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1 Introduction

Let Ω ⊂ Rn be an open set. We say that the mapping f : Ω → Rm satisfies
Lusin (N) condition if for every A ⊂ Ω, |A| = 0, it holds that |f(A)| = 0. We
can see that this condition is needed for any natural physical model such as
the deformation of a solid body in space. Otherwise we can make new material
”from nothing”, so the mapping is really unnatural for physical applications.
Another important application is the connection between the area formula
and the Lusin condition. If the mapping is a Sobolev mapping and satisfies
the Lusin (N) condition, the area formula holds, for more see [10].

Marcus and Mizel prove in [9], that the Lusin (N) condition is guaranteed
for the mappings in W 1,p(Ω,Rn) for p > n. If we consider Sobolev homeo-
morphisms, the condition is valid even in W 1,n(Ω,Rn), see Reshetnyak [16].
These positive results are sharp and the main tool of the proof is the Sobolev
Embedding Theorem. Our work is based on two classical counterexamples of
the functions violating the (N) condition, which complete the characterization
of validity in W 1,p.
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The first counterexample is the Cesari’s construction originally written
in [2] for n = 2, later reminded and improved by Malý and Martio in [8].
That is the continuous mapping in the Sobolev space W 1,p([0, 1]n, [0, 1]m),
p ≤ n, which maps the line segment onto a domain with positive m-dimension
measure, so the (N) condition is violated.

The second counterexample is the Ponomarev’s construction [15]. This is
the Sobolev homeomorphism in W 1,p([0, 1]n, [0, 1]n), p < n, violating the (N)
condition. The construction is essentially different from Cesari’s construction
and cannot be obtain as a simple modification.

The limiting case W 1,n is the most important case in both settings. There is
no work considering counterexamples for higher derivative spaces W k,p, but by

Sobolev embedding it is natural to expect that the space W k,
n
k is the limiting

case. The positive results can be easily obtained, but both counterexamples
mentioned above lack the second derivative and cannot be used. In our work
we fill this gap by careful smoothing the classical constructions and we show

that the space W k,
n
k is limiting in both cases. Our results can be summarized

by these two theorems.

Theorem 1 Let k, n ∈ N, n ≥ k let p ≥ n
k and let Ω ⊂ Rn be a domain.

Then a homeomorphism f ∈W k,p(Ω,Rn) satisfies Lusin (N) condition.
On the other hand for every k, n ∈ N, n > k and p ∈ [1, nk ) there is a

homeomorphism f ∈W k,p((−1, 1)n,Rn) which fails Lusin (N) condition.

If we consider general Sobolev mappings and not only homeomorphisms, then

the scale shifts and a mapping in W k,
n
k may fail to satisfy the condition. We

give a counterexample violating the condition for this case.

Theorem 2 Let k,m, n ∈ N, n > k, let p > n
k and let Ω ⊂ Rn be a domain.

Then a mapping f ∈W k,p(Ω,Rm) satisfies Lusin (N) condition.
Moreover, let m,n ∈ N and let Ω ⊂ Rn be a domain. Then a mapping

f ∈Wn,1(Ω,Rm) satisfies Lusin (N) condition.
On the other hand for every k,m, n ∈ N, n > k and p ∈ [1, nk ] there is a

mapping f ∈W k,p((−1, 1)n,Rm) which fails Lusin (N) condition.

The generalizations of the positive results can be proved by the Sobolev Em-
bedding Theorem. However the counterexamples require a new approach be-
cause the classical counterexamples are defined as non-smooth mappings and
they lack even the second weak derivative. The special question is the validity
of the condition in case n = k, p = 1. We answer this question by the finer
version of Sobolev Embedding Theorem by Peetre [14] for the Lorentz spaces
and by the result by Kauhanen, Koskela and Malý [5].

For other results concerning the research of the (N) condition in spaces
close to W 1,n see [7] and [5]. Although the classical results are not new, there
are fresh applications using these constructions as the limiting case for ex-
ample in the varifold theory [12], [18] or in the field of the metric measure
spaces [6]. There are also works concerning Lusin (N) condition using differ-
ent methods of construction in order to get particular properties such that the
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Sobolev homeomorphism with Jf = 0 almost everywhere, see [3], or even the
homeomorphism satisfying rank(Df) < n, rank(Df−1) < n, see [13].

The paper is divided into two parts. In Section 3 we prove Theorem 1 and
we give the example of the homeomorphism in W k,p. In in Section 4 we prove

Theorem 2 and we give the improved Cesari example of the mapping in W k,
n
k .

2 Preliminaries

We denote an open cube by

Q(x, r) = {y ∈ Rn, ‖x− y‖∞ < r}.
We denote an open ball with the centre at x and radius r as B(x, r). We denote
a sign as sgn(t), i.e. sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, sgn(t) = 0 for
t = 0.

By C we denote a generic positive constant whose exact value may change
at each occurrence. We write for example C(a, b, c) if C may depend on pa-
rameters a, b and c. Since we fix parameters n, k and p, the dependence of C
on these parameters would not be mentioned at all.

Let us consider the convolution kernel φ : (−1, 1)→ R such that

(1) φ(t) ≥ 0,

(2)

∫ 1

−1
φ(t) = 1,

(3) |Dkφ(t)| ≤ C(k),

(4)

∫ 1

−1
|Dkφ(t)| dt ≤ C(k),

(5) φ(t) ∈ C∞0 ((−1, 1)).

For r > 0 we define φr(t) = r−1φ(r−1t). Function φr(t) satisfies

(1) φr(t) ≥ 0,

(2)

∫ r

−r
φr(t) = 1,

(3) |Dkφr(t)| ≤ r−k−1C(k),

(4)

∫ r

−r
|Dkφr(t)| dt ≤ r−kC(k),

(5) φr(t) ∈ C∞0 ((−r, r)).

(1)

Now we prepare a function for the smooth partition of unity. We consider
λa,c,A : [0, A]→ [0, 1] for 0 < a < c < A such that

(1) λ(t) ∈ C∞((0, A)),

(2) λ(t) ≡ 1 for t ∈ [0, a),

(3) λ(t) ≡ 0 for t ∈ (c, A],

(4) |Dkλ(t)| ≤ (c− a)−kC(k) for t ∈ [a, c], k ∈ N.

(2)
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1

0 a c A

Fig. 1 Graph of λa,c,A.

We can construct such λ(t) by connecting points [0, 1], [a+ c−a
3 , 1], [c− c−a

3 , 0]
and [A, 0] by the lines to form the piecewise affine function and then make this
function smooth by convolution with φ c−a

3
. The last estimate can be provided

by Lemma 2 proven in the next part of the Section. The graph of λa,c,A is
sketched in Figure 1.

