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Abstract. WDC sets in Rd were recently defined as sublevel sets of DC func-

tions (differences of convex functions) at weakly regular values. They form a

natural and substantial generalization of sets with positive reach and still ad-
mit the definition of curvature measures. Using results on singularities of

convex functions, we obtain regularity results on the boundaries of WDC sets.
In particular, the boundary of a compact WDC set can be covered by finitely

many DC surfaces. More generally, we prove that any compact WDC set M

of topological dimension k ≤ d can be decomposed into the union of two sets,
one of them being a k-dimensional DC manifold open in M , and the other

can be covered by finitely many DC surfaces of dimension k − 1. We also

characterize locally WDC sets among closed Lipschitz domains and among
lower-dimensional Lipschitz manifolds. Finally, we find a full characterization

of locally WDC sets in the plane.

1. Introduction

Federer in his fundamental paper [10] unified the approaches of convex and dif-
ferential geometry, introducing curvature measures for sets with positive reach and
proving the kinematic formulas. Quite recently, curvature measures have been de-
fined for a substantially larger class of so-called (locally) WDC sets [22], and the
corresponding kinematic formulas have been proved [15]. The basic difference be-
tween the two named set classes is that, while sets with positive reach are closely
related to semiconvex functions of several variables, WDC sets are related to DC
functions (i.e., differences of two convex functions) instead.

Following [14], we say that a locally Lipschitz function f : Rd → [0,∞) is an
aura for a set A ⊂ Rd if A = f−1{0} and 0 is a weakly regular value of f (i.e., there
exist no sequences xi → x and ui → 0 such that f(xi) > 0 = f(x) and ui ∈ ∂f(xi)
are subgradients in the Clarke sense).

This notion is motivated by the fact that A has locally positive reach if and only
if A has a semiconvex aura [1]. By the definition, A is WDC if and only if it has a
DC aura. So each set with locally positive reach is a WDC set.

Because of the theory built in [22] and [15], the following rough question naturally
arises: What is the structure of a general WDC set? Note that, in contrast with
sets with positive reach which are defined by the geometrically illustrative “unique
footpoint” property, there seems to be no purely geometric property characterizing
WDC sets. Also, there is a number of results on the structure of sets of positive
reach, see, e.g., [10], [20], or the recent article [23]. In the present article we prove
some results on WDC sets, which are analogous to these results on sets of positive
reach.
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Boundaries of WDC sets. We show that the boundary of a compact WDC set in Rd
can be covered by finitely many DC hypersurfaces (i.e., graphs of Lipschitz DC func-
tions of d− 1 variables, see Proposition 6.1). Also, we show that a closed Lipschitz
domain is locally WDC if and only if it is a closed DC domain (Theorem 6.10).
Lower dimensional WDC sets. Let M ⊂ Rd be a k-dimensional Lipschitz subman-
ifold (1 ≤ k < d). Federer [10, Remark 4.20] claimed that if M has positive reach
then it is already a C1,1 manifold. In analogy to this result, we prove that if M is
a locally WDC set instead, it must be a DC manifold. We do not know whether
the same is true for topological manifolds as it is (see [20, Proposition 1.4]) in the
case of sets with positive reach.
Structure of WDC sets. We conjecture (see also Question 8.5) that any compact
WDC set M ⊂ Rd can be partitioned (“stratified”) into finitely many sets M = T1∪
· · · ∪ Tm, where each Ti is a ki-dimensional DC manifold, 0 ≤ ki ≤ d, i = 0, . . . ,m.
We prove a related easier result, namely that M [0] ∪ · · · ∪M [d] is open and dense
in M , where M [k] is the set of all points a ∈ M that agree with a k-dimensional
DC manifold on a neighbourhood of a (Corollary 6.23). This follows from our main
result saying that for any relatively open subset A ⊂ M of topological dimension
k, A \A[k] can be covered by finitely many DC surfaces of dimension k− 1 if k ≥ 1
(Theorem 6.20). This theorem is an analogue of a result of Federer on sets with
positive reach, see Remark 6.21.
Planar locally WDC sets. In dimension d = 2, we were able to prove a full (local)
characterization of locally WDC sets. Roughly speaking, a set in R2 is locally WDC
if and only if its complement can be locally represented as a disjoint finite union of
sectors bounded by DC curves (see Theorem 7.14). This proves, in particular, our
conjecture on the structure of locally WDC sets in the planar case (see Remark 8.6
(ii)).

Throughout the paper we use two main technical tools. The first are results on
singularities of convex and DC functions (partly proved in [23]) which refine results
of [28]. They show that certain singular sets (sets of nondifferentiability) of convex
and DC functions can be covered by finitely many DC surfaces. These results are
contained in Section 5.

The second main technical tool, which is quite essential for finer results on WDC
sets, is a deformation lemma for Lipschitz functions applicable to Lipschitz and
proper auras (Lemma 3.1), proving the existence of a deformation retraction for
sublevel sets. Using this deformation lemma, we present in Section 4 also a proof
of the Gauss-Bonnet formula for sublevel sets at weakly regular values of Lipschitz,
proper Monge-Ampère functions (in particular, for WDC sets) relating the zero
order curvature to the Euler-Poincaré characteristic (Proposition 4.1). This is not
a new result, the Gauss-Bonnet formula was proved in a more general context by
Fu [14] and used in [22]. The proof in [14], however, uses some arguments which
are only outlined. Since the Gauss-Bonnet formula is a cornerstone of the whole
theory, we decided to provide a detailed proof, using the same idea as that of Fu,
together with Lemma 3.1.

We would like to thank Joseph Fu for many helpful conversations.

2. Preliminaries

2.1. Basic definitions. We will use the notation Ac for the complement of a set
A. In any vector space V , we use the symbol 0 for the zero element, xy for the
closed segment with endpoints x, y and spanM for the linear span of a set M . By
a subspace of V we always mean a linear subspace, unless specified otherwise. The
symbol B(x, r) (B(x, r)) denotes the open (closed) ball with centre x and radius r
in a metric space.



ON THE STRUCTURE OF WDC SETS 3

Let X be a (real) Banach space with norm | · |. If x ∈ X and x ∈ X∗, we set
〈x, x∗〉 := x∗(x). Tan (A, a) denotes the tangent cone of A ⊂ X at a ∈ X. If X
is a Hilbert space and V a closed subspace of X, we denote by πV the orthogonal
projection to V .

We shall work mostly in the Euclidean space Rd with the standard scalar product
u · v and norm |u|, u, v ∈ Rd. The unit sphere in Rd will be denoted by Sd−1 and
by G(d, k) we denote the set of all k-dimensional linear subspaces of Rd.

A mapping is called K-Lipschitz if it is Lipschitz with a constant K, and Lip f
denotes the (minimal) Lipschitz constant of f . A bijection f is called bilipschitz if
both f and f−1 are Lipschitz. For a function f : Rd → R and c ∈ R, we use the
short notation {f ≤ c} for the set {x ∈ Rd : f(x) ≤ c} (and analogously with other
types of inequalities).

If H is a finite-dimensional Hilbert space, U ⊂ H open, f : U → R locally
Lipschitz and x ∈ U , we denote by ∂f(x) the subgradient of f at x in the Clarke
sense, which can be defined as the closed convex hull of all limits limi→∞ f ′(xi)
such that xi → x and f ′(xi) exists for all i ∈ N. Since we identify H∗ with H in the
standard way, we sometimes consider ∂f(x) as a subset of H. We will repeatedly
use the fact that the mapping x 7→ ∂f(x) is upper semicontinuous and, hence (see
[4, Theorem 2.1.5]),

(1) v ∈ ∂f(x) whenever xi → x, vi ∈ ∂f(xi) and vi → v.

We also use that |u| ≤ Lip f whenever u ∈ ∂f(x), x ∈ U .

2.2. DC functions, mappings, surfaces and manifolds.

Definition 2.1. Let X, Y be finite-dimensional Banach spaces, C ⊂ X an open
convex set and G ⊂ X an open set.

(i) A real function on C is called a DC function if it is a difference of two
convex functions.

(ii) We say that a mapping F : C → Y is DC if y∗◦F is DC for every functional
y∗ ∈ Y ∗.

(iii) We say that f : G → R (resp. F : G → Y ) is locally DC if for each x ∈ G
there exists δ > 0 such that f (resp. F ) is DC on B(x, δ).

We will use the following well-known properties of DC functions and mappings.

Lemma 2.2. Let X, Y , C, G be as in Definition 2.1. Then the following assertions
hold.

(i) If f : C → Y and g : C → Y are DC, then (for each a ∈ R, b ∈ R) the
mappings af + bg is DC. If Y = R, then also max(f, g) and min(f, g) are
DC.

(ii) F : C → Y is DC if and only if y∗ ◦ F is DC for each y∗ from a basis of
Y ∗.

(iii) If F : G→ Y is C1,1 (i.e., F is differentiable and the derivative x 7→ F ′(x)
is Lipschitz on G), then F is locally DC. In particular (cf. (iv)) each affine
F : X → Y is DC.

(iv) Each locally DC mapping F : C → Y is DC.
(v) Each locally DC mapping F : G→ Y is locally Lipschitz.

(vi) If Z is a finite-dimensional Banach space, H ⊂ Y is open, f : G → Y is
locally DC, g : H → Z is locally DC and f(G) ⊂ H, then g ◦ f is locally
DC on G.

(vii) Let dimX = dimY , H ⊂ Y be open, and let f : G → H be a bilipschitz
locally DC mapping. Then f−1 is locally DC on H.
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(viii) If f : C → R is DC, D ⊂ X is open convex such that D ⊂ C and D is

compact, then there exists a Lipschitz DC function f̃ : X → R such that
f̃(x) = f(x), x ∈ D.

(ix) Let Fi : C → Y , i = 1, . . . ,m, be DC mappings. Let F : C → Y be a
continuous mapping such that F (x) ∈ {F1(x), . . . , Fm(x)} for each x ∈ C.
Then F is DC on C.

Proof. Property (i) follows easily from definitions, see e.g. [24, p. 84], and (ii) fol-
lows from (i). For (iii), see e.g. [25, Proposition 1.11]. Property (iv) was proved in
[16]. Property (v) follows from the local Lipschitzness of convex functions. State-
ment (vi) is “Hartman’s superposition theorem” from [16]; for the proof see also
[24] or [25, Theorem 4.2.]. Assertion (vii) follows from [25, Theorem 5.2.]. To show
(viii), write f = g − h, where g, h are convex on C, and observe that g and h are
bounded on some open convex E with D ⊂ E ⊂ C. Therefore (see e.g. [27, Fact
1.6]) g and h are Lipschitz on D and g|D, h|D have Lipschitz convex extensions g̃,

h̃ to all X. Thus we can set f̃ := g̃ − h̃. The assertion (ix) is a special case of [25,
Lemma 4.8.] (“Mixing lemma”). �

Lemma 2.3. Let F : (a, b) → Rd be a DC mapping and x ∈ (a, b). Then the
one-sided derivatives F ′±(x) exist. Moreover

(2) lim
t→x+

F ′±(t) = F ′+(x) and lim
t→x−

F ′±(t) = F ′−(x)

which implies that F ′+(a) is the strict right derivative of F at x, i.e.,

(3) lim
(y,z)→(x,x)
y 6=z, y≥x, z≥x

F (z)− F (y)

z − y
= F ′+(x).

Proof. The assertion easily follows from [26, Theorem B, p. 325] and [26, p. 329,
Proposition 3.4 (i), (ii)]. (Let us note that [26] works with Banach space valued F .
In our case it is sufficient to observe that the assertion is easy if n = 1 and F is
convex, and that the general case follows from this special case.) �

In the following, we will extensively work with DC surfaces in Euclidean spaces
and in their subspaces. So we will define DC surfaces in finite-dimensional Hilbert
spaces only. The main notion for us is a k-dimensional DC surface in a d-dimensional
Hilbert space which is given “explicitely” (i.e., as a “graph” of a DC mapping).
From this reason we use the term “DC manifold” for sets which are locally DC
surfaces in our sense.

In the rest of this subsection, the symbols X, V , W always denote Hilbert spaces
of finite positive dimension.

Definition 2.4. (a) Let d := dimX, A ⊂ X and 0 < k < d. We say that
A is a DC surface in X of dimension k, if there exists a k-dimensional
space W ⊂ X and a Lipschitz DC mapping ϕ : W → V := W⊥ such that
A = {w + ϕ(w) : w ∈ W}. Then we will also say that A is a DC surface
associated with V . A DC hypersurface (in Rd) is a DC surface of dimension
d− 1.

(b) We say that ∅ 6= A ⊂ Rd is a DC (Lipschitz) manifold of dimension k
(0 < k < d), if for each a ∈ A there exist a k-dimensional vector space
W ⊂ Rd, an open ball U in W and a DC (Lipschitz, respectively) mapping
ϕ : U → W⊥ such that P := {w + ϕ(w) : w ∈ U} is a relatively open
subset of A and a ∈ P .

(c) For formal reasons, by a DC surface (resp. DC manifold) of dimension k = d
in X we mean the whole space X (resp. a nonempty open subset of X),
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and by a DC surface (resp. DC manifold) of dimension k = 0 we mean a
singleton (resp. a nonempty isolated set) in X.

Remark 2.5. (i) It is easy to see that each DC surface in X is closed in X, but
a DC manifold in X can be non-closed.

(ii) Each k-dimensional C1,1 manifold in X is a k-dimensional DC manifold.

We will need the following lemmas which are straightforward consequences of
Lemma 2.2.

Lemma 2.6. Let d := dimX, 0 < k < d and W ⊂ X be a k-dimensional space.
Let ϕ : W →W⊥ be a Lipschitz DC mapping and P be a DC surface of dimension
k − 1 in W . Then Q := {w + ϕ(w) : w ∈ P} is a DC surface of dimension k − 1
in X.

Proof. The case k = 1 is trivial. If k > 1, then there exist a space Z ⊂ W
of dimensions k − 1 and a Lipschitz DC mapping ψ : Z → Z⊥ ∩ W such that
P = {z + ψ(z) : z ∈ Z}. Then Q = {z + ψ(z) + ϕ(z + ψ(z)) : z ∈ Z}. Note
that also ψ : Z → Z⊥ is DC by Definition 2.1 (ii). Consequently the mapping
ϕ∗ : Z → Z⊥, ϕ∗(z) = ψ(z) + ϕ(z + ψ(z)) is Lipschitz and DC by Lemma 2.2 (i),
(iv), (vi), and the assertion follows. �

Lemma 2.7. Let 0 < k < d, W and Z be two k-dimensional subspaces of Rd and
let G ⊂ W and H ⊂ Z be open. Suppose that there are two Lipschitz functions
f : G→W⊥ and g : H → Z⊥ such that {s+f(s) : s ∈ G} = {t+g(t) : t ∈ H} =: S
and suppose that f is locally DC. Then g is locally DC.

Proof. Define φ : G → Rd by φ(s) = s + f(s) and ψ : H → Rd by ψ(t) = t + g(t).
Then both φ−1 = πW |S and ψ−1 = πZ |S are Lipschitz. So F : G → H, F :=
ψ−1 ◦ φ = πZ ◦ φ, is Lipschitz and also locally DC by Lemma 2.2 (i), (iii), (vi).
Since F−1 : H → G, F−1 = πW ◦ ψ is Lipschitz, Lemma 2.2 (vii) implies that F−1

is locally DC, and so g = πZ⊥ ◦ φ ◦ F−1 is locally DC as well. �

2.3. WDC sets.

Definition 2.8. Let U ⊂ Rd be open and f : U → R be locally Lipschitz. A
number c ∈ R is called a

(i) regular value of f if 0 6∈ ∂f(x) for all x ∈ U such that f(x) = c;
(ii) weakly regular value of f if whenever xi → x, f(xi) > c = f(x) and ui ∈

∂f(xi) for all i ∈ N then lim infi |ui| > 0.

Remark 2.9. (i) If c is a regular value of f (notice that c need not be in the
range of f) then c is also weakly regular, by (1).

(ii) Let f be locally Lipschitz on Rd, c ∈ f(Rd) and {f ≤ c} compact. Then, it
is easy to see that c is a weakly regular value of f if and only if there exists
an ε > 0 such that

(4) |u| ≥ ε whenever u ∈ ∂f(x) for some x with 0 < dist (x, {f ≤ c}) < ε.

