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ABSTRACT. We study the rough maximal singular integral

T #
Ω( f )(x) = sup

ε>0

∣∣∣∣∫Rn\B(0,ε)
|y|−n

Ω(y/|y|) f (x− y)dy
∣∣∣∣ ,

where Ω is a function in L∞(Sn−1) with vanishing integral. It is well
known that the operator is bounded on Lp for 1 < p < ∞, but it is an
open question if has to be of the weak type 1-1. We show that T #

Ω
is

bounded from L(log logL)2+ε to L1,∞ locally.
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1. INTRODUCTION

Singular integral theory was initiated in the seminal work of Calderón
and Zygmund [1]. The study of boundedness of rough singular integrals
of convolution type has been an active area of research since the middle of
the twentieth century. Calderón and Zygmund [2] first studied the rough
singular integral

TΩ( f )(x) = p.v.
∫
Rn

Ω(y/|y|)
|y|n

f (x− y)dy
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where Ω is in L logL(Sn−1) with mean value zero and showed that TΩ is
bounded on Lp(Rn) for 1 < p < ∞. The weak type (1,1) boundedness of
TΩ when n= 2 was established by Christ and Rubio de Francia [3] and inde-
pendently by Hofmann [7]. The weak type (1,1) property of TΩ was proved
by Seeger [8] in all dimensions and was later extended by Tao [10] to sit-
uations in which there is no Fourier transform structure. Several questions
remain concerning the endpoint behavior of TΩ, such as if the condition
Ω∈ L logL(Sn−1) can be relaxed to Ω∈H1(Sn−1), or merely Ω∈ L1(Sn−1)
when Ω is an odd function.

The maximal counterpart of the rough singular integral,

(1) T #
Ω( f )(x) = sup

ε>0

∣∣∣∣∫Rn\B(0,ε)
|y|−n

Ω(y/|y|) f (x− y)dy
∣∣∣∣ ,

where Ω is in L logL(Sn−1) with mean value zero is bounded on Lp for
1 < p < ∞, but it remains an open question if this operator is of the weak
type (1− 1) even for a choice of Ω ∈ L∞(Sn−1). The standard Calderón
and Zygmund method requires some Dini type smoothness on Ω, while the
method of Christ, Rubio de Francia, Hofmann and Seeger fails due to the
lack of orthogonality in the maximal function. This classical question was
posed many times, for example recently in [6] as Problem 8.3.

While the full problem remains open, we provide an endpoint estimate,
showing that for Ω ∈ L∞(Sn−1) the operator T #

Ω
( f )(x) locally maps the

space L(log logL)2+ε to L1,∞. Let us remind here that the space L(log logL)2+ε

is the Orlicz space with the norm

‖ f‖L(log logL)2+ε = inf{λ > 0 :
∫
| f/λ | log(10+ log(10+ | f/λ |))dx≤ 1}.

This is a better estimate than what follows from the standard extrapolation
argument.

The main result of this paper is the following theorem.

Theorem 1. Suppose n ≥ 2, Ω ∈ L∞(Sn−1), ε > 0 and T #
Ω

is as defined in
(1). Then for a function f ∈ L(log logL)2+ε , supported in the unit cube, we
have

(2) ‖T #
Ω f‖L1,∞ ≤Cε‖ f‖L(log logL)2+ε .

For the proof, we use the double dyadic decomposition of the kernel,
which has been used previously by many authors, and carefully apply the
method developed by Seeger at each level.

2. DECOMPOSITION OF THE OPERATOR

Let us fix a function Ω ∈ L∞(Sn−1) with mean value zero. We fix a
smooth function α in R+ such that α(t) = 1 for t ∈ (0,1], 0 < α(t) < 1
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for t ∈ (1, 4
3) and α(t) = 0 for t ≥ 4

3 . For y ∈Rn and j ∈ Z we introduce the
function

β j(y) = α(2− j|y|)−α(2− j+1|y|).
We write β = β0 and we note that this is a function supported in {|y| ∈
[1/2,4/3]}.

