OPTIMAL DECAY ESTIMATES FOR SOLUTIONS TO DAMPED
SECOND ORDER ODE’S

TOMAS BARTA

AssTrACT. In this paper we derive optimal decay estimates for solutions
to second order ordinary differential equations with weak damping. The
main assumptions are Kurdyka-Lojasiewicz gradient inequality and its
inverse.

1. INTRODUCTION

In this paper we study long-time behavior for solutions of damped second
order ordinary differential equations

(SOP) ii + g() + VE(u) = 0,

where E € C*(Q), Q being an open connected subset of R" and g : R" — R”"
is a C'-function satisfying (g(v), v) > 0 on R". This last condition means that
the term g(11) in (SOP) has a damping effect. It is easy to see that energy

E(u,1) = Sl + E)

is nonincreasing along solutions. In fact, if u is a classical solution to (SOP),
then

S8, u(h) = ~(5(),0) <0

If u : [0, +00) — Q) is a global solution and ¢ belongs to the w-limit set of u,
then E(u(t), u(t)) — &E(p,0) = E(p) ast — +oo. In this paper, we derive the
exact rate of convergence of E(u(t), 1i(t)) to E(¢p).

Our main assumption is the Kurdyka-tojasiwicz gradient inequality (see

[10])
(KLI) O(IE(u) = E()]) < [IVEw)I.

For linear g, the optimal decay estimate was derived in [2]. For nonlinear g
(typically satistying ¢’(0) = 0) some decay estimates were shown in [8], [7],
[3]. Here we derive better decay estimates under additional assumptions
on E and we show that these estimates are optimal. We will assume that
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E satisties an inverse to (KLI) and some estimates on the second gradient
and that g has certain behavior near zero. The present result generalizes the
one from [5, Theorem 20] where we worked with the Lojasiewicz gradient
inequality, i.e. (KLI) with ©(s) = s'*? for a constant 0 € (0, 1] (see [11]).
It also generalizes the result by Haraux (see [9]) and Abdelli, Anguiano,
Haraux (see [1]). The present result applies e.g. to functions E and g having
the growth near origin as

1) $'In"'(1/5) In*(In(1/9)) ... In*(In.. .. In(1/s))

for some constantsa, r4, . . ., 1. It also applies to functions E with a non-strict
local minimum in ¢.

The paper is organized as follows. In Section 2 we present our notations,
basic definitions and the main result. Section 3 contains the proof of the
main result.

2. NOTATIONS AND THE MAIN RESULT

By || - || and (-,-) we denote the usual norm and scalar product on IR”.
For nonnegative functions f, ¢ : G ¢ RY —» R we write ¢(x) = O(f(x))
on G if there exists C > 0 such that g(x) < Cf(x) for all x € G. We say
that g(x) = O(f(x)) for x — a if g(x) = O(f(x)) on a neighborhood of a. If
f(x) = O(g(x)) and g(x) = O(f(x)), we write f ~ g.

We say that a function f : R, — IR, satisfying f(0) = 0 and f(s) > 0 for
s>0

e is admissible if f is nondecreasing and there exists ¢ > 0 such that
sfi(s) < cf(s) foralls > 0,

e has property (K) if for every K > 0 there exists C(K) > 0 such that
f(Ks) < C(K)f(s) holds for all s > 0,

e is C-sublinear if there exists C > 0 such that f(t +s) < C(f(t) + f(s))
holds for all £, s > 0.

It is easy to see that admissible functions are C-sublinear and have property
(K) (for proof see Appendix of [4]). Further, for nondecreasing functions
property (K) is equivalent to C-sublinearity. Moreover, every concave func-
tion f : R, — IR, is admissible and satisfies sf;(s) < f(s).

Let us introduce the inverse Kurdyka-Lojasiewicz inequality

(IKLI) ©1(16(u) - E@))) 2 [IVEM)I|
and an inequality for second gradient
(2) IVZE@)Il < T(IVE@)I).

When we say that inequality (KLI) (resp. (IKLI), (2)) holds on a set U it
means that the inequality holds for all u € U with a given fixed ¢ and ©
(resp. ©,T).
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By a solution to (SOP) we always mean a classical solution defined on
[0, +00). By R(u) = {u(t) : t > 0} we denote the range of u. We say that a
solution is precompact if R(u) is precompact in Q (the domain of E). The
w-limit set of u is

wu) ={peQ: It, / +oo, u(t,) — @}.

