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Abstract. Moduli of path families are widely used to mark curves
which may be neglected for some applications. We introduce ordi-
nary and approximative modulus with respect to Banach function
spaces. While these moduli lead to the same result in reflexive
spaces, we show that there are important path families (like paths
tangent to a given set) which can be labeled as negligible by the
aproximative modulus with respect to the Lorentz Lp,1–space for
an appropriate p, in particular, to the ordinary L1–space if p = 1,
but not by the ordinary modulus with respect to the same space.

1. Introduction

For p ≥ 1 the Mp–modulus of a curve family Γ in Rn, n ≥ 1, is
defined as

Mp(Γ) = inf

∫
Rn
ρp dx

where the infimum is taken over all non–negative Borel functions ρ such
that ∫

γ

ρ ds ≥ 1

for every curve γ ∈ Γ.
The Mp–modulus is used in the theory of function spaces. B. Fu-

glede [5] showed that a function u in the Sobolev space W 1,p(Rn) is
not only absolutely continuous on almost every line segment parallel
to a coordinate axis but satisfies

(1) |u(γ(b))− u(γ(a))| ≤
∫
γ

|∇u| ds

for every curve γ : [a, b]→ Rn except for a family of Mp–modulus zero.
In a metric measure space X, the inequality (1) has been taken as a
defining property to create the Newtonian space N1,p(X), which has
many properties similar to W 1,p(Rn), see [15], [6] and [2]. Due to the
conformal invariance, the Mn–modulus has turned out to be a basic
tool to study conformal and quasiconformal mappings in Rn.

The approximative modulus, AMp–modulus, is defined as

AMp(Γ) = inf
(ρi)

lim inf
i→∞

∫
Rn
ρpi dx
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where the infimum is taken over all sequences (ρi) of Borel functions
ρi : Rn → [0,∞] such that

lim inf
i→∞

∫
γ

ρi ds ≥ 1

for every γ ∈ Γ. The AM1–modulus was introduced in [13] to study
functions of bounded variation in Rn and in metric measure spaces.

The purpose of the paper is to study an analog of the Mp– and AMp–
modulus in the more general framework of Banach function spaces than
in the Lp–spaces. We introduce MF modulus and AMF modulus for
an arbitrary Banach function space F . The moduli in Lebesgue scale
are obtained as Mp = Mp

Lp and AMp = AMp
Lp .

Although we are mostly concerned in distinction between M and
AM moduli, we first study when they are equal.

Theorem 1. Let X be a metric measure space and F be a reflexive
Banach function space on X. Then

(2) MF(Γ) = AMF(Γ).

for every curve family Γ in X. In particular,

Mp(Γ) = AMp(Γ) if 1 < p <∞.

To find situation in which M and AM moduli differ, we must turn
our attention to nonreflexive spaces. Besides L1 and L∞, the most
important examples of nonreflexive Banach function spaces are the
Lorentz spaces Lp,1(Rn) and their duals. Note that L1 is just the limi-
ting case p = 1, indeed L1,1(Rn) = L1(Rn). We focus our attention to
the Lorentz spaces Lp,1(Rn) rather than to their duals, as the spaces
Lp,1(Rn) are intimately connected with Hausdorff measures, see [9],
[10], [8]. We prove the following theorem:

Theorem 2. Let 1 ≤ p ≤ n. Then there exists a curve family Γ in Rn

such that

(3) AMLp,1(Γ) = 0 but MLp,1(Γ) =∞.

In particular, if n ≥ 1, then there exists a curve family Γ in Rn such
that

(4) AM1(Γ) = 0 but M1(Γ) =∞.

In the course of proofs of Theorem 2 and related results, we construct
various curve families which are self-interesting. Let E ⊂ Rn. We
denote the family of all curves γ which meet E by Γ(E). Already
this family can distinguish between AM and M moduli. However,
to construct examples in which AMLk,1(Γ) = 0 < MLk,1(Γ), we need
slightly more sofisticated, but important families:
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Definition 1. Let X be a metric space and E ⊂ X. We define Γi(E)
as the family of all rectifiable curves γ which meet E infinitely times,
this means that the set {t : γ(t) ∈ E} is infinite.