Next, we fix a positive smooth function γ0 supported in B(0,1/100) with∫
γ = 1, we denote γ j(x) = 2 jnγ(2 jx) and we denote ∆ j f = (γ j+1− γ j)∗ f .
Now, we decompose the kernel K as follows: we denote Ki = βiK and

we set Ki
j = ∆ j−iKi for i, j ∈ Z. We see that

K =
∞

∑
i=−∞

(
γ−i ∗Ki +

∞

∑
j=0

Ki
j

)
.

Let us make the stadard reduction to the smooth dyadic truncations. We
see that

T #
Ω( f )(x)≤CM f (x)+ sup

k∈Z

∣∣∣∣∣ f ∗∑i>k
Ki

∣∣∣∣∣(x),
where M is the Hardy-Littlewood maximal operator.

Next, we write

(3) sup
k∈Z

∣∣∣∣∣ f ∗∑i>k
Ki

∣∣∣∣∣(x) = sup
k∈Z

∣∣∣∣∣ f ∗∑i>k

(
γ−i ∗Ki +

∞

∑
j=0

Ki
j

)∣∣∣∣∣(x).
We define following maximal operators:

T #
−1 f (x) = sup

k∈Z

∣∣∣∣∣∑i>k
f ∗
(
γ−i ∗Ki)∣∣∣∣∣(x)

and for m≥ 0 and i ∈ Z we denote

H i
m =

2m+1−2

∑
j=2m−1

Ki
j

and we put

T #
m f (x) = sup

k∈Z

∣∣∣∣∣∑i>k
f ∗H i

m

∣∣∣∣∣(x).
Therefore, we have

(4) T #
Ω( f )(x)≤CM f (x)+

∞

∑
m=−1

T #
m f (x).

Let us record two trivial estimates for convolutions of the functions γ j,
which will be usefull later.
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Lemma 2. Let us have a,b,c ∈ Z. If a > b, then∫
|γa ∗ γb− γb| ≤C2δ (b−a)

and the function γa ∗ γb− γb is supported in B(0,2−nb/50). If a < b < c,
then ∫

|γa ∗ (γc− γb)| ≤C2δ (a−b)

and the function γa ∗ (γc− γb) is supported in B(0,2−na/50). δ is a positive
constant.

Both statements are clear from the suport properties of γ and the mean
value theorem.

3. THE ESTIMATES OF SEEGER

We recall here the estimates A. Seeger uses in his article [8]. Let {H j}
be a family of functions with

suppH j ⊂ {x : 2 j−2 ≤ |x| ≤ 2 j+2}.
Suppose that for each N = 0, . . . ,n+1 we have estimates

(5) sup
0≤l≤N

sup
j

rn+1

∣∣∣∣∣
(

∂

∂ r

)l

H j(θr)

∣∣∣∣∣≤MN

uniform in θ ∈ Sn−1 and r > 0. Then for each positive integer s > 3 and a
parameter κ ∈ (0,1) there is a splitting

H j = Γ
s
j +(H j−Γ

s
j)

such that the following two estimates are valid.

Lemma 3. Let Q be a collection of cubes Q with disjoint interiors. Define
L(Q) =m if 2m−1 < sidelength(Q)≤ 2m and letQm = {Q∈Q : L(Q) =m}.
For each Q let fQ be an integrable function supported in Q satisfying∫

| fQ(x)|dx≤ α|Q|.

Let Fm = ∑Q∈Qm fQ. Then for s > 3

‖∑
j

Γ
s
j ∗Fj−s‖2

2 ≤CM2
02−s(1−κ)

α ∑
Q
‖ fQ‖1.

Lemma 4. Let Q be a cube of sidelength 2 j−s and let bQ be integrable and
supported in Q; moreover, suppose that

∫
bQ = 0. Then for N = n+ 1 and

0≤ ε ≤ 1

‖(H j−Γ
s
j)∗bQ‖1 ≤CN

[
M02−sε +MN2s(n+(ε−κ)N)

]
‖bQ‖1
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where CN does not depend on j or Q.

In [8], these are Lemma 2.1. and 2.2.

4. AUXILIARY ESTIMATES

We complement the estimates of the previous section with the following
exponential estimate. We assume here that ν is a function supported in some
annulus ε ≤ |x| < ε−1 and is smooth and positive. Then we put ν j(x) =
2−n jν(2− jx).