By C, ¢, C we denote generic constants, their values can change from
line to line or from expression to expression.
The main result of the present paper is the following.

Theorem 1. Let u be a precompact solution to (SOP) and ¢ € w(u). Let E(-) > E(¢)
on R(u) and let E satisfy (KLI), (IKLI) and (2) on R(u) with admissible functions
O, ©, and T, such that ©(s) ~ O1(s) and I'(O(s)) ~ O(s)O’(s) for s — 0+. Let g
satisfies

(3) ((),0) 2 ch(lllel?,  lig@)ll < Ch([I)I]
with an admissible function h satisfying

(4) O(s) > ¢ Vs h(vs)

for some ¢ > 0 and all s > 0. Let us denote

©) K@ =shB), o= [ —ds

and assume that (s) = s?h(s) is convex. Then
c(=D,) ' (Ch) < E(ult), i(t)) — E, 0) < C(=D,) ' (ct)
for some ¢, C > 0 and all t large enough.

Let us first mention that if E(u) = |[u|]’, p > 2, then (KLI), (IKLI) hold with
©(s) ~ ©(s) = Cs'%, 6 = 1 and (2) holds with I'(s) = Cs™v. If h(s) = s¢,

a € (0,1), then condition (4) becomes a > 1 — 26 and (—®,) " (ct) = Cts. In
this case, we obtain the same result as [5, Theorem 20] and also [9].

Remarks. 1. If (®,)! has property (K), then the statement of Theorem 1 can be
written as E(u(t), iu(t)) — E(p) ~ (=@,) (D).

2. We can see that the energy decay depends on h only. In particular, it is
independent of ©.

3. It is enough to assume that all the assumptions except (g(v),v) > 0 for all
v # 0 hold on a small neigborhood of zero, resp. a small neighborhood of w(u).

4. It follows from (KLI) and [2, Proposition 2.8] that ©(s) = O(v/s). Hence,
by (4) function h must be bounded on a neighborhood of zero and P, (t) — —oo as
t — 0+. So, it is not important which primitive function @, we take and we have
(=®,)'(t) > 0ast — +oo.
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5. Theorem 1 does not imply that u(t) — ¢ as t — +oo. In fact, in [6,
Theorem 4] we have shown that u(t) — ¢ if h is large enough, in particular
if fog m < +oo. If this condition is not satisfied, it may happen that w(u)
contains more than one point.

6. If ¢ is an asymptotically stable equilibrium for the gradient system 11+ VE(u) =
0 (e.g. if E has a strict local minimum in ¢ and is convex on a neighborhood of ¢)
and (KLI), (IKLI) hold on a neighborhood of ¢, then by [5, Corollary 5] we have

lIx — @ll ~ ©o(E(x) — E(p)) on a neighborhood of ¢ where Pg(t) = fot %. In this
case, for any solution starting in a neighborhood of ¢ we have

o(=@,)7H(C) < llo®)I? + P (llu(t) = pl) < C(=Dy) " (ct)
and, especially,
lu(t) = ll < Po(C(=D) ™ (ct)),
so u(t) = ¢. We do not have the estimate for ||u(t) — ¢|| from below since, at least in
one-dimensional case, the solution oscilates and u(t,) = ¢ for a sequence t, ,/* +oo

(see [9]).

Example 2. Let us consider E(u) = F(|lu|[) with a real function F having a
strict local minimum F(0) = 0 and satisfying on a right neighborhood of
zero CF(s) > sF'(s) > (1 + €)F(s) and sF”(s) ~ F'(s). Moreover, we assume
that (F’)™" has property (K). (It is easy to show that any analytic function
F(s) = Yoy, axS¥, azy > 0and any function of the form (1) witha > 2,r; € Ror

a=2,r=--=1ri1=0,7;<0,741,..., 7 € R satisfies these assumptions.)
Then (KLI), (IKLI) holds with ©(s) = ﬁ(s), since
F([[ull ,
OE®) = O(F(ul) = i ~ F'(lul) = IVEGI)
Further, (2) holds with I'(s) = == since

TORIS
F'(J[u))
[ul

IVZE@)l = F”(llull) ~ = T(F (lull)) = TAVEQ@I).