(iii) If f, c are as in (ii) and, moreover, f is proper (i.e., f−1(K) is compact
whenever K ⊂ R is compact), then c is a weakly regular value of f if and
only if there exists an ε > 0 such that

(5) |u| ≥ ε whenever u ∈ ∂f(x) for some x with c < f(x) < c+ ε.

Definition 2.10 (WDC set). A set A ⊂ Rd is called WDC if there exists a DC
function f : Rd → [0,∞) such that A = f−1{0} and 0 is a weakly regular value of
f . In such a case, we call f a DC aura (for A).

Notice that ∅ is a WDC set by our definition.



6 DUŠAN POKORNÝ, JAN RATAJ AND LUDĚK ZAJÍČEK

Definition 2.11 (Locally WDC set). A set A ⊂ Rd is called locally WDC if for
any point a ∈ A there exists a WDC set A∗ ⊂ Rd that agrees with A on an open
neighbourhood of a.

Remark 2.12. (i) Equivalently, we can say thatA is WDC iffA = f−1((−∞, c])
for a DC function f with weakly regular value c.

(ii) WDC sets were introduced in [22] under the compactness assumption and
the definition was extended to the Riemannian setting in [15]. Locally WDC
sets were defined in [22] with a formally stronger requirement of local agree-
ment with compact WDC sets; nevertheless, it follows from Proposition 2.16
that both definitions are equivalent.

(iii) Auras were defined originally by Fu [14] as nonnegative Monge-Ampère
functions with weakly regular value 0. Since any DC function is Monge-
Ampère ([22, Theorem 1.1]), a DC aura is an aura in Fu’s sense. We
shall sometimes use the analogy and call a Lipschitz aura a nonnegative
Lipschitz function with weakly regular value 0 (though, of course, such a
function need not be Monge-Ampère).

(iv) It was shown in [22] that compact locally WDC sets admit normal cycles
and curvature measures. Normal cycles are defined locally, hence, the com-
pactness assumption can be relaxed and both normal cycles and curvature
measures can be defined even for closed locally WDC sets, and the main
properties remain true (in particular, the local principal kinematic formula,
cf. [15], Theorem B and §5.1 (3)). Therefore, we are mainly interested in
the (larger) class of closed locally WDC sets and its properties. On the
other hand, it seems to be plausible that any closed locally WDC set is
WDC (cf. [22, Problem 10.2]).

(v) Using the well-known fact that each Lipschitz convex function defined on
a closed ball has a Lipschitz convex extension to the whole space, one can
easily show that any compact WDC set M admits a DC aura which is
Lipschitz and, consequently, satisfies (4) for c = 0 and some ε > 0. Since a
positive multiple of a DC aura is again a DC aura, we can find a 1-Lipschitz
DC aura for M . Moreover, there even exists a 1-Lipschitz DC aura for M
which is proper (indeed, consider the maximum of a 1-Lipschitz DC aura
for M with the distance from an open ball containing M).

We will consider also locally defined DC auras. Let ∅ 6= A ⊂ Rd be closed.
Given an open convex set C ⊂ Rd, we say that a DC function f : C → [0,∞) is a
DC aura in C (for A) if A ∩ C = f−1({0}) and 0 is a weakly regular value of f .
Such a locally defined DC aura cannot be extended in general to a DC aura (on
Rd), nevertheless, we show a related weaker result (Lemma 2.13). As a corollary we
obtain a characterization of locally WDC sets by “local” auras (Proposition 2.15).
Also, we show that any (locally) WDC set agrees locally with a compact WDC set
(Proposition 2.16).

Lemma 2.13. Let a ∈ Rd, r ∈ (0,∞] and let f : B(a, r) → [0,∞) be a DC aura
in B(a, r) with f(a) = 0 (here B(a,∞) = Rd). Then there exists 0 < s < r and a
compact WDC set A∗ ⊂ B(a, r) such that

A∗ ∩B(a, s) = f−1{0} ∩B(a, s).

If r =∞ then A∗ with the above property can be found to any given s > 0.

The proof is based on a corrected version of [22, Proposition 7.3] whose proof,
unfortunately, contains a gap (cf. also the remark after Proposition 4.1 in [15]).

Given an open convex set C ⊂ Rd and a DC aura f in C, we denote

ñor f :=
{(
x, u|u|

)
: x ∈ C, f(x) = 0, 0 6= u ∈ ∂f(x)

}
.
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(Note that, in general, ñor f is a larger set than nor (f, 0) used in [22] in the case
C = Rd.) We shall say that two DC auras f, g in C touch weakly provided that
there exists (x, v) ∈ ñor f with (x,−v) ∈ ñor g. The corrected version of [22,
Proposition 7.3] reads as follows.

Lemma 2.14. If f, g are two DC auras in C that do not touch weakly then f + g
is a DC aura in C as well.

Proof. Obviously, f+g is a DC function; it remains to verify the weak regularity of
0. We shall do this by contradiction: assume that f(x) = g(x) = 0, f(xi) + g(xi) >
0, xi → x, wi ∈ ∂(f + g)(xi), but wi → 0. Since ∂(f + g)(x) ⊂ ∂f(x) + ∂g(x)
(see [4, Proposition 2.3.3]), there exist vectors ui ∈ ∂f(xi) and vi ∈ ∂g(xi) with
wi = ui + vi. We can assume without loss of generality that say f(xi) > 0 for all i.
Then, by the weak regularity of 0 for f , we can assume that there exists an ε > 0
such that |ui| ≥ ε for all i. Turning to a subsequence if necessary, we may assume
that there exist limi ui =: u and limi vi =: v. So u 6= 0 and v = −u. Since graph ∂f
and graph ∂g are closed by (1), we have u ∈ ∂f(x) and v ∈ ∂g(x). So, obviously,
f, g touch weakly, which is a contradiction. �

Proof of Lemma 2.13. We can assume without loss of generality that a = 0. First
we claim that the set

{(v, x · v) ∈ Sd−1 × R : (x,−v) ∈ ñor f}

has d-dimensional measure zero. This is, in fact, Proposition 7.1 from [22] with a
restricted domain of f and nor (f, 0) replaced by ñor f , and the proof given in [22]
works also in our setting. Further, let us say that a k-dimensional affine subspace
F of Rd is weakly tangent to the DC aura f in C if there exists (x, v) ∈ ñor f
such that x ∈ F and v ⊥ F . As in Lemma 8.4 of [22], it can be shown that for
any 0 ≤ k ≤ d − 1, the set of affine k-subspaces weakly tangent to a DC aura f
in C has measure zero, with respect to the motion invariant measure. (In fact,
Lemma 8.4 in [22] is stated only for 1 ≤ k ≤ d − 1, but the proof given there
works for k = 0 as well; moreover, the statement with k = 0 reads that ∂f−1{0}
has d-dimensional measure zero, which clearly follows from [22, Proposition 7.1].)
Hence, by [22, Lemma 8.5], there exist linearly independent unit vectors v1, . . . , vd
in Rd and dense sets T1, . . . , Td ⊂ R such that the affine k-subspace

{x ∈ Rd : x · vi1 = ti1 , . . . , x · vid−k
= tid−k

}

is not weakly tangent to f whenever ti ∈ Ti, i = 1 . . . , d, 0 ≤ k ≤ d − 1 and
1 ≤ i1 < · · · < id−k ≤ d. The set A∗ can be found now as the intersection of
f−1{0} with a polytope

P := {x ∈ Rd : −s1 ≤ x · v1 ≤ t1, . . . ,−sd ≤ x · vd ≤ td}

with si, ti > 0 and −si, ti ∈ Ti, i = 1, . . . , d. (Indeed, P contains the origin
in its interior and P ⊂ B(0, r) if si, ti > 0 are small enough. If, on the other
hand, r = ∞ we can choose si, ti large enough so that P contains B(0, s) for any
given s > 0.) The distance function g : x 7→ dist (x, P ) is clearly a DC aura
and its restriction to B(0, r) does not weakly touch f . Hence, an application of
Lemma 2.14 guarantees that f + g is a DC aura in B(0, r). Let 0 < s < r be such
that P ⊂ B(0, s). By Lemma 2.2 (viii), there exists a DC function h : Rd → [0,∞)
such that h|B(0,s) = (f + g)|B(0,s). Denoting p := dist (·, B(0, s)), the function

q := max{h, p} is a DC aura for A∗ (note that p−1{0} ⊂ P ). �

Proposition 2.15. Let ∅ 6= A ⊂ Rd be closed. Then, the following are equivalent.

(i) A is locally WDC.
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(ii) For any a ∈ A there exist an r > 0 and a DC aura f : B(a, r)→ [0,∞) in
B(a, r) for A (in particular, f−1{0} = A ∩B(a, r)).

Proof. Since any DC aura is also a DC aura in C for any C ⊂ Rd open convex, the
implication (i) =⇒ (ii) is obvious. To show the other implication, let A be a closed
set fulfilling (ii), and let a ∈ A be given. By (ii), there exists a DC B(a, r)-aura f
for some r > 0. Using Lemma 2.13, we can find a (compact) WDC set A∗ which
agrees with A on some neighbourhood of a. Thus, A is locally WDC. �

Proposition 2.16 (Localization of WDC sets). Let A ⊂ Rd be a WDC set, a ∈ A
and s > 0. Then there exists a compact WCD set A∗ ⊂ A such that A∗ ∩B(a, s) =
A ∩B(a, s).

Proof. Apply Lemma 2.13 with r =∞. �

3. Deformation lemma for Lipschitz mappings

Let X be topological space and Y ⊂ X. A continuous mapping H : X ×
[0, 1]→ X is a deformation retraction of X onto Y if H(x, 0) = x whenever x ∈ X,
H(y, t) = y whenever y ∈ Y and H(X × {1}) = Y (cf. [17, p. 2]).

The following lemma extends [5, Lemma 4.1], removing the smoothness assump-
tion. Note that the notion of a proper mapping is given in Remark 2.9 (iii).

Lemma 3.1. Let f : Rd → R be Lipschitz and proper, M := {f ≤ 0} 6= ∅ compact
and assume that 0 is a weakly regular value of f . Then there exist 0 < ε < 1 and a
continuous mapping H : {f < ε} × [0, 1]→ {f < ε} such that

(i) |v| ≥ ε whenever v ∈ ∂f(x) and 0 < f(x) < ε,
(ii) if 0 < f(x) < ε then H(x, 0) = x and H(x, 1) ∈ ∂M ,
(iii) if x ∈M then H(x, t) = x for all t ∈ [0, 1],
(iv) for any (x, t) ∈ {0 ≤ f < ε} × [0, 1],

ε

2
|H(x, t)−H(x, 1)| ≤ f(H(x, t)),

(v) if f(z) < ε then

ε

2
dist (z,M) ≤ f(z) ≤ (Lip f) dist (z,M),

(vi) for any 0 < r < ε and y ∈ ∂M there exists x with f(x) = r and H(x, 1) = y,
(vii) for any 0 < r < ε, the restriction of H to {f ≤ r} × [0, 1] is a deformation

retraction of {f ≤ r} onto M .

Proof. Since 0 is a weakly regular value of f , there exists an ε > 0 such that (i)
holds, see Remark 2.9 (3). It is not difficult to see that we can take ε ∈ (0, 1).
Denote Uε := {x : 0 < f(x) < ε}. As the first step we show that there exists a
bounded C∞ mapping F : Uε → Rd such that

(6) 〈F (x), v〉 > ε whenever x ∈ Uε and v ∈ ∂f(x).

To show this, we slightly modify the construction from the proof of [2, Lemma 3.1].
Given u ∈ Sd−1, denote V (u) := {v ∈ Rd : v · u > ε

2} and G(u) := {x ∈ Uε :
∂f(x) ⊂ V (u)}.

Let K be the space of all nonempty convex compact subsets of Rd equipped
with the Hausdorff metric, and let V,V(u) (u ∈ Sd−1) denote its subsets of all
K ∈ K contained in {v ∈ Rd : ε ≤ |v| ≤ Lip f}, V (u), respectively. Since V is
compact and covered by the open sets V(u), u ∈ Sd−1, there exist finitely many unit
vectors u1, . . . , uk such that V ⊂ V(u1) ∪ · · · ∪ V(uk). Note that, by (i), ∂f(x) ∈ V
whenever x ∈ Uε. Thus, also Uε ⊂ G(u1) ∪ · · · ∪G(uk). Since x 7→ ∂f(x) is upper
semicontinuous (see (1)), the sets G(ui) are open, and there exists a C∞ partition
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of unity 1 =
∑k
i=1 γi on Uε subordinated to the open cover G(u1), . . . , G(uk). The

mapping

F (x) = 2

k∑
i=1

γi(x)ui

then satisfies (6); note that ε ≤ |F (x)| ≤ 2 for all x ∈ Uε.
Consider now the differential equation

(7) x′(t) = −F (x(t)), x(0) = x,

for x ∈ Uε. Since F is C∞ smooth, it is locally Lipschitz in Uε and, hence, there
exists a unique maximal solution ϕx : Ix → Uε for any x ∈ Uε. Denote τ(x) :=
sup Ix; we shall find an upper bound for τ(x). Consider the function gx := f ◦ ϕx
which is clearly Lipschitz and, by the chain rule for Lipschitz functions (see [4,
Theorem 2.3.9]), its Clarke gradient satisfies

∂gx(t) ⊂ {〈ϕ′x(t), v〉 : v ∈ ∂f(ϕx(t))}
= {−〈F (ϕx(t)), v〉 : v ∈ ∂f(ϕx(t))}
⊂ [−2 Lip f,−ε];(8)

we have used (6) and |F | ≤ 2 in the last inclusion. The mean value theorem for
Lipschitz functions [4, Theorem 2.3.7] yields for t ∈ Ix

gx(t) ≤ gx(0)− εt = f(x)− εt, t ≥ 0,

and, since clearly gx(t) > 0, we obtain t < f(x)/ε, hence,

(9) τ(x) ≤ ε−1f(x) ≤ Lip f

since x ∈ Uε.
The mapping ϕx is Lipschitz (the norm of its derivative is bounded by 2, see

(7)) on Ix and, hence, it has Lipschitz extension to Ix ∪ {τ(x)} ⊃ [0, τ(x)]. Note
that necessarily

gx(τ(x)) = 0, x ∈ Uε.
Indeed, gx(τ(x)) ≥ 0 by continuity, and if gx(τ(x)) > 0 we would obtain a con-
tradiction with the fact that no maximal solution can end inside Uε, see e.g. [18],
Theorem in Ch. 8, §5.

We shall show now that τ is continuous. Fix an x ∈ Uε and δ > 0 and let xi → x.
Then f(ϕx(τ(x) − δ)) > 0, and, since the solutions of (7) depend continuously on
the initial condition x (see [18, Ch. 8, §6]), also f(ϕxi

(τ(x)− δ)) > 0 for sufficiently
large i, hence, τ(xi) > τ(x) − δ. Since δ > 0 can be arbitrarily small, we get
lim infi τ(xi) ≥ τ(x). For the other inequality, note that gx(τ(x) − δ) < 2(Lip f)δ
by (8) and, again by the continuity in initial conditions, we have gxi

(τ(x) − δ) <
3(Lip f)δ for sufficiently large i. Using now the other bound from (8), we get that

gxi
(τ(x)− δ+ η) < 0 provided that η = 3 Lip f

ε δ and τ(x)− δ+ η lies in the domain
of gxi . But gxi ≥ 0 on its domain, which implies that τ(xi) ≤ τ(x) − δ + η, and
since δ (and, hence, also η) can be arbitrarily small, we get lim supi τ(xi) ≤ τ(x).
Thus we have proved that τ is continuous.

