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Let f be a continuous real function on a convex subset of a Banach space. We
study what can be said about the semiconcavity (with a general modulus) of f ,
if we know that the estimate ∆2

h(f, x) ≤ ω(‖h‖) holds, where ∆2
h(f, x) = f(x +

2h) − 2f(x − h) + f(x) and ω : [0,∞) → [0,∞) is a nondecreasing function right
continuous at 0 with ω(0) = 0. A partial answer to this question was given by P.
Cannarsa and C. Sinestrari (2004); we prove versions of their result, which are in a
sense best possible. We essentially use methods of A. Marchaud, S.B. Stechkin and
others, whose results clarify when the inequality |∆2

h(f, x)| ≤ ω(‖h‖) implies that f
is a C1 function (and f ′ is uniformly continuous with a corresponding modulus of
continuity).
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1. Introduction

For a real function f on [a, b], we consider the second difference ∆2
hf(x) = f(x+

2h)−2f(x+h)+f(x). The second modulus of continuity of f is defined as ω2(f, t) :=
sup{|∆2

h(f, x)| : 0 ≤ h ≤ t, x, x+ 2h ∈ [a, b]}, t ≥ 0.
The following result is a special case of the classical Marchaud theorem (see [10]

or, e.g., [4]) which deals with ωn(f, t), n ≥ 2. (For a generalization to Banach spaces
see [9].)

Theorem M. Let f be a continuous function on [a, b] and∫ 1

0

ω2(f, t)

t2
dt < ∞.

Then f ∈ C1[a, b] and f ′ is uniformly continuous with modulus of continuity

η(δ) := C

∫ δ

0

ω2(f, t)

t2
dt, δ ≥ 0,

where C > 0 is an absolute constant.
1
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Theorem M+ below is a “semi-analogon” of Theorem M. Indeed, it works with the
second “semi-modulus” of continuity ω+

2 (f, t) := sup{∆2
h(f, x) : 0 ≤ h ≤ t, x, x +

2h ∈ [a, b]}, t ≥ 0, instead of ω2(f, t), and with the class of functions which are
semiconcave with modulus ω instead of the class of C1 functions having f ′ uniformly
continuous with modulus ω.

Because the notion of a semiconcave function is basic for the present article, we
give the definition just now. (For the theory of semiconcave functions in Rn see [3].)

Definition 1.1. (i) We denote by M the set of all functions ω : [0,∞) →
[0,∞) with ω(0) = 0 which are nondecreasing on [0,∞) and right continuous
at 0.

(ii) Let X be a real Banach space. We say that a real continuous function u
on a convex set D ⊂ X is semiconcave with modulus ω ∈ M (or briefly
ω-semiconcave) if

(1.1) λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ λ(1− λ)ω(‖x− y‖)‖x− y‖,

whenever λ ∈ [0, 1] and x, y ∈ Ω.
A function is called semiconcave on Ω if it is semiconcave on Ω with some

modulus ω ∈M.

Theorem M+. Let f be a continuous function on [a, b] and∫ 1

0

ω+
2 (f, t)

t2
dt < ∞.

Then f is semiconcave on [a, b] with modulus

γ(δ) := C

∫ δ

0

ω+
2 (f, t)

t2
dt, δ ≥ 0,

where C > 0 is an absolute constant.

It seems that Theorem M+ is new. However, it is closely related to the following
slight reformulation of a result of P. Cannarsa and C. Sinestrari (see [3, Theorem
2.1.10]).

Theorem CS. Let ω̃ : [0,∞) → [0,∞) be a nondecreasing upper semicontinuous
function such that limρ→0+ ω̃(ρ) = 0. Let S ⊂ Rn be a convex set and u : S → R a
continuous function such that

(1.2) u(x) + u(y)− 2u

(
x+ y

2

)
≤ ‖x− y‖

2
ω̃(‖x− y‖), x, y ∈ S.

Then u is semiconcave on S with modulus

(1.3) β(ρ) :=
∞∑
k=0

ω̃
( ρ

2k

)
, ρ ≥ 0,

provided the right-hand side is finite.

Observe that condition (1.2) coincides with condition (1.1) with λ = 1/2 and
ω = ω̃. Therefore the following terminology from [14] is natural.

Definition 1.2. Let ω̃ ∈ M. We say that a real function f on a convex subset D
of a Banach space is Jensen ω̃-semiconcave, if condition (1.2) holds.
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Under this terminology, the above observation means that

(1.4) ω-semiconcavity implies Jensen ω-semiconcavity.

Further, condition (1.2) can be easily formulated using the “semi-modulus” ω+
2 (u, ·).

Namely, it is equivalent to the inequality ω+
2 (u, t) ≤ tω̃(2t), t ≥ 0 (see Lemma 4.1).

In Section 4, we will infer Theorem M+ from Theorem CS. In fact, we prove
Theorem 4.8, which generalizes Theorem M+ to Banach spaces. In the proof, we
use the following basic observations.

(O1) In the proof of Theorem CS, the assumption that ω̃ is nondecreasing and
upper semicontinuous is not used. Moreover, the proof works without any
change also for functions on Banach spaces, cf. Theorem CS2 in Section 4.

(O2) The “semi-modulus” ω+
2 (f, t) has the property that the function t−2ω+

2 (f, t)
is 4-almost decreasing on (0,∞) (see (3.1) for the definition).

To show that ω+
2 (f, t) has the above property, it is sufficient (see Lemma 3.1) to

modify in an obvious way the well-known proof (from [10] or [11]) which shows that
ω2(f, t) has this property.

It is natural to ask (cf. [3, Remark 2.1.11]) the following questions:

(Q1) Is the result of Theorem CS sharp ?
(Q2) For which η ∈ M Jensen η-semiconcavity and continuity of a function

implies its Cη-semiconcavity for some C = C(η) ?

For the most interesting moduli ωp(t) = tp (0 < p ≤ 1), Theorem CS gives that
each continuous Jensen ωp-semiconcave function is (2/(2 − 21−p))ωp-semiconcave.
This fact with (1.4) shows that, for these moduli, Theorem CS is “sharp up to a
multiplicative constant” and the implication from (Q2) holds.

However, [14, Theorem 4] gives that we can write above 1/(2 − 21−p) instead of
2/(2 − 21−p) (and this constant is optimal). Thus Theorem CS is not “absolutely
sharp”.

We will show that, for some ω̃, Theorem CS is not sharp in any sense.
The reason is that observation (O2) rather easily implies (see Proposition 4.2)

that each Jensen ω̃-semiconcave function is Jensen 4ω̃∗-semiconcave, where ω̃∗ is the
“Stechkin regularization of ω̃” defined by

(1.5) ω̃∗(h) := h inf {ω̃(u)/u : 0 < u ≤ h} for h > 0 and ω̃∗(0) := 0 .

So, applying Theorem CS to 4ω̃∗, we obtain that u is semiconcave with modulus

(1.6) β∗(ρ) = 4
∞∑
k=0

ω̃∗

( ρ
2k

)
, ρ ≥ 0,

provided the right-hand side is finite. Thus, since β∗(ρ) can be essentially smaller
than β(ρ) (it can even happen that β(ρ) is infinite and β∗(ρ) is identically 0, see
Example 5.1), for some ω̃ the result of Theorem CS is not sharp in any sense.

Further, we show (see Theorem 5.13 for a precise formulation) that Theorem 4.4
(i.e., the result with modulus β∗(ρ)) is “sharp up to a multiplicative constant” for
many D. Consequently, since ω̃∗ = ω̃ for concave ω̃, the result of Theorem CS is
“sharp up to a multiplicative constant” for many D if ω̃ is concave.

The proofs of sharpness results are based on well-known properties of so called
“extremal function”, which is important in the classical “smooth case”.

For bounded D and all D ⊂ Rn, we give a complete answer to question (Q2)
in Theorems 6.1 and 6.2. In particular, we prove (see Remark 6.4(i)) that if D is
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bounded and a nonzero η is concave, then the implication of (Q2) holds if and only
if there exists K > 1 such that lim inft→0+ η(Kt)/η(t) > 1.

2. Preliminaries

In the following, X will always be a real Banach space. By B(x, r) we denote
the open ball with center x and radius r. By 〈x∗, x〉 we will denote the usual dual
pairing between x∗ ∈ X∗ and x ∈ X. For t ∈ R, we set t+ := max(t, 0). The integer
part of x ∈ R is denoted by [x]. The integral is always the Lebesgue integral.

We write f(t) = O(g(t)), t → 0+, provided there exist C > 0 and δ > 0 such
that |f(t)| ≤ C|g(t)| for t ∈ (0, δ). We write f(t) � g(t), t → 0+, provided
f(t) = O(g(t)), t→ 0+, and g(t) = O(f(t)), t→ 0+.

If f is a function on on open subset G of a Banach space, then f ′(x) denotes the
Fréchet derivative of f at x ∈ G.