The n-dimesional Lebesgue measure of a measurable set A in Rn is denoted
by |A| or Ln(A). We use the formula for the derivative of the product

Dk(ab)(t) =

k∑
j=0

(
k

j

)
Dja(t)Dk−jb(t), (3)

if both Dja(t), Djb(t) exist for all j ∈ {0, . . . k} and the right-hand side term
makes sense. For a measurable function f belonging to Lebesgue space Lp on
some domain Ω we denote the norm

‖f‖p = ‖f‖Lp(Ω) =
(∫
Ω

|f(x)|p dx
) 1

p .

Lemma 1 Let f : [−1, 1]n → [−1, 1]n be a bijective continuous mapping. Then
f is a homeomorphism.

Proof In order to prove that open sets are mapped to open sets we want to
prove that any closed set would be mapped to a closed set. A closed set in
[−1, 1]n is bounded and therefore it is a compact set and since f is continuous,
the image of the compact set is a compact set or specially closed set. The
mapping f is bijective, continuous and maps open sets to open sets and hence
f is homeomorphism.

2.1 Convolution method

We use the convolution on some piecewise smooth function with some points
of broken smoothness. We can control the value of its derivatives by the deriva-
tives of the original function and by the radius of the convolution kernel. This
control is described by the following Lemma.
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Lemma 2 Let {ai}j+1
i=1 ⊂ R be a finite increasing sequence, let I = [a1, aj+1],

Ii = [ai, ai+1] be closed intervals. Let hi ∈ W k,∞(Ii,R) ∩ Ck−1(Ii,R). We
denote

h(t) = hi(t) for t ∈ Ii.

Then for t ∈ (a1 + r, aj+1 − r) we have

Dk(h ∗ φr)(t) =

j∑
i=1

∫
B(t,r)∩Ii

φr(t− s)Dkhi(s)ds

+

j−1∑
i=1

(k−1∑
l=0

Dk−1−lφr(t− ai+1)
(
Dlhi+1(ai+1)−Dlhi(ai+1)

))
.

(4)
Especially we can estimate by (1) (3) and (1) (4)

|Dk(h ∗ φr)(t)| ≤ C max
i∈{1,...j},l={0,...k}

r−k+l‖Dlhi‖L∞(Ii). (5)

Moreover, it is sufficient to consider only i such that ai ∈ (t− r, t+ r) in (5).

Proof Firstly we consider the case j = 2, k = 2. For t ∈ (a1 + r, a3 − r) we
consider a small positive u such that t+u ∈ (a1+r, a3−r). We split (t−r, t+r)
into three (possible empty) subintervals

J1(u) = (t− r, t+ r) ∩ (a1, a2 − u),

J2(u) = (t− r, t+ r) ∩ (a2, a3),

S2(u) = (t− r, t+ r) ∩ (a2 − u, a2).

By simple equality φr(t+ u− s− u) = φr(t− s) we calculate

lim
u→0+

(h ∗ φr)(t+ u)− (h ∗ φr)(t)
u

=

= lim
u→0+

(∫
J1(u)

h1(s+ u)− h1(s)

u
φr(t− s) ds

+

∫
J2(u)

h2(s+ u)− h2(s)

u
φr(t− s) ds

+

∫
S2(u)

h2(s+ u)− h1(s)

u
φr(t− s) ds

)
.

Firstly we deal with the first and the second term. We can interchange the
limiting and the integration process (the integrable dominating function is
φr‖Dhi‖∞). The interval Ji(u) slightly depends on u, but since we integrate
the bounded function we can get rid of this dependence by simple calculation,
we get

lim
u→0+

∫
Ji(u)

hi(s+ u)− hi(s)
u

φr(t− s) ds =

∫
B(t,r)∩Ii

Dhi(s)φr(t− s) ds.
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We split the last term into two integrals and since we get the average integral
of continuous function, we get

lim
u→0+

∫
S2(u)

h2(s+ u)φr(t− s)− h1(s)φr(t− s)
u

ds =

= h2(a2)φr(t− a2)− h1(a2)φr(t− a2).

This gives us (4) for k = 1. Now we iterate the previous to get the result
for k = 2. We rewrite the proven formula as

D(h ∗ φr)(t) = (Dh ∗ φr)(t) + (h2 − h1)(a2)φr(t− a2).

To get D2(h ∗ φr), we differentiate both terms. The first term gives us the
same formula as for D(h ∗ φr), we just replace h with Dh and we get

D(Dh ∗ φr)(t) = (D2h ∗ φr)(t) + (Dh2 −Dh1)(a2)φr(t− a2).

The derivative of the second term is

D
(
(h2 − h1)(a2)φr(t− a2)

)
= (h2 − h1)(a2)Dφr(t− a2).

Together we have

D2(h ∗ φr) =(D2h ∗ φr)(t)
+ (Dh2 −Dh1)(a2)φr(t− a2) + (h2 − h1)(a2)Dφr(t− a2)

=

2∑
i=1

∫
B(t,r)∩Ii

φr(t− s)D2hi(s) ds

+

1∑
i=1

( 1∑
l=0

D1−lφr(t− ai+1)
(
Dlhi+1(ai+1)−Dlhi(ai+1)

))
.

That is (4) for k = 2. The process how to get the formula for k = 2 from k = 1
can be used in general as the induction step, hence

D(Dk−1h ∗ φr)(t) = (Dkh ∗ φr)(t) + φr(t− a2)(Dk−1h2 −Dk−1h1)(a2),

D
(
Dmφr(t− a2)(Dlh2 −Dlh1)(a2)

)
= Dm+1φr(t− a2)(Dlh2 −Dlh1)(a2),

(6)
as long as the we can interchange limiting and integration process by ‖Dkhi‖∞ <
∞ and Dk−1hi is continuous. We suppose the validity of formula (4) for k− 1
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and by (6) we get

Dk(h ∗ φr) =D(Dk−1h ∗ φr)(t)

+D

k−2∑
l=0

Dk−2−lφr(t− a2)(Dlh2 −Dlh1)(a2)

=(Dkh ∗ φr)(t) + φr(t− a2)(Dk−1h2 −Dk−1h1)(a2)

+

k−2∑
l=0

Dk−1−lφr(t− a2)(Dlh2 −Dlh1)(a2)

=(Dkh ∗ φr)(t) +

k−1∑
l=0

Dk−1−lφr(t− a2)(Dlh2 −Dlh1)(a2).

This is formula (4) proven by induction in case j = 2. In general case j > 2 we
have to consider more terms inside the sums of (4), but the proof is the same.

The last part (5) follows by (1), we use the estimates |Dkφr(t)| ≤ Cr−k−1,∫
|Dkφr(t)| dt ≤ Cr−k and the Hölder’s inequality.

