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Abstract. It is still an open problem to prove a priori error estimates for finite volume schemes of higher order
MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order
schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems
in a convex bounded domain Ω in IR2 and we can prove such kind of an a priori error estimate. In the part of the
estimate, which refers to the discretization of the convective term, we gain h1/2. Although the original problem is linear,
the numerical problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.
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1. Introduction. There are many Finite Volume and Discontinuous Galerkin schemes for solving
elliptic convection dominated problems and nonlinear conservation laws on unstructured grids in multi
dimensions, as

∂tv + div f(v) = 0 in IRn × IR+ (1.1)
v(x, 0) = u0(x) on IRn.

While for strongly elliptic problems like

−∆v = f in Ω (1.2)
v(x) = 0 on ∂Ω

with dominating diffusion, no stabilization is necessary for numerical schemes, we need some upwinding
[21] or, for higher order schemes, a suitable stabilization [22], [32], [45] for convection dominated
problems like

−ε∆v + div(bv) + cv = f in Ω (1.3)
v(x) = 0 on ∂Ω.

The same statement holds also for nonlinear conservation laws as in (1.1). In this case the stabilization
is obtained by reconstruction technique with so called limiters. They make the scheme nonlinear, even
in cases where the underlying partial differential equation (1.1) is linear. For finite volume schemes,
the reconstruction with limiters can be realized in a very easy way even on unstructured grids, e.g.
by MUSCL type discretizations. However, the theoretical background for these schemes, in particular
when applied to conservation laws, is not yet satisfactorily developed. Concerning the convergence
of both first and higher order schemes, there are results in the case of nonlinear scalar conservation
laws [13], [17], [34], [33], [15], and in the case of weakly coupled systems of conservation laws [40]. For
conservation laws as in (1.1), a priori error estimates of the form

||v − uh||L∞(L1) ≤ ch
1
4 + approximation error of data (1.4)

are available [3], [12], [42], [13], [2], [7]. Here, v denotes the exact solution of the underlying partial
differential equation and uh the approximative numerical solution obtained by a first order finite
volume scheme in multi dimensions on unstructured grids. From numerical experiments one would
expect h

1
2 in (1.4), but the proof for this on unstructured grids is an open question.

∗Universität Freiburg, Institut für Angewandte Mathematik, Hermann–Herder–Str. 10, 79104 Freiburg, Germany
(dietmar@mathematik.uni-freiburg.de).
†Charles University, Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha, Czech Republic
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For smooth solutions of the linear transport equations

∂tv + (a · ∇)v = 0 in IRn × IR+ (1.5)

one gets [2]

||v − uh||p ≤ ch. (1.6)

There are also no error estimates of the type ||v − uh|| ≤ chβ for higher order finite volume schemes
for conservation laws in multi dimensions on unstructured grids including limiters, with β > 1

4 . To get
results in this direction, concerning nonlinear hyperbolic conservation laws, seems to be very difficult.
Theoretically justified error analysis for upwind finite volume schemes of higher order, which would
also indicate the higher order convergence rate, remains an open problem. See for example [15], [42],
[13], [12], [14].
Therefore in this paper we apply the higher order finite volume schemes with limiters to a linear
convection dominated stationary diffusion equations like (1.3) in multi dimensions on partially un-
structured, locally irregular grids (see Assumption 2.2 and Remark 2.3 (c), as well as left part of the
Fig. 2.1). In this case the numerical scheme becomes nonlinear, because of the limiter. We can show
that we gain h

1
2 in the error estimate for the term, which refers to the discretization of the convective

term (i.e. h3

ε ), compared to first order schemes. For the higher order scheme we get (see Theorem
4.1)

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h3

ε

)
‖v‖22,2 + c

h4

ε

∑
j

R2
j |Tj | (1.7)

and if v ∈W 3,2(Ω), in particular for smooth solutions, we have

‖zh‖2ε ≤ c
(
εh3 + h3 +

h3

ε

)
‖v‖23,2 + c

h4

ε

∑
j

R2
j |Tj | .

Later we will show that the term
∑
j R

2
j |Tj | (see (4.8)) is of the same order with respect to ε as ‖v‖22,2.

In the case of the first order scheme we get (for comparison) the following result

‖zh‖2ε ≤ c
(
εh2 + h3 +

h2

ε

)
‖v‖22,2 . (1.8)

Let us briefly mention some related results. In [28], [23] a convection diffusion equation like (1.3) with
ε = 1 and general elliptic part is considered. They prove error estimates of the form

||v − uh||L2 ≤ ch

for finite volume schemes of first order. Further results for elliptic and parabolic equations for finite
volume schemes are obtained in [4], [24] and the results of an interesting benchmark problem are
published in [25]. Lube considered in [36] discretizations of (1.3) but with B(v)∇v instead of div(bv)
and proved

||v − uh|| ≤ cεhk(ε
1
2 + h

1
2 )

for the streamline diffusion method. Here k is the degree of the local polynomials and

||v||2 = ε|v|21,2 +
∑
i

δi||B(uh)∇v||20,2,Ti
.
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A-priori error estimates of the type (1.4), e.g. with the ε|| · ||H1,2 + || · ||L2 -norm , are also known for
the streamline diffusion shock capturing method applied to the linear transport equation with h

3
2 , see

[31].
For dominating diffusion problems there are error estimates for first order schemes (cf. [28], [23] for
stationary case), which show ||v − uh||L2 ≤ ch. In [26], [37] convergence for a first order combined
finite volume–finite element method in the non-stationary case was proved.
For second order TVD Rung-Kutta Discontinuous Galerkin methods with piecewise polynomials of
order k in space a priori error estimates of the form

||u− uh||L2 ≤ chk+ 1
2

for smooth solutions u of (1.1) have been proved in [47]. More advanced results for (also hybridized)
Discontinuous Galerkin methods can be found e.g. in [43], [16], [39]. For finite element approximations
of convection diffusion problems we refer to [5], [41] and for systems to [29].
The following papers deal with finite volume schemes for elliptic problems which are not convection
dominated. In [9], [10] and [8] general frameworks for the construction and analysis of higher-order
finite volume methods are developed and optimal error estimates are derived. In particular this has
also been done for higher order finite volume schemes on rectangular partitions in [6]. Multiscale dis-
continuous Galerkin schemes for second order elliptic equations with rough coefficients are considered
in [44]. Detailed error estimates are derived and confirmed by numerical experiments. Limiters are
not included.
Finite volume schemes for elliptic problems without any error estimate are considered in the following
papers. Development of higher order schemes are studied in [30]. Oevermann and Klein consider
in [38] finite volume schemes of second order for two-dimensional elliptic equations with variable,
discontinuous coefficients. Different limiting procedure for diffusion problems are discussed in [35]. In
[18] a review of some of the most successful higher-order numerical schemes for the compressible Navier-
Stokes equations on unstructured grids are presented. They use Moving-Least-Squares approximations
for the construction of higher order finite volume schemes on unstructured grids. They can be used
for direct reconstruction of the fluxes at cell edges for hyperbolic and elliptic problems.

2. The problem. Consider the following boundary value problem

Lv := −ε∆v + div(bv) + cv = f in Ω , (2.1)
v = 0 on ∂Ω (2.2)

where Ω is a convex polygonal domain in IR2 and b(x), c(x), f(x) are functions which are sufficiently
smooth on Ω and such that 0 < c0 ≤ c(x) ≤ c1, div b = 0 in Ω. Moreover we suppose that the diffusion
parameter ε is a positive constant, 0 < ε ≤ 1.
We consider that Ω =

⋃
j T j , where Tj ∈ Th are open triangles, h := supj diam (Tj), 0 < h < h0.

Furthemore, all boundary triangles are mirrored by the boundary of Ω to get a corresponding ghost
triangles (see Fig. 2.1 on the right). The set of all ghost triangles will be denoted by TG, TG ∩Th = ∅.
Notation 2.1. We denote by

(i) |Tj |: the volume of triangle Tj; Tj ∈ Th ∪ TG
(ii) xj: the center of gravity of Tj (i.e., xj is the center of the inscribed circle to the triangle Tj)
(iii) xj: intersection of the perpendicular bisectors of Tj (i.e., xj is the center of the circumscribed

circle to the triangle Tj)
(iv) vj := v(xj)
(v) Nj: the set of the numbers of the neighboring triangles to Tj, Tj ∈ Th
(vi) Tj` := Tj ∪ T`

(vii) Sj`, ` ∈ Nj: the joint edge of Tj and T` with length |Sj`|, where Tj ∈ Th, T` ∈ Th ∪ TG
(viii) xj`: the midpoint of Sj`

(ix) dj` := |x` − xj |
(x) dj` := |x` − xj |
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(xi) γj` := |Sj`|
dj`

; γ := min γj`;
(xii) nj`: the outward unit normal to Tj ∈ Th in the direction of T`, ` ∈ Nj.

We assume that there exists an η > 0 such that all angles of all triangles Tj ∈ Th are less than π
2 − η.

Therefore, both xj and xj lie strictly inside of Tj for all j and there is a constant cη > 0 independent
of h such that γ > cη.
Moreover we assume that Th = TR ∪ TS , such that TR ∩ TS = ∅, where

TR = {Tj ∈ Th;Tj is equilateral and T` is equilateral ∀` ∈ Nj} , (2.3)

and

TS = {Tj ∈ Th;Tj is not equilateral or ∃` ∈ Nj s.t. T` is not equilateral} . (2.4)

The triangles in TR and TS are called regular and singular, respectively.

Assumption 2.2. We assume that the triangulation is locally irregular in the sense of Heinrich (cf.
[27, par. 2.2.2, p. 27]), i.e. that the set TS consists of the finite number of strips of triangles, each
being of the width of O(h). See the left of Fig. 2.1 for the triangles of TR (white color) and the
triangles of TG (darker color).1

Remark 2.3. (a) If we have c = 0 everywhere then we have to change the norm in (4.6): the c0-term
has to be cancelled. In the estimates from below and above in Sections 7 and 8 the term ψNj is equal
to zero and will not appear. Then all the arguments can be repeated. If c = 0 only in a subset of Ω
then there will be some problems. We can change the definition of the norm in (4.6) by

∑
Tj
cj |zj |2|Tj |

but then, e.g. the c0-term in the last estimate in the proof of Lemma 7.1 (and correspondingly in the
proof of Lemma 7.2) cannot be controlled by the left-hand side. Therefore degeneration of c in part
of Ω is not allowed in this framework.

