∣∣∣∣
∫
R2n

(
χR2n\B(0,2 j)K̃−∑

i> j
∑
γ<0

Ki
γ

)
(y,z) f (x− y)g(x− z)dydz

∣∣∣∣∣ .
Standard calculation shows that the error term∣∣∣∣∣χB(0,2 j)K̃−∑

i> j
∑
γ<0

Ki
γ

∣∣∣∣∣
is dominated by CN

2−2n j

1+|2− jx|N for every N > 0 and therefore

T̃ # ( f ,g)(x)≤ T ∗K̃ ( f ,g)(x)+CM f (x)Mg(x)

and the proof is finished. �

Next lemmas are important tools for the forgoing considerations. They allow
us to work with the operator T # instead of T ∗. For Ω ∈ L∞

(
S2n−1

)
the following

estimate holds.

Lemma 8. Let f ∈ Lp (Rn), g ∈ Lq (Rn), where p,q ∈ (1,∞) and r ∈ [1,∞) such
that 1

p +
1
q = 1

r . Then

‖T ∗ ( f ,g)‖r ≤
∥∥T # ( f ,g)

∥∥
r +C‖M f‖p ‖Mg‖q .

The simple proof is omitted, instead we will show that the same results holds
for more general Ω. We first state and prove the estimate for a directional bilinear
maximal function and then use the method of rotations. We start with a definition
of the directional maximal functions.

Mα ( f )(x) = sup
t>0

1
t

∫ t

0
| f (x−αy)|dy,

Mα,β ( f ,g)(x) = sup
t>0

1
t

∫ t

0
| f (x−αy)g(x−βy)|dy,

where α,β ∈ Sn−1, x ∈ Rn and f ,g are locally integrable functions on Rn.
The following lemma describes boundedness of the directional bilinear maximal

function.

Lemma 9. Let p,q ∈ (1,∞) and r ∈ (1,∞) and α,β ∈ Sn−1. Then

Mα,β : Lp (Rn)×Lq (Rn)→ Lr (Rn) .
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Proof: ∥∥Mα,β ( f ,g)
∥∥

r =

(∫
Rn

[
sup
t>0

∫ t

0
| f (x−αy)g(x−βy)| dy

t

]r

dx
) 1

r

≤

(∫
Rn

[
sup
t>0

(
1
t

∫ t

0
| f (x−αy)|s dy

) 1
s

sup
t>0

(
1
t

∫ t

0
|g(x−βy)|z dy

) 1
z
]r

dx

) 1
r

,

where s = p
r ,z =

q
r and the inequality follows from Hölder inequality since r

p +
r
q =

1. The last expression can be written as(∫
Rn

[Mα (| f |s)(x)]
r
s
[
Mβ (|g|z)(x)

] r
z dx
) 1

r

and f ∈ Lp implies f s ∈ L
p
s which implies M f s ∈ L

p
s , therefore (M f s)

1
s ∈ Lp and

(M f s)
r
s ∈ L

p
r . Then again from Hölder inequality and also Hardy-Littlewood max-

imal theorem we get

(∫
Rn

[Mα (| f |s)(x)]
r
s
[
Mβ (|g|z)(x)

] r
z dx
) 1

r

≤
(∥∥∥Mα (| f |s)

r
s

∥∥∥ p
r

∥∥∥Mβ (|g|z)
r
z

∥∥∥ q
r

) 1
r

=
(
‖Mα | f |s‖ p

s

) 1
s
(∥∥Mβ |g|z

∥∥ q
z

) 1
z

≤C
(
‖ f s‖ p

s

) 1
s
(
‖gz‖ q

z

) 1
z

=C‖ f‖p ‖g‖q .

�

In the following we show boundedness of another type of maximal function.

Lemma 10. Let p,q,r be like in the previous lemma and define

MΩ ( f ,g)(x) = sup
R>0

∣∣∣∣∫R2n
HR

Ω (y,z) f (x− y)g(x− z)dydz
∣∣∣∣

where Ω ∈ L1
(
S2n−1

)
,Ω≥ 0 and

HR
Ω =

∣∣∣∣Ω( (y,z)
|(y,z)|

)∣∣∣∣R−2n
χB(0,R) (y,z) ,

where x,y,z ∈ Rn. Then ‖MΩ ( f ,g)‖r ≤ ‖Ω‖1 ‖ f‖p ‖g‖q.