We define now

H(x, t) :=


ϕx(t) : x ∈ Uε, 0 ≤ t ≤ τ(x)

ϕx(τ(x)) : x ∈ Uε, τ(x) ≤ t ≤ 1

x : f(x) ≤ 0

The continuity of H can be shown similarly as in [5], the idea is as follows: Note
that the mapping H(x, ·) is Lipschitz with constant 2 for each x. Thus, for the
continuity in both variables, is is enough to show that H(·, t) is continuous for each
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t. Let t ∈ [0, 1] and x ∈ {f < ε} be given; the continuity of H(·, t) at x can be
seen by distinguishing several cases. (a) If f(x) > 0 and t < τ(x) then we can
use [18, Ch. 8, §6], as above. (b) If f(x) > 0 and t = τ(x), choose an arbitrary
ω > 0. Now consider an s < t and note that by (a), for y sufficiently close to x,
|H(y, s) −H(x, s)| < ω/2. By the Lipschitz property of H in the second variable,
we have

|H(y, t)−H(x, t)| ≤ ω

2
+ 2 · 2(t− s) < ω

for t− s small enough. (c) If f(x) > 0 and t > τ(x) then H(x, t) = H(x, τ(x)) and
also H(y, t) = H(y, τ(x)) for y close to x, so our assertion follows from (b). (d) If
f(x) ≤ 0 then H(x, t) = x. Consider an y close to x; then either f(y) ≤ 0 and,
hence H(y, t) = y is close to x, or f(y) > 0 and τ(y) is small due to (9), which
implies that |y − H(y, t)| ≤ 2τ(y) is small as well and the proof of continuity is
finished.

The properties (ii) and (iii) follow immediately from the above considerations.
We shall verify (iv). If x ∈ f−1((−∞, 0]) or t ≥ τ(x) then the inequality is obvious.
Take now x ∈ Uε and 0 ≤ t ≤ τ(x) and note that, by the mean value theorem for
the Lipschitz function gx and (8),

f(H(x, t)) = gx(t) ≥ gx(τ(x)) + (τ(x)− t)ε = (τ(x)− t)ε

which, together with the fact that ϕx is 2-Lipschitz, implies (iv).
Using (iv) with x = z and t = 0 and the Lipschitz property of f , we obtain (v).
In order to prove (vi), take any y ∈ ∂M and a sequence yi → y with f(yi) > 0.

Since clearly H(y, 1) = y, we have H(yi, 1)→ y by continuity. If ϕx : Ix → Uε is any
maximal solution of (7), we have shown that gx(sup Ix) = 0, and similarly it follows
that gx(inf Ix) = ε (since if gx(inf Ix) ∈ (0, ε) we would get a contradiction with the
maximality). Thus, any maximal solution hits all level sets {f = r} with 0 < r < ε.
Hence, there exist ti ∈ Iyi and xi ∈ {f = r} with xi = ϕyi(ti). Since the equation
(7) is autonomous, we have ϕyi(ti + t) = ϕxi

(t) whenever one side is defined (see
[18], Theorem 1 in Ch. 8, §7) and we obtain easily that H(xi, 1) = H(yi, 1) → y.
It follows that any accumulation point x of (xi) satisfies f(x) = r and H(x, 1) = y,
by continuity of H.

Property (vii) follows using the fact that f(H(x, t)) is decreasing in t. �

Corollary 3.2. Let f,M and ε > 0 be as in Lemma 3.1. Then,

(1) χ(M) = χ({f ≤ r}), 0 ≤ r < ε,
(2) M is locally contractible (hence, locally arcwise connected),
(3) both M and Rd \M have finitely many connected components.

In particular, (1), (2) and (3) hold if M is a compact WDC set and f its proper
DC aura (cf. Remark 2.12 (v)).

Proof. Assertion (1) follows from (vii) and the well-known fact that any deformation
retraction is a homotopy equivalence, see [6, Ch. III.5].

Lemma 3.1 implies that M is a retract of its open neighbourhood, hence, a Eu-
clidean neighbourhood retract, and such spaces are known to be locally contractible,
see e.g. [3, IV. (3.1), V. (2.6)]; this proves (2).

Finally, (3) follows from the well-known fact that the homology groups of a Eu-
clidean neighbourhood retract are finitely generated (see, e.g., [17, Corollary A.8]).

�

Notation 3.3. If ∅ 6= M ⊂ Rd is a compact WDC set, we always fix f = fM , ε = εM
and H = HM in the following way. First we choose a proper 1-Lipschitz DC aura
f for M (see Remark 2.12 (v)) and then choose 0 < ε < 1 and H as in Lemma 3.1.
Note that H(x, t) is defined for all x ∈ B(M, ε) := {y : dist (y,M) < ε}, t ∈ [0, 1],
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and that |u| ≥ ε whenever x ∈ B(M, ε) and u ∈ ∂f(x). Indeed, since f is 1-
Lipschitz, we have B(M, ε) ⊂ {f < ε}.

Lemma 3.4. Let ∅ 6= M ⊂ Rd be a compact WDC set. Let 0 < ε = εM < 1 be
as in Notation 3.3. Suppose that 0 < δ < ε, x, y ∈ ∂M and ϕ : [0, 1] → Rd is a
continuous curve for which

ϕ(0) = x, ϕ(1) = y, ϕ((0, 1)) ⊂ Rd \M and diam (ϕ([0, 1])) ≤ δ.
Then there exists a continuous κ : [0, 1]→ ∂M for which

κ(0) = x, κ(1) = y, and diam (κ([0, 1])) <
6δ

ε
.

Proof. Let f = fM and H = HM be as in Notation 3.3. Note that the function
κ(u) = H(ϕ(u), 1), u ∈ [0, 1], is continuous with the range in ∂M . By Lemma
3.1 (iii), (vi) we obtain, for each 0 ≤ u ≤ 1,

|κ(u)− ϕ(u)| = |H(ϕ(u), 1)−H(ϕ(u), 0)| ≤ 2

ε
f(ϕ(u))

≤ 2

ε
dist (ϕ(u),M) ≤ 2

ε
δ.(10)

Therefore, for each u ∈ [0, 1],

|κ(u)− x| ≤ |κ(u)− ϕ(u)|+ |ϕ(u)− x| ≤ 2

ε
δ + δ <

3δ

ε
.

Consequently, diam (κ([0, 1])) < 6δ
ε . �

Consider the situation of Lemma 3.1. If the mapping H would be, moreover,
Lipschitz, we would get that ∂M is (d − 1)-rectifiable (indeed, if 0 < r < ε then
∂M = H(·, 1)({f = r}) by Lemma 3.1 (vi) and the level set {f = r} is a Lipschitz
manifold of dimension d− 1 since r is a regular value of f). The following example
shows, however, that the set M fulfilling the assumptions of Lemma 3.1 need not
be (d − 1)-rectifiable. Hence, the mapping H does not always exist Lipschitz (cf.
Question 8.1).

Example 3.5. There exists a compact set K ⊂ R2 with empty interior and Hausdorff
dimension greater than 1 which admits a Lipschitz aura.

Proof. Fix an angle α ∈ (0, π8 ) and consider the points

V ± =

(
±1

2
, 0

)
, V =

(
0,

1

2
tanα

)
, B± =

(
±
(

1

2
− 1

4 cos2 α

)
, 0

)
and triangles

H = conv{V −, V +, V } and H± = conv{V ±, B±, V }.
We further denote by γ the size of the convex angle ∠(B−V B+) and note that

γ = π − 4α ∈ (π2 , π).

V − V +

V

B− B+

H− H+

α

γ

It is not difficult to verify that all the three triangles H,H−, H+ are similar.
Let φ+, φ− be the similarities mapping H onto H+, H− and keeping V +, V − fixed,
respectively. Both φ+, φ− are contracting similarities with the same coefficient
a := 1

2 cosα ∈ ( 1
2 , 1) and, hence, there exists a unique self-similar set K ⊂ R2
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satisfying K = φ−(K) ∪ φ+(K), see [9, Theorem 9.1]. (The choice α = π
6 at the

beginning would yield the well-known von Koch curve.) Moreover, the open set
condition clearly holds (with open set intH), hence, the Hausdorff dimension of K
is ln 1

2/ ln a ∈ (1, 2), see [9, Theorem 9.3], and elementary arguments lead to

V ∈ K ⊂ H+ ∪H−.
We will show that the distance function dK : x 7→ dist (x,K), x ∈ R2, is a proper
Lipschitz aura for K. dK is clearly proper and 1-Lipschitz. We further show that

(11) |v| ≥ − cos γ whenever x ∈ R2 \K and v ∈ ∂dK(x).

This will imply that 0 is a weakly regular value of dK and the proof will be complete.
Let x, v be as in (11). Using [12, Lemma 4.2], we know that

v ∈ conv

{
x− y
|x− y|

: y ∈ ΠK(x)

}
=: Cx,

where ΠK(x) denotes the metric projection of x to K (i.e., the set of all points of
K lying in distance dK(x) from x). Thus, |v| ≥ dist (0, Cx). If ΠK(x) is a singleton
then |v| = 1 and (11) holds. In the sequel, we will assume that ΠK(x) has at least
two points.

Assume that ΠK(x) is contained in one of the triangles H+, H−, say in H−.
Then, by the self-similarity of K, the preimage x1 := φ−1

− (x) satisfies ΠK(x1) =

φ−1
− (ΠK(x)) and, consequently, Cx1 agrees with Cx up to a linear isometry (in

particular, dist (0, Cx1
) = dist (0, Cx)). If again ΠK(x1) is contained in H− or

H+, we iterate the same procedure until, after a finite number of n steps, we get
xn := φ−1

n ◦ · · · ◦ φ−1
1 (x), dist (0, Cxn) = dist (0, Cx), ΠK(xn) ∩ (H+ \ {V }) 6= ∅

and ΠK(xn) ∩ (H− \ {V }) 6= ∅. (We use the fact that the diameter of ΠK(xn) is
positive and is increased by factor a−1 in each step.) We shall write x instead of
xn in the sequel.

The open ball B := B(x, dK(x)) does not hit K, hence, V 6∈ B and let V ′ denote
the intersection point of the segment x, V with ∂B. We observe that x lies in
the interior of the (convex) angle ∠(B−V B+) (it follows from the facts that γ is
an obtuse angle, B intersects both H− \ {V } and H+ \ {V }, and V 6∈ B). Let
y− ∈ ΠK(x) ∩ (H− \ {V }) and y+ ∈ ΠK(x) ∩ (H+ \ {V }) be such that the angles
β− := ∠(V xy−) and β+ := ∠(V xy+) are maximal (recall that ΠK(x) is a compact
set). Thus, denoting β := β−+β+, 2π−β is the central angle corresponding to the
inscribed angle ∠(y−V

′y+) and we have

2π − β
2

= ∠(y−V
′y+) > ∠(y−V y+) ≥ γ.

Since γ > π
2 , we obtain β < π and

dist (0, Cx) =
dist (x, y−, y+)

|x− y−|
= cos

β

2
≥ − cos γ

(note that the whole set ΠK(x) lies on the shorter arc of ∂B with endpoints y−,
y+). Thus (11) follows. �

4. Gauss-Bonnet formula

We recall that a locally Lipschitz function f : Rd → R is Monge-Ampère if there
exists a (necessarily unique) d-dimensional integral current without boundary Df
on Rd ×Rd which annihilates the symplectic 2-form (Df ω = 0), its support has
bounded first component and for any g ∈ C∞c (Rd × Rd),

Df(g · (π0)#Ωd) =

∫
Rd

g(x,∇f(x)) dx,
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where π0 : (x, y) 7→ x is the first component projection, Ωd is the volume form in
Rd and ∇f(x) the gradient of f at x (which exists Lebesgue-almost everywhere by
the local lipschitzness). The support of Df is contained in {(x, u) : u ∈ ∂f(x)}.
See [13, Sect. 2] or [22, Def. 5.1].

Let f : Rd → R be Monge-Ampère and let r be a weakly regular value of f .
Then we define the integral current

N(f, r) := −ν#∂(Df (f ◦ π0)−1(r,∞)),

where

ν : (x, y) 7→ (x, y/|y|), (x, y) ∈ Rd × (Rd \ {0})
is the spherical projection. Note that the assumption that r is a weakly regular
value guarantees that the support of ∂(Df (f ◦ π0)−1(r,∞)) is contained in
the domain of ν, thus the push-forward ν# is well defined. We also remark that
N(f, r) = lims→r+ N(f, s) and if r is a regular value of f then

N(f, r) = ν#〈Df, f ◦ π0, r〉,

see [11, §4.2.1, 4.3.4]. In what follows, we denote by π1 : (x, y) 7→ y the second
component projection.

Proposition 4.1. Let f : Rd → R be proper, Lipschitz and Monge-Ampère, and
assume that 0 is a weakly regular value of f . Then

(12) N(f, 0)(ϕ0) = χ({f ≤ 0}),

where ϕ0 is the Gauss form, i.e., the differential form of order d − 1 on Rd × Rd
given as

ϕ0(x, u) := (dωd)
−1(π1)#(u Ωd),

ωd = πd/2/Γ(1 + d/2) and χ is the Euler-Poincaré characteristic.

Remark 4.2. Since any DC function is Monge-Ampère (see [22, Theorem 1.1]),
Proposition 4.1 applies whenever f is a proper Lipschitz DC aura for a compact
WDC set.

Proof. Let ε > 0, Uε and F : Uε → Rd be as in the proof of Lemma 3.1. We define

u : x 7→ − F (x)

|F (x)|
, x ∈ Uε

(recall that |F | ≥ ε/2 > 0),

V := {(x, y) ∈ Uε × Rd : 0 6∈ u(x), v}

and

h : [0, 1]× V → Rd × Sd−1

(t, x, y) 7→ ν(x, (1− t)y + tu(x))

(due to the definition of the domain V , h is well defined and smooth). Note that
h(0, x, y) = ν(x, y) and h(1, x, y) = (x, u(x)), (x, y) ∈ V .

In the following, we shall use the notation [0, 1] for both the closed unit interval
and the 1-dimensional current given by Lebesgue integration along it with natural
orientation. We denote

T := h#([0, 1]× (ν#(Df Uε)));

T is a (d + 1)-dimensional current in Rd × Rd (for the definition of the cartesian
product of currents, see [11, §4.1.8]). The boundary of T can be computed (cf. [19,
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§7.4.3])

∂T = ∂h#([0, 1]× (ν#(Df Uε)))

= h#∂([0, 1]× (ν#(Df Uε)))

= h#[(δ1 − δ0)× (ν#(Df Uε))]− h#[[0, 1]× ∂(ν#(Df Uε))]

= (ũ ◦ π0)#(ν#(Df Uε))− ν#(Df Uε)− h#[[0, 1]× ∂(ν#(Df Uε))],

where δ0, δ1 denote the 0-currents corresponding to the Dirac measure at 0, 1, re-
spectively, and ũ(x) := (x, u(x)). Since Df has no boundary, the boundary of
Df Uε is supported in {x : f(x) ∈ {0, ε}}. The slice 〈T, f ◦ π0, r〉 is defined for
a.e. 0 < r < ε and its boundary satisfies (see [11, p. 437])

∂〈T, f ◦ π0, r〉 = −〈∂T, f ◦ π0, r〉.

Thus, for almost all 0 < r < ε we obtain

∂〈T, f ◦ π0, r〉 = −〈(ũ ◦ π0)#(ν#Df), f ◦ π0, r〉+ 〈ν#(Df Uε), f ◦ π0, r〉
= −ũ#〈(π0)#(Df), f, r〉+N(f, r)

= −ũ#〈Hd ∧ e1...d, f, r〉+N(f, r),

where e1...d = e1 ∧ · · · ∧ ed is the canonical unit d-vector in Rd. We apply now
both sides of the above equality to the differential form ϕ0. We get by the Stokes
formula

∂〈T, f ◦ π0, r〉(ϕ0) = 〈T, f ◦ π0, r〉(dϕ0) = 0,

since dϕ0 = (−1)d−1ω−1
d (π1)#Ωd and (π1)#T is supported in the unit sphere which

has d-dimensional measure zero. Hence,

N(f, r)(ϕ0) = ũ#〈Hd ∧ e1...d, f, r〉(ϕ0).