For later use we consider the mapping defined by several different smooth
mappings on several different sub-domains of (−1, 1)n. We formulate an ob-
servation how we preserve the smoothness. In general we cannot assume the
smoothness since the derivatives on the boundaries of the domains of the map-
pings does not have to be equal.

Observation 3 Let f1 : Ω1 → Rn be a Sobolev mapping smooth inside Ω1

and f2 : Ω2 → Rn be a Sobolev mappings smooth inside Ω2, such that f1 = f2
for x ∈ Ω1 ∩ Ω2. If ∂Ω1 ⊂ Ω2 (as in Figure 2) then we can define Sobolev
mapping f : Ω1 ∪ Ω2 → Rn as f = f1 in Ω1 and f = f2 in Ω2 and this
mapping is smooth.

3 Proof of Theorem 1

3.1 Proof of the positive part

The proof of positive part can be found in [4, Chapter 4.2, p. 68, Theorem 4.5]
for case k = 1. For a domain Ω ⊂ Rn the theorem claims that homeomorphism
f ∈W 1,n

loc (Ω,Rn) satisfies Lusin (N) condition. To prove the general form we
just use the Sobolev Embedding Theorem multiple times. Since the Lusin (N)
condition is a local property, we can assume without loss of generality that Ω
is a ball. We have

W
k,
n
k

loc (Ω,Rn) ⊂W
k−1, n

k−1
loc (Ω,Rn) ⊂ · · · ⊂W 1,n

loc (Ω,Rn),

hence for any k ≤ n a homeomorphism f ∈ W
k,
n
k

loc (Ω,Rn) satisfies the as-
sumptions for the well-known version of the theorem.



8 Tomáš Roskovec

Ω2

Ω1

∂Ω1

∂Ω2

Ω1 ∩Ω2

Fig. 2 Position of Ω2 and ∂Ω1

3.2 Construction of Cantor sets for the homeomorphism f in W k,p

In this subsection we prepare tools for the construction of a homeomorphism
f ∈ C ∩ W k,p([−1, 1]n, [−1, 1]n), p < n

k , such that f is an identity on the
boundary and f does not satisfy Lusin (N) condition. Moreover, f is C∞ a. e.
in [−1, 1]n, in fact outside the Cantor type set of 0 measure.

Based on k, n ∈ N, p ∈ [1, nk ) we choose A, B such that

A >
kp

n− kp
and B > 1. (7)

We denote
ai := 2−i2−Ai,

bi := 2−i(2−1 + 2−Bi−1).
(8)

We recall the construction used in [4, Chapter 4.3, p. 69, Theorem 4.10].
We will first give two Cantor-set constructions in (−1, 1)n. Our mapping f
will be defined as the limit of the sequence of smooth homeomorphisms fi :
(−1, 1)n → (−1, 1)n, where each fi maps the i-th step of the first Cantor-set
construction onto that of the second. Then the limit mapping f maps the first
Cantor set onto the second one.

By V we denote the set of the 2n vertices of the cube [−1, 1]n, we can index
this set V = {ϑ1, ϑ2, . . . ϑ2n}. The sets Vi = V× . . . × V, i ∈ N, will serve as
the sets of indices for our construction. Let us set z0 = z̃0 = 0.
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zv

z[v,ϑ3] z[v,ϑ4]

z[v,ϑ2]z[v,ϑ1]

z[v,ϑ1,ϑ1] z[v,ϑ1,ϑ2] z[v,ϑ2,ϑ1] z[v,ϑ2,ϑ2]

z[v,ϑ2,ϑ3] z[v,ϑ2,ϑ4]

z[v,ϑ1,ϑ4]

z[v,ϑ1,ϑ3]

z[v,ϑ3,ϑ1]

z[v,ϑ3,ϑ2]

z[v,ϑ3,ϑ3] z[v,ϑ3,ϑ4] z[v,ϑ4,ϑ3]

z[v,ϑ4,ϑ2]z[v,ϑ4,ϑ1]

z[v,ϑ4,ϑ4]

Fig. 3 Structure of centres zv

It follows that (−1, 1)n = Q(z0, a0) and we proceed by induction. For
v = [v1, . . . , vi] ∈ Vi we denote w = [v1, . . . , vi−1] and we define

zv = zw +
1

2
(ai−1)vi = z0 +

i∑
j=1

1

2
(aj−1)vj ,

Q′v = Q(zv,
1

2
ai−1) and Qv = Q(zv, ai).

The decomposition of Qv into the cubes with higher index is sketched in Figure
4. Formally we should write w(v) instead of w but for simplicity of notation
we neglect this. The number of the cubes in {Qv : v ∈ Vi} is 2ni. It is not
difficult to show that the resulting Cantor set

∞⋂
i=1

⋃
v∈Vi

Qv =: CA = Ca × . . .× Ca

is a product of n Cantor sets in R. Moreover, Ln(CA) = 0 since

Ln
( ⋃
v∈Vi

Qv

)
≥ 2ni(2−iA−i)n

i→∞→ 0.
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zv

z[v,ϑ4]z[v,ϑ3]

z[v,ϑ1] z[v,ϑ2]

Q′
[v,ϑ2]

Q′
[v,ϑ4]

Q′
[v,ϑ3]

Q′
[v,ϑ1]

Q
[v,ϑ1]

Q
[v,ϑ3]

Q
[v,ϑ4]

Q
[v,ϑ2]

Fig. 4 Qv and its decomposition

Analogously we define

z̃v = z̃w +
1

2
bi−1vi = z̃0 +

1

2

i∑
j=1

bj−1vj ,

Q̃′v = Q(z̃v,
1

2
bi−1) and Q̃v = Q(z̃v, bi).

The resulting Cantor set

∞⋂
i=1

⋃
v∈Vi

Q̃v =: CB = Cb × . . .× Cb

satisfies Ln(CB) > 0 since limi→∞ 2ibi > 0. It remains to find a home-
omorphism f which maps CA onto CB and satisfies our assumptions. By
f(CA) = CB , f does not satisfy the condition (N) since Ln(CA) = 0 and
Ln(CB) > 0.

3.3 Basic functions for the construction of the homeomorphism f in W k,p

In this part we prepare functions and mappings in order to construct the
sequence of the suitable smooth homeomorphisms fi converging uniformly to
f . The desired property is fi(Qv) = Q̃v for every v ∈ Vi, i ∈ N.

We denote a constant

αi =

bi−1

2 − bi −
( bi−1

ai−1
+ bi

ai

)ai+1

2
ai−1

2 − ai − ai+1
, (9)
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in order to define a function

li(t) := αi(t− ai −
ai+1

2
) + bi +

ai+1bi
2ai

.