Proof: We can express and estimate the term MΩ ( f ,g) as follows

MΩ ( f ,g)(x) = sup
R>0

∣∣∣∣∫S2n−1
Ω
(
u′
)

R−2n
∫ R

0
t2n−1 f (x− tu1)g(x− tu2)dtdu

∣∣∣∣ ,
where u = (u1,u2) and we recall u′ = u

|u| for u ∈ R2n. Since t2n−1

R2n−1 ≤ 1 we get

MΩ ( f ,g)(x)≤ sup
R>0

∣∣∣∣ 1R
∫
S2n−1

Ω
(
u′
)∫ R

0
f (x− tu1)g(x− tu2)dtdu

∣∣∣∣
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≤
∫
S2n−1

Ω
(
u′
)

Mu ( f ,g)(x)du

where Mu ( f ,g)(x) = supR>0
1
R

∫ R
0 | f (x− tu1)g(x− tu2)|dt. According to the pre-

vious lemma Mu : Lp×Lq→ Lr therefore ‖MΩ ( f ,g)‖r ≤ ‖Ω‖1 ‖ f‖p ‖g‖q. �

The previous lemma gives boundedness of the opertor MΩ, which is a necessary
tool for the transition from T ∗ to T #, but only when r > 1. In order to prove the
Theorem 2, we need to do this precisely when r = 1. We use interpolation to extend
the results on MΩ to the region where r≤ 1. While in the rest of the paper we mostly
use r = 1, we include the whole result for general interest.

Lemma 11. Let r ∈ (1/2,∞) and p,q ∈ (1,∞) such that 1
p +

1
q = 1

r . Let Ω ∈
Ls
(
S2n−1

)
,Ω ≥ 0 where s ∈ (1,∞) is such that s

2s−1 < q. Then MΩ : Lp (Rn)×
Lq (Rn)→ Lr (Rn).

Proof. Without loss of generality we can assume ‖Ω‖s = 1. We decompose Ω as
Ω = ∑i≥0 Ωi where Ωi (x′) = Ω(x′)χEi (x) and Ei =

{
x ∈ R2n : Ω(x′) ∈

(
2i,2i+1

]}
for i > 0 and E0 =

{
x ∈ R2n : Ω(x′) ∈ [0,2]

}
. Then Ωi ∈ L1

(
S2n−1

)
and ‖Ωi‖1 ≤

2−i s
s′ since from Hölder inequality we have

‖Ωi‖1 =
∫
S2n−1

Ω
(
x′
)

χEi (x)dx≤
(∫

Ei

1dx
) 1

s′
(∫

S2n−1
Ω

s (x′)dx
) 1

s

= |suppΩi|
1
s′ K ≤ K2−i s

s′

where the last inequality follows from the fact that
∫

suppΩi
Ωs ≤ 1 and

∫
suppΩi

Ωs ∼=
2is |suppΩi|.

Now let ε > 0. We will use the multilinear interpolation (Theorem 7.2.2 in [8]).
Let

• (p11, p12,q1) =
(
(1+ ε)2 , (1+ε)2

ε
, ·
)

• (p21, p22,q2) =
(
(1+ε)2

ε
,(1+ ε)2 , ·

)
• (p31, p32,q3) =

(
(1+ ε)2 ,(1+ ε)2 , ·

)
,

where qi is such that 1
pi1

+ 1
pi2

= 1
qi

and therefore q1 = q2 =
1

1+ε
and q3 =

(1+ε)2

2 .
Then
• ‖MΩi ( f ,g)‖Lq1 ≤ 2−i s

s′ ‖ f‖p11
‖g‖p12

• ‖MΩi ( f ,g)‖Lq2 ≤ 2−i s
s′ ‖ f‖p21

‖g‖p22

• ‖MΩi ( f ,g)‖Lq3 ≤ 2i ‖ f‖p31
‖g‖p32

Define (
1
p1

,
1
p2

)
=

(
µ1

p11
+

µ2

p21
+

µ3

p31
,

µ1

p21
+

µ2

p22
+

µ3

p32

)

=

(
µ1 +µ3 +µ2ε

(1+ ε)2 ,
µ2 +µ3 +µ1ε

(1+ ε)2

)



8 EVA BURIÁNKOVÁ AND PETR HONZÍK

where µi ∈ (0,1) and µ1 +µ2 +µ3 = 1 and also
1
q
=

µ1

q1
+

µ2

q2
+

µ3

q3

1
r
=

1
p1

+
1
p2

.