If 0 < f(x) = r < ε and Df(x) exists, let τ(x) be the unit (d− 1)-vector associated
with Tan (f−1{r}, x) and oriented so that 〈τ(x) ∧ ∇f(x),Ωd〉 > 0. Using [11,
§4.3.8. (2)], we can write 〈Hd ∧ e1...d, f, r〉 = (Hd−1 f−1{r}) ∧ τ for almost all
0 < r < ε, and obtain

ũ#〈Hd ∧ e1...d, f, r〉(ϕ0) =

∫
f−1{r}

〈τ(x), ũ#ϕ0(x)〉Hd−1(dx)

=

∫
f−1{r}

〈(
∧
d−1Dũ)τ(x), ϕ0(ũ(x))〉Hd−1(dx)

= (dωd)
−1

∫
f−1{r}

〈(
∧
d−1Du)τ(x) ∧ u(x),Ωd〉Hd−1(dx).

Let ur : {f = r} → Sd−1 denote the restriction of u to the oriented Lipschitz
surface {f = r} with values in the unit sphere. We can write

〈(
∧
d−1Du)τ(x) ∧ u(x),Ωd〉 = detDur(x)

as the determinant of the differentialDur(x) : Tan ({f = r}, x)→ Tan (Sd−1, ur(x))
with respect to any positively oriented orthonormal bases of the tangent spaces, and
applying the Area formula to the last integral, we obtain

N(f, r)(ϕ0) = (dωd)
−1

∫
Sd−1

∑
x∈u−1

r {v}

detDur(x)

|detDur(x)|
Hd−1(dv)

= (dωd)
−1

∫
Sd−1

deg(ur, v)Hd−1(dv)
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with the Brouwer degree of ur, see [6, §VIII.4], cf. [21, p. 27] in the smooth case.
The degree deg(ur, v) = deg ur is independent of v ∈ Sd−1 (see [21, p. 28]) and by
the Hopf theorem (see [6, §VIII.4.9]), deg ur = χ({f ≤ r}). Thus we get

(13) N(f, r)(ϕ0) = deg(ur) = χ({f ≤ r})

and, letting r tend to 0 and applying Corollary 3.2 (1), we complete the proof. �

5. Singular sets of convex and DC functions

This section collects a few results on smallness of certain sets of singularities of
convex and DC functions that will be needed in the sequel. We start with two
propositions which are consequences of results from [23].

Proposition 5.1. Let X be a d-dimensional Hilbert space, 1 ≤ k < d, Ω ⊂ X
an open convex set, g and h Lipschitz convex functions on Ω, ε > 0 and denote
f := g − h. For each k-dimensional subspace K ⊂ X denote

ZKε := {x ∈ Ω : f ′+(x, v) + f ′+(x,−v) > ε whenever v ∈ K and |v| = 1},

Zε :=
⋃
{ZKε : K is a k − dimensional subspace of X}.

Then

(i) each ZKε can be covered by finitely many (d − k)-dimensional DC surfaces
associated with K,

(ii) Zε can be covered by finitely many (d− k)-dimensional DC surfaces.

Proof. The case h = 0 (hence, f is Lipschitz convex) was shown in [23, Lemma 4.3,
Proposition 4.4]. In the general case, consider the Lipschitz convex function σ :=
g + h and note that for each x ∈ ZKε and each unit vector v ∈ K, we have

ε < |g′+(x, v)− h′+(x, v) + g′+(x,−v)− h′+(x,−v)|
≤ (g′+(x, v) + g′+(x,−v)) + (h′+(x, v) + h′+(x,−v)) = σ′+(x, v) + σ′+(x,−v).

Hence, the assertions follow from the first (convex) case. �

Proposition 5.2 ([23, Corollary 4.5]). Let Ω ⊂ Rd be an open convex set, f a
Lipschitz convex function on Ω, and ε > 0. Then the set

{x ∈ Ω : diam (∂f(x)) > ε}

can be covered by finitely many DC hypersurfaces.

As a corollary we obtain the following result.

Lemma 5.3. Let Ω ⊂ Rd be an open convex set, ε > 0 and f = g−h, where g and
h are Lipschitz convex functions on Ω. Then the set

M := {x ∈ Ω : f(x) = 0 and there exists α ∈ ∂f(x) with |α| > ε}

can be covered by finitely many DC hypersurfaces.

Proof. Let x ∈ M . Since ∂f(x) ⊂ ∂g(x) − ∂h(x) (see [4, Proposition 2.3.3]),
there exist α1 ∈ ∂g(x) and α2 ∈ ∂h(x) such that |α1 − α2| > ε. Set µ(y) :=
max(g(y), h(y)), y ∈ Ω. Then µ is clearly Lipschitz and convex. Since g(x) = h(x),
we have α1 ∈ ∂µ(x) and α2 ∈ ∂µ(x) (see [4, Proposition 2.3.12]). So diam ∂µ(x) > ε
and the assertion of the lemma follows from Proposition 5.2. �

Corollary 5.4. Let ∅ 6= C ⊂ Rd be a bounded set and f a DC function on Rd
such that f(x) = 0 for every x ∈ C. Let there exist ε > 0 such that for each x ∈ C
there exists y∗ ∈ ∂f(x) with |y∗| > ε. Then C can be covered by finitely many DC
hypersurfaces.
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Proof. Write f = g − h with convex g, h and choose an open ball B containing C.
Extend g|B and h|B to Lipschitz convex functions h∗ and g∗on Rd, respectively.
Now it is sufficient to apply Lemma 5.3 with Ω = Rd and f∗ = g∗ − h∗. �

6. Results on the structure of WDC sets in Rd

6.1. Boundaries of (locally) WDC sets.

Proposition 6.1. For each compact WDC set M ⊂ Rd, its boundary ∂M can be
covered by finitely many DC hypersurfaces.

Proof. If M 6= ∅, let f = fM and ε = εM be as in Notation 3.3. Using Lemma
3.1 (i) and (1) we obtain that for each x ∈ K := ∂M there exists y∗ ∈ ∂f(x) with
|y∗| ≥ ε. Consequently Corollary 5.4 implies our assertion. �

Using Proposition 2.16, we easily obtain the following corollary.

Corollary 6.2. For each closed locally WDC set M ⊂ Rd, its boundary ∂M can
be locally covered by finitely many DC hypersurfaces.

We will use the following terminology repeatedly.

Definition 6.3. Let 0 ≤ k ≤ d and A ⊂ Rd. Then we denote by A[k] the set of all
x ∈ A, at which A locally coincides with a k-dimensional DC surface.

Obviously, A[k] is open in A, A[d] = intA and A[0] is the set of all isolated points
of A. Further, if 0 ≤ k ≤ d and A[k] 6= ∅, then A[k] is a DC manifold of dimension
k.

Proposition 6.4. Let M ⊂ Rd be a closed locally WDC set such that M = intM .
Then (∂M)[d−1] is dense in ∂M .

Proof. Choose an arbitrary b ∈ ∂M and r > 0. It is sufficient to prove that
B(b, r) ∩ (∂M)[d−1] 6= ∅. By Corollary 6.2 we can choose a relatively open subset
H of ∂M with b ∈ H ⊂ B(b, r) and (d − 1)-dimensional DC surfaces P1, . . . , Ps
which cover H. Since H is locally compact, it is a Baire space (i.e., the Baire
theorem holds in H), see [8, pp. 249, 250]. Consequently there exists an index
j such that Pj ∩ H is not nowhere dense in H. Since Pj is closed, there exist
z ∈ H and δ > 0 such that B(z, δ) ∩ ∂M ⊂ Pj . Choose a (d − 1)-dimensional
space W ⊂ Rd, a unit vector v ∈ W⊥ and a DC function ϕ : W → R such that
Pj = {t + ϕ(t)v : t ∈ W}. Using continuity of ϕ, we can clearly choose a ball
B(t0, ω) in W and η > 0 such that z = t0 + ϕ(t0)v and

{t+ (ϕ(t) + τ)v : t ∈ B(t0, ω), τ ∈ [−η, η]} ⊂ B(z, δ).

Then the sets

A1 := {t+ (ϕ(t) + τ)v : t ∈ B(t0, ω), τ ∈ (0, η)} and

A2 := {t+ (ϕ(t) + τ)v : t ∈ B(t0, ω), τ ∈ (−η, 0)}
are clearly open connected sets which do not intersect ∂M and so, for i ∈ {1, 2},
either Ai ∩M = ∅ or Ai ⊂ M . The case A1 ⊂ M , A2 ⊂ M is impossible, since it
clearly implies z ∈ intM . Also the case A1 ∩M = ∅, A2 ∩M = ∅ is impossible,
since it implies z /∈ intM . So either A1 ⊂ M and A2 ∩M = ∅ or A2 ⊂ M and
A1 ∩M = ∅. In both cases we clearly have z ∈ ∂M [d−1] ∩B(b, r) and our assertion
follows. �

Remark 6.5. [23, Example 7.12(i)] shows that, in the above proposition, we cannot
assert that ∂M \ (∂M)[d−1] has zero (d − 1)-dimensional Hausdorff measure even
in the case when M ⊂ R2 is a set of positive reach.
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6.2. Lipschitz manifolds and sets with Lipschitz boundaries. In Section 7
we will completely characterize locally WDC sets in R2. For sets in Rd, d ≥ 3, we
do not know such a characterization (even for sets with locally positive reach).

However, we will give such full characterization for sets of “special types”, namely
for k-dimensional Lipschitz manifolds (cf. Definition 2.4 (b)) and for “closed Lips-
chitz domains”.

The easier implication of the following result was observed in [22, Proposi-
tion 3.2 (ii)]; we present a full proof for completeness.

Proposition 6.6. Let a closed set A ⊂ Rd be a Lipschitz manifold of dimension
0 < k < d. Then A is a locally WDC set if and only if A is a DC manifold of
dimension k.

Proof. First suppose that A is a DC manifold of dimension k and a ∈ A. Using
Lemma 2.2 (viii), it is easy to see that there exist W ∈ G(d, k), a DC mapping
ϕ : W →W⊥ and r > 0 such that

A ∩B(a, r) = {y + ϕ(y) : y ∈W} ∩B(a, r).

Consider the function

f : x 7→ |x− φ(πW (x))|, x ∈ Rd,

where φ(y) := y + ϕ(y), y ∈ W . By Lemma 2.2 (i), (iii), (iv), (vi), f is a DC
function and for each x with f(x) > 0 we have

f ′(x, ν(x)) = 1 at ν(x) :=
x− φ(πW (x))

|x− φ(πW (x))|
.

It follows that f ′(y) · ν(y) ≥ 1 whenever f ′(y) exists and, since ν is continuous on
{f > 0}, also v · ν(x) ≥ 1 whenever f(x) > 0 and v ∈ ∂f(x). Thus, 0 is a weakly
regular value of f and f is a DC aura for {f = 0}. Since A ∩ B(a, r) = {f =
0} ∩B(0, r) by construction, we conclude that A is a locally WDC set.

To prove the opposite implication, suppose that A is a locally WDC set. Consider
an arbitrary a ∈ A. Using Definition 2.11 and Proposition 2.16, we can choose δ > 0
and a compact WDC set M ⊂ A such that M ∩B(a, δ) = A∩B(a, δ). Let f = fM
and ε = εM be as in Notation 3.3. Diminishing δ, if necessary, we can suppose that
there exist W ∈ G(d, k), a Lipschitz mapping ϕ : W →W⊥, δ > 0 and an open set
U in W such that

B(a, δ) ∩A = B(a, δ) ∩M = {w + ϕ(w) : w ∈ U}.

Fix L > 1 such that ϕ is L-Lipschitz. Now consider arbitrary v ∈ W⊥ ∩ Sd−1,
x ∈ B(a, δ) ∩M , t > 0 and w ∈ U . We will observe that, denoting w0 = πW (x),
we have

(14) d := |(x+ tv)− (w + ϕ(w))| = |(w0 + ϕ(w0) + tv)− (w + ϕ(w))| ≥ t

2L
.

Indeed, the inequality is obvious, if |w − w0| ≥ t
2L . And in the opposite case we

have

d ≥ |ϕ(w0) + tv − ϕ(w)| ≥ t− |ϕ(w0)− ϕ(w)| ≥ t− L|w − w0| ≥
t

2
≥ t

2L
.

Consequently there exists t0 > 0 such that dist (x+ tv,M) ≥ t
2L for each t ∈ (0, t0).

Using also Lemma 3.1 (v), we obtain that f(x+ tv) ≥ ε
2
t

2L for 0 < t < min(t0, ε).

Since f(x) = 0, we have proved that for each x ∈ B(a, δ) ∩M and v ∈W⊥ ∩ Sd−1

we have f ′+(x, v) ≥ ε
4L . So Proposition 5.1 (i) (applied with Ω := B(a, δ) and

K := W⊥; note that if f = g − h, where g, h are convex on Rd, then g, h are
necessarily Lipschitz on each bounded set) implies that B(a, δ)∩M can be covered
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by finitely many DC surfaces associated with W⊥. Using Lemma 2.2 (ix), we easily
obtain that ϕ is locally DC on U . Therefore, A is a k-dimensional DC manifold. �

Remark 6.7. We do not know whether each k-dimensional topological manifold
which is locally WDC is a DC manifold. However, it is a DC manifold except a
nowhere dense set, see Corollary 6.25.

Definition 6.8. We will say that a closed set A ⊂ Rd is a closed Lipschitz domain
(resp. a closed DC domain) if for each a ∈ ∂A there exist r > 0, W ∈ G(d, d− 1),
v ∈W⊥ ∩ Sd−1 and a Lipschitz (resp. DC) function ϕ : W → R such that

(15) A ∩B(a, r) = {w + tv : w ∈W, t ≤ ϕ(w)} ∩B(a, r).

Remark 6.9. Closed DC domains are called simply “DC domains” in [22] and are
considered as most natural examples of closed locally WDC sets (see [22, Proposi-
tion 3.3 (i)] and the title of [22]).

Theorem 6.10. Let A ⊂ Rd be a closed Lipschitz domain. Then A is locally WDC
if and only if A is a closed DC domain.

Proof. Each closed DC domain is locally WDC by [22, Proposition 3.3 (i)]. The
following proof of the converse implication is quite analogous to the corresponding
part of the proof of Proposition 6.6.

Suppose that A 6= ∅ is locally WDC and consider a point a ∈ ∂A. Choose r, W ,
v and a Lipschitz ϕ : W → R as in Definition 6.8; so (15) holds. Using Definition
2.11 and Proposition 2.16, we can choose 0 < δ < r and a compact WDC set
M ⊂ A such that M ∩ B(a, δ) = A ∩ B(a, δ). Let f = fM and ε = εM be as in
Notation 3.3. It is easy to see that

(16) ∂M ∩B(a, δ) = {w + ϕ(w)v : w ∈W} ∩B(a, δ) = {w + ϕ(w)v : w ∈ U}
for an open subset U of W . Fix L > 1 such that ϕ is L-Lipschitz. Now consider
arbitrary x ∈ ∂A ∩B(a, δ), t > 0 and w ∈ U . The same argument which was used
to prove (14) reveals that

|(x+ tv)− (w + ϕ(w)v)| ≥ t

2L
.

This inequality together with (15) and (16) easily implies that there exists t0 > 0
such that dist (x+ tv,M) ≥ t

2L for each t ∈ (0, t0). Using also Lemma 3.1 (v), we

obtain that f(x+ tv) ≥ ε
2
t

2L if 0 < t < min(t0, ε). Since f(x) = 0, we have proved
that for each x ∈ B(a, δ) ∩ ∂M we have f ′+(x, v) ≥ ε

4L (and f ′+(x,−v) ≥ 0, since
f is nonnegative). So Proposition 5.1 (i) implies (cf. the corresponding argument
in the proof of Theorem 6.6) that B(a, δ)∩M can be covered by finitely many DC
surfaces associated with W⊥. Using Lemma 2.2 (ix), we easily obtain that ϕ is
locally DC on U . Therefore, using Lemma 2.2 (viii), we easily obtain that A is a
closed DC domain. �

Remark 6.11. Note that in Theorem 6.10 it is not enough to assume that A is merely
a closed “topological domain”; consider the set A = {(x, y) ∈ R2 : |y| ≤ x2, x ≥ 0}
which is even a set with positive reach, but not a closed Lipschitz domain.

6.3. A technical lemma. Recall that by G(d, k) we denote the set of all k-
dimensional linear subspaces of Rd. Now we will define two (well-known) notions
which substitute the notions of the angle between a vector and a subspace of Rd and
the angle between two elements of G(d, k), but are more suitable for our purposes.