If X is a Banach space, A 6= ∅ is a convex subset of X, h ∈ X and f is a function
on A, then we denote by ∆hf the function defined on A ∩ (A − h) by ∆hf(x) :=
f(x+h)−f(x). We set ∆2

hf := ∆h(∆hf). So ∆2
hf(x) = f(x+2h)−2f(x+h)+f(x)

for x ∈ A ∩ (A− 2h). We define the second modulus of continuity of f by

ω2(f, t) := sup{|∆2
h(f, x)| : ‖h‖ ≤ t, x ∈ A ∩ (A− 2h)}.

Further we define the second “semi-modulus of continuity” by

ω+
2 (f, t) : = sup{(∆2

h(f, x))+ : ‖h‖ ≤ t, x ∈ A ∩ (A− 2h)

= sup{∆2
h(f, x) : ‖h‖ ≤ t, x ∈ A ∩ (A− 2h)}.

(2.1)

Obviously,

(2.2) ω+
2 (cf, t) = cω+

2 (f, t), t ≥ 0, for each c > 0.

Further, if v ∈ X and fv(x) := f(x− v), x ∈ A+ v, then clearly

(2.3) ω+
2 (fv, t) = ω+

2 (f, t), t ≥ 0.

The set M and the notion of a semiconcave function (with modulus ω ∈ M)
were defined in Definition 1.1 above. A function is called semiconvex (with modulus
ω ∈ M) if −f is a semiconcave function (with modulus ω ∈ M). We will need the
following well-known properties of semiconcave functions.

Lemma 2.1. Let f be a continuous function on [a, b] ⊂ R and ω ∈ M. Then the
following assertions hold.

(i) f is ω-semiconcave on [a, b] if and only if f is ω-semiconcave on (a, b).
(ii) If f ′ is uniformly continuous with modulus ω on (a, b), then f is semiconcave

with modulus ω.
(iii) If f is semiconcave on (a, b) with modulus ω, then f has a finite right de-

rivative f ′+(x) at each x ∈ (a, b), and

(2.4) f ′+(x+ δ)− f ′+(x) ≤ 2ω(δ) whenever x, x+ δ ∈ (a, b) and δ > 0.

Proof. Assertion (i) easily follows from (1.1), continuity of f and monotonicity of
ω. To prove (ii), we can use [3, Proposition 2.1.2] and (i). For assertion (iii) see
[7, Proposition 2.8] (it also easily follows from [3, Theorem 3.2.1 and Proposition
3.3.10]). �
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Definition 2.2. Let f be a continuous real valued function on a convex subset D
of a Banach space X. Put ηf (0) := 0 and, for t > 0, set

ηf (t) := sup

{(
λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

λ(1− λ)‖x− y‖

)+

:

x, y ∈ D, 0 < ‖x− y‖ ≤ t, λ ∈ (0, 1)

}
.

(2.5)

It is easy to see that ηf : [0,∞) → [0,∞] is nondecreasing and f is semiconcave
if and only if ηf ∈ M. Then clearly ηf is the minimal modulus of semiconcavity of
f . Obviously,

(2.6) ηcf (t) = cηf (t), t ≥ 0, for each c > 0.

Further, if v ∈ X and fv(x) := f(x− v), x ∈ D + v, then clearly

(2.7) ηfv(t) = ηf (t), t ≥ 0.

We will need also the the following obvious corollary of [6, Corollary 3.6].

Lemma 2.3. Let f be a semiconcave function with modulus η ∈ M on an open
convex subset Ω of a Banach space X. Then f is semiconcave with a concave modulus
η̃ ∈M for which η̃ ≤ 4η.

3. Moduli

We will say (following S.N. Bernstein, see [1, p. 493]) that a function g : (0,∞)→
[0,∞] is almost decreasing, if there exists C > 0 such that

(3.1) g(t) ≤ Cg(u) whenever 0 < u ≤ t.

If (3.1) holds, we say that g is C-almost decreasing.
The proof of statement (ii) of the following lemma is an obvious modification of

the corresponding proof ([10], [11]) concerning ω2(f, t).

Lemma 3.1. Let f be a function defined on a nonempty convex subset D of a
Banach space X. Then:

(i) ω+
2 (f, 0) = 0 and ω+

2 (f, ·) : [0,∞)→ [0,∞] is nondecreasing.
(ii) The function t 7→ t−2ω+

2 (f, t) is 4-almost decreasing on (0,∞).
(iii) If ω+

2 (f, t0) ∈ R for some t0 ∈ (0,∞), then ω+
2 (f, ·) is finite.

(iv) If
∫ 1

0

ω+
2 (f,t)

t2
dt < ∞, then ω+

2 (f, ·) ∈M.

Proof. Property (i) is obvious.
(ii) First consider arbitrary p ∈ N, h ∈ X and observe that

∆phf(x) =

p−1∑
i=0

∆hf(x+ ih) for x ∈ D ∩ (D − ph)

and so, for x ∈ D ∩ (D − 2ph),

∆2
phf(x) =

p−1∑
i=0

p−1∑
j=0

∆2
hf(x+ ih+ jh) ≤ p2ω+

2 (f, ‖h‖).

Therefore,

(3.2) ω+
2 (f, pt) ≤ p2ω+

2 (f, t) for each p ∈ N and t ≥ 0.
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To prove our assertion, we must show that

(3.3) t−2ω+
2 (f, t) ≤ 4u−2ω+

2 (f, u) whenever 0 < u < t.

To this end fix 0 < u < t. For p := [tu−1+1] we have tu−1 < p ≤ tu−1+1 < 2tu−1.
Therefore t < pu, and so monotonicity of ω+

2 (f, ·) and (3.2) imply

ω+
2 (f, t) ≤ ω+

2 (f, pu) ≤ p2ω+
2 (f, u) ≤ 4t2u−2ω+

2 (f, u)

and (3.3) follows.
Property (iii) easily follows from (i) and (ii).

(iv) If
∫ 1

0

ω+
2 (f,t)

t2
dt < ∞, then ω+

2 (f, ·) is finite by (iii). By (i), ω+
2 (f, ·) is

nondecreasing and also L := limt→0+ ω
+
2 (f, t) = 0, since otherwise

∫ 1

0

ω+
2 (f,t)

t2
dt ≥

L
∫ 1

0
t−2 dt =∞. �

Definition 3.2. (i) For k = 1, 2, we will denote by Mk the set of ω ∈ M, for
which t−kω(t) is nonincreasing on (0,∞).

(ii) For ω ∈ M, we define (Stechkin’s regularizations) ω∗ = ω1∗, ω∗∗ = ω2∗ by
ω∗(0) = ω∗∗(0) = 0,

ω∗(t) = ω1∗(t) := t · inf {ω(u)/u : 0 < u ≤ t} , t ∈ (0,∞), and

ω∗∗(t) = ω2∗(t) := t2 · inf
{
ω(u)/u2 : 0 < u ≤ t

}
, t ∈ (0,∞).

Remark 3.3. (i) Functions fromMk are called k-majorants (see e.g. [4, p. 203,
Definition 4.4’], where also k > 2 are considered).

(ii) Stechkin’s regularizations were introduced (and denoted by ω∗∗k ) in [12, p.
232] for any k ∈ N and for (not necessarily nondecreasing) ω : (0, π] →
(0,∞). Roughly speaking, for ω ∈M, our ωk∗ coincides with ω∗∗k from [12]
and our ω1∗ = ω∗ is denoted by ω1 in [1, p. 519].

We will use many times some properties of Mk and Stechkin’s regularizations.
The following properties follow quite easily from the definitions and will be repeat-
edly used without a reference:

(i) If ω ∈Mk (k = 1, 2) and λ > 0, then the functions λω and ω(λt) belong to
Mk.

(ii) 0 ≤ ω∗ ≤ ω and 0 ≤ ω∗∗ ≤ ω.
(iii) If k ∈ {1, 2}, ω1 ∈M, ω2 ∈M and ω1 ≤ ω2, then (ω1)k∗ ≤ (ω2)k∗. Further,

(cω)k∗ = c(ω)k∗ whenever ω ∈M and c ≥ 0.

In the following lemma we recall some known (deeper) properties.

Lemma 3.4.

(i) If ω ∈M is concave, then ω ∈M1.
(ii) If ω ∈M1, then ω is subadditive.

(iii) If ω ∈M and k = 1, 2, then ωk∗ ∈Mk.
(iv) If ω ∈M and k = 1, 2, then ω ∈Mk if and only if ω = ωk∗.
(v) If ω ∈ M, C > 0 and k = 1, 2, then t−kω(t) is C-almost decreasing on

(0,∞) if and only if Cωk∗ ≥ ω.

Proof. Assertion (i) is easy to see. For (ii) see [4, p. 173, Remark 1.4].
Concerning (iii), observe that the proofs of [12, 2) and 3), p. 233] (on (0, π])

works also for ω ∈M and give that ωk∗(t)/t
k is nonincreasing on (0,∞) and ωk∗ is

nondecreasing. Since ωk∗ ≤ ω, we obtain (iii).
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To prove (iv), observe that if ω ∈ Mk and 0 < u ≤ t, then tk · (ω(u)/uk) ≥ ω(t),
and so ωk∗(t) = ω(t) by the definition of ωk∗. The converse implication follows from
(iii).