We note that q from above is dependent on ε and µi. Then ‖MΩi ( f ,g)‖Lq,r1 ≤
2−i( s

s′+µ3(− s
s′−1)) and we need the exponent to be greater than 0, therefore s(1−µ3)>

1 which implies µ3 <
1
s′ . Then

1
q
<

(1+ ε)3 + 1
s′

(
2− (1+ ε)3

)
(1+ ε)2 .

Therefore if we choose (p1, p2,q) such that they satisfy the assumptions and 1
q <

2s−1
s then we can find ε small enough so that the above inequality holds. So we get

‖MΩ ( f ,g)‖q ≤∑
i
‖MΩi ( f ,g)‖q ≤C‖ f‖p1

‖g‖p2
.

�

Now we can formulate the version of Lemma 8 for Ω ∈ Ls
(
S2n−1

)
where s is

like in the previous Lemma. Again, this lemma is most important in the situation
where p = q = 2 and r = 1, but we state it in full generality.

Lemma 12. Let r ∈ (1/2,∞) and p,q ∈ (1,∞) such that 1
p +

1
q = 1

r . Let Ω ∈
Ls
(
S2n−1

)
where s ∈ (1,∞) is such that s

2s−1 < q. Then

‖T ∗ ( f ,g)‖r ≤
∥∥T # ( f ,g)

∥∥
r +C

∥∥M|Ω| ( f ,g)
∥∥

r .

Proof. Let us define functions Kε (x,y) = K (x,y)χ[ε,∞) (|(x,y)|) and K̃ε (x,y) =
K (x,y)

(
1−α

( 1
ε
|(x,y)|

))
. Then

T ∗ ( f ,g)(x)≤ sup
ε>0

∣∣∣∣∫R2n
Kε (x− y,x− z) f (y)g(z)− K̃ε j (x− y,x− z) f (y)g(z)dydz

∣∣∣∣
+ sup

i∈Z

∣∣∣∣∫ K̃i (x− y,x− z) f (y)g(z)dydz
∣∣∣∣ ,

where in the first part we take j such that ε ≈ ε j = 2 j. The second part equals
T # ( f ,g)(x) since it can be written as

sup
j∈Z

∣∣∣∣∫R2n
K (x− y,x− z)

(
1−α

(
2− j |(x− y,x− z)|

))
dydz

∣∣∣∣
= sup

j∈Z

∣∣∣∣∣
∫
R2n

∑
i> j

Ki (x− y,x− z)
(
1−α

(
2− j |(x− y,x− z)|

))
dydz

∣∣∣∣∣ .
Then we can further estimate the first part with

sup
ε>0

∣∣∣∣∫R2n
Hε

|Ω| (y,z) f (x− y)g(x− z)dydz
∣∣∣∣ .
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�

4. BOUNDEDNESS: A SPECIAL CASE

Now we prove the Theorem 2. In view of Proposition 6, Theorem 2 will be a
consequence of the following proposition.

Proposition 13. Given q ∈ [2,∞] and δ ∈ (0,1/8q′), then for any j ∈ N0, the
operator T #

j maps L2(Rn)×L2(Rn) to L1(Rn) with norm at most C‖Ω‖Lq2−δ j.

To obtain this estimate, we follow the proof from the paper [9] and first de-
compose the symbol into dyadic pieces, estimate them separately, and then use
orthogonality arguments to put them back together which is the point where the
arguments will differ from the paper [9]. Let us remind certain properties of the
symbol K̂0

j which we denote m j,0. The classical estimates show that

(5) ‖m j,0‖L∞ = ‖K̂0
j ‖L∞ ≤C‖Ω‖Lq2−δ j, δ ∈

(
0,1/q′

)
,

while for q ∈ [2,∞] it holds

(6) ‖m j,0‖L2 = ‖β j(β̂0K)‖L2 ≤C‖β̂0K‖L2 ≤C‖Ω‖L2 ≤C‖Ω‖Lq .