The graph of this affine function connects the points (ai + ai+1

2 , bi + ai+1bi
2ai

)

and (ai−1

2 − ai+1

2 , bi−1

2 − ai+1bi−1

2ai−1
), see Figure 5. We define the sequence of

continuous functions h∗i : [−ai+1

2 , ai−1+ai+1

2 ]→ R as

h∗i (t) =


bi
ai
t for t ∈ [−ai+1

2 , ai + ai+1

2 ],

li(t) for t ∈ [ai + ai+1

2 , ai−1−ai+1

2 ],
bi−1

ai−1
t for t ∈ [ai−1−ai+1

2 , ai−1+ai+1

2 ].

(10)

We sketch the graph of h∗i (t) in Figure 5. The important property is the
strict monotonicity of h∗i (t). We define the sequence of smooth functions

hi(t) = (h∗i ∗ φai+1

4
)(t) for t ∈

[
0,
ai−1

2

)
. (11)

We can see that these functions are smooth and strictly monotone, and its
derivatives can be calculated and estimated by Lemma 2. Moreover, hi is linear
inside [0, ai) and it is linear inside (ai−1

2 −
ai+1

4 , ai−1

2 ). All these properties and
the relation with h∗i (t) are sketched in Figure 5.

We use this function to define mapping g∗i : Q(0, ai−1

2 ) → Q(0, bi−1

2 ) by
coordinates as

(g∗i (x))j = sgn(xj)hi(|xj |) for j ∈ {1, . . . n}. (12)

This mapping maps Q(0, ai−1

2 ) onto Q(0, bi−1

2 ) and its shifted version can map

Q′v onto Q̃′v for v ∈ Vi. It is clearly continuous, smooth and it is strictly mono-
tone in every direction and therefore it is one-to-one and homeomorphism.
Moreover, the j-th coordinate of gi(x) depends only on the j-th coordinate
of x, so the only non-zero coordinate of partial derivatives of Dk

j gi may be
the diagonal ones for j ∈ {1, . . . n}, k ∈ N. We have to modify this map-

ping once more in order to get gi(x) = bi−1

ai−1
x near the boundary of the cube

‖x‖∞ = ai−1

2 .
We recall (2) and we denote

λ(t) = λai−1

2 −
ai+1

4 ,
ai−1

2 −
ai+1

8 ,
ai−1

2
(t).

For x ∈ Q(0, ai−1

2 ) we define

gi(x) =

n∏
j=1

λ(|xj |)g∗i (x) +
(
1−

n∏
j=1

λ(|xj |)
) bi−1
ai−1

x. (13)

This mapping still maps Q(0, ai−1

2 ) onto Q(0, bi−1

2 ). Since both g∗i (x) and λ(t)

are smooth, gi(x) is also smooth. Moreover, gi is equal to bi−1

ai−1
x near the
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li(t)

ai +
ai+1

2

ai−1

2
− ai+1

2

ai−1

2

bi +
ai+1bi
2ai

bi−1

2

bi−1

2
− bi−1ai+1

2ai−1

0

0 ai−1

2

bi−1

2

bi−1

2
− bi−1ai+1

4ai−1

ai +
ai+1

4

bi +
ai+1bi
4ai

ai−1

2
− ai+1

4

Fig. 5 Functions h∗i (t) and hi(t)

boundary of Q(0, ai−1

2 ), since
∏n
j=1 λ(|xj |) = 0 if any |xj | > ai−1

2 − ai+1

8 . We

note that
∏n
j=1 λ(|xj |) ∈ (0, 1) only in the set

Ti = Q
(

0,
ai−1

2
− ai+1

8

)
\Q
(

0,
ai−1

2
− ai+1

4

)
. (14)

Both g∗i (x) and bi−1

ai−1
x are strictly increasing in every coordinate and therefore

bijective, we claim that gi(x) is also bijective. To prove this we have to focus
only on the set Ti, elsewhere gi is equal to one of the bijective mappings g∗i (x)
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or bi−1

ai−1
x. We should also show that

gi(Ti) = Q
(

0,
bi−1

2
− bi−1ai+1

8ai−1

)
\Q
(

0,
bi−1

2
− bi−1ai+1

4ai−1

)
,

we do not do the calculations here, it is straightforward after we check the
bijectivity.

Remark 1 We can avoid the following discussion by the estimate of the Ja-
cobian |Jgi| > 0. Since this holds in whole Q(0, ai−1

2 ), we can use advanced
topological degree theory to claim the bijectivity, see [17, p. 17, Proposition
4.4]. We present the discussion for convenience of the reader not familiar with
this theory.

We discuss if it is possible to have gi(x) = gi(y) for x 6= y, x, y ∈ Ti to get a
contradiction. We split the indices of coordinates of x ∈ Ti into two sets Sx
and Rx such that

Sx ∪Rx = {1, . . . n},
xs ∈ (−ai−1

2 + ai+1

8 , ai−1

2 − ai+1

8 ) \ (−ai−1

2 − ai+1

4 , ai−1

2 − ai+1

4 ) for s ∈ Sx,
xr ∈ (−ai−1

2 + ai+1

4 , ai−1

2 − ai+1

4 ) for r ∈ Rx.

This sets can provide us the decomposition of Ti based on the belonging
of indices of x ∈ Ti to Sx and Rx. This decomposition in case n = 2 is
sketched in Figure 6. In general, there are n-dimensional cubes by the vertices
of Q(0, ai−1

2 − ai+1

4 ), where Rx = ∅ and Sx = {1, . . . n}. The rest of Ti is split
into n-dimensional hyper-rectangles with both Rx and Sx non-empty. We in-
tend to prove that g(x) is a homeomorphism in each component of decomposed
Ti and maps this component onto the corresponding component in the image.
This imply g(x) is a homeomorphism in whole Ti. Further we consider only
x, y ∈ Ti, x 6= y lying inside the same component, it means Rx = Ry, Sx = Sy.

For xs, s ∈ Sx, we have by (13), (12), (11) and (10) that hi(|xs|) = bi−1

ai−1
|xs|

and hence

(gi(x))s =

n∏
j=1

λ(|xj |)(g∗i (x))s + (1−
n∏
j=1

λ(|xj |))
bi−1
ai−1

xs

=

n∏
j=1

λ(|xj |) sgn(xs)hi(|xs|) + (1−
n∏
j=1

λ(|xj |))
bi−1
ai−1

xs =
bi−1
ai−1

xs.

(15)

This imply that gi(x) = bi−1

ai−1
x in parts where Rx = ∅ and it is clearly a

homeomorphism. Let us consider a part where Rx 6= ∅. Let s ∈ Sx, then we
get (gi(x))s = bi−1

ai−1
xs so we can suppose that xs = ys for all s ∈ Sx = Sy. Now

we discuss if g(x) = g(y) is possible for some x and y belonging to the same
|Rx|-dimensional rectangle defined by

{z ∈ Ti : Rz = Rx; zs = xs for s ∈ Sx}. (16)
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0

Q(0, ai)

Ti

Rx 6= ∅

Rx 6= ∅

Rx 6= ∅Rx 6= ∅

Q(0,
ai−1

2
− ai+1

4
)

Q(0,
ai−1

2
)

Rx = ∅

Rx = ∅Rx = ∅

Rx = ∅

Fig. 6 Set Ti and its splitting

Specially for n = 2, we get line segments since both Sx and Rx are sets of one
element.