Important property (v) is implicitly contained in the proof of [12, 4), p. 233]. For
completeness, we present a proof:

First suppose that Cωk∗ ≥ ω. Since ωk∗ ∈ Mk and ωk∗ ≤ ω, we obtain that, for
0 < u ≤ t,

ω(t)

tk
≤ Cωk∗(t)

tk
≤ C

ωk∗(u)

uk
≤ C

ω(u)

uk
.

So t−kω(t) is C-almost decreasing on (0,∞). To prove the converse implication,
suppose that t−kω(t) ≤ Cu−kω(u) whenever 0 < u ≤ t. Then, if 0 < u ≤ t, we have
ω(t) ≤ Ctku−kω(u). Consequently ω(t) ≤ Cωk∗(t). �

Remark 3.5. (i) It is easy to show that ωk∗ is the maximal k-majorant (i.e., an
element of Mk) majorized by ω.

(ii) Each k-majorant is continuous (see [4, the note before Definition 4.4’]).
However, we will not use these facts.

On the other hand, we will need also the following facts. (In their formulation we
use the classical notation, denoting, e.g., the function t 7→ ω(ct) by ω(ct).)

Lemma 3.6.

(i) If ω ∈M, then (tω(t))∗∗ = tω∗(t).
(ii) If ω ∈M, k = 1, 2 and c > 0, then (ω(ct))k∗ = ωk∗(ct).

(iii) If ω ∈M1, then the function tω(t) belongs to M2.

Proof. To prove (i), denote µ(t) := tω(t). Then, for each t > 0,

µ∗∗(t) = t2 inf{uω(u)/u2 : 0 < u ≤ t} = t · t inf{ω(u)/u : 0 < u ≤ t} = tω∗(t).

To prove (ii), denote α(t) = ω(ct). Then, for each t > 0,

αk∗(t) = tk inf{ω(cu)/uk : 0 < u ≤ t} = cktk inf{ω(cu)/(cu)k : 0 < u ≤ t}
= (ct)k inf{ω(z)/zk : 0 < z ≤ ct} = ωk∗(ct).

Property (iii) immediately follows from definitions. �

Now we can formulate the following important easy consequence of Lemma 3.1.

Lemma 3.7. Let f be a function defined on a nonempty convex subset D of a
Banach space X.

(i) For every ω ∈M,

ω+
2 (f, t) ≤ ω(t), t ≥ 0 ⇒ ω+

2 (f, t) ≤ 4ω∗∗(t), t ≥ 0.

(ii) If ω+
2 (f, ·) ∈M, then there exists ω̃ ∈M2 such that

ω+
2 (f, t) ≤ ω̃(t) ≤ 4ω+

2 (f, t), t ≥ 0.

Proof. To prove (i), suppose ω+
2 (f, t) ≤ ω(t), t ≥ 0. Since the function t−2ω+

2 (f, t)
is 4-almost decreasing by Lemma 3.1, we obtain ω+

2 (f, ·) ≤ 4(ω+
2 (f, ·))∗∗ ≤ 4ω∗∗ by

Lemma 3.4(v).
To prove (ii), apply (i) with ω := ω+

2 (f, ·), set ω̃ := 4(ω+
2 (f, ·))∗∗ and apply Lemma

3.4(iii). �
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Proposition 3.8. Let f be a function defined on a nonempty convex subset D of a
Banach space X. If f is semiconcave with modulus η ∈ M, then f is semiconcave
with modulus 4η∗.

Proof. By Lemma 2.3 f is semiconcave with a concave modulus η̃ for which η̃ ≤ 4η.
Since η̃ ∈M1 by Lemma 3.4(i), we obtain η̃ = η̃∗ ≤ 4η∗ by Lemma 3.4(iv), and our
assertion follows. �

Lemma 3.9. For each ω ∈M1 there exists a concave ω̃ ∈M such that ω ≤ ω̃ ≤ 2ω.

Proof. By Lemma 3.4(ii), ω is subadditive, and therefore ω ≤ ω̃ ≤ 2ω, where ω̃
is the least concave majorant of ω. This inequality was at first observed by S.B.
Stechkin (cf. [6, p. 241]). Stechkin’s lemma is usually formulated for a continuous
subadditive ω ∈M. However, a subadditive ω ∈M is clearly continuous. Moreover,
the standard proof (see e.g. [5, p. 43]) does not use the continuity of ω. �

Now we can prove the following version of Lemma 2.3 which can be of some
independent interest.

Proposition 3.10. Let η ∈ M. Then there exists a concave ηc ∈ M with ηc ≤ η
and the following property:

If f is a function defined on a nonempty convex subset D of a Banach space X
which is semiconcave with modulus η, then f is semiconcave with modulus 8ηc.

Proof. By Lemma 3.4(iii) and Lemma 3.9 there exists a concave η̃ such that η∗ ≤
η̃ ≤ 2η∗. Set ηc := η̃/2; then ηc ≤ η∗ ≤ η. If f is as above (semiconcave with
modulus η), then Proposition 3.8 implies that f is semiconcave with modulus 4η∗.
Since 4η∗ ≤ 4η̃ = 8ηc, the assertion follows. �

We will use also the following result (see [1, Lemma 2, p. 494, and the footnote,
p. 493]).

Lemma 3.11. ([1]) Let η ∈ M and η(t) > 0 for t > 0. Then the following
conditions are equivalent.

(i)
∫ t

0
η(u)
u

du = O(η(t)), t→ 0+.

(ii) ∃K > 1 : lim inft→0+
η(Kt)
η(t)

> 1.

4. Sufficient conditions for semiconcavity

In this section we prove a more general and (for some ω̃) sharper version (Theorem
4.4) of Theorem CS and a generalization (Theorem 4.8) of Theorem M+ from the
introduction.

First we present the generalization of Theorem CS which was mentioned in ob-
servation (O1) in the introduction.

Theorem CS2. Let u be a continuous function defined on a nonempty convex subset
D of a Banach space X. Let, for a ω̃ : [0,∞)→ [0,∞),

(4.1) u(x) + u(y)− 2u

(
x+ y

2

)
≤ ‖x− y‖

2
ω̃(‖x− y‖) whenever x, y ∈ D.

Let η ∈M and

(4.2)
∞∑
k=0

ω̃
( ρ

2k

)
≤ η(ρ), ρ ≥ 0.
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Then u is semiconcave on D with modulus η.

Proof. It is sufficient to repeat word by word the proof of [3, Theorem 2.1.10], writing
only D instead of S and changing in an obvious way the final argument (the only
formal problem is that the function

∑∞
k=0 ω̃

(
ρ
2k

)
need not belong to M). �

The following easy lemma shows how the condition (4.1) of Theorem CS2 is related
to an estimate of the “semi-modulus” ω+

2 .

Lemma 4.1. Let u be a function defined on a nonempty convex subset D of a
Banach space.

(i) Let ω ∈M and ω+
2 (u, t) ≤ ω(t), t ≥ 0. Set ω̃(t) := (2/t)ω(t/2), t > 0, and

ω̃(0) := 0. Then

(4.3) u(x) + u(y)− 2u

(
x+ y

2

)
≤ ‖x− y‖

2
ω̃(‖x− y‖) whenever x, y ∈ D.

(ii) Let ω̃ ∈M. Set ω(t) := tω̃(2t), t ≥ 0. Then the condition (4.3) holds (i.e.,
u is Jensen ω̃-semiconcave) if and only if

(4.4) ω+
2 (u, t) ≤ ω(t), t ≥ 0.

Proof. (i) Observe that

u(x) + u(y)− 2u((x+ y)/2) = ∆2
(y−x)/2(u, x), whenever x, y ∈ D.

Consequently, for each x, y ∈ D,

u(x)+u(y)−2u((x+y)/2) ≤ ω+
2

(
u,
‖y − x‖

2

)
≤ ω

(
‖y − x‖

2

)
=
‖y − x‖

2
ω̃(‖y−x‖),

so (4.3) holds.
(ii) First suppose that (4.4) holds. Since clearly ω ∈M and ω̃(t) = (2/t)ω(t/2), t >

0, (4.3) follows by (i). Now suppose that (4.3) holds. Consider arbitrary t ≥ 0, x ∈ D
and h ∈ X with ‖h‖ ≤ t such that ∆2

h(u, x) = u(x)+u(x+2h)−2u(x+h) is defined.
Setting y := x+ 2h, we have h := (y − x)/2 and

∆2
h(u, x) = u(x) + u(y)− 2u((x+ y)/2) ≤ ‖h‖ω̃(2‖h‖).

Since ω̃ is nondecreasing, we have ∆2
h(u, x) ≤ tω̃(2t) = ω(t), and consequently

ω+
2 (u, t) ≤ ω(t). �

Let us note that the function ω̃ from (i) need not be nondecreasing. From this
reason, observation (O1) from the introduction is important.

Now we can prove a precise analogon of Proposition 3.8.

Proposition 4.2. Let ω̃ ∈M and let D be a nonempty convex subset of a Banach
space. Then each Jensen ω̃-semiconcave function on D is Jensen 4ω̃∗-semiconcave.