Lemma 5. Suppose we have the collection of cubes and the functions from
Lemma 3. Then for any s≥ 0 and λ ≥ 1 we have

|{|∑
j

ν j ∗ |Fj−s||> λα}| ≤Ce−cλ
∑
Q
|Q|.

Proof. We first show that ∑ j ν j ∗Fj−s is in BMO with norm Cα . Let us fix
a cube R. Clearly |∇ν j ∗ |Fj−s|| ≤ Cα2− j, and by summation we get the
statement for ∑ j≥L(R)ν j ∗ |Fj−s|. For j < L(R) we get

‖(ν j ∗ |Fj−s|)χR‖1 ≤C‖Fj−sχ3R‖1.

We have ∑ j<L(R) ‖Fj−sχ3R‖1 ≤C2nL(R)α, and so ∑ j<L(R)ν j ∗ |Fj−s| is also
in BMO with norm Cα.

Now we select a systemR of maximal dyadic cubes R such that

‖(∑
j

ν j ∗ |Fj−s|)χR‖1 ≥ α|R|.

Clearly our set is contained in ∪R and

∑
R
|R| ≤ ‖∑

j
ν j ∗ |Fj−s|‖1/α ≤C∑

Q
|Q|.

For λ < 2n+1 the statement is trivial, so let us suppose that λ ≥ 2n+1. For
each R we apply the John-Nirenberg theorem at the level 2αλ . From the
maximality we see that the average over R is at most 2nα. We get

|R∩{((∑
j

ν j ∗ |Fj−s|)−2n
α)+ > 2λα}| ≤C|R|e−cλ .

We sum over R to prove the lemma. �

With the help of the previous lemma, we can combine the two estimates
of Seeger into a single L2 bound.
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Lemma 6. Suppose that the functions H j are as defined in section 3 and
we have the collection of cubes and the functions from Lemma 3. Suppose
moreover that for each Q

∫
fQ = 0 and that

|Q| ≤Cα
−1
∫
| fQ(x)|dx.

Then for s > 3

‖∑
j

H j ∗Fj−s‖2
2 ≤C2−sδ

α ∑
Q
‖ fQ‖1.

The δ > 0 depends on the radial smoothness of H j and dimension.

We note that this simplified approach is suitable since we have Ω bounded
and full smoothness in the radial direction, while in the article of Seeger
much more general situation is studied.

Proof. Combining the Lemma 4 and the Lemma 3 with a suitable choice of
κ, we obtain that there is an ε > 0 such that ∑ j H j ∗Fj−s = a1 +a1, where

‖a1‖1 ≤C2−sε
∑
Q
‖ fQ‖1

while
‖a2‖2

2 ≤C2−sε
α ∑

Q
‖ fQ‖1.

Now, we can choose ν so that ν j dominates H j. Therefore, we get the esti-
mate from the Lemma 5 for a1 +a2. From the L2 estimate we get

|{|a2| ≥ α}| ≤ ‖a2‖2
2/α

2 ≤C2−sε
α
−1

∑
Q
‖ fQ‖1.

Let us consider set A = {|a1| ≤ α2sε/2}. We see that∫
A
|a1 +a2|2 ≤C(‖a2‖2

2 +α2sε/2
∫
|a1|)≤C2−sε/2

α ∑
Q
‖ fQ‖1.

On the other hand

Ac ⊂ {|a1 +a2| ≥ α2sε/2/2}∪{|a2| ≥ α/2}.

Now we apply the Lemma 5, we get

|Ac| ≤C(2−c2sε/2
+2−sε)α−1

∑
Q
‖ fQ‖1 ≤C2−sε/2

α
−1

∑
Q
‖ fQ‖1.

Let us put λ = sε/2 and denote for k ≥ 0

Bk = {(k+1)λα > |a1 +a2| ≥ kλα}.
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Clearly, we may assume that λ > 0, otherwise the statement of the Lemma
is trivial. It follows from the Lemma 5 that for k > 0 we get

‖Bk‖ ≤Ce−ckλ
∑
Q
|Q| ≤Ce−cksε/2

α
−1

∑
Q
‖ fQ‖1.