(b) The condition div b = 0, mentioned in the beginning of Section 2, ensures that (3.10) and (3.13) are
valid, and that we can obtain the estimate (8.16). This means that a local conservation property holds.
This is essential to get the final estimates. Therefore, also a condition of the type − 1

2 div b + c ≥ 0
would not be sufficient.

(c) The analysis is performed essentially only on uniform grids consisting of identical equilateral
triangles. The MUSCL procedure is used only on these elements and furthermore, the set of non-
equilateral triangles is assumed to be very small (strips of width O(h)). Even then the non-equilateral
triangles are assumed to have all angles less than π

2 − η). These conditions are rather restrictive
concerning domains which can be triangulated by the locally irregular triangulation. It can be shown,
however, that every quadrilateral and pentagon can be triangulated by a reasonable finite amount
of acute triangles (see [46]), so we can handle the acute triangulation of local quadrilaterals and
pentagons occuring in the finite number of strips of irregularity.

Assumption 2.4. For the solution v of (2.1) and (2.2) we assume v ∈ W 2,2(Ω) and that v can be
extended onto a small strip ωd of the width of O(h) outside of Ω such that we have v(x`) = −v(xj) if
T` ⊂ ωd is the mirrored ghost triangle to Tj. For the continuation vd of v we assume

||vd||W 2,2(Ωd) ≤ c||v||W 2,2(Ω),

where the constant c is independent of v and Ωd := Ω ∪ ωd.

In the context of the locally irregular grid we will also use the following result (cf. [27, p. 189] and
the references there):

Theorem 2.5. Let Ω be a convex polygonal domain in IR2 and ωh ⊂ Ω be the strip of the width of
O(h), 0 < h < h0. Then there is a constant c > 0 independent of h such that for all v ∈ W j+1,2(Ω),
j = 0, 1, 2, we have

‖v‖W j,2(ωh) ≤ ch
1
2 ‖v‖W j+1,2(Ω) , j = 0, 1, 2 . (2.5)

1For drawing the pictures we are grateful to Mr. Johannes Schäfer.
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Fig. 2.1. A locally irregular mesh and ghosts cells.

We split the set E of the edges Sj` = Tj ∩ T`, with Tj , T` ∈ Th, into three parts, E = ER ∪ ES ∪ EM ,
where

ER := {Sj`; Sj` 6⊂ ∂Ω; both Tj and T` are regular} ,
ES := {Sj`; Sj` 6⊂ ∂Ω; both Tj and T` are singular} , (2.6)
EM := {Sj`; Sj` 6⊂ ∂Ω; Tj and T` are of different type (regular, singular)} .

and call them regular, singular and mixed edges, respectively. We also denote by

EB := {Sj`; Sj` ⊂ ∂Ω; } (2.7)

and call them the boundary edges.
Furthermore we denote

NjI := {` |T` is neighboring triangle to Tj , and T` ⊂ Ω} ,
and

NjR := {` |T` is neighboring triangle to Tj , and T` ∈ TR} ,
NjS := {` |T` is neighboring triangle to Tj , and T` ∈ TS} .
NjG := {` |T` is neighboring triangle to Tj , and T` ∈ TG} ,

3. The scheme. Let ch(x) := cj , fh(x) := fj for x ∈ Tj ∈ Th, be piecewise constant approxi-
mants of c, f , respectively, defined by

cj :=
1
|Tj |

∫
Tj

c , fj :=
1
|Tj |

∫
Tj

f . (3.1)

Let uh(x) = uj for x ∈ Tj ∈ Th ∪ TG, be a piecewise constant solution of the discrete problem

(Lhuh)j = fj , if Tj ∈ Th, (3.2)
u` = −uj , if Sj` ⊂ ∂Ω, and T` ∈ TG is the ghost triangle to Tj ⊂ Ω, (3.3)

where the discrete operator is given by

(Lhuh)j := − ε

|Tj |
∑
`∈Nj

(u` − uj)γj` +
1
|Tj |

∑
`∈Nj

gj`(Uj`,U`j) + cjuj . (3.4)
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The first term in (3.4) approximates the value of the diffusion term −ε∆v in xj , while
∑
`∈Nj

gj`
(
Uj`,U`j

)
approximates the values of the convective term div(bv) along Sj`. Here, gj` stands for an upwind finite
volume flux, and,

Uj` = Uj`(uj , u`), U`j = U`j(u`, uj) (3.5)

will be defined more precisely later. A particular scheme of the type (3.2)–(3.5) is then chosen by the
particular choice of functions Uj` and gj`.

Example 3.1. (General numerical flux) In general, we suppose that the upwind finite volume flux
gj`(u, v) is a Lipschitz continuous function, i.e., we suppose that there is a constant c > 0 such that

|gj`(u, v)− gj`(u′, v′)| ≤ c h (|u− u′|+ |v − v′|) . (3.6)

Furthermore we suppose that gj` satisfies the following three basic properties:

gj`(u, u) = u

∫
Sj`

bnj` ds , (3.7)

gj`(u, v) = −g`j(v, u) , (3.8)
∂

∂u
gj`(u, v) ≥ 0 ≥ ∂

∂v
gj`(u, v) , (3.9)

which are referred to as consistency, conservativity, and monotonicity of the numerical flux gj`, re-
spectively. (See [33] or [34] for more discussion on general upwind finite volume numerical fluxes.)
Moreover, due to (3.7) and div b(x) = 0, we have that (cf. (3.13)):∑

`∈Nj

gj`(u, u) = 0 for all j . (3.10)

Example 3.2. (First order Engquist-Osher scheme) As a particular example of the numerical
flux we choose the Engquist-Osher type upwind finite volume flux gj` defined by

gj`(u, v) := b+j` u+ b−j` v , b±j` :=
∫
Sj`

(bnj`)± ds . (3.11)

It can be easily shown that this particular numerical flux satisfies (3.6)–(3.10). The easiest choice of
Uj` in (3.5), namely

Uj` := uj , U`j := u` , (3.12)

used together with (3.11) in (3.4) defines a first order numerical scheme.

Remark 3.3. Due to the properties of b we have for all Tj ∈ Th∑
`∈Nj

(b+j` + b−j`) =
∑
`∈Nj

bj` =
∑
`∈Nj

∫
Sj`

bnj` ds =
∫
∂Tj

bnj` ds =
∫
Tj

div b dx = 0 , (3.13)

and, for all Sj` ∈ E ,

b`j = −bj` , b+`j = −b−j` , b−`j = −b+j` . (3.14)

Example 3.4. (Higher order scheme using MUSCL type reconstruction) Let Tk, T`, Tm be
all neighboring triangles to Tj with centers of gravity xk, x`, xm, xj , respectively. Let w ∈ L∞(Ω)
with w|Tj

∈ C0(Tj) and wi := w(xi) for i = k, `,m, j, respectively. Let (cf. [19])

Rwk be a plane passing through (x`, w`), (xm, wm), (xj , wj) ,
Rw` be a plane passing through (xk, wk), (xm, wm), (xj , wj) ,
Rwm be a plane passing through (xk, wk), (x`, w`), (xj , wj) .
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Define an index i by

|∇Rwi | = min
{
|∇Rwk |, |∇Rw` |, |∇Rwm|

}
(3.15)

and put

Gwj := ∇Rwi . (3.16)

If wj ≥ max{wk, w`, wm} or wj ≤ min{wk, w`, wm}, we say that wj is a local extremum. Let the
coefficients αj = αwj ∈ {0, 1} be such that

αwj =
{

0 if wj is the local extremum,
1 otherwise. (3.17)

Then define

Lwj (x) := wj + αwj G
w
j (x− xj) . (3.18)

Finally, the higher order MUSCL type Engquist-Osher scheme is defined by (3.4) with the numerical
flux (3.11) and

Uj` := Luj (xj`) , U`j := Lu` (xj`) . (3.19)

It can be shown that, on the regular grid, the reconstruction operator Luj defined by (3.18) has the
following properties.

Lemma 3.5. For all Tj ∈ TR we have

(a) |Luj (x`)− uj | ≤ |uj − u`| for all ` ∈ Nj , (3.20)

(b) |Luj (xj`)− uj | ≤
1
2
|uj − u`| for all ` ∈ Nj , (3.21)

(c) (u` − Luj (x`))(uj − u`) ≤ 0 for all ` ∈ Nj . (3.22)

We will give the proof of this lemma in the following section.

4. Main result. We will use the scheme (3.2)–(3.4) with the following definition of the numerical
flux:

• If Sj` ∈ ER we use the higher order flux using MUSCL type reconstruction, i.e. we set
(cf. (3.11), (3.18)–(3.19))

gj`(Uj`,U`j) := b+j`L
u
j (xj`) + b−j`L

u
` (xj`) . (4.1)

• If Sj` ∈ EM or Sj` ∈ ES we use the first order flux, i.e. we set (cf. (3.11), (3.12))

gj`(Uj`,U`j) := b+j`uj + b−j`u` . (4.2)

• If Sj` ∈ EB we use

gj`(Uj`,U`j) := b+j`uj + b−j`u` (4.3)

where in this case u` is the value in the ghost cell of the cell Tj satisfying u` = −uj (cf. (3.3)).

The main result of this paper is formulated in the following theorem.
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Theorem 4.1. Let uh(x) = uj for x ∈ Tj ∈ Th, be a piecewise constant numerical solution of the
discrete problem (3.2)–(3.4) with a numerical flux satisfying (3.11), (3.18)–(3.19), (4.1)–(4.3) and let
the Assumption 2.4 hold. We define

zh := Ihv − uh (4.4)

where

Ihv(x) := v(xj) = vj if x ∈ Tj ∈ Th . (4.5)

Then, defining

‖zh‖2ε := εγ
∑
E∪EB

(zj − z`)2 + c0
∑
Tj∈Th

z2
j |Tj | , (4.6)

we have the following error estimate for any δ > 0:

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h3

ε

)
‖v‖22,2 + c

h4

ε

∑
Tj∈TR

R2
j |Tj | . (4.7)

If, moreover, v ∈W 3,2(Ω), we have

‖zh‖2ε ≤ c
(
εh3 + h4−2δ +

h3

ε

)
‖v‖23,2 + c

h4

ε

∑
Tj∈TR

R2
j |Tj | . (4.8)

Here, Rj := 1
|Tj |

∑
`∈Nj

(u` − uj)γj`.