Proof. Set ω(t) := tω̃(2t), t ≥ 0. By Lemma 4.1(ii) we obtain ω+
2 (u, t) ≤ ω(t),

t ≥ 0. So, using Lemma 3.7(i) and Lemma 3.6(i),(ii), we obtain

ω+
2 (u, t) ≤ 4ω∗∗(t) = 4tω̃∗(2t).

Consequently, using Lemma 4.1(ii) (with 4ω̃∗ instead of ω̃) we obtain that f is Jensen
4ω̃∗-semiconcave. �

We will use also the following consequence of Lemma 4.1 and Proposition 4.2.
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Corollary 4.3. Let η ∈ M and let u be a function defined on a nonempty convex
subset D of a Banach space.

(i) If ω+
2 (u, t) ≤ tη(t), t ≥ 0, then u is Jensen η-semiconcave.

(ii) If u is Jensen η-semiconcave, then ω+
2 (u, t) ≤ 8tη∗(t), t ≥ 0.

Proof. (i) By Lemma 4.1(i) (with ω(t) = tη(t)), we obtain that (4.3) holds with

ω̃(t) = (2/t) · (t/2) · η(t/2) ≤ η(t), t ≥ 0,

and so u is Jensen η-semiconcave.
(ii) By Proposition 4.2, u is Jensen 4η∗-semiconcave. Using Lemma 4.1(ii) (with

ω̃ = 4η∗) and subadditivity of η∗ (see Lemma 3.4(ii),(iii)), we obtain

ω+
2 (u, t) ≤ t4η∗(2t) ≤ 8tη∗(t), t ≥ 0.

�

Now we are ready to prove the following theorem, which is more general and (for
some ω̃) sharper that Theorem CS.

Theorem 4.4. Let ω̃ ∈M and let D be a convex subset of a Banach spaces. Let u
be a continuous Jensen ω̃-semiconcave function on D. Then u is semiconcave with
the modulus

β∗(ρ) = 4
∞∑
k=0

ω̃∗

( ρ
2k

)
, ρ ≥ 0,

provided the right-hand side is finite.

Proof. Set ω̂ := 4ω̃∗. Then, by Proposition 4.2, the condition (4.1) of Theorem CS2
holds with ω̂ instead of ω̃. It is easy to see that if β∗ is finite, then β∗ ∈ M. Thus
the assertion of the theorem follows from Theorem CS2. �

We will need the following easy well-known estimates.

Lemma 4.5. Let h ≥ 0 be a nonincreasing function on (0,∞) and δ > 0. Then
(4.5)

1

2

∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
≤

∞∑
k=0

h

(
δ

2k

)
δ

2k+1
≤
∫ δ

0

h(u) du ≤
∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
.

Proof. Clearly

h

(
δ

2k

)
δ

2k+1
≤
∫ δ2−k

δ2−(k+1)

h(u) du ≤ h

(
δ

2k+1

)
δ

2k+1
.

Summing these inequalities, we obtain
∞∑
k=0

h

(
δ

2k

)
δ

2k+1
≤
∫ δ

0

h(u) du ≤
∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
.

So (4.5) follows, since

1

2

∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
=
∞∑
k=0

h

(
δ

2k

)
δ

2k+1
− h(δ)

δ

2
.

�

As a consequence, we easily obtain the following facts.
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Lemma 4.6. Let ω ∈ M2. Set ω̃(t) := (2/t)ω(t/2), t > 0 and ω̃(0) := 0. Then,
for each δ > 0,

(4.6)

∫ δ

0

ω(t)

t2
dt ≤

∞∑
k=0

ω̃

(
δ

2k

)
≤ 2

∫ δ

0

ω(t)

t2
dt.

Proof. Set h(t) := t−2ω(t), t > 0, and fix an arbitrary δ > 0. Then
∞∑
k=0

ω̃

(
δ

2k

)
=
∞∑
k=0

2k+1

δ
ω

(
δ

2k+1

)
=
∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
.

Since h is nonincreasing, (4.5) implies (4.6). �

Lemma 4.7. Let ω̃ ∈M1 and δ > 0. Then

(4.7)
1

2

∞∑
k=0

ω̃

(
δ

2k

)
≤
∫ δ

0

ω̃(t)

t
dt ≤

∞∑
k=0

ω̃

(
δ

2k

)
Proof. For the nonnegative nonincreasing function h(t) := ω̃(t)/t, we have

1

2

∞∑
k=0

ω̃

(
δ

2k

)
=
∞∑
k=0

h

(
δ

2k

)
δ

2k+1
and

∞∑
k=0

h

(
δ

2k+1

)
δ

2k+1
=
∞∑
k=0

ω̃

(
δ

2k+1

)
≤

∞∑
k=0

ω̃

(
δ

2k

)
,

and so (4.5) implies (4.7). �

Now we infer from Theorem CS2 the following generalization of Theorem M+,
which was mentioned in the introduction.

Theorem 4.8. Let u be a continuous function defined on a nonempty convex subset
D of a Banach space X and ∫ 1

0

ω+
2 (u, t)

t2
dt < ∞.

Then u is semiconcave on D with modulus

γ(δ) = 8

∫ δ

0

ω+
2 (u, t)

t2
dt.

Proof. By Lemma 3.1(iv) and Lemma 3.7(ii) we can choose ω ∈ M2 such that
ω+

2 (u, t) ≤ ω(t) ≤ 4ω+
2 (u, t), t ≥ 0. Set ω̃(t) := (2/t)ω(t/2), t > 0 and ω̃(0) := 0.

By Lemma 4.1 we obtain that, for every x, y ∈ D,

u(x) + u(y)− 2u

(
x+ y

2

)
≤ ‖x− y‖

2
ω̃(‖x− y‖).

By Lemma 4.6, we obtain, for δ > 0,
∞∑
n=0

ω̃

(
δ

2n

)
≤ 2

∫ δ

0

ω(t)

t2
dt ≤ 8

∫ δ

0

ω+
2 (u, t)

t2
dt = γ(δ).

So, using Theorem CS2, we obtain our assertion. �

Theorem 4.8 easily implies the following analogon of Theorem 4.4.
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Theorem 4.9. Let ω ∈M with
∫ 1

0
ω∗∗(t)
t2

dt < ∞. Let u be a continuous function
defined on a nonempty convex subset D of a Banach space X such that

ω+
2 (u, t) ≤ ω(t), t ≥ 0.

Then u is semiconcave on D with modulus

η(δ) = 32

∫ δ

0

ω∗∗(t)

t2
dt.

Proof. Since Lemma 3.7(i) implies ω+
2 (u, t) ≤ 4ω∗∗(t), t ≥ 0, we have

8

∫ δ

0

ω+
2 (u, t)

t2
dt ≤ 32

∫ δ

0

ω∗∗(t)

t2
dt = η(δ).

Using Theorem 4.8 we obtain our assertion. �

5. Sharpness

First we present an example of ω̃ ∈M for which Theorem CS is not sharp in any
sense.

Example 5.1. There exists a continuous ω̃ ∈ M such that any continuous Jensen
ω̃-semiconcave function on a convex subset of a Banach space is concave and

(5.1) β(ρ) :=
∞∑
k=0

ω̃(ρ2−k) =∞, ρ > 0.

Proof. First observe that we can inductively define an increasing sequence (kn)∞n=1

of natural numbers and a decreasing sequence (yn)∞n=1 of positive real numbers such
that k1 = 1, y1 = 1 and, for each n ∈ N,

(5.2) 2knyn+1 <
1

n
and

(5.3) (kn+1 − kn)yn+1 > 1.

Further we can clearly choose a continuous ω̃ ∈M such that

ω̃(2−i) = yn+1, whenever i ∈ N and kn ≤ i < kn+1.

Using (5.3), we obtain

∞∑
i=1

ω̃(2−i) =
∞∑
n=1

kn+1−1∑
i=kn

ω̃(2−i) =
∞∑
n=1

(kn+1 − kn)yn+1 =∞,

and (5.1) easily follows.
Fix t > 0. For each n such that 2−kn < t, the definition of ω̃∗ and (5.2) give

(5.4) ω̃∗(t) ≤
t

2−kn
ω̃(2−kn) = t2knyn+1 < t/n.

Therefore ω̃∗(t) = 0 and so Theorem 4.4 implies the concavity of u. �

Remark 5.2. Let us note that, for the above example, it is not necessary to use
Theorem 4.4, since it would be possible to use a result of [13] (see Theorem TT
in Section 9 below). In fact, that result easily implies that u is concave whenever
u is continuous Jensen ω̃-semiconcave and lim inft→0+ ω̃(t)/t = 0, and the latter
condition for our ω̃ holds by (5.4).
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Now we will consider sharpness of theorems from the preceding section. Our
results are based on the use of so called “extremal functions” (see [4, p. 203]),
which were applied in several articles which (essentially) concern the sharpness of
Marchaud-type theorems (cf. Section 8).

We need and define the extremal function ϕ for k = 2 only:

Definition 5.3. Let ω ∈ M2. Then we denote by ϕ = ϕω the odd function on R
for which

ϕ(x) := x

∫ x

1

ω(t)

t2
dt, x > 0.