Definition 2. If E is an (n−k)-dimensional C1 surface in Rn, we say
that γ is right tangential to E if there exists t such that γ(t) ∈ E and
γ′+(t) belongs to the tangent space Tγ(t)(E). The family of all right
tangential curves to E is denoted by Γt(E).

Then we can state the following theorems:

Theorem 3. Let 1 ≤ k ≤ n− 1 and E ⊂ Rn be an (n−k)-dimensional
C1 surface. Then

(5)
AMLk,1(Γt(E)) = AMLk,1(Γi(E)) = 0,

but MLk,1(Γt(E)) = MLk,1(Γi(E)) =∞.
In particular, if the dimension of E is n−1, then

(6)
AM1(Γt(E)) = AM1(Γi(E)) = 0,

but AM1(Γt(E)) = AM1(Γi(E)) =∞.

Note that estimate (6) has applications to the fine setting of the
Stokes theorem, see [7].

We prove our results in a broader generality than indicated in The-
orems above. Namely, we can formulate most results in the setting
of metric measure spaces. Also, there are other versions of tangential
behavior and, in particular, we present versions of tangential behavior
in the setting of metric spaces.

2. Preliminaries

First, we introduce Banach function spaces as in [1].

Definition 3. Let (X, ν) be a measure space, let M+ be the cone
of all ν-measurable functions on X with values in [0,∞]. A mapping
Ξ :M+ → [0,∞] is called a (Banach) function norm if, for all f, g, fn ∈
M+, for all a ≥ 0 and for all ν-measurable sets E ⊂ X, it holds

(1) Ξ(f) = 0 ⇔ f = 0 ν-a. e.; Ξ(af) = aΞ(f); Ξ(f + g) ≤ Ξ(f) +
Ξ(g);

(2) 0 ≤ g ≤ f ν-a. e.⇒ Ξ(g) ≤ Ξ(f);
(3) 0 ≤ fn ↑ f ν-a. e.⇒ Ξ(fn) ↑ Ξ(f);
(4) ν(E) <∞⇒ Ξ(χE) <∞;
(5) ν(E) <∞⇒

∫
E
f dν ≤ CEΞ(f) for CE depending on E and ν.

Definition 4. Let M be the set of all extended scalar-valued ν-mea-
surable functions on X. Let Ξ be a function norm. The collection F
of all functions inM for which Ξ(|f |) <∞ is called a Banach function
space. We define a norm on F by

‖f‖F = Ξ(|f |).
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Important examples of Banach function spaces are provided by the
scale of Lorentz spaces.

Definition 5. Let (X, ν) be a σ-finite measure space and 1 ≤ p, q ≤
∞. The Lorentz space Lp,q = Lp,q(X, ν) consists of all ν-measurable
functions f with finite values ν-a.e. for which the quantity

‖f‖Lp,q =


{∫∞

0
[t

1
pf ∗(t)]q dt

t

} 1
q
, q ∈ [1,∞),

supt∈(0,∞)

{
t
1
pf ∗(t)

}
, q =∞,

is finite. Here f ∗ is the decreasing rearrangement

f ∗(t) = inf {s > 0: ν({x ∈ X : |f(x)| > s}) ≤ t} .

We present there some basic properties of Lorentz spaces. For details,
see [1, Chapter 4.4].

The expression ‖ · ‖Lp,q is a genuine norm (after identifying functions
which are equal a.e.) if 1 ≤ q ≤ p; for 1 < p < q it is equivalent to a
genuine norm.

The spaces Lp,1(X, ν) and Lp
′,∞(X, ν) are in duality, in particular,

the Hölder type inequality

(7)

∫
X

fg dν ≤ ‖f‖Lp,1 ‖g‖Lp′,∞

holds.
It is easy to compute that the Lp,q-norm of a characteristic function

of a measurable set E is c ν(E)1/p for some constant c = c(p, q), we
need that c(p, 1) = p.

In typical situations (like in Rn with the Lebesgue measure), the
spaces Lp,q(X, ν) are reflexive if and only if 1 < p, q <∞; the reflexivity
part follows from the characterization of the dual space in [1, Corollary
4.4.7], the nonreflexivity part can be derived from [1, Corollary 1.4.4]
and [14, Theorem 9.5.]