By the definition of Rx we have λ(|xr|) = 1 for r ∈ Rx, hence

(gi(x))r =
∏
s∈Sx

λ(|xs|)(g∗i (x))r +
(

1−
∏
s∈Sx

λ(|xs|)
) bi−1
ai−1

xr.

For m, r ∈ Rx, m 6= r we get

Dr(gi(x))r =
∏
s∈Sx

λ(|xs|)Dhi(|xr|) +
(

1−
∏
s∈Sx

λ(|xs|)
) bi−1
ai−1

,

Dm(gi(x))r = 0.

(17)

The derivative Dr(gi(x))r is positive, since it is a convex combination of two
positive numbers. This observation gives us the contradiction for case |Rx| = 1
as (gi(x))r is increasing and (gi(x))r = (gi(y))r implies xr = yr. Hence the
proof is finished in case n = 2. In general case we study the rectangle defined
by (16). Restriction of gi on this rectangle has a diagonal Jacobi matrix with
positive numbers on diagonal positions and hence it is a strictly monotone
mapping in every direction and therefore it is a bijection. This gives us the
contradiction and gi is bijective in every part of Ti, therefore in whole Ti and
in whole Q(0, ai−1

2 ).
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For later use we estimate the derivatives of gi(x) inside the set Ti defined
in (14). We recall (8) to get the comparability of ai and ai+1 by estimates
ai+1 < ai and ai+1 > Cai. For x ∈ Ti we estimate by (2)(4) and (3)∣∣∣Dm

(∏
s∈S

λ(|xs|)
)∣∣∣ ≤ C max

{∏
s∈S

∣∣Dγsλ(|xs|)
∣∣; γs ∈ N0,

∑
s∈S

γs = m)
}
≤ Ca−mi .

By (15) and (17) we estimate |Dk(gi(x))| for k > 1, for x ∈ Ti as

|Dk(gi(x))| ≤ max
r∈Rx,d∈Sx

{∣∣Dk((gi(x))d)
∣∣, ∣∣Dk((gi(x))r)

∣∣}
≤ max
r∈Rx,d∈Sx

{∣∣Dk(
bi−1
ai−1

xd)
∣∣,∣∣∣Dk

(∏
s∈S

λ(|xs|)hi(|xr|) +
(
1−

∏
s∈S

λ(|xs|)
) bi−1
ai−1

xr

)∣∣∣}
≤C max

r∈Rx,0≤m≤k

{
0,
∣∣Dm

(∏
s∈S

λ(|xs|)
)
Dk−mhi(|xr|)

∣∣, ∣∣∣Dk−1
∏
s∈S

λ(|xs|)
bi−1
ai−1

∣∣∣,
∣∣∣Dk

(∏
s∈S

λ(|xs|)
) bi−1
ai−1

xr

∣∣∣}
≤C max

r∈Rx,0≤m≤k

{
|a−mi Dk−mhi(|xr|)|,

∣∣a−k+1
i

bi−1
ai−1

∣∣, |a−ki bi−1|
}
.

(18)

3.4 Construction of the homeomorphism f in W k,p

We will give the sequence of smooth homeomorphisms fi : (−1, 1)n → (−1, 1)n.
We set f0(x) = x and we proceed by induction. Firstly we give a mapping f1
which stretches each cube Qv, v ∈ V1, homogeneously so that f1(Qv) = Q̃v.
We also need f1(Q′v \Qv) = Q̃′v \ Q̃v. We define

f1(x) =

{
f0(x) = x for x ∈ (−1, 1)n \

⋃
v∈VQ

′
v,

zv + g1(x− zv), for x ∈ Q′v, v ∈ V.

We check the desired properties, f1 is bijective and smooth inside both parts
of the domain of function. The bijectivity inside Q′v is given by the bijectivity
of g1 proven in previous Subsection 3.3, the property f1(Q′v) = Q̃′v follows
from (13). In order to prove the smoothness we check the assumptions of
Observation 3. We have h∗1(t) = a0

b0
t = t for t ∈ (a0−a22 , a0+a22 ), h1(t) = t

for t ∈ (a02 −
a2
4 ,

a0
2 ). We have zv = z̃v for v ∈ V1 and therefore we get

f1(x) = f0(x) = x inside annuli Q(zv,
a0
2 ) \Q(zv,

a0
2 −

a2
8 ). So we can extend

the set where f1(x) = f0(x) = x to the set (−1, 1)n \
⋃

v∈VQ(zv,
a0
2 −

a2
4 ) as

is required in Observation 3 and hence f1 is smooth in whole (−1, 1)n.
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fi

fi+1

Fig. 7 Modifying fi into fi+1

This first step also shows us the idea of the induction process. We define

fi(x) =

{
fi−1(x) for x ∈ (−1, 1)n \

⋃
v∈Vi Q′v,

fi−1(zv) + gi(x− zv) for x ∈ Q′v, v ∈ Vi.
(19)

In the general step we change the fi(x) only inside the cubes Q′v, v ∈ Vi. This
fi stretches each cube Qv homogeneously onto Q̃v for v ∈ Vi. Moreover our
definition of fi will coincide with fi−1 on some neighbourhood of the boundary
of
⋃

v∈Vi Q′v and hence fi is smooth in whole (−1, 1)n by Observation 3, as
we have showed for f1.

It is not difficult to check that each fi is a homeomorphism by the bijec-
tivity of gi. Moreover, fi satisfies

fi(
⋃

v∈Vi

Qv) =
⋃

v∈Vi

Q̃v.

We illustrate the induction step in Figure 7, we sketch how the squares Qv

are homogeneously mapped and how we place the new generations of Qv,vi+1

and Q′v,vi+1
inside them.

We define
f(x) = lim

i→∞
fi(x).

The mapping satisfies f(CA) = CB from previous step and from the definition
of these Cantor sets. Moreover, it is continuous as the uniform limit of the
continuous mappings. Mapping f(x) is clearly one-to-one inside these Cantor
sets. To check the one-to-one property outside these Cantor sets, we may
consider every set Q′v \Qv for the same index v ∈ Vi, i ∈ N separately. These
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sets cover whole (−1, 1)n \CA. We know that f = fi is homeomorphism inside
Q′v \ Qv for v ∈ Vi, i ∈ N. Since f is bijective in every part we consider and
the images of these sets do not collide and fill (−1, 1)n, f is bijective.