We then get for k > 0∫
Ac∩Bk

|a1+a2|2≤C((k+1)αsε/2)2|Bk| ≤C((k+1)sε/2)2e−cksε/2
α ∑

Q
‖ fQ‖1

and for k = 0∫
Ac∩B0

|a1 +a2|2 ≤C(αsε/2)2|Ac| ≤C(sε/2)22−sε/2
α ∑

Q
‖ fQ‖1.

We sum these estimates in k and get∫
Ac
|a1 +a2|2 ≤C(sε)22−sε/2

α ∑
Q
‖ fQ‖1

and the lemma follows.
�

We also establish a simple L2 estimate.

Lemma 7. Suppose we have the collection of cubes and the functions from
Lemma 3 and assume also

|Q| ≤Cα
−1
∫
| fQ(x)|dx.

Then for any s
‖∑

j
ν j ∗ |Fj−s|‖2

2 ≤Cα ∑
Q
‖ fQ‖1.

Proof. Clearly
‖∑

j
ν j ∗ |Fj−s|‖1 ≤C∑

Q
‖ fQ‖1.

We denote A the set where the sum is less or equal to α and B the set where
it is greater than alpha. We have∫

A

(
∑

j
ν j ∗ |Fj−s|(x)

)2

dx≤Cα ∑
Q
‖ fQ‖1.

On the set B, we apply the Lemma 5, we denote Bn the set where the sum is
greater than nα which gives∫

B

(
∑

j
ν j ∗ |Fj−s|(x)

)2

dx≤∑
n

n2|Bn| ≤∑
n

n2Ce−cn
∑
Q
|Q| ≤Cα ∑

Q
‖ fQ‖1.

�
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5. THE L2 ESTIMATE

Lemma 8. For a f ∈ L2 we have

‖T #
m f‖2 ≤C2−c2m

‖ f‖2.

Proof. The classical Fourier estimates from [5] give us |K̂i|(ξ )≤C min(|2iξ |−ε , |2iξ |ε)
for some ε > 0. The operator ∆ j−i provides essential localization to the an-
nulus |ξ | ≈ 2 j−i. Using standard reasoning one gets that for any index set I
and j ≥ 0

|∑
i∈I

K̂i
j| ≤C2−ε j.

By summing a geometric series, we also have

|∑
i∈I

Ĥ i
m| ≤C2−ε2m

.

Let us now define operators

T #
m,l f (x) = sup

r∈Z

∣∣∣∣∣ f ∗
(

∑
s∈Z,s≥r

Hs2m+2+l
m

)∣∣∣∣∣(x).
for 0≤ l ≤ 2m+2−1. We see that

T #
m f (x)≤ 2m+2 sup

0≤l≤2m+2−1
T #

m,l f (x).

Now, we establish following inequality of Cotlar type:

(6) T #
m,l f (x)≤CM

(
f ∗

(
∑
s∈Z

Hs2m+2+l
m

))
(x)+C2−ε2m

M( f )(x),

where M is the usual Hardy-Littlewood function.
To see this, fix r and take t = r2m+2 + l−2m+1. Let us remind that

H i
m = (γ2m+1−i−2− γ2m−i−1)∗Ki.

We fix τ = s2m+2 + l, for s≥ r and we obtain

Hτ
m− γ−t ∗Hτ

m

= ((γ2m+1−τ−2− γ2m−τ−1)− γ−t ∗ (γ2m+1−τ − γ2m−τ−1))∗Kτ

and by an application of the Lemma 2 we get

|Hτ
m− γ−t ∗Hτ

m(x)| ≤C2−c2m
2−c(s−r)2m

2−nτ
χB(0,2τ+2)\B(0,2τ−2).

Therefore

| f ∗ (Hτ
m− γ−t ∗Hτ

m(x))| ≤C2−c2m
2−c(s−r)2m

M f .

For s < r and 0≤ v≤ 2m−1 we get

γ−t ∗Hτ
m = γ−t ∗ (γ2m+1−τ − γ2m−τ−1)∗Kτ
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and by the Lemma 2 we get

|γ−t ∗Hτ
m| ≤C2−c2m

2−c(r−s)2m
2−nτ

χB(0,2τ+2)\B(0,2τ−2).