It is easy to show (see [4, Lemma 4.2(i), p. 204]) that ϕ is continuous on R. More
difficult are the following inequalities:

(5.5) ω2(ϕ �[0,∞), t) ≤ 2ω(t), ω2(ϕ, t) ≤ 6ω(t), t ≥ 0.

The first inequality of (5.5) follows from [4, Theorem 4.2, p. 206] and the second one
then from [4, Theorem 1.1, p. 300] (cf. also [8], where slightly weaker inequalities
were proved and applied). We will use also the following “semiconcavity properties”
of ϕ.

Lemma 5.4. Let ω ∈M2 and ϕ be as in Definition 5.3. Then the following hold.

(i) If
∫ 1

0
ω(t)/t2 dt = ∞ and 0 < a < ∞, then the function ψ := ϕ �(−a,a) is

not semiconcave.
(ii) If

∫ 1

0
ω(t)/t2 dt <∞ and 0 < a <∞, then

(5.6) ηϕ�(0,a)
(δ) ≥ 1

2

∫ δ

0

ω(t)

t2
dt, 0 ≤ δ ≤ a.

Proof. To prove (i), observe that

ψ′+(0) = ϕ′+(0) = lim
x→0+

ϕ(x)

x
= lim

x→0+

∫ x

1

ω(t)

t2
dt = −∞.

Therefore Lemma 2.1(iii) implies that ψ is not semiconcave.
To prove (ii), first observe that

(5.7) lim
δ→0+

ω(δ)/δ = 0.

Indeed, since ω ∈ M2, we easily obtain
∫ δ

0
ω(t)/t2 dt ≥ δ · (ω(δ)/δ2), δ > 0, which

implies (5.7).
Now fix an arbitrary δ ∈ (0, a] and consider 0 < h < δ/2. For x > 0, we clearly

have ϕ′(x) =
∫ x

1
ω(t)/t2 dt+ ω(x)/x, and consequently

ϕ′(δ − h)− ϕ′(h) =

∫ δ−h

1

ω(t)/t2 dt+
ω(δ − h)

δ − h
−
∫ h

1

ω(t)/t2 dt− ω(h)

h
.

Therefore (2.4) gives

ηϕ�(0,a)
(δ) ≥ (1/2)(ϕ′(δ − h)− ϕ′(h)) ≥ (1/2)

(∫ δ−h

h

ω(t)/t2 dt− ω(h)

h

)
,

and so (5.7) easily implies (5.6). �

To prove sharpness results in multidimensional spaces, we will use a standard
construction via the following lemma.
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Lemma 5.5. Let D be a convex subset of a Banach space X, a ∈ D and v ∈ X
with ‖v‖ = 1. Let x∗ ∈ X∗ be a functional such that ‖x∗‖ = x∗(v) = 1. Let, for a
0 < d ≤ ∞, we have

S := {a+ tv : t ∈ [0, d] ∩ R} ⊂ D.

Let f be a continuous function on R and

f̃(x) := f(x∗(x)), x ∈ D.

Then the following assertions hold.

(i) ω+
2 (f̃ , t) ≤ ω+

2 (f, t), t ≥ 0.
(ii) Denoting I := x∗(S), then ηf̃ (t) ≥ ηf�I

(t), t ≥ 0.

Proof. To prove (i), fix an arbitrary t ≥ 0 and consider x ∈ X and h ∈ X with
‖h‖ ≤ t and x ∈ D ∩ (D − 2h). Then

f̃(x+ 2h)− 2f̃(x+ h) + f̃(x) = f(x∗(x) + 2x∗(h))− 2f(x∗(x) + x∗(h)) + f(x∗(x)),

i.e. ∆2
hf̃(x) = ∆2

x∗(h)f(x∗(x)). Since |x∗(h)| ≤ ‖h‖ ≤ t, (i) follows.

To prove (ii), observe that I = x∗(S) = [x∗(a), x∗(a) + d] if d ∈ R and I =
x∗(S) = [x∗(a),∞) if d =∞. Now fix an arbitrary t ≥ 0 and consider x, y ∈ I with
0 < |x − y| ≤ t. Let X, Y ∈ S be the points with x∗(X) = x, x∗(Y ) = y. Since
x∗(v) = 1, clearly ‖X − Y ‖ = |x− y| ≤ t and, for each λ ∈ (0, 1),

λf̃(X) + (1− λ)f̃(Y )− f̃(λX + (1− λ)Y )

λ(1− λ)‖X − Y ‖
=
λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)

λ(1− λ)|x− y|
.

Hence (ii) easily follows. �

Theorem 5.6. Let ω ∈M and let D be an infinite convex subset of a Banach space.
Then the following assertions are equivalent.

(i) If f is a continuous function on D with ω+
2 (f, t) ≤ ω(t), t ≥ 0, then f is

semiconcave on I.
(ii)

∫ 1

0
ω∗∗(t)
t2

dt < ∞.

Proof. The implication (ii) ⇒ (i) holds by Theorem 4.9.
Now suppose that (ii) does not hold. Choose a ∈ D, v ∈ X with ‖v‖ = 1 and

0 < d <∞ such that S := {a+ tv : t ∈ [0, d]} ⊂ D. By the Hahn-Banach theorem
we can choose x∗ ∈ X∗ with ‖x∗‖ = x∗(v) = 1. Let I := x∗(S) and ã := x∗(a);
clearly I = [ã, ã + d]. Set f(t) := ϕ(t − (ã + d/2)), t ∈ R, where ϕ = ϕω∗∗ is the
(extremal) function from Definition 5.3.

Further set f̃(x) := f(x∗(x)), x ∈ D. By Lemma 5.5(i), (2.3) and (5.5) we obtain

(5.8) ω+
2 (f̃ , t) ≤ ω+

2 (f, t) = ω+
2 (ϕ, t) ≤ 6ω∗∗(t), t ≥ 0.

Lemma 5.5(ii), (2.7) imply

(5.9) ηf̃ (t) ≥ ηf�I
(t) = ηϕ�[−d/2,d/2]

(t) ≥ ηϕ�(−d/2,d/2)
(t), t ≥ 0.

Therefore Lemma 5.4(i) (recall that ω∗∗ ∈ M2) implies that f̃ is not semiconcave

and so (2.6) implies that g := (1/6)f̃ is not semiconcave as well. Further (2.2) and
(5.8) imply ω+

2 (g, t) ≤ ω∗∗(t) ≤ ω(t), t ≥ 0. Consequently (i) does not hold and we
are done. �
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Theorem 5.7. Let ω ∈ M, η ∈ M and let D be an infinite convex subset of a
Banach space. Suppose that, for every continuous f on D, the condition ω+

2 (f, t) ≤
ω(t), t ≥ 0, implies that f is semiconcave with modulus η. Denote γ∗(δ) :=∫ δ

0
ω∗∗(t)
t2

dt. Then the following assertions hold.

(i) γ∗(δ) = O(η(δ)), δ → 0 + .
(ii) If D contains a ray, then η(δ) ≥ 1

12
γ∗(δ), 0 ≤ δ <∞.

(iii) If D is compact, then η(δ) ≥ 1
12
γ∗(δ), 0 ≤ δ ≤ diamD.

Proof. We can clearly choose a ∈ D, v ∈ X with ‖v‖ = 1 and 0 < d ≤ ∞ such that
S := {a + tv : t ∈ [0, d] ∩ R} ⊂ D. Moreover, we can suppose that d = ∞ if D
contains a ray and d = diamD if D is compact. By the Hahn-Banach theorem we
can choose x∗ ∈ X∗ with ‖x∗‖ = x∗(v) = 1. Let I := x∗(S) and ã := x∗(a). Set
f(t) := ϕ(t − ã), t ∈ R, where ϕ = ϕω∗∗ is the (extremal) function from Definition
5.3.

Further set f̃(x) := f(x∗(x)), x ∈ D. By Lemma 5.5(i), (2.3) and (5.5) we obtain

(5.10) ω+
2 (f̃ , t) ≤ ω+

2 (f, t) = ω+
2 (ϕ, t) ≤ 6ω∗∗(t), t ≥ 0.

Lemma 5.5(ii), (2.7) and Lemma 5.4(ii) (recall that ω∗∗ ∈M2) easily imply

(5.11) ηf̃ (δ) ≥ ηf�I
(δ) = ηϕ�[0,d]∩R(δ) ≥ 1

2
γ∗(δ), δ ∈ [0, d] ∩ R.

Set g := (1/6)f̃ . Using (5.11) and (2.6), we obtain ηg(δ) ≥ 1
12
γ∗(δ), δ ∈ [0, d] ∩ R.

Since (5.10) and (2.2) imply ω+
2 (g, t) ≤ ω∗∗(t) ≤ ω(t), t ≥ 0, the assumptions of the

theorem imply that g is η-semiconcave, and so

η(δ) ≥ ηg(δ) ≥
1

12
γ∗(δ), δ ∈ [0, d] ∩ R.

Consequently the assertions (i), (ii), (iii) hold. �

We will need below the following easy lemma.

Lemma 5.8. Let α, β ∈M, β(t) > 0 for t > 0, and α(t) = O(β(t)), t→ 0+. Then

(5.12) for each d > 0 there exists Cd > 0 such that α(t) ≤ Cdβ(t), 0 ≤ t ≤ d.