Remark 4.2.
• Note that if T` is the mirrored ghost triangle to Tj , we have v(x`) = −v(xj) (see Assumption

2.4), and also u` = −uj (see (3.3)). Therefore,

z` = v` − u` = −vj + uj = −zj , (4.9)

if T` is the mirrored ghost triangle to Tj .
• In the case when the first order scheme is used in the whole domain we get (for comparison)

the following result:

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h2

ε

)
‖v‖22,2 . (4.10)

For the higher order MUSCL type scheme we thus gain h1/2 inside the estimate of the norm
of ‖zh‖ε for the term corresponding (as it shows) to the convective part of the equation,
compared to the first order scheme: compare h3

ε to h2

ε in the estimate of the norm of ‖zh‖2ε.
• For the context of the definition of Rj see (8.6). It follows from Lemma 8.4 that the sum∑

Tj∈TR
R2
j |Tj | is of the same order in ε as ‖v‖22,2(Ω), cf. (8.14) and (8.20), namely we have

both ∑
TR

R2
j |Tj | ≤

c

ε3
‖f‖2L2(Ω) and ‖v‖2W 2,2(Ω) ≤

c

ε3
‖f‖2L2(Ω) ,

the second estimate being sharp due to Remark 8.5. In such a way, the estimate (4.7) can be
put in form of

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h3

ε

)
‖v‖22,2 + c

h4

ε4
‖f‖2L2(Ω)

or

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h3

ε

) 1
ε3
‖f‖2L2(Ω) + c

h4

ε4
‖f‖2L2(Ω)
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while in the case of the first order scheme we would get analogously instead of (4.10) the
following estimate:

‖zh‖2ε ≤ c
(
εh2 + h4−2δ +

h2

ε

) 1
ε3
‖f‖2L2(Ω) .

• For the particular numerical calculation for which ε ≈ h, we get, using (4.10) and (4.7), the
error estimates of the order O(

√
h) and O(h) in the cases of first order and higher order

scheme, respectively. If ε ≈
√
h, we get in the corresponding cases the error estimates of the

order O(h3/4) and O(h5/4), respectively.
• In the estimate (4.7), the norm ||v||22,2 still depends singularly on ε. Due to Lemma 8.4 it

behaves like 1
ε3 . This means altogether the term h3

ε ||v||
2
2,2 behaves like h3

ε4 . These types of
estimate are usual also for stabilized finite elements but for numerical computations on a non
adaptive grid they are of limited importance. Nevertheless numerical experiments indicate
that adaptive grids in the neighbourhood of the boundary layer allow acceptable resolutions.

In the remaining part of the paper we will give the proof of Theorem 4.1.

5. The basic estimates. First we give a proof of Lema 3.5.

Proof of Lemma 3.5 from page 7: Of course, for Tj ∈ TR, (b) follows immediately from (a). To prove
(a), let us consider the following geometrical situation. Without loss of generality we assume that
xj = (0, 0), x` = (1, 0), xm = (cosα, sinα), xk = (cosα,− sinα), α = 2

3π. Therefore,

sinα =
√

3
2

and cosα = −1
2
. (5.1)

Let uj , u`, um, uk be arbitrary. Denote Pi = (xi, ui) for i = j, `,m, k. The planes pk, p`, pm through
the set of points (Pj , P`, Pm), (Pj , Pm, Pk), (Pj , P`, Pk), respectively, are given by

pk(y) = uj + (u` − uj)y1 +
(um − uj)− cosα(u` − uj)

sinα
y2 , (5.2)

p`(y) = uj +
(um − uj) + (uk − uj)

2 cosα
y1 +

(um − uj)− (uk − uj)
2 sinα

y2 , (5.3)

pm(y) = uj + (u` − uj)y1 −
(uk − uj)− cosα(u` − uj)

sinα
y2 , (5.4)

where y = (y1, y2). If there is a local extremum in xj we have (see (3.18)) Luj (xi) = uj for i = k, `,m
and (3.20) holds. Therefore we can assume that there is no local extremum in xj , i.e., αuj = 1.
Furthermore we assume without loss of generality that (see (3.18))

∇Luj = ∇pm,

which means that

|∇pm| ≤ |∇p`|, (5.5)
|∇pm| ≤ |∇pk|. (5.6)

Considering Luj (xi)− uj for i = k, `,m, we will discuss two cases.
First case: if i = `, or i = k, we obtain

Luj (x`)− uj = ∇pm · (1, 0) = u` − uj ,
Luj (xk)− uj = ∇pm · (cosα,− sinα) = uk − uj ,

and (3.20) follows.
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Second case: if i = m, we have

Luj (xm)− uj = ∇pm · (cosα, sinα) = (uj − uk) + (uj − u`) ,

using (5.1). Therefore, in order to prove (3.20) we have to show that

|(uj − uk) + (uj − u`)| ≤ |uj − um| . (5.7)

Using (5.1) we obtain for the gradients of pk, p`, pm,

|∇pk|2 =
4
3
[
(u` − uj)2 + (um − uj)2 + (u` − uj)(um − uj)

]
|∇p`|2 =

4
3
[
(um − uj)2 + (uk − uj)2 + (um − uj)(uk − uj)

]
(5.8)

|∇pm|2 =
4
3
[
(uk − uj)2 + (u` − uj)2 + (uk − uj)(u` − uj)

]
.

It follows that (5.5), (5.6) are equivalent to

(um − u`)(um + uk + u` − 3uj) ≥ 0 , (5.9)
(um − uk)(um + uk + u` − 3uj) ≥ 0 , (5.10)

respectively.

We will further distinguish three cases:
(i) um + uk + u` − 3uj = 0. This implies (uj − uk) + (uj − u`) = um − uj and (5.7) follows.

(ii) um + uk + u` − 3uj > 0. Then (5.10) and (5.9) imply um ≥ uk and um ≥ u`, respectively.
Since uj is not a local maximum, we also have um ≥ uj . Then

uj − uk + uj − u` = 3uj − uk − u` − um + um − uj
< um − uj = |um − uj | .

On the other hand, uj ≥ min(uk, u`), since uj is not a local minimum. Therefore, uj + um ≥
uk + u` and

uj − uk + uj − u` ≥ uj − um = −|um − uj | .

Altogether, (5.7) follows.
(iii) um + uk + u` − 3uj < 0. In this case we proceed quite analogously as in the case (ii) which

finishes the proof of Lemma 3.5, part (a).

Finally let us prove (c). We have to show(
ui − Luj (xi)

)
(uj − ui) ≤ 0 , i = k, `,m . (5.11)

Using the same notation as in the part (a), we see that Luj (xi) = ui for i = k or i = l, and (5.11)
follows. For i = m we have(

um − Luj (xm)
)

(uj − um) = (um + uk + u` − 3uj)(uj − um) . (5.12)

Discussing the cases (i), (ii), (iii) as in the part (a), we see that (5.11) follows. The Lemma 3.5 is
proven.

We continue with a rather technical result. Sometimes we have to change the sum over all triangles
into a sum over all edges of the triangulation. The general rules for this are given by the following
lemma.
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Lemma 5.1. Let Aj` ∈ IR for all j, Tj ∈ Th. Then we have

∑
Tj∈Th

∑
`∈Nj

Aj` =
∑

edges∈ER

Ãj` +
∑

edges∈ES

Ãj` +
∑

edges∈EM

Ãj` +
∑

edges∈EB

Aj`

=
∑

edges∈E

Ãj` +
∑

edges∈EB

Aj` (5.13)

where Ãj` := Aj` +A`j and E = ER ∪ ES ∪ EM .

Proof: ∑
Tj∈Th

∑
`∈Nj

Aj` =
∑
Tj∈TR

∑
`∈Nj

Aj` +
∑
Tj∈TS

∑
`∈Nj

Aj`

=
∑
Tj∈TR

∑
`∈NjR

Aj` +
∑
Tj∈TR

∑
`∈NjS

Aj` +
∑
Tj∈TR

∑
`∈NjG

Aj`

+
∑
Tj∈TS

∑
`∈NjR

Aj` +
∑
Tj∈TS

∑
l∈NjS

Aj` +
∑
Tj∈TS

∑
`∈NG

Aj`

=
∑

edges∈ER

Ãj` +
∑

edges∈ES

Ãj` +
∑

edges∈EM

Ãj` +
∑

edges∈EB

Aj`

where Ãj` := Aj` +A`j .

Remark 5.2. We often abbreviate
∑
E
≡

∑
edges∈E

and so on.

In what follows we prove the discrete energy estimate for the higher order scheme.