The Lebesgue spaces Lp(X, ν) are included in the scale of Lorentz
spaces as Lp(X, ν) = Lp,p(X, ν), p ∈ [1,∞].

For 1 ≤ p ≤ ∞ and 1 ≤ q ≤ s ≤ ∞, we have the embedding

‖f‖Lp,s ≤ C‖f‖Lp,q , f ∈ Lp,q(X, ν).

Definition 6. In what follows, we restrict ourselves to rectifiable cur-
ves, which will be called paths. So, a path will be a non-constant
Lipschitz continuous mapping γ : [a, b] → X. Every path can be pa-
rametrized by its arclength and we assume that it is done so if not
specified otherwise. The domain of γ will be [0, `], where ` = `(γ) is
the total length of γ.

Note that the curvelinear integral∫
γ

ρ ds =

∫ `(γ)

0

ρ(γ(t)) dt
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is well defined whenever γ is a path and ρ is a non-negative Borel
function on X.

Now, we can define a modulus and approximative modulus with
respect to a Banach function space F .

Definition 7. Let (X, ν) be a metric space with a Borel regular mea-
sure ν. Let F be a Banach function space on X and Γ a family of paths
in X. A Borel measurable function ρ : X → [0,∞], is called admissible
for Γ if

∫
γ
ρ ds ≥ 1 for every γ ∈ Γ. Define the F -modulus of Γ as

MF(Γ) = inf{‖ρ‖F : ρ is admissible for Γ}
where the infimum is taken over all admissible function for Γ.

Remark 1. In case of F = Lp(Rn), p > 1, the F -modulus and the stan-
dard p-modulus are almost the same – the only difference is that the p-
modulus uses the p-th-power of the Lp-norm, i.e. Mp(Γ) = (MLp(Γ))p.
In particular, the zero families are the same. For p = 1 the moduli are
obviously exactly the same.

Definition 8. Let (X, ν) be a metric space with a Borel regular mea-
sure ν. Let F be a Banach function space and Γ a family of paths
in X. A sequence of non–negative Borel functions ρi : X → [0,∞] is
admissible for Γ if

lim inf
i→∞

∫
γ

ρi ds ≥ 1

for every γ ∈ Γ. The approximative F -modulus of Γ is defined as

AMF(Γ) = inf(lim inf
i→∞

‖ρi‖F)

where the infimum is taken over all admissible sequences (ρi) for Γ.

3. Basic properties

In this section, we show some basic properties of F -modulus and
approximative F -modulus. The ideas are analogous to [5] and [13].

Remark 2. It holds that AMF(Γ) ≤ MF(Γ). It is easy to see this
inequality because if ρ is admissible for Γ, then ρi = ρ, i = 1, 2, . . . , is
admissible for Γ and

AMF(Γ) ≤ ‖ρ‖F .
Taking infimum over all admissible ρ, the assertion follows.

Theorem 4. The F-modulus is an outer measure on the set of paths
in X, i. e.

MF(∅) = 0;(8)

Γ1 ⊂ Γ2 ⇒ MF(Γ1) ≤ MF(Γ2);(9)

MF(
∞⋃
j=1

Γj) ≤
∞∑
j=1

MF(Γj).(10)
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Proof. The property (8) is obvious since ρ = 0 is admissible for the emp-
ty set.

Similarly, (9) follows from the fact that each admissible function
for Γ2 is also admissible for Γ1.

The inequality (10) is a bit more complicated. Assume that

∞∑
j=1

MF(Γj) <∞.

Fix ε > 0. For every j we can choose an admissible function ρj such
that

‖ρj‖F ≤ MF(Γj) + 2−jε.

Define ρ(x) = supj ρj(x). Obviously, as ρj ≤ ρ, the function ρ is
admissible for

⋃∞
j=1 Γj. Moreover, ρ ≤

∑∞
j=1 ρj.

Then, using [1, Theorem 1.6],

MF(
∞⋃
j=1

Γj) ≤ ‖ρ‖F ≤ ‖
∞∑
j=1

ρj‖F ≤
∞∑
j=1

‖ρj‖F ≤

≤
∞∑
j=1

(
MF(Γj) + 2−jε

)
=
∞∑
j=1

MF(Γj) + ε.