Further, if D is a bounded convex subset of a Banach space, then there exists C > 0
such that, for each function f on D, the following implications hold:

(i) f is α-semiconcave ⇒ f is Cβ-semiconcave.
(ii) ω+

2 (f, t) ≤ α(t), t ≥ 0 ⇒ ω+
2 (f, t) ≤ Cβ(t), t ≥ 0.

Proof. We will omit a (quite easy) proof of (5.12). If we set d := diamD and
C := Cd, then (i) clearly hold. Since ω+

2 (f, t) = ω+
2 (f, d) for t ≥ d, also (ii)

holds. �

Theorem 5.9. Let ω ∈ M, η ∈ M and let D be an infinite bounded convex subset

of a Banach space. Denote γ∗(δ) :=
∫ δ

0
ω∗∗(t)
t2

dt. Then the following assertions are
equivalent.

(i) For every continuous f on D, the condition ω+
2 (f, t) ≤ ω(t), t ≥ 0, implies

that f is (C1η)-semiconcave for some C1 = C1(η, f) > 0.
(ii) There exists C2 > 0 such that, for every continuous f on D, the condition

ω+
2 (f, t) ≤ ω(t), t ≥ 0, implies that f is (C2η)-semiconcave.

(iii) γ∗(δ) = O(η(δ)), δ → 0 + .
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Proof. The implication (ii)⇒ (i) is trivial.
To prove (iii) ⇒ (ii), suppose that (iii) holds. Consider an arbitrary continuous

f on D with ω+
2 (f, t) ≤ ω(t), t ≥ 0. Since γ∗ is finite by (iii), Theorem 4.9 implies

that f is (32 γ∗)-semiconcave. Since the case ω∗∗ ≡ 0 is trivial and ω∗∗ ∈ M2, we
can suppose that ω∗∗(t) > 0 for t > 0, and so (iii) implies that η(t) > 0 for t > 0.
Consequently, applying the second part of Lemma 5.8 with α := 32 γ∗ and β := η,
we easily obtain (ii).

To prove (i) ⇒ (iii), let a, v, d, S, x∗, I, ã, f , ϕ, f̃ , g be as in the proof of
Theorem 5.7. Then

(5.13) C1(η, g)η(δ) ≥ ηg(δ) ≥ (1/12)γ∗(δ), δ ∈ [0, d] ∩ R,
and (iii) follows. �

Quite similarly we obtain the following version.

Theorem 5.10. Let ω ∈M, η ∈M and let D be a convex subset of a Banach space

which contains a ray. Denote γ∗(δ) :=
∫ δ

0
ω∗∗(t)
t2

dt. Then the following assertions
are equivalent.

(i) For every continuous f on D, the condition ω+
2 (f, t) ≤ ω(t), t ≥ 0, implies

that f is (C1η)-semiconcave for some C1 = C1(η, f) > 0.
(ii) There exists C2 > 0 such that, for every continuous f on D, the condition

ω+
2 (f, t) ≤ ω(t), t ≥ 0, implies that f is (C2η)-semiconcave.

(iii) There exists C3 > 0 such that η(δ) ≥ C3γ
∗(δ), δ ≥ 0.

Proof. The implication (ii) ⇒ (i) is trivial and (iii) ⇒ (ii) follows clearly by The-
orem 4.9. The implication (i)⇒ (iii) follows as in the proof of Theorem 5.9. Note
that now d =∞, and so (5.13) implies (iii). �

Remark 5.11. It is well-known (see, e.g., [2]) that each convex unbounded D ⊂ Rn

(n ∈ N) contains a ray.

From the above results on the sharpness of Theorem 4.9, we easily infer analogous
results on the sharpness of Theorem 4.4. In the proofs we will use the following facts.

Observation. Let ω̃ ∈ M and let D be an infinite convex subset of a Banach
space. Set ω(t) := tω̃∗(t), t ≥ 0. Then ω ∈ M2 by Lemma 3.4(iii) and Lemma
3.6(iii), so ω∗∗ = ω by Lemma 3.4(iv) and therefore

(5.14)
ω∗∗(t)

t2
=
ω̃∗(t)

t
, t ≥ 0.

Further, let f be a continuous function on D. Then Corollary 4.3 implies that

(5.15) if ω+
2 (f, t) ≤ ω(t), t ≥ 0, then f is Jensen ω̃-semiconcave and

(5.16) if f is Jensen ω̃-semiconcave, then ω+
2 (f, t) ≤ 8ω(t), t ≥ 0.

Finally, denote β∗(δ) :=
∑∞

k=0 ω̃∗
(
δ
2k

)
and γ∗(δ) =

∫ δ
0
ω∗∗(t)
t2

dt =
∫ δ

0
ω̃∗(t)/t dt,

t ≥ 0. Then, since ω̃∗ ∈M1 by Lemma 3.4(iii), Lemma 4.7 implies

(5.17) (1/2)β∗(δ) ≤ γ∗(δ) ≤ β∗(δ).

Theorem 5.12. Let ω ∈ M and let D be an infinite convex subset of a Banach
space. Then the following assertions are equivalent.
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(i) If u is a continuous Jensen ω̃-semiconcave function on D, then u is semi-
concave on D.

(ii)
∑∞

k=0 ω̃∗
(

1
2k

)
< ∞.

(iii)
∫ 1

0
ω̃∗(t)
t

dt <∞.

Proof. Since ω̃∗ ∈ M1 by Lemma 3.4(iii), we have (ii) ⇔ (iii) by Lemma 4.7. The
condition (ii) clearly implies (i) by Theorem 4.4.

Now suppose that (i) holds. Set ω(t) := tω̃∗(t), t ≥ 0. If u is an arbitrary contin-
uous function on D with ω+

2 (u, t) ≤ ω(t), t ≥ 0, then u is Jensen ω̃∗-semiconcave by
(5.15), and consequently semiconcave by (i). Hence the assumption (i) of Theorem
5.6 holds, so condition (ii) of Theorem 5.6 (which is equivalent to (iii) by (5.14))
holds. �

Theorem 5.13. Let ω̃ ∈ M, η ∈ M and let D be an infinite convex subset of
a Banach space. Suppose that every continuous Jensen ω̃-semiconcave function on
D is η-semiconcave. Denote β∗(δ) :=

∑∞
k=0 ω̃∗

(
δ
2k

)
. Then the following assertions

hold.

(i) β∗(δ) = O(η(δ)), δ → 0 + .
(ii) If D contains a ray, then η(δ) ≥ (1/24)β∗(δ), 0 ≤ δ <∞.

(iii) If D is compact, then η(δ) ≥ (1/24)β∗(δ), 0 ≤ δ ≤ diamD.

Proof. Set ω(t) := tω̃∗(t), t ≥ 0. If u is an arbitrary continuous function on D with
ω+

2 (f, t) ≤ ω(t), t ≥ 0, then u is Jensen ω̃-semiconcave by (5.15), and consequently
u is semiconcave with modulus η by the assumption of the theorem. Thus the
assumption of Theorem 5.7 holds. Consequently, the assertion of Theorem 5.7 holds.
Using (5.17), we obtain (i), (ii) and (iii). �

Theorem 5.14. Let ω̃ ∈M, η ∈M and let D be an infinite bounded convex subset
of a Banach space. Denote β∗(δ) :=

∑∞
k=0 ω̃∗

(
δ
2k

)
. Then the following assertions

are equivalent.

(i) Every continuous Jensen ω̃-semiconcave function on D is (C1η)-semiconcave
for some C1 = C1(η, f) > 0.

(ii) There exists C2 > 0 such that every continuous Jensen ω̃-semiconcave func-
tion on D is (C2η)-semiconcave.

(iii) β∗(δ) = O(η(δ)), δ → 0 + .

Proof. Set ω(t) := tω̃∗(t), t ≥ 0. Using (5.15), (5.16), (5.17), (2.2) and (2.6), it is
easy to see that (i) (resp. (ii), resp. (iii)) is equivalent to (i) (resp. (ii), resp. (iii))
of Theorem 5.9. So Theorem 5.9 implies our theorem. �

By the same way Theorem 5.10 implies the following theorem.

Theorem 5.15. Let ω̃ ∈M, η ∈M and let D be a convex subset of a Banach space
which contains a ray. Denote β∗(δ) :=

∑∞
k=0 ω̃∗

(
δ
2k

)
. Then the following assertions

are equivalent.

(i) Every continuous Jensen ω̃-semiconcave function on D is (C1η)-semiconcave
for some C1 = C1(η, f).

(ii) There exists C2 > 0 such that every continuous Jensen ω̃-semiconcave func-
tion on D is (C2η)-semiconcave.

(iii) There exists C3 > 0 such that η(δ) ≥ C3β
∗(δ), δ ≥ 0.
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Remark 5.16. Lemma 4.7 implies that Theorems 5.13, 5.14 and 5.15 remain hold, if

we everywhere replace β∗(δ) by γ∗(δ) =
∫ δ

0
ω̃∗(t)/t dt.