Definition 6.12. Let 0 6= v ∈ Rd, 0 < k < d and V,W ∈ G(d, k). Then we define

σ(v,W ) :=
dist (v,W )

|v|
,
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γ(V,W ) := max
(
sup{dist (v,W ) : v ∈ V ∩ Sd−1}, sup{dist (w, V ) : w ∈W ∩ Sd−1}

)
.

Lemma 6.13. Let 0 6= z ∈ Rd, 0 < k < d and V,W ∈ G(d, k). Then σ(z,W ) ≤
σ(z, V ) + γ(V,W ).

Proof. We can and will suppose that |z| = 1. Note that for v := πV (z) we have
|z − v| = σ(z, V ). Since |v| ≤ 1, we have dist (v,W ) ≤ γ(V,W ). Consequently

σ(z,W ) = dist (z,W ) ≤ |z − v|+ dist (v,W ) ≤ σ(z, V ) + γ(V,W ).

�

Lemma 6.14. Let 0 < k < d and V,W ∈ G(d, k). Let γ := γ(V,W ) > 0. Then
there exists a subspace Z of Rd of dimension d− k + 1 such that

(17) for each 0 6= z ∈ Z, either σ(z, V ) ≥ γ/3 or σ(z,W ) ≥ γ/3.

Proof. Without a loss of generality we can suppose that there exists v ∈ V ∩ Sd−1

with dist (v,W ) = γ. Set Z := span({v}∪V ⊥). Clearly dimZ = d−k+1. To prove
(17), consider an arbitrary z ∈ Z ∩ Sd−1. Write z = λv + u, where u ∈ V ⊥. Now
distinguish two possibilities. If |u| ≥ γ/3, then dist (z, V ) = dist (u, V ) = |u| ≥ γ/3.
If |u| < γ/3, then |λ| ≥ 2/3, since γ ≤ 1 and |λ| + |u| ≥ |z| = 1. Consequently
dist (λv,W ) ≥ (2/3)γ, and so dist (z,W ) ≥ dist (λv,W ) − |u| ≥ (2/3)γ − γ/3 =
γ/3. �

Lemma 6.15. Let 0 < k < d and W ∈ G(d, k). Let ∅ 6= S ⊂ Rd, 1/2 > ε > 0 and

(18) σ(s2 − s1,W ) ≤ ε whenever s1, s2 ∈ S, s1 6= s2.

Then there exists a (2ε)-Lipschitz mapping g : πW (S) → W⊥ such that S = {w +
g(w) : w ∈ πW (S)}.

Proof. Let s1, s2 ∈ S, s1 6= s2 and si = wi + zi, where wi ∈ W and zi ∈ W⊥,
i = 1, 2. Set s := s2 − s1, w := w2 − w1, z := z2 − z1. Our task is to prove

|z| ≤ 2ε|w|. Clearly s = w + z and by (18) σ(s,W ) = |z|
|s| ≤ ε. Therefore |w| ≥

|s| − |z| ≥ (1− ε)|s| ≥ (1/2)|s| which implies |z| ≤ ε|s| ≤ 2ε|w|. �

Lemma 6.16. Let P := P1 ∪ · · · ∪ Ps, where all Pi ⊂ Rd are DC surfaces of
dimension k, 1 ≤ k < d. Let M ⊂ Rd be a compact set and ω > 0. Then there
exists a set E ⊂ Rd which is a finite union of DC surfaces of dimension k− 1 such
that for each x ∈ (P ∩M) \ E there exist η(x) > 0 and W ∈ G(d, k) such that,
denoting U := B(x, η(x)), the following conditions hold:

(i) If x /∈ Pi, then Pi ∩ U = ∅.
(ii) If x ∈ Pi, then there exists an ω-Lipschitz, locally DC mapping ψi : Di →

W⊥ such that Di ⊂W is open in W and Pi ∩ U = {t+ ψi(t) : t ∈ Di}.

Proof. Fix an open ball Ω containing M and set α := ω/(40d). For each 1 ≤ i ≤ s
choose Wi ∈ G(d, k) and a Lipschitz DC mapping ϕi : Wi → W⊥i such that
Pi = {t + ϕi(t) : t ∈ Wi}. Set πi := πWi

and Ωi := πi(Ω). For each i, fix an

orthonormal basis (bi1, . . . , b
i
d−k) of W⊥i . Then there exist Lipschitz DC functions

ϕi1, . . . , ϕ
i
d−k on Wi such that

(19) ϕi(t) = ϕi1(t)bi1 + · · ·+ ϕid−k(t)bid−k, t ∈Wi.

Write ϕij = gij − hij , where gij and hij are convex functions on Wi. Applying Propo-

sition 5.2 to Lipschitz convex functions gij |Ωi and hij |Ωi we easily obtain in Wi a
set Ni which is a finite union of DC surfaces of dimension k− 1 such that, for each
1 ≤ j ≤ d− k,

diam ∂gij(t) <
α

2d
and diam ∂hij(t) <

α

2d
for each t ∈ Ωi \Ni.
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Since ∂ϕij(t) ⊂ ∂gij(t) − ∂hij(t) (see [4, Proposition 2.3.3]), we obtain (for i, j and

t as above) that diam ∂ϕij(t) < α/d. For those i, j and t, choose Lt,ij ∈ ∂ϕij(t).

Using the upper semicontinuity of the Clarke subdifferential (see (1)), we can find
for each t ∈ Ωi \Ni its neighbourhood U ti in Wi such that, for each j,

(20) |L− Lt,ij | <
α

d
whenever L ∈ ∂ϕij(τ) for some τ ∈ U ti .

Define the linear mapping Lt,i : Wi →W⊥i by the formula

(21) Lt,i(u) = Lt,i1 (u)bi1 + · · ·+ Lt,id−k(u)bid−k, u ∈Wi.

We will show that, for each t ∈ Ωi \Ni and each j,

(22) |ϕi(t2)− ϕi(t1)− Lt,i(t2 − t1)| < α|t2 − t1| whenever t1, t2 ∈ U ti .
To this end choose arbitrary t1, t2 ∈ U ti . By Lebourg’s mean value theorem ([4,
Theorem 2.3.7]) we have, for each j, ϕij(t2)−ϕij(t1) = L(t2− t1), where L ∈ ∂ϕij(τ)

for some τ ∈ U ti . Therefore, using also (20), (21) and (19), we easily obtain (22).
Set Ei1 := {t+ ϕi(t) : t ∈ Ni} and E1 :=

⋃s
i=1E

i
1. Then E1 is a finite union of

DC surfaces of dimension k − 1 by Lemma 2.6. Further, for x ∈ (Pi ∩M) \E1, set
V xi := {u+ Lπi(x),i(u) : u ∈Wi}. For each couple 1 ≤ i < j ≤ s define

Bi,j = {x ∈ (P ∩M) \ E1 : x ∈ Pi ∩ Pj and γ(V xi , V
x
j ) > (3/8)ω},

E2 :=
⋃

1≤i<j≤s

Bi,j and E := E1 ∪ E2.

To finish the proof, it is sufficient to show that

(23) E2 is contained in a finite union of DC surfaces of dimension k − 1

and that

(24) for each x ∈ (P ∩M) \ E there exist η(x) and W for which (i), (ii) hold.

We will infer (23) from [23, Lemma 4.3] (or Proposition 5.1). Indeed, we will
construct a Lipschitz convex function f on Ω and, for each couple 1 ≤ i < j ≤ s
and x ∈ Bi,j , a (d− k + 1)-dimensional space V xi,j ⊂ Rd such that

(25) f ′+(x, v) + f ′+(x,−v) > α whenever v ∈ V xi,j with |v| = 1.

First we will construct, for each 1 ≤ i ≤ s, a convex function fi on Rd. To
this end, fix i. For a while, we will write for the short ϕ, bj , ϕj , gj , hj instead of
ϕi, bij , ϕ

i
j , g

i
j , h

i
j . For each x ∈ Rd, we will define the “new coordinates” t(x) ∈ Wi

and yj(x) ∈ R (j = 1, . . . , d−k) of the point x by the equality x = t(x) + y1(x)b1 +
· · · + yd−k(x)bd−k. Now for 1 ≤ j ≤ d − k we define a function sj on Rd by the
formula

sj(x) = max(yj(x)− ϕj(t(x)), 0), x ∈ Rd.
Since each sj is by Lemma 2.2 (i), (iii), (iv), (vi) a DC function, we can write

sj = pj − qj , where pj and qj are convex functions on Rd. Set fi :=
∑d−k
j=1 (pj + qj).

We will show that, for each x ∈ (Pi ∩M) \ E1,

(26) (fi)
′(x, z) + (fi)

′(x,−z) > α whenever |z| = 1 and σ(z, V xi ) > ω/8.

To this end, let x ∈ (Pi ∩M) \ E1, |z| = 1 and σ(z, V xi ) > ω/8. Set t := t(x) and
w := t(z). Set L := Lt,i; let L(u) = L1(u)b1 + · · · + Ld−k(u)bd−k, u ∈ Wi. Since
dist (z, V xi ) > ω/8, we have

|(w + y1(z)b1 + · · ·+ yd−k(z)bd−k)− (w + L1(w)b1 + · · ·+ Ld−k(w)bd−k)| > ω/8.

So we can find 1 ≤ j ≤ d − k such that |yj(z) − Lj(w)| > ω/(8d) = 5α. First
suppose that

(27) yj(z) ≥ Lj(w) + 5α.
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By (22) we easily obtain, for all sufficiently small h > 0, the inequality

|ϕj(t+ hw)− ϕj(t)− Lj(hw)| < αh|w|.

So, since ϕj(t) = yj(x), using (27), we obtain for these h
(28)
ϕj(t+hw) < yj(x)+hLj(w)+αh|w| ≤ yj(x)+h(yj(z)−5α)+αh = yj(x)+hyj(z)−4αh.

Therefore sj(x+ hz) = max(yj(x) + hyj(z)− ϕj(t+ hw), 0) ≥ 2αh. Since sj(x) =
max(yj(x)− ϕj(t), 0) = 0, we obtain (sj)

′
+(x, z) ≥ 2α. Since sj ≥ 0 and sj(x) = 0,

we have (sj)
′
+(x,−z) ≥ 0, and thus (sj)

′
+(x, z) + (sj)

′
+(x,−z) ≥ 2α. Therefore, it

is easy to see that

(29) (fi)
′
+(x, z) + (fi)

′
+(x,−z) > α.

The case yj(z) ≤ Lj(w) − 5α can be treated quite symmetrically. Indeed, in this
case (27) holds, if we write in it −z and −w instead of z and w. Since also all
subsequent formulas till (29) hold after these substitutions, we obtain that (29)
holds also in the second case.

Now put f :=
∑s
i=1 fi. Let 1 ≤ i < j ≤ s and x ∈ Bi,j be fixed. By Lemma

6.14, there exists a (d− k + 1)-dimensional space Z =: V xi,j ⊂ Rd such that

(30) for each 0 6= z ∈ Z, either σ(z, V xi ) > ω/8 or σ(z, V xj ) > ω/8.

By (26), we obtain (25) in both possible cases. So, each Bi,j , and thus also E2, is
contained in a finite union of DC surfaces of dimension k − 1 by [23, Lemma 4.3]
(or Proposition 5.1). Thus we have proved (23).

To prove (24), consider an arbitrary x ∈ (P ∩M) \ E. Choose a 1 ≤ j ≤ s for
which x ∈ Pj and set W := V xj . Now consider an arbitrary 1 ≤ i ≤ s for which

x ∈ Pi. Set t := πi(x), Si := {τ + ϕi(τ) : τ ∈ U ti } and consider arbitrary different
s1, s2 ∈ Si. Then s1 = t1 + ϕi(t1) and s2 = t2 + ϕi(t2) for some t1, t2 ∈ U ti and
s2−s1 = (t2− t1)+(ϕi(t2)−ϕi(t1)). Set u := (t2− t1)+Lt,i(t2− t1). Then u ∈ V xi
and (22) implies

|(s2 − s1)− u| = |ϕi(t2)− ϕi(t1)− Lt,i(t2 − t1)| ≤ α|t2 − t1| ≤ α|s2 − s1|.

Consequently σ(s2−s1, V
x
i ) ≤ α. Since x /∈ E2 and Bi,j ⊂ E2, we have γ(V xi ,W ) =

γ(V xi , V
x
j ) ≤ 3ω/8. Using Lemma 6.13, we obtain that

(31) σ(s2 − s1,W ) ≤ α+ 3ω/8 < ω/2 whenever s1, s2 ∈ Si, s1 6= s2.

Denote π := πW . By Lemma 6.15, (31) implies that there exists an ω-Lipschitz
mapping gi : π(Si)→W⊥ such that Si = {τ +ϕi(τ) : τ ∈ U ti } = {w+gi(w) : w ∈
π(Si)}. Setting ξ(t) := t + ϕi(t), t ∈ U ti , and κ := π ◦ ξ, we easily see that κ is a
homeomorphism of U ti onto π(Si). Since both Wi and W = Wj are homeomorphic
to Rk, Brouwer’s Invariance of Domain Theorem (see e.g. [6, Ch. IV, 7.4]) implies
that the set π(Si) is open in W . Using Lemma 2.7 we obtain that gi is locally DC
on π(Si). Now choose η(x) so small that (i) holds and Pi∩B(x, η(x)) ⊂ Si for each
i with x ∈ Pi. Then (ii) clearly holds with Di := π(Si) and ψi := gi|Di . �

6.4. Main results.

Lemma 6.17. Let f be a DC function in Rd, c > 0, and let P1, . . . , Ps be DC
surfaces of dimension 0 < k < d in Rd. Let A ⊂ P := P1 ∪ · · · ∪ Ps be a bounded
set such that f(x) = 0 for each x ∈ A. Then there exists a set T ⊂ Rd which is a
finite union of DC surfaces of dimension k − 1 such that, if x ∈ A \ T , then

(32) lim sup
p→x,p∈P

f(p)

|p− x|
≤ c.
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Proof. Denote

Zi := {x ∈ A ∩ Pi : lim sup
p→x,p∈Pi

f(p)

|p− x|
> c}.

Since (32) clearly holds for each x ∈ A \
⋃s
i=1 Zi, it is sufficient to prove that, for

each fixed 1 ≤ i ≤ s,

(33) Zi can be covered by finitely many (k − 1)-dimensional DC surfaces.

Since Pi is a k-dimensional DC surface, we can find W ∈ G(d, k) and a DC mapping
ϕ : W → W⊥ such that Pi = {w + ϕ(w) : w ∈ W}. Set π := πW and Φ(w) :=
w+ϕ(w), w ∈W . Then Φ is a DC mapping and Φ := (π|Pi)

−1. Set D := π(Zi) and

f̂ := f ◦Φ. By Lemma 2.2 (i), (vi), (iv), f̂ is a DC function on W and f̂(y) = 0 for
each y ∈ D. Now consider an arbitrary d ∈ D. Then x := Φ(d) ∈ Zi and so there

exists a sequence (xn) such that xn ∈ Pi, xn → x and f(xn)
|xn−x| ≥ c. Set x̂n := π(xn).

Since π is 1-Lipschitz, we have f̂(x̂n) ≥ c|x̂n − d|. Lebourg’s mean-value theorem

([4, Theorem 2.3.7]) implies that there exist points un ∈W and αn ∈ ∂f̂(un) such
that un → d and

〈αn, x̂n − d〉 = f̂(x̂n)− f̂(d) = f̂(x̂n) ≥ c|x̂n − d|.

Consequently |αn| ≥ c and therefore (1) easily implies that there exists y∗ ∈ ∂f̂(d)
with |y∗| ≥ c. Since D = π(Zi) is bounded, identifying W with Rk and using
Corollary 5.4, we obtain that D can be covered by finitely many (k−1)-dimensional
DC surfaces S1,. . . , Sm in W = Rk. Then Zi is covered by Qi := Φ(Si), i =
1, . . . ,m, and each Qi is by Lemma 2.6 a (k − 1)-dimensional DC surface in Rd;
thus (33) holds. �

Lemma 6.18. Let 0 < k < d and W ∈ G(d, k). Let D ⊂ W be a closed set,
ω > 0 and let ψi : D → W⊥, i = 1, . . . , p, be ω-Lipschitz mappings. Denote
Hi := {(t, ψi(t)) : t ∈ D}, i = 1, . . . , p. Let d ∈ D, z0, z1 ∈ W⊥, and κ :
[0, 1] → Rd be a continous mapping such that κ(0) = d + z0, κ(1) = d + z1 and
κ([0, 1]) ⊂ H1 ∪ · · · ∪Hp. Then

(34) diamκ([0, 1]) ≥ |z1 − z0|
pω

.