Lemma 5.3. Let uh be the numerical solution defined by the scheme (3.2)–(3.4) with a numerical flux
satisfying (3.11), (3.18)–(3.19), (4.1)–(4.3) and let Assumption 2.4 hold. Then there is a constant
c > 0 such that for all ε > 0 and all h > 0

εγ
∑
E∪EB

(uj − u`)2 + c0
∑
Tj∈Th

u2
j |Tj | ≤ c

∑
Tj∈Th

f2
j |Tj |. (5.14)

Proof: We multiply (Lhuh)j = fj by |Tj |uj and sum up over all j such that Tj ∈ Th. Then we obtain

−ε
∑
j

∑
`∈Nj

(u` − uj)γj`uj +
∑
j

∑
`∈Nj

gj`
(
Uj`,U`j

)
uj +

∑
j

cju
2
j |Tj | =

∑
j

fjuj |Tj | . (5.15)

For the first term on the left hand side in (5.15) we get using γj` = γ`j and (3.3),

−ε
∑
j

∑
`∈Nj

(u` − uj)γj`uj = −ε
∑
j

∑
`∈NjI

(u` − uj)γj`uj − ε
∑
j

∑
`∈NjG

(u` − uj)γj`uj

= −ε
∑
E

(
(u`−uj)γj`uj + (uj−u`)γ`ju`

)
+ ε

∑
j

∑
`∈NjG

2u2
jγj`

= ε
∑
E

(u` − uj)2γj` +
ε

2

∑
j

∑
`∈NjG

(u` − uj)2γj`

≥ εγ

2

∑
E∪EB

(u` − uj)2 . (5.16)
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For the second term on the left hand side of (5.15) we get∑
j

∑
`∈Nj

gj`
(
Uj`,U`j

)
uj =

∑
j

∑
`∈Nj

(b+j`uj + b−j`u`)uj

+
∑
TR

∑
`∈NjR

(
b+j`α

u
jG

u
j (xj` − xj) + b−j`α

u
`G

u
` (xj` − x`)

)
uj

=: B1 +B2

Due to (3.13) we have
∑
`∈Nj

(b+j` + b−j`)u
2
j = u2

j

∑
`∈Nj

bj` = 0 for all j, and we can proceed, using
also (3.14) and (3.3), as follows:

B1 =
∑
j

∑
`∈Nj

(
b+j`u

2
j + b−j`u`uj

)
=
∑
j

∑
`∈Nj

(
b+j`u

2
j + b−j`u`uj −

1
2

(b+j` + b−j`)u
2
j

)
=

1
2

∑
j

∑
`∈Nj

(
bj`u` + b+j`(uj−u`)− b

−
j`(uj−u`)

)
uj =

1
2

∑
j

∑
NjI

· · ·+ 1
2

∑
j

∑
NjG

· · ·

=
1
2

∑
E

(bj`u`uj + b`juju`)

+
1
2

∑
E

(
b+j`(uj − u`)uj − b

−
j`(uj − u`)uj − b

−
j`(u` − uj)u` + b+j`(u` − uj)u`

)
+

1
2

∑
j

∑
NjG

· · ·

= 0 +
1
2

∑
E

(
b+j`(uj − u`)

2 − b−j`(uj − u`)
2
)

+
1
2

∑
j

∑
NjG

(−3b−j`uj + b+j`uj)uj

≥ 1
2

∑
E

(
b+j`(uj − u`)

2 − b−j`(uj − u`)
2
)

=
1
2

∑
E

(b+j` − b
−
j`)(uj − u`)

2 . (5.17)

Now let us treat the term B2.

B2 =
∑
TR

∑
`∈NjR

(
b+j`α

u
jG

u
j (xj` − xj) + b−j`α

u
`G

u
` (xj` − x`)

)
uj

=
∑
ER

((
b+j`α

u
jG

u
j (xj` − xj) + b−j`α

u
`G

u
` (xj` − x`)

)
uj

+
(
b+`jα

u
`G

u
` (x`j − x`) + b−`jα

u
jG

u
j (x`j − xj)

)
u`

)
=
∑
ER

(
b+j`α

u
jG

u
j (xj` − xj)(uj − u`) + b−j`α

u
`G

u
` (xj` − x`)(uj − u`)

)
≥ −

∑
ER

(
b+j`α

u
j |Guj (xj` − xj)||uj − u`|+ |b−j`|α

u
` |Gu` (xj` − x`)||uj − u`|

)
.

Now since

αuj |Guj (xj` − xj)| =
1
2
αuj |Guj (x` − xj)| =

1
2
|(Luj (x`)− uj)| ≤

1
2
|u` − uj |

(see Lemma 3.5), we can continue

≥ −1
2

∑
ER

(
b+j`|uj − u`|

2 + |b−j`||uj − u`|
2
)

= −1
2

∑
ER

(b+j` − b
−
j`)(uj − u`)

2 . (5.18)

Finally, using the estimate
∑
j fjuj |Tj | ≤

c0
2

∑
j u

2
j |Tj |+ c

∑
j f

2
j |Tj | and (5.15)–(5.18), we get (5.14).
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In the next lemma we give the basic local estimates for the exact solution v.

Lemma 5.4. For v ∈W 2,2(Ω) the following estimates hold.
a) For all Sj`, and for all x, y ∈ Tj ∪ T` we have

|v(x)− v(y)| ≤ c h |v|W 2,2(Qj`) + c|v|W 1,2(Qj`) . (5.19)

Here, Qj` is a rectangular domain containing Tj ∪T` and a finite fixed number of neighboring
triangles. The number of these triangles is independent of h (for more details see the proof).

b) For all Sj` we have

|κj`(v)| :=
∣∣∣v` − vj

dj`
− 1
|Sj`|

∫
Sj`

∂nv
∣∣∣ ≤ c |v|W 2,2(Qj) . (5.20)

Here, Qj is a finite union of triangles containing the rectangular Sj` × [xj`, xj ].
c) For Sj` ∈ ER, and if the solution v moreover satisfies v ∈W 3,2(Ω), we have

|κj`(v)| :=
∣∣∣v` − vj

dj`
− 1
Sj`

∫
Sj`

∂nv
∣∣∣ ≤ c h |v|W 3,2(Tj∪T`) . (5.21)

d) For all Tj ∈ Th we have ∣∣∣ ∫
Tj

(
v(xj)− v(x)

)
dx
∣∣∣ ≤ c h3−δ ‖v‖W 2,2(Tj) . (5.22)

for all δ > 0.

Proof of a): Suppose Tj ∈ Th and that either T` ∈ Th (in this case we have Sj` ∈ E) or T` ∈ TG (in
this case we have Sj` ∈ EB). Without loss of generality we can suppose that there is a local cartesian
coordinate system (x, y) such that the origin of this system coincides with xj`, the x axis is aligned
with the line through x` and xj and that the vertices of Sj` are given by (0,−α) and (0, α). Let also
x = (x1, x2), y = (y1, y2) ∈ Tj ∪ T`. We write

v(x)− v(y) = v(x1, x2)− v(x1, y2)︸ ︷︷ ︸
=:R1

+ v(x1, y2)− v(y1, y2)︸ ︷︷ ︸
=:R1

. (5.23)

First we will estimate R1. To this point, consider the rectangular Qj = [−3h, 3h] × [−α, α] and a
smooth cut-off 1D function φ such that φ = 0 on (−3h,−2h) and on (2h, 3h), and φ = 1 on (−h, h),
with 0 ≤ φ ≤ 1 and |φ′| ≤ c

h . Then we have

R1 =
∫ x2

y2

∂2v(x1, s) ds

=
∫ x2

y2

[
∂2v(x1, s)φ(x1)− ∂2v(−3h, s)φ(−3h)

]
ds

=
∫ x2

y2

∫ x1

−3h

∂t
(
∂2v(t, s)φ(t)

)
dt ds

=
∫ x2

y2

∫ x1

−3h

∂t∂2v(t, s)φ(t) dt ds+
∫ x2

y2

∫ x1

−3h

∂2v(t, s)φ′(t) dt ds .

Therefore,

|R1| ≤
∫ max(x2,y2)

min(x2,y2)

∫ 3h

−3h

(∣∣∂12v(t, s)φ(t))
∣∣+
∣∣∂2v(t, s)φ′(t))

∣∣) dt ds
≤
∫
Qj

|∂12v(t, s)| dt ds+
c

h

∫
Qj

|∂2v(t, s)| dt ds

≤ ch|v|W 2,2(Qj) + |v|W 1,2(Qj).
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For R2 we proceed in a similar way, using the cut-off function defined on [−h, h]×−[3α, 3α].

Proof of b): Suppose Tj ∈ Th and that either T` ∈ Th (in this case we have Sj` ∈ E) or T` ∈ TG (in
this case we have Sj` ∈ EB). Consider the same local cartesian coordinate system as in case a). Then
let x` =: (a, 0) and xj =: (b, 0), a < b. Using the notation vj := v(xj), v` := v(x`) we obtain in both
cases, using γj` = |Sj`|

dj`
= 2α

b−a ,

(v` − vj)γj` −
∫
Sj`

∂nv

=
(
v(a, 0)− v(b, 0)

) 2α
b− a

+
∫ α

−α
∂1v(0, y) dy

=
2α
b− a

∫ a

b

∂1v(x, 0) dx+
∫ α

−α
∂1v(0, y) dy

=
1

b− a

∫ α

−α

∫ b

a

−∂1v(x, 0) dx dy +
1

b− a

∫ b

a

∫ α

−α
∂1v(0, y) dy dx

=
1

b− a

∫ α

−α

∫ b

a

[
∂1v(0, y)− ∂1v(x, y) + ∂1v(x, y)− ∂1v(x, 0)

]
dx dy

=
1

b− a

∫ α

−α

∫ b

a

[ ∫ 0

x

∂11v(t, y) dt+
∫ y

0

∂12v(x, s) ds
]
dx dy.

This implies∣∣∣(v` − vj)γj` − ∫
Sj`

∂nv
∣∣∣ ≤ 1

b− a

∫ α

−α

∫ b

a

∫ b

a

|∂11v(t, y)| dt dx dy

+
1

b− a

∫ α

−α

∫ b

a

∫ α

−α
|∂12v(x, s)| ds dx dy

≤
∫
Q̃j

|∂11v(x, s)| ds dx+
2α
b− a

∫
Q̃j

|∂12v(x, s)| ds dx

≤ ch|v|W 2,2(Qj)

where Qj is a union of triangles which contains the rectangular [a, b]× [−α, α].

Proof of c): Since the constant c > 0 should not depend on Tj , T`, h, we use the following transfor-
mation mapping. Let T := Tj` = Tj ∪ T` be a fixed rhombus in the computational domain and T̂ the
reference rhombus with vertices P1 = (1, 0), P2 = (0, 1), P3 = (−1, 0), P4 = (0,−1). Suppose T̂ is
mapped onto T by a 1-1 mapping

F : T̂ → T,

F (x̂) = Ax̂+ a,

where A ∈ IR2×2 is an invertible matrix and a ∈ IR2, such that
• the oriented segment S of length 2 connecting points P3 and P1 is mapped onto the oriented

segment Sj`. I.e., denoting ξ̂ := (2, 0)T , we have |Aξ̂| = |Sj`|.
• if n = nj` = x`−xj

|x`−xj | is the outward (with respect to Tj) unit normal vector to Sj`, then

n̂ ≡ n̂(x̂) := A−1n(F (x̂)) = A−1n =
A−1x` −A−1xj
|x` − xj |

=
x̂` − x̂j
|x` − xj |

and therefore

|An̂| = 1.
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• The properties of A imply

‖A‖ ≤ c h, ‖A−1‖ ≤ c h−1, |detA|−1 ≤ c h−2.