Furher, we have

10(F()  £7 F()s—Fs) 1( E(s) )N 1

O(FE) = - =5\ sF’(s) S

F'(s)  F(s)  s2F'(s) s

7

SO
OF()®'(F(s) ~ ~O(F(5) ~ 5F()
and
OFS) K Fs)  _FO
FY@FR) s (D) SO EE) | &

[(©(F(s))) =
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hence I'(©(s)) ~ O(s)@’(s). Then, for any g satistying (3) with a function h
small enough (such that (4) holds) Theorem 1 can be applied and we obtain
the exact energy decay which depends on & only and not on F. In particular,
if h(s) = s* we have &E(u(t), v(t)) ~ t=& and if h is of the form (1), we have by
[4, Lemmas 6.5, 6.6]

Eub), o(t) ~ 3 In"*(n1/f)...In"* (In...In1/8).

Let us mention that if & is equal to (1) and such that cs < h(s) < ¢ near zero
(i.e. a € [0,1] and if a € {0, 1} we have a sign condition on the first nonzero
number r;), then 1(s) = s*h(s) is convex near zero.

3. Proor oF THEOREM 1

Let us write v(t) instead of u(t) and &(t) instead of E(u(t), v(t)). We also
often write u, v instead of u(t), v(t).

First of all, since u is precompact {E(u(t)) : t > 0} is bounded. Therefore,
{&(t) : t > 0} is bounded, hence v is bounded and by (SOP) also ii = v is
bounded. Since

f (8(v),v) = &0) - &(t) < K,
0

we have (g(v),v) € L'((0, +c0)). Then boundedness of v yields convergence
of (g(v(t)), v(t)) to 0. Hence v(t) — 0 as t — +oo and it follows that &E(t) —
E(@,0). So, we can assume without loss of generality that E(p) = 0, E(p,0) =
0.

In the rest of the proof we will work with

H(t) = &(t) + eB(E(u(t)))(VE(u(t)), v),
where
1
B(S) _ WSh( \/g) s>0
0 s=0
and ¢ > 0 is small enough. Let us mention that B can be unbounded in a
neighborhood of zero, but due to (4) we have ©(s)B(s) < C+/s, hence H is
continuous even in the points where E(u(t)) = 0 and in these points we have
H(t) = &(t). Let us denote M := {t > 0 : E(u(t)) > 0} and M° = {t > 0 :
E(u(t)) = 0}.
We show that H(t) ~ &(t). On M it is trivial. On M we apply (IKLI),
Cauchy-Schwarz and Young inequalities and ©(s)B(s) < C v/s and we obtain
leB(E(u)){VE(u(t)), v)| < eCB(E(u))O(E(w))llv|
< eCB(E(1))*©(E(1))* + eC|[v|?
< eCE(t),
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hence
(1-eO)E(t) <H() < (1+C)&E(H)

and taking ¢ > 0 small enough we obtain H(t) ~ &(t).
The next step is to show that

(6) 0 < ~H'(t) ~ h(llol)llolP + EGu)h (VE(W)).
Let us first estimate B’(s). For any s > 0 we have

BG) [, , W(VE)VE s@'(s)) [B<s> ooy BO l
S 1+ V5 2@(5) € S (1-20), 1+0C),

s
where the equality follows by definition of B and the rest from admissibility
of hand O (the two fractions in round bracket are nonnegative and bounded
above by a constant). Hence, |sB’(s)| < CB(s).

Let t € M. Let us compute H’(t) and use the fact that u solves (SOP) to get

H'(t) = —(8(v),v) — eB(Ew))IVEw)I?
+ eB’(E(u)){VE(u), v)*
+ sB(E(u))(VZE(u)v, V)
+ eB(E(u)(VE(w), —g(v))-
Due to (3) we have (g(v), v) ~ h(||[0|))l[v|]* and by definition of B, (KLI) and
(IKLI) we immediately have B(E(u))IVEw)|* ~ E(u)h(~/E(u)). So,
(8(0),0) + eBEW)IVEw)I? ~ h(lol)llol? + eCE)h (VEw))

We show that the second, third and fourth lines of (7) are smaller than this
term, then (6) is proved.
The second line of (7) is less than

B(E
e Do EuPIelP < cCh(VE) ol

Since T has property (K) and satisfies ['(©(s)) ~ ©(s)®@'(s) < Cs™'O(s)* and
due to (IKLI) and definition of B, the third line in (7) is less than

eCBE@)T(IVE@INIIoIP < eCh (VE@w)) llolP.