Proof. Denote π := πW and π̃ := πW⊥ . Further observe that all Hi are closed sets.
Choose j0 such that κ(0) ∈ Hj0 . Set u0 := 0 and u1 := max{u ∈ [0, 1] : κ(u) ∈
Hj0}. Then clearly either u1 = 1 or κ(u1) ∈ Hj1 for some j1 6= j0. Then we define
u2 := max{u ∈ [0, 1] : κ(u) ∈ Hj1}, and so on. By this procedure we obtain
numbers 0 = u0 < u1 · · · < uq = 1 with 1 ≤ q ≤ p and pairwise different indexes
j0, j1, . . . , jq−1 such that {κ(uk), κ(uk+1)} ⊂ Hjk for each 0 ≤ k ≤ q − 1. Since

clearly
∑q−1
k=0 |π̃(κ(uk+1))− π̃(κ(uk))| ≥ |z1 − z0|, we can choose 0 ≤ k ≤ q − 1 for

which |π̃(κ(uk+1))− π̃(κ(uk))| ≥ (1/p)|z1 − z0|. Since

κ(uk) = π(κ(uk)) + ψjk(π(κ(uk))) and κ(uk+1) = π(κ(uk+1)) + ψjk(π(κ(uk+1))),

we have

|π̃(κ(uk+1))−π̃(κ(uk))| = |ψjk(π(κ(uk+1)))−ψjk(π(κ(uk)))| ≤ ω|π(κ(uk+1))−π(κ(uk))|.

Consequently we obtain (34), since

|κ(uk+1)− κ(uk)| ≥ |π(κ(uk+1))− π(κ(uk))| ≥ 1

pω
|z1 − z0|.

�
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Proposition 6.19. Let M ⊂ Rd be a compact WDC set and A a nonempty rela-
tively open subset of M . Let A ⊂ P1 ∪ · · · ∪ Ps =: P , where all Pi are DC surfaces
of dimension 0 < k < d. Then A\A[k] can be covered by finitely many DC surfaces
of dimension k − 1.

Proof. Let f = fM and 0 < ε = εM < 1 be as in Notation 3.3. Choose a set E
by Lemma 6.16 corresponding to ω := ε

8s . Further choose a set T by Lemma 6.17
corresponding to c := ε/5. Since the set E ∪ T is a finite union of DC surfaces of
dimension k − 1, it is sufficient to prove A \ (E ∪ T ) ⊂ A[k].

To this end, choose an arbitrary x ∈ A \ (E ∪T ). By the choice of E, there exist
η(x) > 0 and W ∈ G(d, k) such that, denoting U := B(x, η(x)), conditions (i) and
(ii) of Lemma 6.16 hold. So, if x ∈ Pi, we can choose corresponding Di and ψi. We
can and will suppose that, for some 1 ≤ p ≤ s, {i : x ∈ Pi} = {1, . . . , p}. Recall
that (see Lemma 6.16 (ii))

(35) ψi is ω − Lipschitz on Di, i = 1, . . . , p.

Denote π := πW , π̃ := πW⊥ and t0 := π(x). Since T is closed, we can choose
ρ ∈ (0, ε) so small that

(36) B(x, ρ) ⊂ U \ T,

(37) B(t0, ρ) ∩W ⊂ Di for 1 ≤ i ≤ p and

(38) M ∩B(x, ρ) = A ∩B(x, ρ).

Note that

(39) M ∩B(x, ρ) = A ∩B(x, ρ) ⊂ A ∩ U ⊂ P1 ∪ · · · ∪ Pp.
Choose δ ∈ (0, ρ) such that

(40) δ

(
2 +

6

ε

)
< ρ.

We will now prove that

(41) for each t ∈ B(t0, δ) ∩W there is at most one x ∈ A ∩ U with π(x) = t.

So suppose to the contrary that there exist t ∈ B(t0, δ) ∩W and x1, x2 ∈ A ∩ U
such that x1 6= x2 and π(x1) = π(x2) = t. Using (39), we can suppose that
x1, x2 ∩ A = {x1, x2}. Choose indices i1 6= i2 such that x1 = t + ψi1(t) and
x2 = t+ ψi2(t). By (35) we obtain

|ψik(t)− ψik(t0)| ≤ (1/8)|t− t0| ≤ (1/8)δ, k = 1, 2.

Thus |x1−x2| = |ψi1(t)−ψi2(t)| ≤ δ < ε. Now set ϕ(u) := x1+u(x2−x1), u ∈ [0, 1].
By Lemma 3.4 there exists a continuous κ : [0, 1]→ ∂M for which

(42) κ(0) = x1, κ(1) = x2, and diam (κ([0, 1])) <
6|x1 − x2|

ε
.

Using also (35) and (40), for each 0 ≤ u ≤ 1 we obtain

(43) |κ(u)− x| ≤ |x1 − x|+ diam (κ([0, 1])) < δ + (1/8)δ +
6δ

ε
< ρ,

and so π(κ(u)) ∈ B(t0, ρ) ∩ W and κ(u) ∈ P1 ∪ · · · ∪ Pp by (39). Therefore,

denoting D := B(t0, ρ) ∩ W and Hi := {(t, ψi(t)) : t ∈ D}, i = 1, . . . , p, we
have κ([0, 1]) ⊂ H1 ∪ · · · ∪ Hp by (37). Thus we can use Lemma 6.18 and obtain
diam (κ([0, 1])) ≥ |x1 − x2|/(pω) ≥ 8|x1 − x2|/ε, which contradics (42).

Now, setting M∗ := M ∩B(x, δ) = A ∩B(x, δ) ⊂ A ∩ U , we will show that

(44) B(t0, δ/8) ∩W ⊂ π(M∗).
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So suppose, to the contrary, that there exists t ∈ (B(t0, δ/8) ∩W ) \ π(M∗). Since
π(M∗) is compact and t0 ∈ π(M∗), we can choose z ∈ π(M∗)∩B(t0, δ/4) such that
|z − t| = dist (t, π(M∗)). By (39) we can find 1 ≤ j ≤ p such that y := z + ψj(z) ∈
M∗. Setting zn := z+(t−z)/n, we have clearly |zn−z| = dist (zn, π(M∗)). By (37)
zn ∈ B(t0, δ/4) ∩W ⊂ Dj and consequently we can define yn := zn + ψj(zn) ∈ Pj .
Observe that

|y − x| ≤ |z − t0|+ |ψj(z)− ψj(t0)| < δ/4 + (1/8)δ/4 < δ/2.

It easily implies that, for all sufficiently large n, we have

dist (yn,M) = dist (yn,M
∗) ≥ dist (zn, π(M∗)) = |zn − z|,

and so f(yn) ≥ (ε/2)|zn − z| by Lemma 3.1 (v). Further

|yn − y| ≤ |zn − z|+ |ψj(zn)− ψj(z)| ≤ 2|zn − z|.

Consequently lim supn→∞ f(yn)/|yn − y| ≥ ε/4, which contradicts the choice of
T , since yn ∈ P , yn → y, y ∈ A \ T by (36) and M∗ ⊂ A. Thus, (44) is proved.

Using (41) and (44), we obtain that there exists a uniquely determined function
ϕ : B(t0, δ/8)∩W →W⊥ such that u+ϕ(u) ∈ A∩U for each u ∈ B(t0, δ/8)∩W .
Since u + ϕ(u) ∈ M∗ for each u ∈ B(t0, δ/8) ∩W and M∗ is compact, we obtain
that ϕ is continuous. (Indeed, g := π|M∗ is continuous and injective by (41), (39),
and so g−1 is continuous. Now use that u+ ϕ(u) = g−1(u), u ∈ B(t0, δ/8) ∩W .)

Since ϕ(u) ∈ {ψ1(u), . . . , ψp(u)}, u ∈ B(t0, δ/8)∩W , Lemma 2.2 (ix) gives that
ϕ is a DC mapping.

Since

A ∩ U ∩ π−1(B(t0, δ/8) ∩W ) = {u+ ϕ(u) : u ∈ B(t0, δ/8) ∩W},

we easily obtain x ∈ A[k]. �

Now we can prove our main results on the structure of WDC sets.
Recall that, by definition, DC surfaces of dimension 0 in Rd are points and the

only DC surface of dimension d in Rd is Rd.

Theorem 6.20. Let M ⊂ Rd be a compact WDC set and A a nonempty relatively
open subset of M of topological dimension k. If k = 0, then A is a finite set. If
k > 0, then

(i) A[k] 6= ∅ (and so A[k] is a DC manifold of dimension k).
(ii) A \A[k] can be covered by finitely many DC surfaces of dimension k − 1.

(iii) A can be covered by finitely many DC surfaces of dimension k.

Proof. Set

k∗ := min{0 ≤ s ≤ d : A can be covered by finitely many DC surfaces of dimension s}.

If k∗ = 0, then A is finite and k = k∗. If k∗ > 0, then Proposition 6.19 (for
k∗ < d) and Proposition 6.1 (for k∗ = d) imply A[k∗] 6= ∅. Consequently k = k∗

and so (i) and (iii) are obvious. The property (ii) follows from Proposition 6.19 and
Proposition 6.1. �

Remark 6.21. (a) Obviously, (i) and (ii) imply that k = dimtopA = dimH A.
(b) In the special case when M has positive reach, Federer’s results which are

stated in [10] without a proof and are proved in [23] give that (if 0 < k < d),
A[k] is a C1,1 manifold. In this special case, properties (ii) and (iii) are
contained in [23]; in [10] it is proved that A \ A[k] is countably (k − 1)-
rectifiable (which implies that A is countably k-rectifiable).
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Using Definition 2.11 (of a locally WDC set) and Proposition 2.16, it is easy
to deduce from Theorem 6.20 its following “local version”. Namely, properties (ii)
and (iii) follow immediately and (i) is a consequence of (ii) (which implies that
dimtop(A \A[k]) ≤ k − 1).

Corollary 6.22. Let M ⊂ Rd be a closed locally WDC set and A a nonempty
relatively open subset of M of topological dimension k. If k = 0, then A is an
isolated set. If k > 0, then

(i) A[k] 6= ∅ (and so A[k] is a DC manifold of dimension k).
(ii) A \ A[k] can be locally covered by finitely many DC surfaces of dimension

k − 1.
(iii) A can be locally covered by finitely many DC surfaces of dimension k.

An easy consequence of Corollary 6.22 is the following result.

Proposition 6.23. Let A be a nonempty relatively open subset of a closed locally

WDC set M ⊂ Rd. Define the “regular part” of A as Areg :=
⋃d
i=0A

[i]. Then Areg
is open and dense in A.

Proof. It is clear that Areg is open in A. We will prove that

(45) Areg is dense in A

by induction on k := dimA. The case k = 0 is trivial by Corollary 6.22. Now
suppose that a 1 ≤ k ≤ d and (45) holds for all A with 0 ≤ dimA < k. Let now

M and A such that dimA = k be given. Set Ã := A \ A[k]. Then Ã is a relatively

open subset both of A and of M . If Ã = ∅, then (45) clearly holds. If Ã 6= ∅, then

dim Ã < k by Corollary 6.22 (i). So, applying the induction assumption to Ã, we
easily obtain (45). �

Remark 6.24. Let M ⊂ Rd be a closed locally WDC set. By Corollary 6.22, the
set M \Mreg (which is nowhere dense in M by Proposition 6.23) has localy finite
(dimM − 1)-dimensional Hausdorff measure. So, if M is compact, M \Mreg has
finite (dimM − 1)-dimensional Hausdorff measure.

Corollary 6.25. Let M ⊂ Rd be a closed locally WDC set which is a k-dimensional
topological manifold (1 ≤ k < d). Then there exists a closed set N ⊂ M which is
nowhere dense in M such that M \N is a k-dimensional DC manifold.

Proof. Since A[l] = ∅ for each l 6= k, the assertion follows from Proposition 6.23. �

7. WDC sets in plane

In this section we will call a 1-dimensional DC surface in R2 a DC graph. Under
a rotation (in R2) we always understand a rotation around the origin.

Remark 7.1. Let P ⊂ R2 be a DC graph of the form P = {w + ϕ(w) : w ∈ W},
where W ∈ G(2, 1) and ϕ : W →W⊥ is a Lipschitz DC mapping. Let a = c+ϕ(c) ∈
P . Then

(i) Tan (P, a) ∩ S1 is a two point set,
(ii) Tan (P, a) is a 1-dimensional space iff ϕ′(c) exists, and

(iii) there exist DC graphs P1, P2 ⊂ R2 such that P ⊂ P1 ∪P2, a ∈ P1 ∩P2 and
Tan (Pi, a) is a 1-dimensional space, i = 1, 2.

Indeed, without any loss of generality we can suppose that W is the x-axis and
a = 0. Then P is the graph of the function ψ : R → R, ψ(t) := ϕ((t, 0)) · (0, 1).
Since ψ′±(0) exist by Lemma 2.3 and ϕ′(0) exists iff ψ′(0) exists, (i) and (ii) follow
from well-known elementary facts.
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To prove (iii), it is sufficient to define ψ1 and ψ2 as the odd functions, which
coincide with ψ on [0,∞) and (−∞, 0], respectively, set P1 := graphψ1, P2 :=
graphψ2, and use (ii) and Lemma 2.2 (iv), (vi), (ix).

Further, in this section, we will say that a function f defined on a set D ⊂ Rd is
a DCR function if it is a restriction of a DC function defined on Rd.

Lemma 2.2 (viii) implies that

(46) if g is DC on (a, b) and [c, d] ⊂ (a, b), then g|[c,d] is DCR.

If z ∈ R2 and v ∈ S1 we denote by γz,v the unique orientation preserving isometry
on R2 that maps 0 to z and (1, 0) to z + v.

Further, for u > 0, s ∈ (0,∞], z ∈ R2 and v ∈ S1, we define

Aus := {(x, y) : 0 ≤ x < s,−xu ≤ y ≤ xu} and Aus (z, v) := γz,v(A
u
s ).

For v, w ∈ S1 (possibly v = w), we denote by arc(v, w) the open arc on S1 whose
closure is the image of a simple (or closed simple) counter-clockwise orientated curve
starting at v and terminating at w. More generally, if r > 0 and p, q ∈ ∂B(0, r), we
denote the corresponding arc on ∂B(0, r) by arcr(p, q) := r · arc(pr ,

q
r ).

For B ⊂ R2 and t ∈ R, we set Bt := {y ∈ R : (t, y) ∈ B}. We also define
Π1 : R2 → R by Π1(x, y) = x.

If K ⊂ R and f : K → R is a function, then hyp f and epi f will be used for
hypograph and epigraph of f , respectively;

hyp f := {(x, y) ∈ R2 : x ∈ K, y ≤ f(x)}, epi f := {(x, y) ∈ R2 : x ∈ K, y ≥ f(x)}.
Similarly we define strict hypograph and strict epigraph of f by

hypS f := {(x, y) ∈ R2 : x ∈ K, y < f(x)}, epiS f := {(x, y) ∈ R2 : x ∈ K, y > f(x)}.
We will need the following lemmas.

Lemma 7.2. Let δ > 0 and let f be a DC function on (−δ, δ) with f(0) = 0.

Then there exists ω ∈ (0, δ) such that the function R(x) :=
√
x2 + f2(x) is strictly

increasing on [0, ω) and strictly decreasing on (−ω, 0].