We observe that for the case i 6= 0 we have the identity m j,i = K̂i
j = m j,0(2i·) from

the homogeneity of the symbol, and thus m j,i also lies in L2
(
R2n
)
.

In this manuscript we will be using the wavelet transform of m j,0 taking product
wavelets described above in Lemma 4 with compact supports and M vanishing
moments, where M is a large number to be determined later. We choose generating
functions with support diameter approximately 1. The wavelets with the same
dilation factor 2λ have some bounded overlap N independent of λ . With

Ψ
λ ,G
~µ

(~x) = 2λn
Ψ

G
(

2λ~x−~µ
)
,

where~x ∈ R2n, we have the next lemma which is another tool to enable us to work
with the wavelet technique, the proof can be found in [9].

Lemma 14. Using the preceding notation, for any j ∈ Z and λ ∈ N0 we have

(7) |〈Ψλ ,G
~µ

,m j,0〉| ≤C‖Ω‖Lq 2−δ j2−(M+1+n)λ ,

where M is the number of vanishing moments of ψM and δ is as in (5).

Again as in the paper [9] the wavelets sharing the same generation index λ may
be organized into Cn,M,N groups so that members of the same group have disjoint
supports and are of the same product type, i.e., they have the same index G ∈ I.
For 1≤ κ ≤Cn,M,N we denote by Dλ ,κ one of these groups consisting of wavelets
whose supports have diameters about 2−λ . We now have that the wavelet expansion

m j,0 = ∑
λ≥0

1≤κ≤Cn,M,N

∑
ω∈Dλ ,κ

aωω
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and ω all have disjoint supports within the group Dλ ,κ . We recall the following
estimates: For the sequence a = {aω} we get ‖a‖`2 ≤C, if we set bω = ‖aωω‖L∞ ,
we have

‖{bω}ω∈Dλ ,κ
‖`2 ≤C‖Ω‖L22nλ .

Then we also have

(8) ‖{bω}ω∈Dλ ,κ
‖`∞ ≤C‖Ω‖Lq2−δ j−(M+1)λ .

Now, we split the group Dλ ,κ into three parts. Recall the fixed integer j in the
statement of Proposition 13. Let us also assume that j ≥ 100

√
n since for j <

100
√

n, Proposition 13 is an easy consequence of Proposition 6. We define sets

D1
λ ,κ =

{
ω ∈Dλ ,κ : aω 6= 0, suppω ⊂{(ξ1,ξ2)∈Rn×Rn : 2− j|ξ1| ≤ |ξ2| ≤ 2 j|ξ1|}

}
,

D2
λ ,κ =

{
ω ∈ Dλ ,κ : aω 6= 0, suppω ∩{(ξ1,ξ2) ∈ Rn×Rn : 2− j|ξ1| ≥ |ξ2|} 6= /0

}
,

and

D3
λ ,κ =

{
ω ∈ Dλ ,κ : aω 6= 0, suppω ∩{(ξ1,ξ2) ∈ Rn×Rn : 2− j|ξ2| ≥ |ξ1|} 6= /0

}
.

These groups are disjoint for large j. Notice that D1
λ ,κ ∩D2

λ ,κ = /0 is obvious. For
D2

λ ,κ and D3
λ ,κ the worst case is λ = 0 when we have balls of radius 1 centered

at integers, and D2
λ ,κ ∩D3

λ ,κ = /0 if j is sufficiently large. We choose j ≥ 100
√

n
which works, since if aω 6= 0, then ω is supported in an annulus centered at the
origin of size about 2 j which is large enough.

We denote, for ι = 1,2,3,

mι
j,0 = ∑

λ ,κ
∑

ω∈Dι

λ ,κ

aωω,

and define

mι
j =

∞

∑
k=−∞

mι
j,k

with mι
j,k(

~ξ ) = mι
j,0(2

k~ξ ). We prove boundedness for each piece m1
j ,m

2
j ,m

3
j . We

call m1
j the diagonal part of m j and m2

j ,m
3
j the off-diagonal parts of m j = K̂ j.

5. THE DIAGONAL PART

We first deal with the first group D1
λ ,κ . Using the same arguments like in the

paper [9] we will obtain (omitting details) again the similar estimate of Tm1
j,k

, where

Tm1
j,k
( f ,g)(x) =

∫
Rn

∫
Rn

m1
j,k (y,z) f̂ (y) ĝ(z)e2πi(y+z)·xdydz.