The limit mapping f is continuous and one-to-one, therefore it is a home-
omorphism by Lemma 1. It remains to show that the norm ‖Dkf‖p is finite.

3.5 Finiteness of the norm of the homeomorphism f in W k,p

Before the proof, we estimate the derivatives of hi in [0, ai−1

2 ], i ∈ N. By
Lemma 2 and (11) we have

|Dkhi| ≤ C max
l={0,...k}

(ai+1)−k+l‖Dlh∗i ‖∞.

We consider only the case k > 1. Since h∗i is defined as the continuous piecewise
affine function, the only non-zero derivatives would be the zeroth and the first,
all others would be zero. We estimate the pointwise values of h∗i and Dh∗i by

definition (10). By definition of αi (9) we can see that αi ≤ min{ bi−1

ai−1
, biai } from

the meaning of αi in the graph as is shown in Figure 5. We get

|h∗i (t)| ≤ Cbi−1 for t ∈ [−ai+1

2
,
ai−1 + ai+1

2
],

|Dh∗i (t)| ≤
bi
ai

for t ∈ [−ai+1

2
,
ai−1 + ai+1

2
].

Together with previous estimates and (8) we get

|Dkhi| ≤ C max
l={0,1}

(ai+1)−k+l‖Dlh∗i ‖∞ ≤ C(A)a−ki bi ≤ C2(A+1)ik−i. (20)

We estimate the norm of Dkf by the sum

‖Dkf‖pp ≤ ‖Dkf0‖pp +

∞∑
i=1

‖Dkfi −Dkfi−1‖pp =

∞∑
i=1

‖Dkfi −Dkfi−1‖pp, (21)

since f0 is identity. We consider one member of the sum and we observe by
(19), that the set where fi 6= fi−1 can be covered by 2ni cubes Q′v,v ∈ Vi of
measure

|Q′v| = (ai−1)n = 2−n(i−1)−An(i−1). (22)

For y ∈ Q′v by (19) we have fi(y) = fi−1(zv) + gi(y − zv). We know by (19)
that fi−1(y) is an affine function inside Q′v, so its higher derivatives are 0. We
denote x = y − zv ∈ Q(0, ai−1

2 ), we get

|Dkfi(y)−Dkfi−1(y)| = |Dkfi(y)− 0| = |Dkfi(x+ zv)| = |Dkgi(x)|. (23)

Now we discuss the possible values of Dkgi inside Q(0, ai−1

2 ). By (13),
we split Q(0, ai−1

2 ) into three subsets, inner cube Q(0, ai−1

2 − ai+1

4 ), middle
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part Ti and outer annulus Q(0, ai−1

2 ) \Q(0, ai−1

2 −
ai+1

8 ). Inside the inner part
Q(0, ai−1

2 − ai+1

4 ), all λ(|xj |) ≡ 1 and we have

gi(x) = g∗i (x) =
(
sgn(x1)hi(|x1|), sgn(x2)hi(|x2|), . . . sgn(xn)hi(|xn|)

)
.

Since every coordinate (gi(x))j depends only on the coordinate xj , the only
nonzero partial derivatives would be the diagonal ones. We have to differentiate
multiple times in the same direction only so we get

|Dkgi(x)| = max
j=1,...n

{|Dk(g∗i (x))j |} = max
j=1,...n

{|Dkhi(|xj |)|}.

We use (20) to estimate this term

|Dkgi(x)| ≤ C2(A+1)ik−i.

The middle part of Q(0, ai−1

2 ) is the annulus Ti = Q(0, ai−1

2 −
ai+1

8 )\Q(0, ai−1

2 −
ai+1

4 ) described by (14) and we have prepared the estimate (18). We use (20)
and (8) and we get

|Dk(gi(x))| ≤C max
r∈Rx,0≤m≤k

{
|a−mi Dk−mhi(|xr|)|,

∣∣a−k+1
i

bi−1
ai−1

∣∣, |a−ki bi−1|
}
.

≤C max
0≤m≤k

{
|2(A+1)im2(A+1)i(k−m)−i, 2(A+1)ik2−(i−1)

}
≤C2(A+1)ik−i.

The outer part of Q(0, ai−1

2 ) is annulus Q(0, ai−1

2 ) \ Q(0, ai−1

2 − ai+1

8 ), where
at least one λ(|xj |) from formula (13) is zero. So we get

gi(x) = 0g∗i (x) + 1
bi−1
ai−1

x =
bi−1
ai−1

x,

and Dk(gi(x)) = 0 for any k > 1. We combine these pointwise estimates for
all three parts of Q(0, ai−1

2 ) and we get for any x ∈ Q(0, ai−1

2 )

|Dkgi(x)| ≤ C max{2(A+1)ik−i, 2(A+1)ik−i, 0} ≤ C2(A+1)ik−i.

Together with (22) and (23) we get

∞∑
i=1

‖Dkfi −Dkfi−1‖pp ≤
∞∑
i=1

∑
v∈Vi

∫
Q′v

|Dkfi(y)−Dkfi−1(y)|p dy

≤ C
∞∑
i=1

∑
v∈Vi

∫
Q′v

(2Aik+ik−i)p dy

≤ C
∞∑
i=1

2ni2−n(i−1)−An(i−1)(2Aik+ik−i)p

≤ C
∞∑
i=1

2(A(kp−n)+kp)i−ip.
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As we apply the condition for A (7), we see that the term A(kp − n) + kp is
negative and the sum is finite. Together with (21) we get

‖Dkf‖pp ≤
∞∑
i=1

‖Dkfi −Dkfi−1‖pp ≤ C
∞∑
i=1

2(A(kp−n)+kp)i−ip <∞.

4 Proof of Theorem 2

4.1 Proof of the positive part

Let us remind, that the Lusin (N) condition is guaranteed for the continuous
mappings in W 1,p(Ω,Rn) for p > n by the result of Marcus and Mizel [9]. To
prove the general form we just use the Sobolev Embedding Theorem multiple
times as we have done in Subsection 3.1. As we study the local property, once
again we suppose without the loss of generality that Ω is a ball. We have

W k,
p
k (Ω,Rn) ⊂W k−1, p

k−1 (Ω,Rn) ⊂ · · · ⊂W 1,p(Ω,Rn),

hence for any k < n, p > n a mapping f ∈W k,
p
k (Ω,Rn) satisfies the assump-

tions for the well-known version of the theorem.
Now we consider the special case n = k, p = 1. We consider domain

Ω ⊂ Rn. We recall the result by Peetre [14] that Sobolev and Lorentz spaces
are embedded as

W 1Lp,q(Ω) ⊂ Lp
∗,q(Ω).