Therefore
|γ−t ∗Hτ

m ∗ f | ≤C2−c2m
2−c(r−s)2m

M f .

Together, this means that∣∣∣∣∣
(

γ−t ∗

(
∑
s∈Z

Hs2m+2+l
m

)
−

(
∑

s∈Z,s>r

2m−1

∑
v=0

Hs2m+2+l
m

))
∗ f

∣∣∣∣∣(x)
≤C2−c2m

M| f |(x).

and we get (6) by adding and subtracting this term and passing to the supre-
mum in t.

From (6) the lemma follows easily, because it gives the estimate

‖T #
m,l f‖2 ≤C2−c2m

‖ f‖2

and
T #

m f (x)≤ 2m+2 sup
l∈Z,0≤l≤2m+2

T #
m,l f (x).

�

6. THE PROOF OF THE THEOREM 1

We start by observing that H i
m from the definition of our operator satisfy

the condition (5). Since the estimate is scaling invariant, it is enough to
verify it for i = 0. We have

H0
m =

2m+1−2

∑
j=2m−1

K0
j =

2m+1−2

∑
j=2m−1

∆ jK0 = (γ2m+1−1− γ2m−1)∗K0.

Therefore, it is enough to show that (5) holds for any γk ∗K0, k ≥ 0. We
write

γk ∗K0(x) =
∫

γk(x− y)∗K0(y)dy.

Now we denote x = θr, θ ∈ Sn−1 and r > 0, and pass to polar coordinates.
We get

γk ∗K0(θr) =C
∫

Sn−1

∫ 4

1/4
(r1)

n−1K0(θ1r1)γk(θr−θ1r1)dr1dθ1.

It is important to make use of the radial smoothness of K0. Therefore, we
make change of variables r2 = r1/r. We see that by the support properties
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of γk, the effective range of r2 is (1−2−k,1+2−k), while θ1 ranges over a
region S1 ⊂ Sn−1 of diameter less than 2−k. We write

γk ∗K0(θr) =C
∫

S1

∫ 1+2−k

1−2−k
rn−2rn−1

2 K0(θ1rr2)γk(r(θ −θ1r2))dr2dθ1.

Now, we differentiate l times in r. The radial derivatives of K0 are bounded,
rn−2 also has bounded derivatives, and the l-th derivative of γk is bounded
by 2l(n+k), which is counteracted by the fact that |θ −θ1r2| ≤ 2−k and that
we integrate over region with measure 2−kn. Therefore the bounds on the
radial derivatives are independent on k.

Now, let us take a function f from the space L(log logL)2+ε , supported in
the unit cube Q. We may assume that f has unit norm. The operators M and
T #
−1 are clearly of the weak type, so it is enough to consider ∑

∞
m=0 T #

m( f ).
Let us fix α > 10, for smaller α the theorem is obvious. We need to prove
an estimate

|{
∞

∑
m=0

T #
m( f )≥ α}| ≤C/α.

We are going to apply stopping time argument to find maximal dyadic
subcubes Q j of Q, such that

(7) |Q j|−1
∫

Q j

| f |(x)(log(10+ log(10+ | f |(x))))2+εdx≥ α.

We denote E =
⋃

j 5Q j, clearly |E| ≤ C
α
.

Let us denote g = f χQ\∪Q j . Clearly |g|(x) ≤ α almost everywhere on
Q and therefore it has L2 norm at most α. Each of the operators T #

m is L2

bounded as in Lemma 8, therefore ∑m T #
m is L2 bounded and we may deduce

the bound
|{T #g(x)≥ α/2}| ≤C/α.

We denote b = f χ∪Q j .

Next, we fix m≥ 1. We take λ = 2c2m−2
α , where c is the constant from the

Lemma 8. We split the function b = b1
λ
+b2

λ
, where |b1

λ
| ≤ λ and |b2

λ
|> λ .

We take a Calderon-Zygmund decomposition of the function b2
λ

at the level
Km−2−εα . We use the same dyadic grid as before, and for each Q j, we
have from the maximality∫

Q j

|b2
λ
| ≤Cm−2−ε

α|Q j|.