Proof. By Lemma 2.3, for each 0 < x < δ, there exists R′+(x) = x
R(x) (1+ f(x)

x f ′+(x))

and limx→0+(1 + f(x)
x f ′+(x)) = 1 + (f ′+(0))2 > 0. Consequently the (continuous)

function R is strictly increasing on some [0, ω). Considering the function g(x) :=
f(−x), we easily obtain the rest of the lemma. �

Lemma 7.3. Let P be a DC graph in R2 and 0 ∈ P . Suppose that Tan (P, 0) is
a 1-dimensional space and (0, 1) /∈ Tan (P, 0). Then there exists ρ∗ > 0 such that,
for each 0 < ρ < ρ∗, there exist α < 0 < β and a DCR function f on (α, β) such
that P ∩B(0, ρ) = graph f |(α,β).

Proof. Let P = {z + ϕ(z) : z ∈ W}, where W ∈ G(2, 1) and ϕ : W → W⊥ is
a Lipschitz DC mapping. Choose w ∈ W ∩ S1 and set ω(t) = (ω1(t), ω2(t)) :=
tw+ϕ(tw), t ∈ R. Then ω is a Lipschitz DC mapping, P = ω(R) and ω1 = Π1 ◦ω.
By the assumptions and Remark 7.1 (ii), ϕ′(0) and consequenly also ω′(0) exist
and ω′1(0) 6= 0. We can (and do) suppose that ω′1(0) > 0 (since otherwise we can
consider w̃ = −w instead of w). Lemma 2.3 implies that there exists c > 0 such
that (ω1)′+(t) > c for each t ∈ (−c, c). Consequently ω1(v)− ω1(u) =

∫ v
u
ω′1(t)dt ≥

c(v − u) whenever −c < u < v < c, which easily implies that (ω1)−1 exists and is
(1/c)-Lipschitz on its domain (γ, δ) with γ < 0 < δ. Setting P ∗ := ω((−c, c)), we
obtain that (Π1|P∗)−1 = ω◦ω−1

1 is Lipschitz. Therefore P ∗ is a graph of a Lipschitz
function g : (γ, δ)→ R, which is DC by Lemma 2.2 (iv), (v), (vi), (vii). Now, using

the obvious fact that 0 /∈ P \ P ∗ and applying Lemma 7.2 (to g) together with (46),



ON THE STRUCTURE OF WDC SETS 27

it is easy to show the existence of ρ∗ such that, for each 0 < ρ < ρ∗, corresponding
α, β and f (f = g|(α,β)) exist. �

Definition 7.4. Let M ⊂ R2 and r, u > 0. We say that

(i) M is a T̃ 1
r,u-set if M ∩A2u

r = {0}.
(ii) M is a T̃ 2

r,u-set if M ⊃ A2u
r .

(iii) M is a T̃ 3
r,u-set if there is a DCR function U : [0, r)→ R such that U ′+(0) =

0, graphU ⊂ Aur and M ∩A2u
r = hypU ∩A2u

r .

(iv) M is a T̃ 4
r,u-set if there is a DCR function L : [0, r)→ R such that L′+(0) =

0, graphL ⊂ Aur and M ∩A2u
r = epiL ∩A2u

r .

(v) M is a T̃ 5
r,u-set if there are DCR functions U,L : [0, r)→ R such that L ≤ U

on [0, r], U ′+(0) = L′+(0) = 0, graphU, graphL ⊂ Aur , and M ∩ A2u
r =

hypU ∩ epiL.
(vi) M is of type T i (i = 1, 2, 3, 4, 5) at x ∈ M in direction v ∈ S1 if the

preimage (γx,v)
−1(M) is a T̃ 1

r,u-set for some r, u > 0.

Remark 7.5. (i) Clearly, if M is a T̃ ir,u-set (resp. of type T i at x in direction
v), then i is uniquely determined.

(ii) If M is a T̃ ir,u-set and δ > 0, then clearly M is a T̃ ir∗,u∗ -set for some r∗ < δ,
u∗ < δ (note that U ′+(0) = L′+(0) = 0 in Definition 7.4).

Remark 7.6. For M ⊂ R2 with 0 ∈M and 1 ≤ i ≤ 5, set

(47) Vi := {v ∈ S1 : M is of type T i at 0 in direction v ∈ S1}.
Then clearly

(i) V1 and V2 are open in S1.
(ii) If K ⊂ V1 (resp. K ⊂ V2) is compact, then the “covering definition of

compactness” easily gives that there is ρ > 0 such that Kρ := {tv : v ∈
K, 0 < t < ρ} ∩M = ∅ (resp. Kρ ⊂M).

Lemma 7.7. Let M 6= ∅ be a compact WDC set in R2, u, s, t > 0, N ∈ N. Let
ε = εM be as in Notation 3.3. Suppose that ∂M ∩ Aus is covered by the graphs of
ε

12N -Lipschitz functions f1, . . . , fN : R → R and that ∂M ∩ A2u
s ⊂ Aus . Suppose

that

(48) 2su < ε,
12u

ε
< 1 and t

(
1 +

12u

ε

)
< s.

Then (M ∩A2u
t )z is connected for every 0 ≤ z < t.

Proof. Suppose for contradiction that (M ∩A2u
t )z is disconnected for some 0 ≤ z <

t. This implies that there are

p, q ∈ ∂M ∩
(
{z} × (A2u

t )z
)
,

p 6= q, such that pq ∩ M = {p, q}. Consider φ : [0, 1] → pq defined as φ(α) =
(1 − α)q + αp. By Lemma 3.4 with δ = |p − q| = diam (φ([0, 1])) (note that
|p − q| ≤ 2zu < 2tu < 2su < ε by the first and third inequality in (48) together
with the inclusion ∂M ∩ A2u

s ⊂ Aus ) there is a mapping κ : [0, 1] → ∂M such that
κ(0) = q, κ(1) = p and

(49) diamκ([0, 1]) ≤ 6δ

ε
=

6|p− q|
ε

≤ 12uz

ε
.

Since 12uz
ε < z by the second inequality in (48) and z + z 12u

ε < t(1 + 12u
ε ) < s by

the third inequality in (48), we infer from (49) that

Π1(κ([0, 1])) ⊂
[
z − 12uz

ε
, z +

12uz

ε

]
⊂ (0, s) .
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This easily implies (using ∂M ∩ A2u
s ⊂ Aus ) that κ([0, 1]) ⊂ Aus . However, by the

assumptions of the lemma together with Lemma 6.18 (used with |z1 − z0| = δ and
ω := ε

12N ), we obtain diam (κ([0, 1])) ≥ δ
Nω = 12δ

ε , which contradicts (49). �

Lemma 7.8. Let M be a closed locally WDC set in R2, x ∈ ∂M and v ∈ S1. Then
there exists 1 ≤ i ≤ 5 such that M is of type T i at x in direction v.

Proof. We may assume (by Proposition 2.16 and Corollary 3.2) that M is compact
and connected. By Definition 7.4 (and the fact that isometric images of locally
WDC sets are locally WDC, cf. [22, Theorem 7.5]), it is sufficient to prove that if

0 ∈ ∂M , then there exist r, u > 0 and 1 ≤ i ≤ 5 such that M is a T̃ ir,u-set. Let εM
be as in Notation 3.3.

By Lemma 6.1 ∂M can be covered by finitely many DC graphs P1, . . . , Pn. Put
I = {i : 0 ∈ Pi}. If I = ∅, then there clearly exist r, u > 0 such that ∂M∩A2u

r = {0}
and so M is either a T̃ 1

r,u-set or a a T̃ 2
r,u-set.

If I 6= ∅, then we can suppose that I = {1, . . . , N}. Due to Remark 7.1 (iii) we
can and will also suppose that Tan (Pi, 0) is a 1-dimensional linear subspace.

Put Ĩ = {i : Tan (Pi, 0) = span{(1, 0)}}. Again, if Ĩ = ∅, then there exist

r, u > 0 such that ∂M ∩A2u
r = {0} and so M is either a T̃ 1

r,u-set or a a T̃ 2
r,u-set. If

Ĩ 6= ∅, then we can suppose that Ĩ = {1, . . . , Ñ}.
Using Lemma 7.3 and Lemma 7.2 we obtain that for each 1 ≤ i ≤ Ñ there exist

ui, si ∈ (0,∞) and a DCR function ϕi on [0, si) such that Pi ∩ A2ui
si = graphϕi.

Note that (ϕi)
′
+(0) = 0 and so, using Lemma 2.3 we obtain s, u > 0 such that,

denoting fi := ϕi|[0,s), we have

(f1) (fi)
′
+(0) = 0, fi(0) = 0 and fi is εM

12Ñ
-Lipschitz and DCR for every i,

(f2) ∂M ∩Aus is covered by the graphs of fi,
(f3) ∂M ∩A2u

s ⊂ Aus ,
(f4) 2su < εM and 12u

εM
< 1.

Using Lemma 7.7 we obtain that

(50) (M ∩A2u
t )x is connected for every 0 ≤ x < t

provided t satisfies t(1 + 12u
ε ) < s. Pick any such t.

Define functions Ũ , L̃ : Π1(M ∩ A2u
t ) → R by Ũ(x) := max(M ∩ A2u

t )x and

L̃(x) := min(M∩A2u
t )x, x ∈ Π1(M∩A2u

t ) (note that (M∩A2u
t )x is always compact).

Clearly Ũ ≥ L̃ on Π1(M ∩A2u
t ).

Put

A± := (A2u
t \Aut ) ∩ {(x, y) : ±y > 0}.

There are four possible cases

(a) A+ ∩M = A− ∩M = ∅,
(b) A+ ∩M = ∅ and A− ∩M 6= ∅,
(c) A+ ∩M 6= ∅ and A− ∩M = ∅,
(d) A+ ∩M 6= ∅ and A− ∩M 6= ∅.

Observe that by (f3) we have

(51) L̃(z) = −2uz, z ∈ [0, t), in cases (b) and (d)

and

(52) Ũ(z) = 2uz, z ∈ [0, t), in cases (c) and (d).

Suppose that M is not a T̃ 1
r,u-set for any r > 0. We then claim that

(53) Ũ and L̃ are DCR on [0, r) for some r > 0.
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By (51) and (52) it is enough to prove (53) for Ũ in cases (a) and (b) and for L̃ in
cases (a) and (c).

Clearly

(54) graph Ũ ⊂ Aut in cases (a) and (b)

and

(55) graph L̃ ⊂ Aut in cases (a) and (c).

We will consider only the function Ũ in cases (a) and (b), the case of L̃ in cases
(a) and (c) can be proven analogously.

So suppose that either (a) or (b) holds. Then, using the fact that M is connected,
we obtain that Π1(M ∩A2u

t ) has at most two connected components, of which one
contains an interval of the form [0, 2r] for some t

2 > r > 0 (if not then M would be

a T̃ 1
r,u-set).

We prove that Ũ is continuous on [0, 2r]. First note that Ũ is continuous at 0
by (54). Pick x ∈ (0, 2r]. Since M ∩A2u

t is relatively closed in A2u
t , we obtain that

Ũ is upper semi-continuous at x, that is

lim sup
y→x, y∈[0,2r]

Ũ(y) ≤ Ũ(x).

It remains to prove that

lim inf
y→x, y∈[0,2r]

Ũ(y) ≥ Ũ(x).

To do that assume for a contradiction that there is ε > 0 so that

lim inf
y→x, y∈[0,2r]

Ũ(y) = Ũ(x)− ε.

This implies that there is a sequence yn → x, yn ∈ [0, 2r], such that limn→∞ Ũ(yn) =

Ũ(x)−ε. Pick 0 < α < ε. Then (yn, Ũ(yn)+α) ∈M c for sufficiently big n and since

(yn, Ũ(yn)+α)→ (x, Ũ(x)−ε+α) ∈M we obtain that (x, Ũ(x)−ε+α) ∈ ∂M∩Aus .
But that being true for all 0 < α < ε is a contradiction with (f2).

Extend Ũ by setting Ũ(x) := 0, x ∈ [−2r, 0). Ũ is now continuous on [−2r, 2r]

and by (f2), graph Ũ is covered by the graphs of fi together with the graph of

f0 ≡ 0. Hence, we obtain that Ũ is DC on (−2r, 2r) by Lemma 2.2 (ix) and so Ũ

is DCR on [0, r) by (46). This proves (53). Pick some r > 0 such that Ũ and L̃ are

DCR on [0, r). It follows that both Ũ ′+(0) and L̃′+(0) exist and, moreover, they are
both equal to 0 by (f1) and (f2).

Put U := Ũ |[0,r) and L := L̃|[0,r). Then by (51), (54), (52) and (55) we easily

obtain that (a) implies that M is a T̃ 5
r,u set, (b) implies that M is a T̃ 3

r,u set, (c)

implies that M is a T̃ 4
r,u set and (d) implies that M is a T̃ 2

r,u set. �

Now we will define important notions of “DC sectors”.

Definition 7.9. (i) A set S ⊂ R2 will be called a basic open DC sector (of
radius r) if S = B(0, rb∩ epiS(f), where 0 < r < ω and f is a DC function

on (−ω, ω) such that f(0) = 0, R(x) :=
√
x2 + f2(x) is strictly increasing

on [0, ω) and strictly decreasing on (−ω, 0].
By an open DC sector (of radius r) we mean an image γ(S) of a basic

open DC sector S (of radius r) under a rotation γ.
(ii) A set of the form γ(hyp f ∩epi g)∩B(0, r), where γ is a rotation, 0 < r < ω

and f, g : [0, ω) → R are DCR functions such that g ≤ f , f(0) = g(0) =

f ′+(0) = g′+(0) = 0 and the functions Rf (x) :=
√
x2 + f2(x), Rg(x) :=√

x2 + g2(x) are strictly increasing on [0, ω), will be called a degenerated
closed DC sector (of radius r).
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Remark 7.10. (a) If f is a DC function on (−ω, ω) with f(0) = 0, then Lemma
7.2 implies that there exists r > 0 such that S = B(0, r)∩ epiS(f) is a basic
open DC sector.

(b) Let S be a basic open DC sector and 0 < r < ω and f be as in Definition
7.9. Then
(b1) For each 0 < r∗ < r, S ∩B(0, r∗) is a basic open DC sector.
(b2) There clearly exist −r ≤ a < 0 < b ≤ r such that (t, f(t)) ∈ B(0, r)

for t ∈ (a, b), (t, f(t)) ∈ ∂B(0, r) for t ∈ {a, b} and (t, f(t)) /∈ B(0, r)
for t ∈ (−ω, ω) \ [a, b]. Distinguishing the cases when f(a) ≥ 0 and
f(a) < 0 (f(b) ≥ 0 and f(b) < 0), we easily see that in all possi-
ble four cases S is an open connected set with ∂S = graph(f |[a,b]) ∪
arcr((b, f(b)), (a, f(a))).

We will need the following lemma, whose elementary proof will be ommited.

Lemma 7.11. Let s, u > 0, 0 < r < ω and let h be a DCR function on [0, ω]. Sup-

pose that h(0) = 0, h′(0) = 0, graphh ⊂ Aus and the function Rh(x) :=
√
x2 + h2(x)

is strictly increasing on [0, ω]. Let arcr(p, q) := A2u
s ∩ rS1. Then there exists

0 < c ≤ r such that (t, h(t)) ∈ B(0, r) for t ∈ [0, c), (c, h(c)) ∈ ∂B(0, r) and
(t, h(t)) /∈ B(0, r) for t ∈ (c, ω). Further,

(i) the set P+ := epiS h ∩ intA2u
s ∩B(0, r) is open and connected and

∂P+ = graphh[0,c] ∪ arcr((c, h(c)), q) ∪ 0q,

(ii) the set P− := hypS h ∩ intA2u
s ∩B(0, r) is open and connected and

∂P− = graphh[0,c] ∪ arcr(p, (c, h(c))) ∪ 0p.

Lemma 7.12. Let ω > 0. Let f be a DC function on (−ω, ω) and let g, h be DCR
functions on [0, ω) such that g(0) = h(0) = g′+(0) = h′+(0) = 0 and g ≤ h on [0, ω).
Then

(i) there is a DC aura F in (−ω, ω)× R for hyp f ,
(ii) there is a DC aura G in (−ω, ω)× R for hyph ∩ epi g.