Letting ε→ 0, (10) follows. �

Theorem 5. The approximative F-modulus is an outer measure on
the set of paths in X, i. e.

AMF(∅) = 0;(11)

Γ1 ⊂ Γ2 ⇒ AMF(Γ1) ≤ AMF(Γ2);(12)

AMF(
∞⋃
j=1

Γj) ≤
∞∑
j=1

AMF(Γj).(13)

Proof. The assertions (11) and (12) are obvious as in the previous proof.
To prove (13), assume that

∑∞
j=1 AMF(Γj) <∞. Then fix ε > 0 and

for each j = 1, 2, . . . pick an admissible sequence (ρji )
∞
i=1 for Γj such

that

(14) ‖ρji‖F ≤ AMF(Γj) + 2−jε

for every i = 1, 2, . . . .
Set ρi =

∑∞
j=1 ρ

j
i . Then ρi is admissible for Γ =

⋃∞
j=1 Γj as if γ ∈ Γ,

then there exists j0 such that γ ∈ Γj0 and

lim inf
i→∞

∫
γ

ρi ds = lim inf
i→∞

∫
γ

∞∑
j=1

ρji ds ≥ lim inf
i→∞

∫
γ

ρj0i ds ≥ 1.
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Now, using [1, Theorem 1.6] we can estimate

AMF(Γ) ≤ lim inf
i→∞

‖ρi‖F = lim inf
i→∞

∥∥∥ ∞∑
j=1

ρji

∥∥∥
F
≤ lim inf

i→∞

∞∑
j=1

‖ρji‖F ≤

≤
∞∑
j=1

(
AMF(Γj) + 2−jε

)
=
∞∑
j=1

AMF(Γj) + ε.

Letting ε→ 0, we obtain (13). �

Definition 9. A set of paths Γ2 is minorised by Γ1 if for every path
γ ∈ Γ2 there exists a subpath of γ in Γ1. It is denoted as Γ1 < Γ2.

Proposition 1. If Γ1 < Γ2, then MF(Γ2) ≤ MF(Γ1).

Proposition 2. If Γ1 < Γ2, then AMF(Γ2) ≤ AMF(Γ1).

Proof. For both theorems, the proofs are easy and similar. If ρ ∈ F
(ρi ∈ F respectively) is admissible for Γ1, it is admissible for Γ2 too.
Thus a set of admissible functions for Γ2 is the same or larger then for
Γ1 and the infimum over a larger set is smaller or the same. �

Proposition 3. Let Γ be a family of paths in X. Then MF(Γ) = 0 if
and only if there is an admissible sequence (ρi) for Γ such that

(15) lim inf
i→∞

‖ρi‖F = 0.

Proof. If MF(Γ) = 0, then there exist admissible functions ρi such that
‖ρi‖F ≤ 1

i
for each i = 1, 2, . . . and this is the required sequence.

For the other direction, let (ρi) be as in (15). We can choose a
subsequence (ωi) of (ρi) such that ‖ωi‖F ≤ 2−i−1ε for i = 1, 2, . . . .

Now define ρ =
∑∞

i=1 ωi. Since (ωi) is admissible for Γ, there exists
k ∈ N such that for all i ≥ k it holds that

∫
γ
ωi ds ≥ 1

2
. We can use

the Lebesgue monotone convergence theorem to infer that∫
γ

ρ ds =
∞∑
i=1

∫
γ

ωi ds =∞ > 1

and thus ρ is admissible for Γ.
Using again [1, Theorem 1.6], we get

MF(Γ) ≤ ‖ρ‖F ≤
∞∑
i=1

‖ωi‖F ≤ ε.

Letting ε→ 0, MF(Γ) is zero as desired. �

Remark 3. The zero set of AMF -modulus can be a set of positive MF -
modulus only if (15) fails for any admissible sequence (ρi), i.e. there
exists no minimizing sequence (ρi).

The following lemma is a version of Fuglede’s theorem [5, Theorem
3(f)] adapted to the setting of Banach functions spaces.
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Lemma 1. If a sequence ρj ∈ F converges strongly in F to ρ, then
there is a subsequence ρj such that for almost every path

lim
j→∞

∫
γ

|ρ− ρj| ds = 0

except for a set of paths of a zero F-modulus.