A map with these properties exists (see Heinrich [27, Section 5.2.2], and Ciarlet [11]), since all involved
triangles are equilateral. Using the above notation, the following transformation rule holds:∫

Sj`

v dσ(x) =
∫
S

(v ◦ F )
|Aξ̂|
|ξ̂|

dσ(x̂).

Furthermore for v̂(x̂) := v(F (x̂)) . we have

∇x̂v̂(x̂) = AT · ∇v(x) , x = F (x̂) ,

and therefore

1
|Sj`|

∫
Sj`

∂nv =
1
|Sj`|

∫
Sj`

n(x)∇v(x) dσ

=
1

|Aξ̂|

∫
S

An̂(AT )−1∇x̂v̂
|Aξ̂|
|ξ̂|

dσ(x̂) =
An̂

|ξ̂|

∫
S

(AT )−1∇x̂v̂ dσ(x̂).

We again denote κj`(v) := v`−vj

dj`
− 1
|Sj`|

∫
Sj`

∂nv. (cf. (5.20)) Note that since W 2,2 is imbedded into

C0,α for any α ∈ (0, 1), κj`(v) is well defined. Hence we can define

H(v̂) :=
v̂(x̂`)− v̂(x̂j)
|A(x̂` − x̂j)|

− An̂(AT )−1

|ξ̂|

∫
S

∇x̂v̂(x̂) dσ(x̂).

We see that

H(v̂) = κj`(v).

Hence,

|H(v̂)| ≤ |v̂(x̂`)− v̂(x̂j)|
|A(x̂` − x̂j)|

+
|An̂||(AT )−1|

|ξ̂|

∫
S

|∇x̂v̂| dσ(x̂)

≤ c h−1|v̂|C(T̂ ) + c h−1‖∇v̂‖L1(S)

≤ c h−1‖v̂‖W 2,2(T̂ ) ≤ c h
−1‖v̂‖Wk,2(T̂ )

where k ≥ 2. Next we show that H vanishes for all polynomials p of degree ≤ k. Let us assume
without restriction that the vortices of the two neighboring triangles which build the rhombus are, as
before, given by P1 := (1, 0), P2 := (0, 1), P3 := (−1, 0), P4 := (0,−1). Let

p(y1, y2) = by2
1 + cy2

2 + dy1 + ey2 + f

and let (x1, 0), (−x1, 0) be the centers of gravity of the triangles P1P2P4 and P2P3P4, respectively.
Then we have

H(p̂) = κj`(p) =
p(x1, 0)− p(−x1, 0)
|(x1, 0)− (−x1, 0)|

− 1
2

∫ − 1
2

− 1
2

n∇p

=
2d · x1

2 · x1
− 1

2

∫ − 1
2

− 1
2

(
1
0

)
·
(

d
2cy2 + e

)
dy2

= d− 1
2
· 2d = 0.
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Due to the properties of H we can use the Bramble–Hilbert lemma (see for example [11]) to obtain

|H(v̂)| ≤ c ‖H‖∗2,2|v̂|Wk,2(T̂ ) ≤ c h
−1|v̂|Wk,2(T̂ ) .

Finally,

|κj`(v)| = |H(v̂)| ≤ c h−1|v̂|Wk,2(T̂ )

≤ c h−1|detA|−1/2‖A‖k|v|Wk,2(T )

≤ c h−1 h−1hk|v|Wk,2(T )

which proves for k = 2 again the assertion b) of the Lemma (along singular edges) and for k = 3 the
assertion c) of the Lemma.

Proof of d): Let xj be the intersection of the perpendicular bisectors in Tj and

G(v) :=
∫
Tj

v dx− v(xj)|Tj |.

Since the last term is an integration formula which is exact for constant functions and since the
imbedding

W 1,2+r(Tj) ↪→ L∞(Tj)

exists for any r > 0, we can apply [20, Satz 7.4] or [1, Lemma 4.3.8] and obtain

G(v) ≤ ch3− 2
2+r |v|W 1,2+r(Tj) ≤ ch3−δ||v||W 2,2(Tj)

for arbitrary δ > 0.
This proves d).

Lemma 5.5. As a consequence, we have for all v ∈W 2,2(Ω), Tj ∈ TR and E(v) :=
∑
`∈Nj

(v` − vj),

|E(v)| ≤ c h |v|W 2,2(T̃j) , (5.24)

where T̃j := Tj ∪
(⋃

`∈Nj
T`

)
. For Tj ∈ TS, we immediately get by (5.19),

|E(v)| ≤ c h |v|W 2,2(Qj) + c|v|W 1,2(Qj). (5.25)

Here, Qj is a rectangular domain containing T̃j and a finite fixed number of neighboring triangles (cf.
(5.19)).

Proof:

E(v) = E(vj) =
∑
`∈Nj

(v` − vj) = (v` − vj) + (vk − vj) + (vm − vj) . (5.26)

Consider now T := Tj ∪ T` ∪ Tk ∪ Tm and a reference triangle T̂ = T̂1 ∪ T̂2 ∪ T̂3 ∪ T̂4, such that T̂ is
mapped onto T by a 1-1 mapping

F : T̂ → T,

F (x̂) = Ax̂+ a

and F (T̂i) = Tpi
for i = 1, 2, 3, 4, pi = j, `, k,m, respectively. As in the proof of Lemma 5.4, c)

A ∈ IR2×2 is an invertible matrix and a ∈ IR2. Define

Ê : W 2,2(T̂ )→ IR ,

Ê(v̂) = (v̂` − v̂j) + (v̂k − v̂j) + (v̂m − v̂j) .
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Then

|Ê(v̂)| ≤ c ‖v̂‖C(T̂ ) ≤ c ‖v̂‖W 2,2(T̂ ) .

Moreover, Ê vanishes for all polynomials p̂ of degree ≤ 1. Indeed, we have for such p̂ that

Ê(p̂) = ∇p̂
[
(x̂` − x̂j) + (x̂k − x̂j) + (x̂m − x̂j)

]
= 0 .

Using then the Bramble–Hilbert lemma, one gets

|Ê(v̂)| ≤ c |v̂|W 2,2(T̂ ) .

Finally,

|E(v)| = |Ê(v̂)| ≤ c |v̂|W 2,2(T̂ ) ≤ c h |v|W 2,2(T ). (5.27)

6. The basic strategy in proving the main result. The main technical step in the whole
proof is to consider the term (Lh(Ihv) − Lhuh, zh) :=

∑
j(Lh(Ihv) − Lhuh)j |Tj |zj in the following

form.

Lemma 6.1.

(Lh(Ihv)− Lhuh, zh) = (ΨH , zh) + (ΨK , zh) + (ΨN , zh) , (6.1)

where

ΨHj = − ε

|Tj |
∑
`∈Nj

|Sj`|
(v` − vj

dj`
− 1
|Sj`|

∫
Sj`

∂nv
)
,

ΨKj =
1
|Tj |

∑
`∈Nj

(
gj`(Vj`,V`j)−

∫
Sj`

nj`bv
)
,

ΨNj =
1
|Tj |

∫
Tj

c(vj − v)

where Vj` = Uj`(vj , v`), V`j = U`j(v`, vj), and

(ΨA, zh) :=
∑
j

ΨAjzj |Tj |, for A = H,K,N.

Proof: We have due to (3.4) and (4.5),

(LhIhv)j = − ε

|Tj |
∑
`∈Nj

|Sj`|
(
v` − vj
dj`

)
+

1
|Tj |

∑
`∈Nj

gj`(Vj`,V`j) +
1
|Tj |

∫
Tj

cvj .

Moreover,

(Lhuh)j = fj =
1
|Tj |

∫
Tj

f =
1
|Tj |

∫
Tj

Lv ,

while (2.1) implies

1
|Tj |

∫
Tj

Lv = − ε

|Tj |
∑
`∈Nj

∫
Sj`

∂nv +
1
|Tj |

∑
`∈Nj

∫
Sj`

bvnj` +
1
|Tj |

∫
Tj

cv ,
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which completes the proof.

In what follows, we split the sums in (6.1) into two parts,∑
j

=
∑
Tj∈TR

+
∑
Tj∈TS

.

In the “regular” part of the sum we have regular triangles and the higher order approximation, in the
“singular” part of the sum (“on the strips”) we have general triangles and the first order approximation.
We thus get

(Lh(Ihv)− Lhuh, zh) = (ΨH , zh)R + (ΨH , zh)S + (ΨK , zh)R + (ΨK , zh)S + (ΨN , zh)R + (ΨN , zh)S

and will proceed by estimating the terms on the right-hand side both from above and from below.

7. The estimates from above.

7.1. The estimate of (ΨN , zh) from above. For the estimate of (ΨN , zh) (approximating the
zero-order term) from above we obtain the following results.

Lemma 7.1. We have on the regular triangles∑
Tj∈TR

|ΨNj |2|Tj | ≤ ch4||v||22,2,R , (7.1)

(ΨN , zh)R ≤ ch
4‖v‖22,2,R +

c0
8

∑
Tj∈TR

z2
j |Tj | (7.2)

where ‖v‖22,2,R :=
∑
Tj∈TR

‖v‖2W 2,2(Tj).

Proof: Using [1, Lemma 4.3.8] we obtain that
∫
Tj

(v(xj)− v(x))dx ≤ ch3|v|W 2,2(Tj) on the regular part
TR of the grid, and therefore

ΨNj =
1
|Tj |

∫
Tj

(v(xj)− v(x))c(x) dx

=
1
|Tj |

(
c(xj)

∫
Tj

(
v(xj)− v(x)

)
dx+

∫
Tj

(
v(xj)− v(x)

)(
c(x)− c(xj)

)
dx
)

≤ ch||v||W 2,2(Tj) + sup
x∈Tj

∣∣v(xj)− v(x)
∣∣ 1
|Tj |

∫
Tj

∣∣c(x)− c(xj)
∣∣ dx

≤ ch||v||W 2,2(Qj`)

using (5.19) and the smoothness of c(x). Then (7.1) follows, since∑
Tj∈TR

|ΨNj |2|Tj | ≤ c
∑
Tj∈TR

h2‖v‖2W 2,2(Qj`)|Tj | ≤ ch
4‖v‖22,2,R.