We repeat this argument n− 1 times to get

WnL1,1(Ω) ⊂Wn−1L1∗,1(Ω) ⊂ · · · ⊂W 1Ln,1(Ω).

It follows that

Dnf ∈ L1 ⇒ f ∈WLn,1.

By the paper [5], mappings in WLn,1 have continuous representative and even
satisfy the Lusin (N) condition.

4.2 Classical counterexample in W 1,n

We recall the classic counterexample by Malý and Martio [8] on W 1,n, the
continuous mapping that maps a line segment [−1, 1]×{0}n−1 onto the whole
[−1, 1]m. We briefly remind this construction and then we improve the prop-
erties of the mapping. The key step is finding the function such that

∀ε > 0 ∀r > 0 ∃% > 0 ∃h ∈W 1,n
0 (B(0, r)) ∩ C(B(0, r)),

such that h(x) ≡ 1 on B(0, %) and ‖Dh‖nn < ε.
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a+ 1

a

log log 1
|x|

h(x) + a

r%

Fig. 8 Function h(x)

There is such a function, for a big parameter a > log log 1
r we set

h(x) = min
{

1,
(

log
(
log
( 1

|x|
))
− a
)+}

.

We sketch the graph of h(x) at Figure 8, it is obvious that the function is
continuous but not smooth. We estimate its norm as

‖Dh‖nn =

∫
B(0,r)

|Dh(x)|n dx ≤ C
∫ r

0

tn−1
∣∣∣(log log

1

|t|
)′∣∣∣n dt

≤ C
∫ r

0

t−1
1

logn( 1
t )
dt.

The term on the right hand side tends to zero as r tends to zero and hence
it is smaller then ε for r small enough.

Let us consider a sequence of such mappings {hi}∞i=1 so that corresponding
parameters satisfy

• r1 < 2−m,
• ri < 2−m%i−1,
• εi < 4−mi.

Let m ∈ N and define V the vertices of the cube [−1, 1]m similarly to the
beginning of Subsection 3.2. For v ∈ Vi, w ∈ Vi−1 such that v = [w, vi] we
redefine

z0 = 0 and zv = zw + 2−ivi = z0 +

i∑
j=1

2−jvj .
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c∗w

c∗
[w,ϑ1]

c∗
[w,ϑ2]

c∗
[w,ϑ3]

c∗
[w,ϑ4]

zw

z[w,ϑ1]

z[w,ϑ2]

z[w,ϑ3]

z[w,ϑ4]

Fig. 9 Step in mapping a line into the structure zv

The set
⋃∞
i=1

⋃
v∈Vi zv is dense in [−1, 1]m as it is sketched in Figure 3.

We will construct the continuous mapping such that it maps the line segment
[−1, 1]×{0}n−1 onto the set which contains {zv}i∈N,v∈Vi . Since the continuous
image of the compact set is a compact set, the image of [−1, 1]× {0}n−1 has
to be at least [−1, 1]m.

We define the set of points {cv}i∈N,v∈Vi ∈ (−1, 1) by induction. We set
c0 = 0. By induction, in every interval B(cw, %i−1) we choose non-overlapping
intervals {B(c[w,v], ri)}v∈V around 2m chosen centres {c[w,v]}v∈V. We use the
inner interval B(c[w,v], %i) of every of these intervals in the next step. This
process generate 2mi centres {cv}v∈Vi in i-th step (see Figure 9). We define

c∗v = cv × {0}n−1.
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Now we define the sequence of continuous mapping fi : [−1, 1]n → [−1, 1]m.
First step is f0(x) ≡ z0 = 0n, then by induction we define

fi(x) =

{
fi−1(x) + hi(x− c∗v)(zv − zw) for v = [w, vi] ∈ Vi, |x− cv| ≤ ri,
fi−1(x) otherwise.

By this construction we get the uniformly converging sequence of continuous
functions. We claim, that for fi, v ∈ Vi the small subinterval of x1 × {0}n−1
around the point cv×{0}n−1 is mapped to the point zv as we sketch in Figure
9 (even a small ball around c∗v is mapped to the point zv). We use hi ≡ 1 in
some small neighbourhood of c∗v and the fact that this small neighbourhood
B(c∗v, %i) is also the part of neighbourhoods in previous step B(c∗w, %i−1). We
get for x ∈ B(c∗v, %i) ∩ (−1, 1)× {0}n−1 the claim

fi(x) = fi−1(x) + hi(x− c∗v)(zv − zw) = zw + (zv − zw) = zv.

Altogether we get

fi
( ⋃
v∈Vi

B(cv, %i)× {0}n−1
)

= {zv}v∈Vi .

In order to finish the proof, we check that f = limi→∞ fi is still a continuous
mapping and we verify that its W 1,n norm is finite.

Let us remark, that the presented result can cover even some finer scale of
spaces and we can improve the W 1,n upto WLn logn−1 L. We can also see this
result as the corollary of the capacity theory, since we can consider any space
where points have zero capacity.

4.3 The improved result in W k,
n
k

Before we begin, we prepare two estimates. We claim that, for any F : R→ R
smooth enough and x 6= 0 we have

|Dk(F (|x|))| ≤ C max
j={0,...k−1}

{|x|−j |Dk−jF (|x|)|}. (24)

We can find a small positive Tk > 0, such that for t ∈ (0, Tk) the derivatives
of log log 1

t of order up to k can be estimated as

|Dj(log log 1
t )| ≤ C

1

tj log 1
t

≤ C|Dj(log log 1
t )| for 0 ≤ j ≤ k. (25)

We do not prove these two estimates, the proofs are straightforward and ele-
mentary.

Now we improve the classical construction. We reuse all steps from the
classical case, we only have to find some finer function instead of h. Precisely
we search for a function g which satisfies

∀ε > 0 ∀R > 0 ∃% > 0 ∃g ∈W k,nk
0 (B(0, R)) ∩ C(B(0, R))

such that g(B(0, %)) ≡ 1 and ‖Dkg‖
n
k
n
k
< ε.

(26)
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We use the previous function h(t) as the one dimensional function. We choose

the key parameter a big enough so that h(t) = min{1,
(

log(log( 1
t )) − a

)+}
satisfies following

• h(B(0, 2%)) ≡ 1 for some % > 0,
• a = log log 1

r for some r < 1
2R, r < 12Tk,

•
C

∫ 2r

0

1

t log
n
k 1
t

dt < ε

for given C > 0 depending only on p, k and the dimension n.

We can find a formula for C, but we just present the estimates leading to it.
We make h(t) smooth by convolution, but we have to use two different radii,

because % and r are incomparable. Because of that we use (2), the partition
of unity,

λ(t) = λ r
4 ,

3r
4 ,R

(t), (27)

as it is introduced in the preliminaries. We denote one dimensional function

f(t) = λ(t)(φ%
2
∗ h)(t) + (1− λ(t))(φ r

8
∗ h)(t).