Remark 4. Since the approximative F -modulus is smaller, the lemma
holds for approximative F -modulus, too.

Proof. We can choose a subsequence ρj such that ‖ρ − ρj‖F < 2−2j.
Denote

Γj =
{
γ :

∫
γ

|ρ− ρj| ds > 2−j
}
,

Ψk =
⋃
j>k

Γj, Ψ =
⋂
k

Ψk.

The function 2j|ρ− ρj| is admissible for Γj, thus

MF(Γj) ≤ 2j‖ρ− ρj‖F < 2−j.

By Theorem 4, for every k ∈ N, we have

MF(Ψ) ≤ MF(Ψk) ≤
∑
j>k

MF(Γj) < 2−k.

Since the previous inequality holds for every k, MF(Ψ) = 0. For every
γ /∈ Ψ there exists an index k such that γ 6∈ Ψk, i.e.

∫
γ
|ρ−ρj| ds ≤ 2−j

for every j > k. Hence

lim
j→∞

∫
γ

|ρ− ρj| ds = 0.

�

The next theorem is also due to Fuglede [5, Theorem 2]. We omit
the proof; it is easy to observe that Fuglede’s argument holds also in
the setting of Banach function spaces. The idea is also clear from the
(more complicated) proof of Theorem 7.

Theorem 6. Let Γ be a family of paths in X. Then MF(Γ) = 0 if and
only if there is a non–negative Borel function ρ ∈ F(X) such that

(16)

∫
γ

ρ ds =∞

for each γ ∈ Γ.

For the AMF–modulus, there is also a corresponding result.

Theorem 7. Let Γ be a family of paths in X. Then AMF(Γ) = 0 if
and only if there is a sequence (ρ̃i) of non–negative Borel functions ρ̃i
such that

(17) lim inf
i→∞

‖ρ̃i‖F <∞
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and for each γ ∈ Γ

(18) lim
i→∞

∫
γ

ρ̃i ds =∞.

Proof. The conditions (17) and (18) are clearly sufficient to show that
AMF(Γ) = 0. For the converse, suppose that AMF(Γ) = 0 and let
ε > 0. For each j ∈ N, we can choose a sequence (ρji )i such that (ρji )i
is admissible for Γ and

(19) ‖ ρji ‖F≤ 2−j

for each i and j. For every i set

ρ̃i =
∞∑
j=1

ρji

Then [1, Theorem 1.6] and (19) yield

‖ ρ̃i ‖F≤
∞∑
j=1

‖ ρji ‖F≤
∞∑
j=1

2−j = 1

and this gives (17).
It remains to show that (ρ̃i) satisfies (18). Fix a path γ ∈ Γ and let

k ∈ N. Since each sequence (ρji )i is admissible for Γ, there is i0 such
that for i ≥ i0 ∫

γ

ρji ds > 1/2

for j = 1, 2, ... , k. Now∫
γ

ρ̃i ds ≥
k∑
j=1

∫
γ

ρji ds ≥ k/2

for i ≥ i0 and hence

lim inf
i→∞

∫
γ

ρ̃i ds ≥ k/2.

Letting k →∞ we obtain

lim
i→∞

∫
γ

ρ̃i ds =∞

as required. �

Remark 5. The left hand part of (17) can be made arbitrarily small.
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4. Truncation

Here we consider a phenomenon which clarifies the difference between
the MF– and AMF–modulus.

Let Γ be a family of paths in X. We say that a family ΓT is a truncated
family associated with Γ if Γ ⊂ ΓT and for each γ ∈ Γ, ΓT contains
some family of arbitrary short subpaths of γ. Note that there are many
truncated families associated with Γ.

Theorem 8. If Γ is a family of paths in X with MF(Γ) > 0, then
MF(ΓT ) =∞ for every truncated family ΓT associated with Γ.