6. For which η Jensen η-semiconcavity implies Cη-semiconcavity ?

We present two theorems; the first for an unbounded D and the second for a
bounded D.

Theorem 6.1. Let η ∈ M and let D be a convex subset of a Banach space which

contains a ray. Denote µ∗(δ) =
∫ δ

0
η∗(t)/t dt. Then the following assertions are

equivalent.

(i) Every continuous Jensen η-semiconcave function on D is (C1η)-semiconcave
for some C1 = C1(η, f) > 0.

(ii) There exists C2 > 0 such that every continuous Jensen η-semiconcave func-
tion on D is (C2η)-semiconcave.

(iii) There exists C3 > 0 such that η(δ) ≥ C3µ
∗(δ), δ ≥ 0.

(iv) There exists C4 > 0 such that η∗(δ) ≥ C4µ
∗(δ), δ ≥ 0.

Proof. Applying Theorem 5.15 and Remark 5.16 with ω̃ = η, we obtain (i)⇔ (ii)⇔
(iii).

Observe that if µ∗ is a finite function, then µ∗ ∈M1. Indeed, the function

ψ(δ) :=
µ∗(δ)

δ
=

1

δ

∫ δ

0

η∗(t)/t dt

is clearly nonincreasing on (0,∞), since the function t 7→ η∗(t)/t, t > 0 is nonin-
creasing (as η∗ ∈ M1 by Lemma 3.4(iii)). Consequently (µ∗)∗ = µ∗, which easily
implies (iii)⇔ (iv). �

Theorem 6.2. Let η ∈ M and let D be an infinite bounded convex subset of a

Banach space. Denote µ∗(δ) =
∫ δ

0
η∗(t)/t dt. Then the following conditions are

equivalent.

(i) Every continuous Jensen η-semiconcave function on D is (C1η)-semiconcave
for some C1 = C1(η, f) > 0.

(ii) There exists C2 > 0 such that every continuous Jensen η-semiconcave func-
tion on D is (C2η)-semiconcave.

(iii) µ∗(δ) = O(η(δ)), δ → 0 + .
(iv) µ∗(δ) = O(η∗(δ)), δ → 0 + .

If moreover η(t) > 0 for t > 0, then these conditons are equivalent to

(v) There exists K > 1 such that

lim inf
t→0+

η∗(Kt)

η∗(t)
> 1.

Proof. Applying Theorem 5.14 and Remark 5.16 with ω̃ = η, we obtain (i)⇔ (ii)⇔
(iii).

The argument from the proof of Theorem 6.1 gives (µ∗)∗ = µ∗, which implies
(iii) ⇔ (iv). Indeed, (iv) ⇒ (iii) is trivial. Further, if (iii) holds, then there exists
δ0 > 0 and K > 0 such that µ∗(δ) ≤ Kη(δ), 0 ≤ δ < δ0. So, by Definition 3.2(ii),
µ∗(δ) = (µ∗)∗(δ) ≤ (Kη)∗(δ) = Kη∗(δ), 0 ≤ δ < δ0, and consequently (iv) holds.

Finally, (iv)⇔ (v) follows from Lemma 3.11. �
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Remark 6.3. Both Theorem 6.1 and Theorem 6.2 remain hold, if we replace at
all places µ∗(δ) by ν∗(δ) :=

∑∞
k=0 η∗

(
δ
2k

)
. This follows easily from (4.7) (since

η∗ ∈M1).

Remark 6.4. Theorems 6.1 and 6.2, Remark 6.3, Lemma 3.4 and Remark 5.11 imply
that, if η ∈ M is nonzero concave, then the implication from question (Q2) in the
introduction holds if and only

(i) there exists K > 1 such that lim inft→0+ η(Kt)/η(t) > 1 in the case when
the domain D is an infinite bounded convex subset of a Banach space, and

(ii) there exists C > 0 such that η(δ) ≥ C
∫ δ

0
η(t)/t dt (respectively η(δ) ≥

C
∑∞

k=0 η(2−kδ)), δ ≥ 0, if D ⊂ Rn is an unbounded convex set.

7. Which properties of ω+
2 (f, ·) follow from η-semiconcavity of f ?

In preceding sections we studied the question when a property of ω+
2 (f, ·) or the

Jensen ω̃-semiconcavity of f implies semiconcavity of f .
Now we will address the converse question. In particular, we ask whether (when)

η-semiconcavity of f implies
∫ 1

0

ω+
2 (f,t)

t2
dt < ∞.

If f is η-semiconcave, then f is trivially Jensen η-semiconcave (see (1.4)), which
holds (by Lemma 4.1(ii)) if and only if ω+

2 (f, t) ≤ tη(2t), t ≥ 0. However, these
consequences are not the best possible; using Proposition 3.8 (or Proposition 4.2),
we obtain consequences which are the best possible (up a multiplicative constant).

Proposition 7.1. (i) Let D be a convex subset of a Banach space, η ∈ M,
and f an η-semiconcave function on D. Then

ω+
2 (f, t) ≤ 8tη∗(t), t ≥ 0.

(ii) If η ∈ M and a > 0, then there exists on I = [−a, a] an η∗-semiconcave
(and so also η-semiconcave) function f such that

(7.1) ω+
2 (f, t) ≥ (1/4)tη∗(t), 0 ≤ t ≤ a.

Proof. (i) It follows immediately from Corollary 4.3(ii).
(ii) By Lemma 3.4(iii) and Lemma 3.9 we can choose a concave ω ∈M such that

η∗ ≤ ω ≤ 2η∗. Let f be the even function on [−a, a] with f(x) = (1/4)
∫ x

0
ω(u) du,

x ∈ [0, a]. Clearly f ′(x) = (1/4) sgn(x)ω(|x|), x ∈ [−a, a]. Since ω is concave, it
is easy to check that f ′ is uniformly continuous with the modulus (1/4)ω both on
[0, a] and on [−a, 0], and consequently f ′ is uniformly continuous on [−a, a] with
modulus (1/2)ω. Consequently f is semiconcave with modulus (1/2)ω by Lemma
2.1(i),(ii). Since (1/2)ω ≤ η∗, we obtain that f is η∗-semiconcave. For 0 < t ≤ a we
clearly have ∆2

t (f,−t) = 2f(t) and so, using concavity of ω, we obtain

ω+
2 (f, t) ≥ 2f(t) = (1/2)

∫ t

0

ω(u) du ≥ (1/4)tω(t) ≥ (1/4)tη∗(t).

�

The following corollary is obvious.

Corollary 7.2. If η ∈M and a > 0, then there exists a function f semiconcave on
[−a, a] with modulus η such that

ω+
2 (f, t) � tη∗(t), t→ 0 + .
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Corollary 7.3. Let η ∈M and a > 0. Then the following are equivalent.

(i) If f is a function on I = [−a, a] which is semiconcave with modulus η, then∫ 1

0

ω+
2 (f,t)

t2
dt < ∞.

(ii)
∫ 1

0
η∗(t)
t

dt < ∞.

Proof. If (ii) holds, then (i) clearly follows by Proposition 7.1(i).
Further suppose that (ii) does not hold. Let f be a function from Proposition

7.1(ii). Then (7.1) clearly implies that (i) does not hold. �

Corollary 7.4. The condition
∫ 1

0

ω+
2 (f,t)

t2
dt < ∞ is not necessary for the semicon-

cavity of f on [−a, a] (a > 0).

Proof. It is easy to check that the function ϕ(t) = −(ln t)−1 is increasing and concave
on (0, e−2). We can clearly find a concave η ∈ M such that η = ϕ on (0, e−2).

Since η = η∗ by Lemma 3.4(i),(iv) and
∫ 1

0
η(t)
t

dt = ∞, Corollary 7.3 gives our
assertion. �

Proposition 7.5. (i) Let D be a convex subset of a Banach space, η ∈ M,
and f an η-semiconcave function on D. Then f is Jensen 4η∗-semiconcave.

(ii) Let η ∈ M, ω̃ ∈ M and a > 0. Let, for each function f on I = [−a, a],
η-semiconcavity of f implies Jensen ω̃-semiconcavity. Then

(1/8)η∗(t) ≤ ω̃(t), 0 ≤ t ≤ 2a.

Proof. Property (i) follows from (1.4) and Proposition 3.8 (or Proposition 4.2).
To prove (ii), we find by Proposition 7.1(ii) an η∗-semiconcave function f on I

such that ω+
2 (f, t) ≥ (1/4)tη∗(t), 0 ≤ t ≤ a. Since f is η-semiconcave, it is Jensen

ω̃-semiconcave, and so ω+
2 (f, t) ≤ tω̃(2t), t ≥ 0, by Lemma 4.1(ii). Consequently

(1/4)tη∗(t) ≤ tω̃(2t) for 0 ≤ t ≤ a. Since η∗ is subadditive by Lemma 3.4(ii),(iii),
η∗(t) ≥ (1/2)η∗(2t). So (1/8)tη∗(2t) ≤ tω̃(2t) for 0 ≤ t ≤ a and our assertion
follows. �

Note that assertion (ii) shows that (on [−a, a]) both Proposition 3.8 and Propo-
sition 4.2 are the best possible (up a multiplicative constant).