Proof. To prove (i) consider the function F : (−ω, ω)×R→ R defined by F (x, y) =
max(y− f(x), 0). First note that F is DC by Lemma 2.2 (i). Moreover, if y > f(x)
and x is a point of differentiability of F then the second coordinate of ∇F (x, y) is
equal to 1. Hence from the definition of the Clarke subgradient (which is recalled
in the preliminaries) it follows that the second coordinate of every v ∈ ∂F (x, y) is
also equal to 1 whenever y > f(x). This in particular implies that 0 is a weakly
regular value of F and so (i) holds, since hyp f = F−1({0}).

To prove (ii) consider the function G : DG = (−ω, ω)× R→ R defined by

G(x, y) =


g(x)− y if x ≥ 0 and y ≤ g(x),

y − h(x) if x ≥ 0 and y ≥ h(x),

0 if x ≥ 0 and g(x) > y > h(x),√
x2 + y2 otherwise.

The fact that G is DC follows from Lemma 2.2 (i), (ix).
To prove the weak regularity of 0, first observe that if (u, v) ∈ DG, u ≥ 0, G is

differentiable at (u, v) and v > h(u) (resp. v < g(u)), then the second coordinate
of ∇G(u, v) is equal to 1 (resp. to −1). Further consider a point w = (x, y) ∈
DG \ (hyph ∩ epi g) and ν ∈ ∂G(w). If x > 0, then the above observation implies
(as in part (i)) that |ν| ≥ 1. If x < 0 then ν = ∇G(w) = w

|w| and so |ν| = 1.

Now consider the case x = 0, y > 0. Note that if u < 0 and v > −u then the
second coordinate of ∇G(u, v) is at least 1√

2
. Consequently we easily obtain that
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the second coordinate of ν is at least 1√
2

and thus |ν| ≥ 1√
2
. By a quite symmetrical

way we obtain |ν| ≥ 1√
2

if x = 0, y < 0. Since hyph ∩ epi g = G−1({0}), we obtain

that 0 is a weakly regular value of G, and thus (ii) is proved. �

Lemma 7.13. Let U, V ⊂ Rd be connected open sets such that ∂U = ∂V and
U ∩ V 6= ∅. Then U = V .

Proof. Aiming for a contradiction suppose that U 6= V . Then at least one of the
conditions U \V 6= ∅ and V \U 6= ∅ holds. Since ∂U = ∂V we have U \V = U \V
and V \U = V \U . This implies that the connected set U ∪V can be expressed as a
union of three pairwise disjoint open sets (U \V )∪(V \U)∪(U∩V ) of which at least
two are non-empty. This is a contradiction with the connectedness of U ∪ V . �

Theorem 7.14. Let M be a closed subset of R2. Then M is a locally WDC set if
and only if for each x ∈ ∂M there is ρ > 0 such that one of the following conditions
holds:

(i) M ∩B(x, ρ) = {x},
(ii) there is a degenerated closed DC sector C of radius ρ such that

M ∩B(x, ρ) = x+ C,

(iii) there are pairwise disjoint open DC sectors C1, . . . , Ck of radius ρ such that

(56) M c ∩B(x, ρ) =

k⋃
i=1

(x+ Ci) .

Proof. First suppose that M is a locally WDC set and x ∈ ∂M . We can and
will suppose x = 0. For 1 ≤ i ≤ 5, define Vi ⊂ S1 by (47) and observe that

S1 =
⋃5
i=1 Vi by Lemma 7.8. By Proposition 6.1 and Remark 7.1 (i), the set

T := S1 ∩ Tan (∂M, 0) is finite. Since clearly V3 ∪ V4 ∪ V5 ⊂ T , we obtain that
V3 ∪ V4 ∪ V5 is finite. By Remark 7.6 (i) V1 and V2 are open in S1. The case
V1 = ∅ is impossible, since then would be V3 = V4 = V5 = ∅, so V2 = S1 and thus
0 ∈ intM by Remark 7.6 (ii). The above observations easily imply that (in the
space S1) the open set ∅ 6= V1 has finite number of components and thus either

V1 = S1 or V1 =
⋃k
i=1 arc(vi, wi), where the arcs arc(vi, wi) are pairwise disjoint.

If V1 = S1, we obtain (i) by Remark 7.6 (ii). If V1 6= S1, then either V1 = S1 \ {v}
for some v ∈ S1, or vi 6= wi, i = 1, . . . , k.

If V1 = S1 \ {v}, then the condition (ii) holds. Indeed, we can and will suppose

v = (1, 0). Then there exist r, u > 0 such that M is a T̃ 5
r,u-set. Let U,L : [0, r)→ R

be the corresponding DCR functions from Definitions 7.4 (v). Let p, q ∈ S1 be such

that A2u
∞ ∩ S1 = arc(p, q). Then, applying Remark 7.6 (ii) to K = arc(q, p) and

using Lemma 7.2, we easily obtain (ii).

Now suppose that V1 =
⋃k
i=1 arc(vi, wi) with vi 6= wi. Clearly

K := V3 ∪ V4 ∪ V5 = {vi : 1 ≤ i ≤ k} ∪ {wi : 1 ≤ i ≤ k}.

Further

(57) z ∈


V5 iff z = vi = wj for some i 6= j,

V3 iff z /∈ V5 and z = vi for some i,

V4 iff z /∈ V5 and z = wi for some i.

Let ξ > 0. By the definition of Vj and Remark 7.5 (ii) we can, for each 3 ≤ j ≤ 5 and

z ∈ Vj , choose r(z), u(z) > 0 such that u(z) < ξ and (γ0,z)
−1(M) is a T̃ jr(z),u(z)-set,

and denote

D(z) := A2u(z)
∞ (0, z) = γ0,z(A

2u(z)
∞ ), z ∈ K.
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We can (and will) fix ξ > 0 so small, that the angles D(z), z ∈ K, are pairwise
disjoint. Now define v−i , v

+
i , w

−
i , w

+
i ∈ S1 so that

arc(v−i , v
+
i ) = intD(vi) ∩ S1, arc(w−i , w

+
i ) = intD(wi) ∩ S1.

Since

arc(v+
i , w

−
i ) ⊂ V1, 1 ≤ i ≤ k and S1 \

k⋃
i=1

arc(v−i , w
+
i ) ⊂ V2,

Remark 7.6 (ii) implies that there exists ρ1 > 0 such that, for each 0 < ρ < ρ1,

Ei = Eρi := {tu : 0 < t < ρ, u ∈ arc(v+
i , w

−
i )} ⊂M c

and ⋃
i

{tu : 0 < t < ρ, u ∈ arc(v−i , w
+
i )} ⊃M c ∩B(0, ρ).

Consequently, for all 0 < ρ < ρ1,

(58) M c∩B(0, ρ) =

k⋃
i=1

Ei∪
k⋃
i=1

(M c∩D(vi)∩B(0, ρ))∪
k⋃
i=1

(M c∩D(wi)∩B(0, ρ)).

If z ∈ V3 ∪ V5, we define the function Uz : [0, r(z)] → R as in Definition 7.4 and

also Q−(z) := A
2u(z)
r(z) ∩ epiS U

z and P−(z) := γ0,z(Q
−(z)); similarly if z ∈ V4 ∪ V5,

we define the function Lz : [0, r∗(z)]→ R, Q+(z) := A
2u(z)
r∗(z)

∩hypS L
z and P+(z) :=

γ0,z(Q
+(z)).

We will show that (56) holds for all sufficiently small ρ > 0, if we set

Ci = Cρi := Ei ∪ (P−(vi) ∩B(0, ρ)) ∪ (P+(wi) ∩B(0, ρ)), 1 ≤ i ≤ k.

First observe, that Ci are pairwise disjoint. Using the definition of Uz, Lz, (57),
(58) and Lemma 7.2, we easily see that there exists 0 < ρ2 < ρ1 such that, for each
0 < ρ < ρ2,

M c ∩B(x, ρ) =

k⋃
i=1

Ci

and moreover, on the interval [0, ρ], all the functions

(59) x 7→
√
x2 + (Uz(x))2, x 7→

√
x2 + (Lz(x))2 are strictly increasing.

Thus it is sufficient to show that, for all sufficiently small ρ, each Ci is an open DC
sector.

To this end, fix 1 ≤ i ≤ k, denote v := vi, w := wi and define c as the midpoint
of the arc arc(v, w). We can and will suppose that c = (0, 1).

Since Uv is a DCR function and Uv(0) = 0, Lemma 2.2 (ix) implies that it
can be extended to a DC function Uv∗ : R → R with Uv∗ (t) = 0, t ≤ 0. Then
P := γ0,v(graphUv∗ ) is clearly a DC graph and Tan (P, 0) = span{v}. Therefore
(since Π1(v) 6= 0) we can use Lemma 7.3 and choose 0 < ρ3 < ρ2 such that, for
each 0 < ρ < ρ3, there exist β = βρ > 0 and a DCR function ϕ = ϕρ on [0, β) such
that

A2u(v)
∞ (0, v) ∩ P ∩B(0, ρ) = graphϕ.

So, by definition of P , there exists 0 < ρ4 < ρ3 such that, for each 0 < ρ < ρ4,

(60) A2u(v)
∞ (0, v) ∩ γ0,v(graphUv) ∩B(0, ρ) = graphϕ.

Quite similarly we can find 0 < ρ5 < ρ4 such that, for each 0 < ρ < ρ5, there exist
α = αρ < 0 and a DCR function ψ = ψρ on (α, 0] such that

(61) A2u(w)
∞ (0, w) ∩ γ0,w(graphLw) ∩B(0, ρ) = graphψ.
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Choose (for a moment) 0 < ρ < ρ5, ω < min(β,−α) and set f(t) = ϕ(t) for
t ∈ [0, ω) and f(t) = ψ(t) for t ∈ (−ω, 0]. Then f is by Lemma 2.2 (ix) a DC
function on (−ω, ω) and so, by Remark 7.10 (a), (b1), there exists 0 < ρ6 < ρ5

such that, for all 0 < ρ < ρ6, S∗ := epiS(f) ∩ B(0, ρ) is a (basic) open DC sector.
So it is sufficient to prove that (for all 0 < ρ < ρ6) S := Cρi = S∗.

Using (59) and Lemma 7.11, it is easy to prove that S is open connected, S∩S∗ 6=
∅ and, using also (60), (61) and Remark 7.10 (b2), ∂S = ∂S∗. Consequently S = S∗

by Lemma 7.13.

To prove the opposite implication assume that for each x ∈ ∂M there is ρ > 0
such that one of conditions (i), (ii) or (iii) holds. We will construct for every such x
and ρ a DC aura F in B(x, ρ) for M . This is enough by Proposition 2.15. Without
any loss of generality we may and will assume that x = 0.

In the case of condition (i) we can set F (y) = |y|, y ∈ B(0, ρ). In the case
of condition (ii), M ∩ B(0, ρ) is a degenerated closed DC sector and so there are
ω > ρ > 0, DCR functions g, h : [0, ω) → R and rotation γ such that g ≤ h and
g(0) = h(0) = g′+(0) = h′+(0) = 0 and such that

M ∩B(0, ρ) = γ(hyph ∩ epi g) ∩B(x, ρ).

By Lemma 7.12 (ii) there is a DC aura F̃ in (−ω, ω) × R for hyph ∩ epi g. Put

F := F̃ ◦ (γ−1|B(0,ρ)). Then

F−1({0}) = B(0, ρ) ∩ γ(hyp f ∩ epi g) = B(0, ρ) ∩M.

By Lemma 2.2 (vi), (iv) F is DC and therefore a DC aura in B(0, ρ) for M by [4,
Theorem 2.3.10].

In the case of condition (iii), C1, . . . , Ck are open DC sectors and therefore there
are 0 < r < ω, DC functions f1, . . . , fk : (−ω, ω) → R such that fi(0) = 0,
i = 1, . . . , k, and rotations γ1, . . . , γk such that Ci = B(0, ρ) ∩ γi(epiS fi). By

Lemma 7.12 (i) there are DC auras F̃1, . . . , F̃k in (−ω, ω)×R for hyp f1, . . . ,hyp fk,

i = 1 . . . , k. Put Fi := F̃i ◦ (γ−1
i |B(0,ρ)), i = 1 . . . , k. As above, we obtain that each

Fi is a DC aura in B(0, ρ) for (Ci)
c∩B(0, ρ). Put F := maxi Fi; F is DC on B(0, ρ)

by Lemma 2.2 (i). Since Ci are pairwise disjoint, we have F = Fi > 0 on Ci and
F−1({0}) = M ∩B(0, ρ). So F is a DC aura in B(0, ρ) for M . �

8. Open questions

Question 8.1. Let f be as in Lemma 3.1 and assume that f is, moreover, DC.
Does there exist 0 < ε < 1 and a Lipschitz mapping H : {f < ε}× [0, 1]→ {f < ε}
with the properties (i) - (vii)? (Cf. also the comment before Example 3.5.)

Question 8.2. Is the assertion of Proposition 6.6 still valid if we assume that the
closed set A ⊂ Rd is merely a topological manifold of dimension 0 < k < d? (Cf.
Corollary 6.25.) In R2, the answer is positive, which follows from Theorem 7.14.

Question 8.3. Let M ⊂ Rd be a compact, connected locally WDC set. Can any
two points of x, y ∈M be connected by a (i) rectifiable curve, or even (ii) curve with
finite turn, lying in M? (Note that a rectifiable curve has finite turn if and only if its
arc-length parametrization has DCR components, see [7, Remark 1.1, Lemma 5.5
and Corollary 5.8].) Theorem 7.14 implies that the answer even for (ii) is positive
in R2. Note also that a positive answer to Question 8.1 would imply a positive
answer to (i) here. In the special case reachM > 0, Lytchak [20, Theorems 1.2,1.3]
showed that the curve ϕ can be found even C1,1.

Question 8.4. Let M ⊂ Rd be a compact, connected, locally WDC set, and
let x, y ∈ ∂M be two points lying in the same component of ∂M . Can x, y be
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connected by a (i) rectifiable turn, (ii) curve with finite turn, lying in ∂M? Again,
Theorem 7.14 implies that the answer to (ii) is positive in the planar case.

Question 8.5. Let M be a compact WDC set in Rd. Does there exists a decom-
position

(62) M = T1 ∪ · · · ∪ Tm,
where Ti, i = 1, . . . ,m, are pairwise disjoint and each Ti is a DC manifold of
dimension 0 ≤ ki ≤ d?

Remark 8.6. (i) As already mentioned in the introduction, we conjecture that
the answer is positive.

(ii) The answer is positive for d = 2 (see below), but the question is open for
d ≥ 3, even in the case when M is a set of positive reach. To prove the
conjecture in dimension 2 (following the strategy from [23, Remark 7.11 (i)])
first observe that if M has such decomposition and K is closed then M \K
has such decomposition as well. Moreover, if M1, . . . ,MN are closed and
all have such decomposition then also their union M1 ∪ · · · ∪MN has the
decomposition since it can be expressed as a disjoint union M1 ∪ (M2 \
M1) ∪ (M3 \ (M1 ∪M2)) ∪ · · · . If M is a compact WDC set in R2 then for
every x ∈ ∂M there is a ρx > 0 as in Theorem 7.14. By the compactness
of ∂M , we can find x1, . . . , xn ∈ ∂M such that

∂M =
⋃
k

(
∂M ∩B

(
xk,

ρxk

2

))
=:
⋃
k

Mk.

Now, since M is a disjoint union of ∂M and intM , and intM is a DC
manifold of dimension 2, it is enough to find a decomposition for ∂M and
therefore (by the argument above) it is enough to find it for each Mk. We
will provide details only for the (most difficult) case of condition (iii) (from
Theorem 7.14). In that situation we have that

Mk =
⋃
i

(
∂Ski ∩B

(
xk,

ρxk

2

))
=:
⋃
i

Mk
i ,

where Ski are the corresponding DC sectors from condition (iii). Again,
all sets Mk

i are closed and so it suffices to find the decomposition for
each of them separately. But this is easy since each Mk

i is an isometric
copy of a graph of a DCR function defined on a compact interval (cf. Re-
mark 7.10 (b2)).

(iii) It is also easy to see that, if a decomposition of type (62) exists, it is
not uniquely determined. Moreover, an easy example shows (see [23, Re-
mark 7.11 (i)]) that even in the case of a set of positive reach in R2, there
is not always a “canonical decomposition”.
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