Now this implies

(ΨN , zh)R ≤
∑
Tj∈TR

|ΨNj | |zj | |Tj | ≤ c
∑
Tj∈TR

|ΨNj |2 |Tj |+
c0
8

∑
Tj∈TR

|Tj ||zj |2

≤ ch4‖v‖22,2,R +
c0
8

∑
Tj∈TR

|Tj ||zj |2

which is (7.2).
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Lemma 7.2. We have on singular triangles∑
Tj∈TS

|Ψj |2|Tj | ≤ ch4−2δ||v||22,2,S (7.3)

(ΨN , zh)S ≤ ch
4−2δ‖v‖22,2,S +

c0
8

∑
Tj∈TS

z2
j |Tj | (7.4)

for any δ > 0, where ‖v‖22,2,S :=
∑
Tj∈TS

‖v‖2W 2,2(Tj).

Proof: Similarly as in the proof of Lemma 7.1 we have

ΨNj =
1
|Tj |

(
c(xj)

∫
Tj

(
v(xj)− v(x)

)
dx+

∫
Tj

(
v(xj)− v(x)

)(
c(x)− c(xj)

)
dx
)
.

The second term can be estimated as in the proof of Lemma 7.1. For the first one we use (5.22) and
obtain

ΨNj =
1
|Tj |

(
c(xj)

∫
Tj

(v(xj)− v(x))dx+
∫
Tj

(v(xj)− v(x))(c(x)− c(xj)dx
)
.

≤ c h1−δ ‖v‖W 2,2(Qj`) .

This implies ∑
S

|ψNj |2|Tj | ≤ c
∑
S

h2(1−δ)||v||2W 2,2(Qj`)|Tj | ≤ ch
4−2δ‖v‖22,2,S

and therefore, as before,

(ΨN , zh)S ≤ c
∑
Tj∈TS

|ΨNj |2 |Tj |+
c0
8

∑
Tj∈TS

|Tj ||zj |2

≤ ch4−2δ‖v‖22,2,S +
c0
8

∑
Tj∈TS

|Tj ||zj |2.

This finishes the proof of the lemma.

Putting the results of Lemmata 7.1, 7.2 together, we obtain

Lemma 7.3. We have (on the whole domain)

(ΨN , zh) ≤ ch4−2δ‖v‖22,2 +
c0
8

∑
Tj∈Th

z2
j |Tj | . (7.5)

7.2. The estimates of (ΨH , zh) from above. For the estimate of (ΨH , zh) (approximating the
diffusion part) from above we obtain the following result.

Lemma 7.4. For v ∈W 2,2(Ω) we have

(ΨH , zh) ≤ c ε h ‖v‖2,2
( ∑
E∪EB

(zj − z`)
)1/2

(7.6)

≤ c ε h2 ‖v‖22,2 +
εγ

8

∑
E∪EB

(zj − z`)2 . (7.7)

If moreover v ∈W 3,2(Ω), we have
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(ΨH , zh) ≤ c ε h3 ‖v‖23,2 +
εγ

8

∑
E∪EB

(zj − z`)2 . (7.8)

Proof: We keep using the notation κj` := κj`(v) := v`−vj

dj`
− 1
|Sj`|

∫
Sj`

∂nv, (cf. (5.20)). Note that
κj` = −κ`j . We have

(ΨH , zh) =
∑
j

ΨHjzj |Tj | = −ε
∑
j

∑
NjI

κj`|Sj`|zj − ε
∑
j

∑
NjG

κj`|Sj`|zj . (7.9)

Now,

−ε
∑
j

∑
NjI

κj`|Sj`|zj = −ε
∑
E
|Sj`|

(
κj`zj + κ`jz`

)
= ε

∑
E
|Sj`|κj`

(
z` − zj

)
(7.10)

≤ c ε h
(∑
E
|κj`|2

)1/2(∑
E

(z` − zj)2
)1/2

(5.20)

≤ c ε h
(∑
E
|v|2W 2,2(Qj)

)1/2(∑
E

(z` − zj)2
)1/2

≤ c ε h|v|W 2,2(Ω)

(∑
E

(z` − zj)2
)1/2

,

−ε
∑
j

∑
NjG

κj`|Sj`|zj = −ε
2

∑
j

∑
NjG

κj`|Sj`|(zj − z`) = −ε
2

∑
EB

κj`|Sj`|(zj − z`) ,

the last-but-one equality holding due to (4.9). The last term can now be estimated as in (7.10) and
(7.6) follows.

In order to prove (7.8) we consider (ΨH , zh) = (ΨH , zh)R + (ΨH , zh)S . The second term can be
estimated as in (7.10). For the first one we use (5.21) and proceed as in (7.10):

(ΨH , zh) = (ΨH , zh)R + (ΨH , zh)S

≤ c ε h4 ‖v‖23,2 +
εγ

16

∑
E∪EB

(zj − z`)2 + c ε h2 ‖v‖22,2,S +
εγ

16

∑
E∪EB

(zj − z`)2 .

≤ c ε h4 ‖v‖23,2 +
εγ

8

∑
E∪EB

(zj − z`)2 + c ε h3 ‖v‖23,2,Ω ,

using (2.5), and the proof follows.

7.3. The estimates of (ΨK , zh) from above. For (ΨK , zh) (approximating the convective
term) we obtain the following lemma.

Lemma 7.5. We have

(ΨK , zh)R ≤ c
h3

ε
‖v‖22,2 +

εγ

8

∑
E∪EB

(zj − z`)2. (7.11)

Proof: Considering first Sj` ∈ ER, we use that in this case gj`(Vj`,V`j) = gj`(Lvj (xj`), L
v
` (xj`)) to write

gj`(Lvj (xj`), L
v
` (xj`)) −

∫
Sj`

nj`bv

=
∫
Sj`

(nj`b)+
(
Lvj (xj`)− v

)
+
∫
Sj`

(nj`b)−
(
Lv` (xj`)− v

)
=: T + U . (7.12)
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We consider T only, the term U can be treated similarly. We have

T =
(
nj`b(xj`)

)+
∫
Sj`

(
Lvj (xj`)− v

)
+
∫
Sj`

[
(nj`b)+ −

(
nj`b(xj`)

)+](
Lvj (xj`)− v

)
=: T1 + T2 , (7.13)

with Lvj (xj`) = vj + αvjG
v
j (xj` − xj).

First let us consider the case αvj = 1. Estimating T1, we will consider two cases. Firstly, if the stencil
of Gvj contains `, we get

Lvj (xj`)− v = vj + (vj` − vj)− v = vj` − v .

Then, ∫
Sj`

(vj` − v) dσ(x) =
∫
S

(v̂j` − v̂(x̂))
|Aξ̂|
|ξ̂|

dσ(x̂) =: H(v̂)

for v̂ ∈W 2,2(T̂ ), using the same mapping F : T̂ → T as in the proof of Lemma 5.4. It follows that

H(p̂) = 0 for all polynomials p̂ of degree ≤ 1

and

|H(v̂)| ≤ c h ‖v̂‖C(T̂ ) ≤ c h ‖v̂‖W 2,2(T̂ ) .

Therefore, using the Bramble–Hilbert lemma,

|H(v̂)| ≤ c h |v̂|W 2,2(T̂ ) ≤ c h
2 |v|W 2,2(T ) .

Consequently,

|T1| ≤ c h2|v|W 2,2(T ) .

Secondly, but still for αvj = 1, if the stencil of Gvj does not contain `, we have

Lvj (xj`)− v = vj −Gvj
(

(xjk − xj) + (xjm − xj)
)
− v

= (vj − vjk) + (vj − vjm) + (vj − v) .

Using the same transformation as before, we can show that

H(v̂) :=
∫
S

(
(v̂j − v̂jk) + (v̂j − v̂jm) + (v̂j − v̂(x̂))

) |Aξ̂|
|ξ̂|

dσ(x̂)

satisfies

|H(v̂)| ≤ c h ‖v̂‖W 2,2(T̂ ) ,

while for all polynomials p̂ of degree ≤ 1,

H(p̂) =
∫
Sj`

(
∇p(xj − xjk) +∇p(xj − xjm) + p(xj)− p(x)

)
dσ(x)

=
∫
Sj`

(
p(xj`)− p(x)

)
dσ(x) = 0 .

Therefore, by the same argument as before,

|T1| ≤ c h2|v|W 2,2(T ) .



22 D. KRÖNER AND M. ROKYTA

Finally, for general αvj we obtain

T1 =
(
nj`b(xj`)

)+
∫
Sj`

(
Lvj (xj`)− v

)
=
(
nj`b(xj`)

)+
∫
Sj`

(
vj + αvjG

v
j (xj` − xj)− v

)
(7.14)

≤
(
nj`b(xj`)

)+
∫
Sj`

(
vj +Gvj (xj` − xj)− v

)
+
(
nj`b(xj`)

)+
∫
Sj`

|αvj − 1| |Gvj (xj` − xj)| .

The integrand of the first integral corresponds to the case of αvj = 1 studied above and therefore the
first integral can be estimated by ch2|v|W 2,2(T ). The second integral can be estimated as follows using
(3.21): ∫

Sj`

|αvj − 1||Gvj (xj` − xj)| ≤
1
2

∫
Sj`

|αvj − 1||v` − vj | ≤
1
2

∫
Sj`

|αvj − 1|
∣∣∣ ∑
l∈Nj

(v` − vj)
∣∣∣

since αvj − 1 6= 0 implies that there is a local extremum in vj . We then continue∫
Sj`

|αvj − 1||Gvj (xj` − xj)| ≤ c
∫
Sj`

|E(vj)| ≤ c h2|v|W 2,2(T̃j)

where we used (5.24). We conclude that in any case we have using (3.20)

|T1| ≤ c h2‖v‖W 2,2(T̃j) .

The term T2 in (7.13) can be estimated as follows:

|T2| ≤ c |Sj`|h sup
Sj`

|Lvj (xj`)− v| ≤ ch2‖v‖W 2,2(T ). (7.15)

The term U in (7.12) can be treated in the same way. This finishes the first part of the proof.