8. Semi-Zygmund classes

There exist several works which (essentially) concern the sharpness of Marchaud-
type theorems (in particular Theorem M from the introduction). The corresponding
theorems were formulated as relations between generalized Hölder (Lipschitz) classes
W rHϕ

k (J) (for different r,k,ϕ); see [4, p. 247]. Closely related results, which concern
(generalized) Zygmund spaces Λϕ([−1, 1]n) were proved in [8, pp. 30,31]. Here
Λϕ([−1, 1]n) (ϕ ∈M) is the set of all bounded functions on [−1, 1]n for which

ω2(f, h) ≤ Cϕ(h), h ≥ 0, for some C > 0.

For J := [−1, 1], we have Λϕ(J) = W 0Hϕ
2 (J) = Hϕ

2 and so, for n = 1, results of
[8, pp. 30,31] follow from [4, Theorem 7, p. 247 and Corollary 7.2, p. 251]. These
results concern inclusions between spaces

Λω(J), C1,η(J), C1(J),

where ω ∈ M2, η ∈ M1, and f ∈ C1,η(J) iff f ∈ C1(J) and f ′ is uniformly
continuous with modulus Cη for some C > 0, .
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The results of preceding sections easily imply analogous results on inclusions be-
tween classes

Λ+
ω (D), Sη(D), S(D),

where D is an infinite bounded convex subset of a Banach spaces and, if f is a
function on D, then by definition

(i) f ∈ Λ+
ω (D) if ω+

2 (f, h) ≤ C ϕ(h), h ≥ 0, for some C > 0,
(ii) f ∈ Sη(D) if f is Cη-semiconcave for some C > 0 and

(iii) f ∈ S(D) if f is semiconcave.

It is natural to label classes Λ+
ω (D) as semi-Zygmund classes.

As in [4], we will consider only the case of functions on a compact interval in
R. So we fix a > 0 and, in the rest of the section, we set Λ+

ω := Λ+
ω ([−a, a]),

Sη := Sη([−a, a]) and S := S([−a, a]).
Observe that Lemma 3.8 and Lemma 3.7(i) imply that, for every ω, η ∈M,

Sη = Sη∗ and Λ+
ω = Λ+

ω∗∗ .

Therefore (using Lemma 3.4(iv)) we can (and will, as is usual in the “smooth re-
sults”) in the study of systems Sη and Λ+

ω suppose that η ∈ M1 and ω ∈ M2,
respectively.

Proposition 8.1. Let ω ∈M2. Then

Λ+
ω ⊂ S ⇔

∫ 1

0

ω(u)

u2
du <∞.

Proof. Since ω∗∗ = ω by Lemma 3.4(iv), both implications easily follow from Theo-
rem 5.6. �

Proposition 8.2. Let η ∈M1 and ω ∈M2. Then

Λ+
ω ⊂ Sη ⇔

∫ t

0

ω(u)

u2
du = O(η(t)), t→ 0 + .

Proof. Since ω∗∗ = ω by Lemma 3.4(iv), both implications easily follow from Theo-
rem 5.9. �

Proposition 8.3. Let η ∈M1 and ω ∈M2. Then

Sη ⊂ Λ+
ω ⇔ t η(t) = O(ω(t)), t→ 0 + .

Proof. First note that η = η∗ by Lemma 3.4(iv).
To prove “⇒”, suppose Sη ⊂ Λ+

ω . By Proposition 7.1(ii) we can choose f ∈ Sη such
that t η(t) = O(ω+

2 (f, t)), t→ 0 + . Since f ∈ Λ+
ω , we have ω+

2 (f, t) = O(ω(t)), t→
0+, and so t η(t) = O(ω(t)), t→ 0+, follows.

To prove “⇐”, suppose that t η(t) = O(ω(t)), t→ 0+, and consider an arbitrary
f ∈ Sη. By Proposition 7.1(i) there exists M > 0 such that ω+

2 (f, t) ≤Mtη(t), t ≥
0. Applying Lemma 5.8 to α(t) = Mtη(t), t ≥ 0, and β = ω, we obtain f ∈ Λ+

ω . �

Theorem 8.4. Let η ∈ M1 and ω ∈ M2. Then the following conditions are
equivalent.

(i) Sη = Λ+
ω .

(ii) tη(t) = O(ω(t)), t→ 0+, and
∫ t

0
ω(u)
u2 du = O(η(t)), t→ 0 + .

(iii) tη(t) � ω(t), t→ 0+, and
∫ t

0
η(u)
u

du � η(t), t→ 0+.

(iv) tη(t) � ω(t), t→ 0+, and
∫ t

0
ω(u)
u2 du � ω(t)

t
, t→ 0 + .
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If moreover η(t) > 0 for t > 0, then these conditions are quivalent to

(v) ∃K > 1 : lim inft→0+
η(Kt)
η(t)

> 1 and tη(t) � ω(t), t→ 0 + .

Proof. Propositions 8.2 and 8.3 immediately imply (i)⇔ (ii).
To prove (ii)⇒ (iii), suppose that (ii) holds. Since the function ω(u)/u2 is nonin-

creasing, we have
∫ t

0
ω(u)
u2 du ≥ (ω(t)/t2) · t, and consequently ω(t)/t = O(η(t)), t→

0+, which with the first relation of (ii) clearly implies tη(t) � ω(t), t → 0+. Con-

sequently
∫ t

0
η(u)
u

du �
∫ t

0
ω(u)
u2 du = O(η(t)), t → 0 + . Since the function η(u)/u is

nonincreasing, we have

(8.1)

∫ t

0

η(u)

u
du ≥ (η(t)/t) · t = η(t), t > 0.

The above estimates give the second relation of (iii), and so (iii) holds.
The proofs of (iii)⇔ (iv) and (iii)⇒ (ii) are obvious.
Finally, (iii)⇔ (v) follows by Lemma 3.11 and (8.1). �

9. Connection to α(·)-midconvex functions

In this last short section we present some results concerning α(·)-midconvex func-
tions which follow from our results. The following definition is a non-essential mod-
ification of [13, Definition 1.1].

Definition 9.1. Let α : [0,∞) → [0,∞) be a nondecreasing function and D be a
convex subset of a Banach space. A function f : D → R is called α(·)-midconvex if

(9.1) f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ α(‖x− y‖), x, y ∈ D.

The authors of [13] investigate properties of α(·)-midconvex functions. Let us
note that in [13]

(i) the condition limt→0+ α(t) = 0 is not assumed and
(ii) also discontinuous α(·)-midconvex functions are studied.

It is easy to see that (9.1) is equivalent to ∆2
(y−x)/2(−f, x) ≤ 2α(‖x−y‖), x, y ∈ D,

and consequently to

(9.2) ω+
2 (−f, t) ≤ 2α(2t), t ≥ 0.

Therefore, if α ∈M, Lemma 3.7 has the following consequence.

Proposition 9.2. Let α ∈ M and D be a convex subset of a Banach space. Then
every α(·)-midconvex function on D is a 4α∗∗(·)-midconvex function.

Proof. Set ω(t) := 2α(2t), t ≥ 0. Let f be an α(·)-midconvex function on D. Then
(see (9.2)) ω+

2 (−f, t) ≤ ω(t), t ≥ 0, and Lemma 3.7 gives ω+
2 (−f, t) ≤ 4ω∗∗(t), t ≥ 0.

Since ω∗∗(t) = 2α∗∗(2t) by Lemma 3.6(ii), we have

ω+
2 (−f, t) ≤ 2(4α)∗∗(2t), t ≥ 0,

and so f is a 4α∗∗(·)-midconvex function. �

The above result shows that, if α ∈ M, some known results on α(·)-midconvex
functions (e.g. [13, Theorem 3.1]) have immediate consequences which can (if α /∈
M2) improve original results, since 4α∗∗ can be essentially smaller than α.
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As a concrete application of Proposition 9.2, we will present an alternative proof
of the following result which is essentially contained in [13, Theorem 5.1] (the case
A = 0).

Theorem TT. Let α : [0,∞)→ [0,∞) be a nondecreasing function for which

(9.3) lim inf
r→0+

α(r)

r2
= 0.

Let D be a convex subset of a Banach space X and f an α(·)-midconvex function on
D such that, for each line L in X with L ∩D 6= ∅, the restriction f �L∩D is locally
bounded at each point of L ∩D. Then f is convex on D.

Proof. Condition (9.3) clearly implies that α ∈M and

α∗∗(t) = t2 · inf
{
α(u)/u2 : 0 < u ≤ t

}
= 0, t ∈ (0,∞).

Hence Proposition 9.2 implies that f is midconvex (= Jensen convex) on D. There-
fore each function

fx,v : t 7→ f(x+ tv), x+ tv ∈ D, where x ∈ D, v ∈ X, ‖v‖ = 1,

is midconvex and locally bounded on its domain Dx,v (which is an interval or a
singleton). Consequently the Bernstein-Doetsch theorem (see [13, p. 656] for the
formulation and references) implies that each fx,v is convex on the interior of Dx,v.
Since fx,v is midconvex, a straightforward elementary argument gives that fx,v is
convex. Consequently, f is convex. �
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