We denote by fk the function whose Fourier transform is f̂ (2−kξ1) and E j,k =

{ξ1 ∈ Rn : c12k ≤ |ξ1| ≤ c22 j+k}, where c1,c2 are suitable constants such that
‖Tm1

j,0
( f ,g)‖L1 = ‖Tm1

j,0
(F−1

(
f̂ χ{c12 j≤|ξ1|≤c22 j+1}

)
,F−1

(
ĝχ{c12 j≤|ξ1|≤c22 j+1}

)
)‖L1 .

Then

‖Tm1
j,k
( f ,g)‖L1 = 2−2kn‖Tm1

j,0
( fk,gk)(2−k·)‖L1
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= 2−kn‖Tm1
j,0
( fk,gk)‖L1

≤ C‖Ω‖Lq2−kn2−δ j/5‖ f̂ (2−k·)χE j,0‖L2‖ĝ(2−k·)χE j,0‖L2

= C‖Ω‖Lq2−δ j/5‖ f̂ ‖L2(E j,k)‖ĝ‖L2(E j,k) ,

where the inequality is described in detail in [9].
Using this estimate, applying the Cauchy-Schwarz inequality and modifying the

first part to get the estimate for our operator we obtain for the diagonal part

‖sup
γ∈Z

∑
k>γ

Tm1
j,k
( f ,g)‖L1 ≤

∞

∑
k=−∞

‖Tm1
j,k
( f ,g)‖L1

≤ C‖Ω‖Lq j2−δ j/5‖ f‖L2‖g‖L2 ,

where again the last inequality was explained in detail in [9]. This completes the
estimate of the first piece m1

j .

6. THE OFF-DIAGONAL PARTS

We now estimate the off-diagonal parts of the operator, namely

sup
γ∈Z

∣∣∣∣∣∑k>γ

Tm2
j,k
( f ,g)

∣∣∣∣∣ .
At first we need to have an approximate size of the Fourier support of

Tm2
j,k
( f ,g)(x) =

∫
Rn

∫
Rn

m2
j,k (α,β ) f̂ (α) ĝ(β )e2πi(α+β )·xdαdβ .

We will estimate the support of m2
j,k since knowing that we can get the required

support of T̂m2
j,k
( f ,g) from the following lemma.

Lemma 15. Let L∞ function m defined on Rn×Rn be a symbol of a multiplier
operator Tm. Suppose I,J ⊂ Rn are measurable sets and let supp m⊂ I× J. Then
for f ,g ∈ S(Rn) it holds that supp Tm ( f ,g)⊂ I + J.

Proof. Using change of variables we obtain

Tm ( f ,g)(x) =
∫
Rn

G(α)e2πix·αdα = Ǧ(x) ,

where

G(α) =
∫
Rn

m(α−β ,β ) f̂ (α−β ) ĝ(β )dβ .

Therefore T̂m ( f ,g)(x) = G(x) and we need to find the support of G which is:
G(α) 6= 0 if and only if there exists β ∈Rn such that m(α−β ,β ) 6= 0, therefore

if supp m ∈ I× J then supp G ∈ I + J.
�
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Now we want to find the approximate size of the support of m2
j,k. We first deal

with m2
j,0 since the general case will follow from the fact that m2

j,k (x) = m2
j,0
(
2kx
)

and simple modification of the calculation.
It holds that a point (x,y) ∈ Rn×Rn is in the support of m2

j,0 if there exists
ω ∈ D2

λ ,κ such that (x,y) ∈ ω and

supp ω ∩
{
(u,v) : 2− j |u| ≥ |v|

}
∩
{
(u,v) : 2 j−1 ≤ |(u,v)| ≤ 2 j+1} 6= /0.

The size of the wavelet ω (again in the case m2
j,0) can be estimated by 1, there-

fore by simple calculation we get

supp m2
j,0 ⊆ A×B,

where
A =

{
ξ ∈ Rn : 2 j−2−1≤ |ξ | ≤ 2 j+1 +1

}
and

B =
{

ξ ∈ Rn :−3−2− j ≤ |ξ | ≤ 3+2− j} .
Therefore

supp T̂m2
j,0
( f ,g)⊆

{
ξ ∈ Rn : 2 j−3 ≤ |ξ | ≤ 2 j+2} .