Now we will consider the general situation for any Sj`. We have

(ΨK , zh) =
∑
j

∑
Nj

(
gj`(Vj`,V`j)−

∫
Sj`

nj`bv
)
zj

=
∑
TR

∑
Nj

· · ·+
∑
TS

∑
Nj

· · ·

=
∑
TR

∑
NjR

· · ·+
∑
TR

∑
NjS

· · ·+
∑
TR

∑
NjG

· · · (7.16)

+
∑
TS

∑
NjR

· · ·+
∑
TS

∑
NjS

· · ·+
∑
TS

∑
NjG

· · · .

Using the first part of the proof, we get for the first case∑
TR

∑
NjR

· · · =
∑
TR

∑
NjR

(
gj`(Lvj (xj`), L

v
` (xj`))−

∫
Sj`

nj`bv
)
zj

=
∑
ER

(
gj`(Lvj (xj`), L

v
` (xj`))−

∫
Sj`

nj`bv
)

(zj − z`)

≤ c
∑
ER

h2‖v‖W 2,2(Tj`)(zj − z`) (7.17)

≤ c h
4

ε
‖v‖2W 2,2(Ω) +

εγ

8

∑
ER

(zj − z`)2.
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Secondly, ∑
TR

∑
NjS

· · ·+
∑
TS

∑
NjR

· · · =
∑
TR

∑
NjS

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)
zj

+
∑
TS

∑
NjR

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)
zj (7.18)

=
∑
EM

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)

(zj − z`)

Since gj`(vj , v`) = b+j`vj + b−j`v` for Sj` ∈ EM , we proceed by estimating

∣∣∣b+j`vj + b−j`v` −
∫
Sj`

nj`bv
∣∣∣

≤

∣∣∣∣∣
∫
Sj`

(bnj`)+ (vj − v)︸ ︷︷ ︸
use (5.19)

+(bnj`)− (v` − v)︸ ︷︷ ︸
use (5.19)

∣∣∣∣∣ (7.19)

≤ c
∫
Sj`

|bnj`|(h‖v‖W 2,2(Qj`) + ‖v‖W 1,2(Qj`))

≤ c h2 ‖v‖W 2,2(Qj`) + c h ‖v‖W 1,2(Qj`) ,

and continue in (7.18) to obtain

∑
TR

∑
NjS

· · ·+
∑
TS

∑
NjR

· · ·

≤ c
∑
EM

h2‖v‖W 2,2(Qj`)(zj − z`) + c
∑
EM

h‖v‖W 1,2(Qj`)(zj − z`) (7.20)

≤ ch
4

ε
‖v‖2W 2,2(TS) + c

h2

ε
‖v‖2W 1,2(TS) +

εγ

8

∑
EM

(zj − z`)2 , (7.21)

and, since according to (2.5) we have ‖v‖2W 1,2(TS) ≤ ch‖v‖
2
W 2,2(Ω), we obtain in this case finally

∑
TR

∑
NjS

· · ·+
∑
TS

∑
NjR

· · · ≤ ch
3

ε
‖v‖22,2 +

εγ

8

∑
EM

(zj − z`)2 . (7.22)

Thirdly, we consider

∑
TS

∑
NjS

· · · =
∑
TS

∑
NjS

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)
zj

=
∑
ES

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)

(zj − z`) (7.23)

and proceed as in (7.19), (7.22) to get

∑
TS

∑
NjS

· · · ≤ ch
3

ε
‖v‖22,2 +

εγ

8

∑
ES

(zj − z`)2 . (7.24)

Finally we will estimate the terms with the ghost cells. We have
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∑
TR

∑
NjG

· · · =
∑
TR

∑
NjG

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)
zj

=
1
2

∑
TR

∑
NjG

(
gj`(vj , v`)−

∫
Sj`

nj`bv
)

(zj − z`)

and therefore we can proceed as before to get ch
3

ε ‖v‖
2
2,2 + εγ

8

∑
EB

(zj − z`)2. The other terms in (7.16)
can be treated similarly, and the result follows.

7.4. The final estimate from above. Putting together the estimates (7.5), (7.7), (7.8), (7.11),
we get the following result.

Theorem 7.6. (Estimate from above) Under the assumptions of Theorem 4.1 there exists a
constant c > 0 independent of ε such that for v ∈W 2,2(Ω) we have

(LhIhv − Lhuh, zh) ≤ c
(
εh2 + h4−2δ +

h3

ε

)
‖v‖22,2 (7.25)

+
εγ

4

∑
E∪EB

(zj − z`)2 +
c0
8

∑
Tj∈Th

z2
j |Tj | .

If moreover v ∈W 3,2(Ω), we have

(LhIhv − Lhuh, zh) ≤ c
(
εh3 + h4−2δ +

h3

ε

)
‖v‖23,2 (7.26)

+
εγ

4

∑
E∪EB

(zj − z`)2 +
c0
8

∑
Tj∈Th

z2
j |Tj | .

8. The estimates from below. In this part of the paper we will prove an estimate from below.

Theorem 8.1. (Estimate from below) Under the assumptions of Theorem 4.1 there exists a
constant c > 0 independent of ε such that for v ∈W 2,2(Ω) we have

(LhIhv − Lhuh, zh)

≥ εγ

2

∑
E

(z` − zj)2 + 2εγ
∑
EB

z2
j + c0

∑
j

z2
j |Tj |+

1
2

∑
EM∪ES

(b+j` − b
−
j`)(zj − z`)

2

− c h
4

ε
‖v‖2W 2,2(Ω) − c

h4

ε

∑
TR

R2
j |Tj | (8.1)

where γ = min γj` and Rj := 1
|Tj |

∑
`∈Nj

(u` − uj)γj` .

Proof: Using the notation
∑
j

≡
∑

Tj∈Th

and the definition of Lh one can write

(LhIhv − Lhuh, zh) = A1 +A2 +A3

where, denoting as before Vj` = Uj`(vj , v`), V`j = U`j(v`, vj),

A1 =
∑
j

(
− ε

∑
`∈Nj

(v` − vj)γj` + ε
∑
`∈Nj

(u` − uj)γj`
)
zj ≥ εγ

∑
E

(z` − zj)2 + 2εγ
∑
EB

z2
j ,

A2 =
∑
j

∑
`∈Nj

(
gj`
(
Vj`,V`j)

)
− gj`

(
Uj`,U`j

))
zj , (8.2)

A3 =
∑
j

cj(vj − uj)zj |Tj | ≥ c0
∑
j

z2
j |Tj |.
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It remains to treat A2. Recall that

gj`(Uj`,U`j) =


b+j`L

u
j (xj`) + b−j`L

u
` (xj`) for Sj` ∈ ER ,

b+j`uj + b−j`u` for Sj` ∈ ES ∪ EM ∪ EB .
(8.3)

For Sj` ∈ ER we can use the fact that

Luj (xj`)− uj =
1
2
(
Luj (x`)− uj

)
=

1
2
(
Luj (x`)− u`

)
+

1
2

(u` − uj)

(and similarly for Lu` (xj`)− u`), and write

gj`(Uj`,U`j) = b+j`uj + b−j`u` + b+j`
(
Luj (xj`)− uj

)
+ b−j`

(
Lu` (xj`)− u`

)
= b+j`uj + b−j`u` +

1
2
b+j`
(
Luj (x`)− u`

)
+

1
2
b+j`(u` − uj)

+
1
2
b−j`
(
Lu` (xj)− uj

)
+

1
2
b−j`(uj − u`)

and similarly for gj`(Vj`,V`j). Therefore,

A2 =
∑
j

∑
`∈Nj

(
gj`
(
Vj`,V`j)

)
− gj`

(
Uj`,U`j

))
zj

=
∑
j

∑
`∈Nj

(
b+j`vj + b−j`v`

)
zj +

1
2

∑
TR

∑
NjR

(
b+j`
(
Lvj (x`)− v`

)
+ b−j`

(
Lv` (xj)− vj

))
zj

+
1
2

∑
TR

∑
NjR

(
b+j`
(
v` − vj

)
+ b−j`

(
vj − v`

))
zj

−
∑
j

∑
`∈Nj

(
b+j`uj + b−j`u`

)
zj −

1
2

∑
TR

∑
NjR

(
b+j`
(
Luj (x`)− u`

)
+ b−j`

(
Lu` (xj)− uj

))
zj

− 1
2

∑
TR

∑
NjR

(
b+j`
(
u` − uj

)
+ b−j`

(
uj − u`

))
zj ,

and hence,

A2 =
∑
j

∑
`∈Nj

(
b+j`zj + b−j`z`

)
zj

+
1
2

∑
TR

∑
NjR

(
b+j`
(
Lvj (x`)− v`

)
+ b−j`

(
Lv` (xj)− vj

))
zj

−1
2

∑
TR

∑
NjR

(
b+j`
(
Luj (x`)− u`

)
+ b−j`

(
Lu` (xj)− uj

))
zj

+
1
2

∑
TR

∑
NjR

(
b+j`(z` − zj) + b−j`(zj − z`)

)
zj

=: W1 +W2 +W3 +W4 .

For W1 we procced by the same way as we did treating the term B1 on page 12 to get (cf. (5.17))

W1 ≥
1
2

∑
E

(
b+j` − b

−
j`

)
(zj − z`)2 , (8.4)
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while for W4 we get

W4 =
1
2

∑
TR

∑
NjR

(
(b+j` − b

−
j`)(z` − zj)

)
zj =

1
2

∑
ER

(b+j` − b
−
j`)
(

(z` − zj)zj + (zj − z`)z`
)

= −1
2

∑
ER

(b+j` − b
−
j`)(zj − z`)

2 .

Therefore,

W1 +W4 ≥
1
2

∑
ES∪EM

(b+j` − b
−
j`)(zj − z`)

2 . (8.5)

In order to estimate terms W2 and W3 we use the definition (3.18) to see that

u` − Luj (x`) = u` − uj − αujGuj (x` − xj) .

Let us discuss the three possible cases. If αuj = 1 and stencil of Guj contains x` then u` − Luj (x`) = 0.
If αuj = 1 and stencil of Guj does not contain x`, we have

u` − Luj (xl) = u` − uj −Guj (xl − xj)
= u` − uj +Guj (xm − xj + xk − xj)
= u` − uj + um − uj + uk − uj

=

 1
|Tj |

∑
k∈Nj

(uk − uj)γjk

 |Tj |
γj

=: Rj
|Tj |
γj

. (8.6)

In the (8.6) we take the advantage of the fact that for Tj ∈ TR we have γjk = constj =: γj for all
k ∈ Nj .
Finally, if αuj = 0, then u` − Luj (xl) = u` − uj . However, αuj = 0 implies that there is local extremum
in uj , or more precisely, that uj is extremal out of the values uj , u`, ` ∈ Nj . Therefore we have in this
case

|u` − uj | ≤
∣∣∣ ∑
k∈Nj

(uk − uj)
∣∣∣ = |Rj |

|Tj |
γj

.