If E(u) < 4C|[v|l%, then (h satisfies property (K)) we have h(\/E(u)) loll> <
Ch(lolllol? and if E(u) > 4C|[ol?, then h (yE@))llol? < 1=k (yEw)) E(u). So,

in either case we have that lines two and three in (7) are less than

eCh(lolDlolP + 7 ¢h (vEG) E(w)

B'(s) =

(7)

eC
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so they are less than the first line in (7) since we can make ¢C small by taking
¢ small enough. The last line in (7) is (by definition of B and (4)) less than

1
CBEMMIVEIol < C ez El (VEG) el

< eCyE@h(lloIDIl.

Applying the Young inequality with 1(s) = s?(s) and the convex conjugate
) we get

C VEGH(lolliel < 7oy (VEGD) + eChloli(iol)
< JeE@h (VEGD) + eChllollol?

since (sh(s)) < Cs?h(s) due to Lemma 3 below. Now, (6) is proven on M. If
E(u(t)) — 0 for t — ty, we can see that H'(t) — —(g(v(t)), v(ty)) = E'(t) (due
to the estimates above, all terms on the right-hand side of (6) except the first
one tend to zero). By continuity of H, we have H' = & on M, in particular
(6) holds on M°.

We show that xy(H(t)) ~ —H’(t). In fact,

X(H(#) < x(C(llol? + E())))
< C(x(IolP) + x(E()))
= C(h(lel)liol? + E@h (VEw)))
< -CH'(t),
where we applied monotonicity in the first line, C-sublinearity and property
(K) in the second line (x has these properties by Lemma 4 below), definition
of x in the third line and (6) in the last inequality. On the other hand, by

Lemma 4 also the inverse inequalities in C-sublinearity and property (K) are
valid, so we have

X(H®) = x(c(llol? + Ew))))
> c(x(lol?) + x(E(w)))
= c(h(lllliol? + E@h (VEw)))
> —cH'(t),

so x(H(t)) ~ —H'(t) is proved.

Let T = sup{t > 0: H(t) > 0}. For any t € (0, T) we have proved
H'(t)

X(H(t))

d
-0 (H®) =~ € 16 Cl
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Integrating this relation from £, to ¢t we obtain
(8) c(t — to) — D (H(to)) < =D (H(t)) < C(t — to) — Dy (H(to))-
If T < +o0o, then we can see that —®,(H(t)) is bounded on (0, T), hence

0 < lim;,r— H(t) = H(T), contradiction. Therefore, T = +o0, (8) holds for all
t > 0 and for t large enough we have

&t < c(t — tg) — O (H(ty)) < -, (H(t)) < C(t — to) — P, (H(ty)) < Ct.
Hence
c(=@,)7'(Ct) < H(t) ~ E(u(t), o(t)) < C(-0)7 (@),
which completes the proof of Theorem 1.

Lemma 3. Let (s) = s?h(s) and {(r) = supfrs — (s) : s > 0} be the convex
conjugate to 1. Then there exists C > 0 such that {(sh(s)) < Cs*h(s) for all s > 0.

Proof. Since 1 is convex, the one-sided derivatives 1/, (s) = s*1,(s) +2sh(s) are
nondecreasing functions and the interval [’ (s), ¢, (s)] is nonempty. Take
so > O arbitrarily and take r € [{’ (sp), ¥/.(S0)]. Then the function s = rs—1(s)
attains it maximum in sy, hence tﬁ(r) = 150 — sgh(so). Since r > Y’ (s9) =
$2h’(S0) + 2s0h(s0) > soh(so) and 1 is increasing, we have {/(soh(so)) < P(r) =
rso — s3h(so) < Yi(so)so — s3h(so) = syh(so) + 2s5h(so) — s3h(so) < (¢ +2 —
1)s3h(so). O

Lemma 4. Function x(s) = sh(v/s) is C-sublinear and it has property (K). More-
over, x(s + t) > %()((s) + x(t)) for all s, t > 0 and for every ¢ > 0 there exists ¢ > 0
such that x(cs) > €x(s).

Proof. Since h has property (K), we have for a fixed K > 0
¥(Ks) = Ksh(VK V) < KsC(VK)h(Vs) = KC(VK)x(9).

So, x has property (K) and since it is increasing, it is also C-sublinear. Since
X is increasing, we also have x(s +t) > x(s), x(s + t) > x(t) and therefore
X(s+1t)> %()((s) + x(t)). From property (K) we have for any fixed ¢ > 0

1 1 1
X(6) = X(<es) < Cx(es) = 2x(cs)
and the last property is proven. |
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