We define
g(x) = f(|x|).

Our claim is, that g(x) = f(|x|) satisfies all conditions of (26). Obviously, g(x)
is smooth, spt(g) ⊂ B(0, R), g(x) ≡ 1 on B(0, %). The only remaining and the
most important part is the smallness of the norm.

We calculate the derivatives of f(t) in order to estimate them. The support
of the function f(t) is [0, r+ r

8 ] and we have by (3) the derivative of the product
formula

Dkf(t) =

k∑
j=0

(
k

j

)
Djλ(t)Dk−j(φ%

2
∗h)(t)+

k∑
j=0

(
k

j

)
Dj(1−λ(t))Dk−j(φ r

8
∗h)(t).

(28)
Firstly, we consider only the member with Djλ(t) for j > 0. This derivative

is non-zero only inside ( r4 ,
3r
4 ) by (27). For such t ∈ ( r4 ,

3r
4 ) by (2) we estimate

k∑
j=1

∣∣Djλ(t)Dk−j(φ%
2
∗ h)

∣∣ ≤ k∑
j=1

Cr−j
∣∣Dk−j(φ%

2
∗ h)(t)

∣∣. (29)

We apply Lemma 2 for I = I1 = { r4 −
%
2 ,

3r
4 + %

2} on φ%
2
∗ h. There is no point

of broken smoothness of h(t) since neither 2% nor r lies inside ( r4 −
%
2 ,

3r
4 + %

2 ),
so we get

Dk−j
∫ t+

%
2

t−%2

φ%
2

(t− s)h(s) ds =

∫ t+
%
2

t−%2

φ%
2

(t− s)Dk−jh(s) ds.
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Since the estimates of the derivatives of log log 1
t are bigger for smaller t by

(25), we estimate by the Hölder’s inequality∫ t+
%
2

t−%2

∣∣φ%
2

(t− s)Dk−jh(s)
∣∣ ds ≤ |Dk−jh(t− %

2 )| ≤ C 1

(t− %
2 )k−j log 1

t−%2

.

We apply this to the estimate (29) and by (25) we get

k∑
j=1

∣∣Djλ(t)Dk−j(φ%
2
∗ h)

∣∣ ≤ k∑
j=1

Cr−j |Dk−jh(t− %
2 )|

≤ C
k∑
j=1

∣∣∣r−j 1

(t− %
2 )k−j log 1

t−%2

∣∣∣.
Since we consider only t ∈ ( r4 ,

3r
4 ), there exist some C such that

k∑
j=1

∣∣Djλ(t)Dk−j(φ%
2
∗ h)

∣∣ ≤ k∑
j=1

C
∣∣t−j 1

tk−j log 1
t

∣∣ ≤ C∣∣Dk(log log
1

t
)
∣∣. (30)

Analogously for t ∈ ( r4 ,
3r
4 ) we get

k∑
j=1

∣∣Dj(1− λ(t))Dk−j(φ r
8
∗ h)(t)

∣∣ ≤ C∣∣Dk(log log
1

t
)
∣∣. (31)

Secondly, we estimate the members of the sums in (28) for j = 0. We
consider t ∈ [0, 3r4 ], we estimate λ(t) ≤ 1 inside this interval, otherwise we
have λ(t) = 0. Inside this interval lies 2%, the point of broken smoothnes of
h(t). By Lemma 2 and triangle inequality we have

∣∣λ(t)Dk(φ%
2
∗ h)

∣∣ ≤∫ t+
%
2

t−%2

∣∣φ%
2

(t− s)Dkh(s)
∣∣ ds

+

k−1∑
l=1

∣∣Dk−1−l(φ%
2

)(t− 2%)
∣∣∣∣Dl1−Dl(log log 1

2% )
∣∣. (32)

In the second term we missed the member of the sum for l = 0, but this
member is zero, since h(t) is continuous at 2%. For t ∈ (2% − %

2 , 2% + %
2 ) we

estimate the second member by (1)(3) as

k∑
l=1

∣∣Dk−1−l(φ%
2

)(t− 2%)
∣∣∣∣Dl(log log 1

2% )
∣∣ ≤ k∑

l=1

C
∣∣%−k+l∣∣∣∣∣ 1

%l log 1
%

∣∣∣
≤ C

∣∣Dk(log log
1

%
)
∣∣ ≤ C∣∣Dk(log log

1

t
)
∣∣,

(33)
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anywhere else this member is zero. We estimate the first member of (32) for
t ∈ [2%− %

2 ,
3r
4 ] as

∫ t+
%
2

t−%2

∣∣φ%
2

(t− s)Dkh(s)
∣∣ ds ≤ ∣∣Dk(log log

1

t− %
2

)
∣∣ ≤ C∣∣Dk(log log

1

t
)
∣∣. (34)

Analogously to these two estimates (33) and (34) we estimate for t ∈ [ r4 , r+ r
8 ]

k∑
j=0

∣∣Dj(1− λ(t))Dk−j(φ r
8
∗ h)(t)

∣∣ ≤ C∣∣Dk(log log
1

t
)
∣∣. (35)

By estimating members of formula for Dkf written in (28), we get a pointwise
estimate for every member anywhere on its support. Altogether by (30), (31),
(33), (34) and (35) we get

|Dk(f(t))| ≤ C
∣∣Dk(log log

1

t
)
∣∣.

By (24), (25), spherical coordinates and the condition for r we get

‖Dkg(x)‖
n
k
n
k
≤
∫
B(0,2r)

|Dkf(|x|)|
n
k dx

≤ C
∫ 2r

0

tn−1
(

max
i=0,...,k−1

{
t−i|Dk−i(log log

1

t
)|
})nk

dt

≤ C
∫ 2r

0

1

t−n+1+n log
n
k 1
t

dt < ε.

All the properties of g(x) and checked. We use it the same way as h(x) is used

in the classical case and get the counterexample in W k,
n
k .

Remark 2 There was a partial result on smoothing of Cesari counterexample,
Matějka has proven the case for k = 2 in [11]. He smoothed h(x) by redefining
it explicitly near the points of discontinuity and his example is C1 but not C2.
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8. Malý, J. and Martio, O., Lusin’s condition (N) and mappings of the class W 1,n.
J. Reine Angew. Math. 458, 19–36 (1995).

9. Marcus, M. and Mizel, V. J., Transformations by functions in Sobolev spaces and
lower semicontinuity for parametric variational problems. Bull. Amer. Math. Soc.
79, 790–795 (1973).

10. Martio, O. and Ziemer, W. P., Lusin’s condition (N) and mappings with nonneg-
ative Jacobians. Michigan Math. J. 39, no. 3, 495–508 (1992).
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