We conclude that in any case,

|u` − Luj (x`)| ≤ |Rj |
|Tj |
γj

(8.7)

and the same estimate holds when replacing j by ` and vice versa.
By the same considerations we get that

|v` − Lvj (x`)| ≤
∣∣∣ ∑
`∈Nj

(v` − vj)
∣∣∣ . (8.8)

In order to estimate the last term, we define

E(v) = E(vj) :=
∑
`∈Nj

(v` − vj) = (v` − vj) + (vk − vj) + (vm − vj) . (8.9)

Consider now T := Tj ∪ T` ∪ Tk ∪ Tm and a reference triangle T̂ = T̂1 ∪ T̂2 ∪ T̂3 ∪ T̂4, such that T̂ is
mapped onto T by a 1-1 mapping

F : T̂ → T,

F (x̂) = Ax̂+ a
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and F (T̂i) = Tpi
for i = 1, 2, 3, 4, pi = j, `, k,m, respectively. Note that T̂ is also a regular, larger

triangle. As in the proof of Lemma 5.4 part c), A ∈ IR2×2 is an invertible matrix and a ∈ IR2. Define

Ê : W 2,2(T̂ )→ IR ,

Ê(v̂) = (v̂` − v̂j) + (v̂k − v̂j) + (v̂m − v̂j) .

Then

|Ê(v̂)| ≤ c ‖v̂‖C(T̂ ) ≤ c ‖v̂‖W 2,2(T̂ ) .

Moreover, Ê vanishes for all polynomials p̂ of degree ≤ 1. Indeed, we have for such p̂ that

Ê(p̂) = ∇p̂
[
(x̂` − x̂j) + (x̂k − x̂j) + (x̂m − x̂j)

]
= 0 .

Using then the Bramble–Hilbert lemma, one gets

|Ê(v̂)| ≤ c |v̂|W 2,2(T̂ ) .

Finally,

|E(v)| = |Ê(v̂)| ≤ c |v̂|W 2,2(T̂ ) ≤ c h |v|W 2,2(T ) (8.10)

using the properties of F similar to those in the proof of Lemma 5.4, part c). Therefore we obtain
using (8.8), (5.27),

|v` − Lvj (x`)| ≤ c h |v|W 2,2(T ) (8.11)

with c > 0 independent of h and T = Tj ∪
⋃

j∈N`

T`, and the same estimate holds for |vj − Lv` (xj)|.

Using now (8.11) we see that

W2 =
1
2

∑
TR

∑
NjR

(
b+j`
(
Lvj (x`)− v`

)
+ b−j`

(
Lv` (xj)− vj

))
zj

=
1
2

∑
ER

(
b+j`
(
Lvj (x`)− v`

)
+ b−j`

(
Lv` (xj)− vj

))
(zj − zl)

≥ − 1
2

∑
ER

(
b+j`|L

v
j (xl)− v`||zj − z`|+ |b−j`||L

v
` (xj)− vj ||zj − z`|

)
≥ − c h2

∑
ER

|v|W 2,2(T )|zj − z`|

≥ − c h
4

ε

∑
ER

|v|2W 2,2(T ) −
εγ

4

∑
ER

(zj − z`)2

≥ − c h
4

ε
‖v‖2W 2,2(Ω) −

εγ

4

∑
ER

(zj − z`)2 . (8.12)

Similarly, (8.7) implies that

W3 ≥ −
1
2

∑
ER

(
b+j`|L

u
j (xl)− u`||zj − z`|+ |b−j`||L

u
` (xj)− uj ||zj − z`|

)
≥ − c h2

∑
ER

(
|Rj |

√
|Tj |+ |R`|

√
|T`|
)
|zj − z`|

≥ − c h
4

ε

∑
TR

R2
j |Tj | −

εγ

4

∑
ER

(zj − z`)2 . (8.13)
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Now, estimates (8.5), (8.12), (8.13) imply

A2 ≥
1
2

∑
ES∪EM

(b+j` − b
−
j`)(zj − z`)

2 − εγ

2

∑
ER

(zj − z`)2 − c
h4

ε
‖v‖2W 2,2(Ω) − c

h4

ε

∑
TR

R2
j |Tj | ,

which together with (8.2) finishes the proof.

Lemma 8.2. Let Rj = 1
|Tj |

∑
`∈Nj

(u` − uj)γj` for Tj ∈ TR (cf. (8.6)). Then there is a constant c > 0
independent of ε and h, such that ∑

TR

R2
j |Tj | ≤

c

ε3
‖f‖2L2(Ω). (8.14)

Proof: From the definition of the numerical scheme in (3.4) we obtain

Rj =
1

ε|Tj |

(
ε
∑
`∈Nj

(u` − uj)γj`
)

(see (3.4) and use (Lhuh)j = fj with Tj ∈ TR)

=
1

ε|Tj |

(∑
`∈Nj

gj`
(
Luj (xj`), Lu` (xj`)

)
+ cjuj |Tj | − fj |Tj |

)
. (8.15)

We have for Tj ∈ TR,∣∣∣ ∑
`∈Nj

gj`
(
Luj (xj`), Lu` (xj`)

)∣∣∣ =
∣∣∣ ∑
`∈Nj

[
b+j`
(
Luj (xj`)

)
+ b−j`

(
Lu` (xj`)

)]∣∣∣
=
∣∣∣ ∑
`∈Nj

[
b+j`
(
Luj (xj`)− uj

)
+ b−j`

(
Lu` (xj`)− u`

)
+ ujb

+
j` + u`b

−
j`

]∣∣∣ (8.16)

using (3.20)

≤ ch
∑
`∈Nj

|u` − uj |+
∣∣∣ ∑
`∈Nj

(b+j` + b−j`)uj + b−j`(u` − uj)
∣∣∣

≤ ch
∑
`∈Nj

|u` − uj |,

since
∑
`∈Nj

(b+j` + b−j`)uj = 0. Therefore

|Rj | ≤
c

εh2

(
h
∑
`∈Nj

|u` − uj |+ |uj ||Tj |+ |fj ||Tj |
)

≤ c

ε

( 1
h

∑
`∈Nj

|u` − uj |+ |uj |+ |fj |
)

(8.17)

and ∑
Tj∈TR

R2
j |Tj | ≤

c

ε2

∑
Tj∈TR

(∑
NjR

|u` − uj |2 + u2
j |Tj |+ f2

j |Tj |
)

(8.18)

≤ c

ε3

(
ε
∑
ER

|u` − uj |2
)

+
c

ε2

∑
j

(
u2
j |Tj |+ f2

j |Tj |
)

≤ c

ε3

∑
j

f2
j |Tj |,

using (5.14). This implies (8.14).
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Remark 8.3. The terms

‖v‖2W 2,2(Ω) and
∑
TR

R2
j |Tj | (8.19)

contained on the right-hand side of the estimate (8.1) depend of course on ε. As we will see in the
following Lemma, the sum

∑
TR
R2
j |Tj | is of the same order in ε as is the norm ‖v‖2W 2,2(Ω).

Lemma 8.4. Let v ∈W 2,2(Ω) be the solution of (2.1)–(2.2). Then

‖v‖2W 2,2(Ω) ≤
c

ε3
‖f‖2L2(Ω) , (8.20)

Proof: We have the energy estimate

ε

∫
Ω

|∇v|2 + c0

∫
Ω

|v|2 ≤ C

∫
Ω

|f |2 (8.21)

and therefore

‖v‖2W 2,2(Ω) ≤ C

∫
Ω

(∆v)2 ≤ C

ε2

∫
Ω

(
b∇v + cv − f

)2

≤ C

ε3

∫
Ω

f2 .

Remark 8.5. The order of ε in (8.20) is sharp. This follows from the following example. For x, y ∈ IR
let

a :=
(

1− exp
(
−1
ε

))−1

, v1(x) := a

(
1− exp

(
−1− x

ε

))
− 1 + x, v2(y) := y(1− y),

v(x, y) := v1(x) v2(y), f(x, y) := v(x, y) + v1(x)(2ε+ 1− 2y) + v2(y).

Then we have

−ε∆v + ∂xv + ∂yv + v = f in Ω :=]0, 1[×]0, 1[,
v = 0 on ∂Ω,

and

‖∂2
xv‖L2(Ω) > ε−

3
2 and ‖f‖L2(Ω) ≤ c for all ε > 0. (8.22)

It is not difficult to verify these results.

9. The final estimate. Putting together the estimates (7.25), (8.1) and using the definition of
‖zh‖ε (see (4.6)), we obtain the main estimates (4.7) and (4.8) of Theorem 4.1. The result for the
first order scheme (4.10) can be obtained using only the parts of the estimates (7.25), (8.1) which
corresponds to the first order parts of the scheme.

10. Acknowledgement. The authors want to thank the unknown referees for their valuable
comments.
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[43] M. Vlasák, V. Dolejš́ı and J. Hájek, A priori error estimates of an extrapolated space-time discontinuous
Galerkin method for nonlinear convection-diffusion problems, Numer. Meth. Part. D. E. 27, No. 6 (2011),
1456–1482.

[44] W. Wang, J. Guzman, C.-W. Shu, The multiscale discontinuous Galerkin method for solving a class of second
order elliptic problems with rough coefficients, Int. J. Numer. Anal. Model. 8 (2011), 28–47.

[45] M. Wierse, Higher order upwind schemes on unstructured grids for the compressible Euler equations in time
dependent geometries in 3D, PhD Thesis, Universität Freiburg, 1994.

[46] C. Zamfirescu, Survey of two-dimensional acute triangulations, Discrete Math. 313(1), (2013), 35–49 (see also
http://czamfirescu.tricube.de/CTZamfirescu-08.pdf).

[47] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method
for scalar conservation laws, SIAM J. Numer. Anal. 42, No. 2 (2004), 641–666.