If we now consider m2
j,k we obtain

supp T̂m2
j,k
( f ,g)⊆

{
ξ ∈ Rn : 2 j−3−k ≤ |ξ | ≤ 2 j+3−k

}
.

Now we can proceed to estimating supγ∈Z

∣∣∣∑k>γ Tm2
j,k
( f ,g)

∣∣∣. From the paper [9]

we know that for every f ,g ∈ L2 (Rn) the following estimate holds

(9)

∥∥∥∥∥∥
(

∑
k∈5Z

∣∣∣Tm2
j,k
( f ,g)

∣∣∣2) 1
2

∥∥∥∥∥∥
L1

≤C‖Ω‖Lq 2− jδ ‖ f‖L2 ‖g‖L2 .

For µ = 0, ...,10 we have

T #
m2

j
( f ,g) = sup

γ∈Z
∑
µ

∣∣∣∣∣∣∣ ∑
k>γ

k∈10Z+µ

Tm2
j,k
( f ,g)

∣∣∣∣∣∣∣ ,
so we fix µ . Then we have

sup
γ∈Z

∣∣∣∣∣∣∣ ∑
k>γ

k∈10Z+µ

Tm2
j,k
( f ,g)

∣∣∣∣∣∣∣≤ sup
β>0

∣∣∣∣∣ ∑
k∈10Z+µ

Tm2
j,k
( f ,g)−ψβ ∗

(
∑

k∈10Z+µ

Tm2
j,k
( f ,g)

)∣∣∣∣∣ ,
where ψβ is a smooth function such that it is equal to 1 on B

(
0,2 j−β+3

)
and

vanishes outside of B
(
0,2 j−β+10

)
, more precisely we have a smooth function ψ

such that ψ ≡ 1 on B
(
0,2 j+3

)
, ψ ≡ 0 on B

(
0,2 j+10

)
and ψ ∈ (0,1) otherwise.

Then we define ψβ = ψ
(
2β ·
)
.
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Then we can further estimate the previous expression with∣∣∣∣∣ ∑
k∈10Z+µ

Tm2
j,k
( f ,g)

∣∣∣∣∣+ sup
β>0

∣∣∣∣∣ψβ ∗

(
∑

k∈10Z+µ

Tm2
j,k
( f ,g)

)∣∣∣∣∣ .
The second part can be estimated with maximal function defined as Mψ f (x) =
supβ>0

∣∣ψβ ∗ f
∣∣, therefore

sup
β>0

∣∣∣∣∣ψβ ∗

(
∑

k∈10Z+µ

Tm2
j,k
( f ,g)

)
(x)

∣∣∣∣∣≤CMψ

(
∑

k∈10Z+µ

Tm2
j,k
( f ,g)

)
(x) .

If we consider now the L1 norm of the expression supγ∈Z

∣∣∣∑k>β Tm2
j,k
( f ,g)

∣∣∣, we
get∥∥∥∥∥sup

γ∈Z

∣∣∣∣∣∑k>γ

Tm2
j,k
( f ,g)

∣∣∣∣∣
∥∥∥∥∥

L1

≤

∥∥∥∥∥ ∑
k∈10Z+µ

Tm2
j,k
( f ,g)

∥∥∥∥∥
L1

+C

∥∥∥∥∥Mψ

(
∑

k∈10Z+µ

Tm2
j,k
( f ,g)

)∥∥∥∥∥
L1

The first expression can be estimated as follows. Since the Hörmander condition
for multilinear multipliers holds for m2

j,k and m2
j,k is smooth, then ∑k∈10Z+µ Tm2

j,k
( f ,g)

is in L1 (Rn). Also since we have the square function estimate in (9), there exists
polynomial Qµ

j such that∥∥∥∥∥ ∑
k∈10Z+µ

Tm2
j,k
( f ,g)−Qµ

j

∥∥∥∥∥
L1

≤

∥∥∥∥∥∥
(

∑
k∈10Z

∣∣∣Tm2
j,k
( f ,g)

∣∣∣2) 1
2

∥∥∥∥∥∥
L1

≤C‖Ω‖Lq 2− jδ ‖ f‖L2 ‖g‖L2 .