Therefore we may choose K such that the Calderon-Zygmund cubes we
obtain will be each contained in some Q j. So, we get b2

λ
= gm+bm, ‖gm‖1≤

‖b2
λ
‖1 ≤Cm−2−ε , ‖g‖∞ ≤Cm−2−εα and bm = ∑ j bm

Ri
, the bm

Ri
are supported



ENDPOINT ESTIMATE FOR ROUGH MAXIMAL SINGULAR INTEGRALS 11

in dyadic cubes Ri with disjoint interiors,
∫

bm
Ri
= 0, ‖bm

Ri
‖1≤Cm−2−εα|Ri|,

and

∑
j
|Ri| ≤

‖b2
λ
‖1

Km−2−εα
≤C/α

and also for each i there si a j such that Ri ⊂ Q j.
We see that

‖T #
m(g

m +b1
λ
)‖2

2 ≤C2−c2m
‖gm +b1

λ
‖2

2 ≤C2−c2m
λα ≤C′2−c2m

α.

Next, we seek to estimate T #
m(b

m) outside the set E. We organize the
cubes R j into groups Dl such that the cubes in Dl have sidelength 2l. Using
the idea of Christ, we write for x not in E

T #
mbm(x) = sup

k∈Z

∣∣∣∣∣∑i>k
bm ∗H i

m

∣∣∣∣∣(x)≤ ∑
s>0

sup
k
|∑

i
∑

Q∈Di−s

bm
Q ∗H i

m|(x).

Let us fix S ≥ 3. For each s ≤ S we may use the Lemma 7 to obtain the
estimate

‖sup
k
|∑

i>k
∑

Q∈Di−s

bm
Q ∗H i

m|‖2
2 ≤Cα ∑

Q
‖bm

Q‖1 ≤Cαm−2−ε .

For s > S we first observe that H i
m satisfy the condition (5). We want

to use the Lemma 6 and then apply a technique similar to the proof of the
Lemma 8. From Lemma 6 we get that there is a ε such that for any index
set I

‖∑
i∈I

∑
Q∈Di−s

bm
Q ∗H i

m‖2
2 ≤C2−sεm−2−ε

α ∑
Q
‖bm

Q‖1.

We denote Ir = ∪i∈Z(r+ is2m). We see that there are s2m such sets. We
denote

Mr(x) = sup
k

∣∣∣∣∣ ∑
i>k, i∈Ir

∑
Q∈Di−s

bm
Q ∗H i

m

∣∣∣∣∣(x).
We have

‖sup
k
|∑

i>k
∑

Q∈Di−s

bm
Q ∗H i

m|‖2
2 ≤

s2m

∑
r=1
‖Mr‖.

Using the same argument as proof of (6) we get

Mr(x)≤CM(∑
i∈Ir

∑
Q∈Di−s

bm
Q ∗H i

m)+C2−cs
∑
i∈I

∑
Q∈Di−s

|bm
Q| ∗νi,

where ν is the function from Lemma 7. This gives

‖Mr‖2
2 ≤C2−γs

α ∑
Q
‖bm

Q‖1
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for some fixed positive γ. Therefore

‖sup
k
|∑

i>k
∑

Q∈Di−s

bm
Q ∗H i

m|‖2
2 ≤Cs2m2−γs

α ∑
Q
‖bm

Q‖1.

Now we can choose S =Km for some large K and sum the convergent series
in s, to get an estimate

‖∑
s>S

sup
k
|∑

i>k
∑

Q∈Di−s

bm
Q ∗H i

m|‖2
2 ≤Cmα ∑

Q
‖bm

Q‖1

≤Cαm−1−ε .

Collecting the previous estimates, we obtain

‖T #
m( f )χEc‖2

2 ≤Cm−1−ε
α.

and summing in m gives

‖
∞

∑
m=0

T #
m( f )χEc‖2

2 ≤Cα,

therefore ∣∣∣∣∣
{

∞

∑
m=0

T #
m( f )(x)> α

}
∩Ec

∣∣∣∣∣≤C/α,

which finishes the proof.
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