Therefore Qµ

j = 0 and∥∥∥∥∥ ∑
10Z+µ

Tm2
j,k
( f ,g)

∥∥∥∥∥
L1

≤C‖Ω‖Lq 2− jδ ‖ f‖L2 ‖g‖L2 .

In fact (9) also implies that ∑k∈Z Tm2
j,k
( f ,g) is in H1, therefore we can estimate the

second expression as∥∥∥∥∥Mψ

(
∑
k∈Z

Tm2
j,k
( f ,g)

)∥∥∥∥∥
L1

≤

∥∥∥∥∥∑
k∈Z

Tm2
j,k
( f ,g)

∥∥∥∥∥
H1

.

This finishes the proof of Proposition 13 and therefore also the proof of the
Theorem 2

7. INTERPOLATION

Finally, we want to prove the Theorem 1 and the Corollary 3. We recall Lemma 10
from the article [9], which states that the kernel K j is a Calderón-Zygmund kernel
with ε-Lipschitz constant

Aε ≤Cε‖Ω‖∞2| j|ε ,
for ε ∈ (0,1). We are only using j ≥ 0 in what follows.
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Using the Cotlar inequality from [10], we can therefore get for any combination
1 < p,q < ∞, 1/r = 1/p+1/q and any ε ∈ (0,1) the bound

‖T ∗j ‖Lp×Lq→Lr ≤Cp,q,ε‖Ω‖∞2 jε .

By T ∗j we denote the maximal singular bilinear operator with kernel K j. Next, we
need to observe that

‖T #
j ‖Lp×Lq→Lr ≤ ‖T ∗j ‖Lp×Lq→Lr +C‖Ω‖∞‖M‖Lp×Lq→Lr .

This is rather trivial, the reasoning is very similar to the proof of the Proposition 7
and so we do not give full detail here. The proof of the Theorem 1 is now simple.
If we have a fixed point (p,q), 1 < p,q < ∞, we find a pair of points (p1,q1), 1 <
p1,q1 < ∞, and (p2,q2), 1 < p2,q2 < ∞ such that (1/p,1/q) lies inside the triangle
(1/2,1/2), (1/p1,1/q1) and (1/p2,1/q2). According to the Proposition 13 the
operators T #

j have norm at the point (2,2) at most C‖Ω‖Lq2−δ j, where δ > 0 is
fixed, while at the remaining two points the norm is Cpi,qi,ε‖Ω‖∞2 jε , where i = 1,2
and we may choose ε > 0 arbitrarily small. Therefore, for a suitable choice of
ε > 0, we get from the interpolation (Theorem 7.2.2 in [8]) that the series of norms
of T #

j is convergent at (p,q). This finishes the proof of Theorem 2.
To prove the Corollary 3, we apply interpolation argument similar to the proof

of Lemma 11. We split Ω is similar way, but we need to make sure that the integral
over sphere vanishes. Let us assume that ‖Ω‖q ≤ 1. We decompose Ω as Ω =

∑i≥0 Ω̃i where we first denote Ωi (x′) = Ω(x′)χEi (x) and

Ei =
{

x ∈ R2n : |Ω|
(
x′
)
∈
(
2i,2i+1]}

for i > 0 and E0 =
{

x ∈ R2n : |Ω|(x′) ∈ [0,2]
}

, and then we set

Ω̃i = Ωi−
∫
S2n−1

Ωi(x)dx.

We have ‖Ωi‖1 ≤C2−i q
q′ and therefore the sum converges back to Ω. We see that

‖Ω̃i‖2 ≤C2
−i(q−2)

2 , while ‖Ω̃i‖∞ ≤C2i. Now, we estimate

T ∗Ω( f ,g)(x)≤∑
i≥0

T ∗
Ω̃i
( f ,g)(x).

We interpolate the norm of each of the operators T ∗
Ω̃i

in a triangle which con-
tains (1/p1,1/p2), and has one vertex in the point (1/2,1/2), where the norm
‖T ∗

Ω̃i
‖L2×L2→L1 ≤ C2

−i(q−2)
2 according to the Theorem 2 and remaining two ver-

tices close to points (0,0), (0,1), (1,1), or (1,0) where the operator has norm
less than C2i. The interpolated norms form convergent series precisely when the
point (1/p1,1/p2) lies inside the quadrilateral described in the Corollary 3 and the
proof is finished.
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