Proof. Assume that MF(Γ) <∞. Let ρ ∈ F(X) be admissible for ΓT .
Then ρ is admissible for Γ as well and hence there is a path γ ∈ Γ such
that

(20)

∫
γ

ρ ds <∞

because if ∫
γ

ρ ds =∞

for every γ ∈ Γ, then MF(Γ) = 0 by the Fuglede Theorem 6 which
is a contradiction. Now the absolute continuity of integral shows that
ρ is not admissible for ΓT since the path γ in (20) contains paths of
arbitrary small length and we can find a subpath γ̃ of γ such that∫
γ̃
ρ ds < 1. The theorem follows. �

Remark 6. Note that Theorem 8 is not true for the AMF–modulus in
general. This is an important difference between these two concepts.

Remark 7. As the following section shows, the MF – and AMF –
modulus are the same for every reflexive space F , and thus the property
of Theorem 8 transmits to the AMF modulus in reflexive spaces. In
particular, it holds for the AMp–modulus, 1 < p <∞.

5. Equivalence of Moduli in Reflexive Spaces

In this section, we will prove that F -modulus and approximative
F -modulus are the same if the space F is reflexive. In particular,
Theorem 1 shows that Mp-modulus and AMp-modulus are the same
for 1 < p <∞.

Proof of Theorem 1. Since AMF(Γ) ≤ MF(Γ) by Remark 2, it is enough
to prove the reverse inequality.

We may assume that AMF(Γ) <∞.
Let δ > 0. Find an admissible sequence (ρi) for Γ such that

(21) lim inf
i→∞

‖ρi‖F ≤ AMF(Γ) + δ.

Since the space F is reflexive and the sequence (ρi) is bounded, by [16,
Section V.2, Theorem 1], there exist ρ ∈ F and a subsequence of (ρi),
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denoted again by (ρi), such that ρi → ρ weakly in F and satisfies (21).
This subsequence is still admissible for Γ. Since ρi → ρ weakly in F ,
by the Mazur lemma [16, Section V.1, Theorem 2], for each k ∈ N,
there exists a convex combination νk of ρk, ρk+1, . . . such that

‖νk − ρ‖F < 1/k.

By Lemma 1, a subsequence, denoted again by (νk), satisfies∫
γ

νk ds→
∫
γ

ρ ds

for every γ ∈ Γ ⊂ Γ, where MF(Γ \ Γ) = 0. Let γ ∈ Γ. Then by
convexity, ∫

γ

νk ds ≥ inf
i≥k

∫
γ

ρi ds, k = 1, 2, . . . ,

so that ∫
γ

ρ ds = lim
k→∞

∫
γ

νk ds ≥ lim inf
i→∞

∫
γ

ρi ds = 1.

It follows that ρ is admissible for Γ. Then by Fatou Lemma [1, Lemma
1.5],

MF(Γ) ≤ ‖ρ‖F ≤ lim inf
i→∞

‖ρi‖F ≤ AMF(Γ) + δ.

Letting δ → 0, we obtain MF(Γ) ≤ AMF(Γ). Since MF(Γ \ Γ) = 0, we
conclude that

MF(Γ) ≤ AMF(Γ).

�

6. Estimates of approximative modulus

In this section we assume that the measure ν is doubling.

Definition 10. For 0 ≤ q let

coM q(E) = lim inf
t→0

ν({x ∈ X : d(x,E) < t})
tq

denote the lower Minkowski content of codimension q of the set E ⊂ X.
By coHq(E) we denote the Hausdorff measure of codimension q of E
defined as

coH q(E) = sup
δ>0

coH q
δ(E)

where for δ > 0

coH q
δ(E) = inf

{ ∞∑
j=1

ν(B(xj, rj))

rqj
: E ⊂

∞⋃
j=1

B(xj, rj), sup
j
rj < δ

}
is the δ–content associated with coHq(E).

It easily follows from the 5–covering lemma, see e.g. [2, Lemma 1.7],
that coHq(E) ≤ c0 coM q(E) where c0 depends only on the doubling
constant of ν.
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Definition 11. We say that a path γ : [0, `(γ)]→ X has a meeting of
order α > 0 with a set E ⊂ X if

lim
δ→0

|{s ∈ [0, `(γ)] : d(γ(s), E) < δ}|
δ1/α

=∞.

Here |A| stands for the Lebesgue measure of A ⊂ R.

Theorem 9. Suppose that coM q(E) < ∞ and that Γ is a family of
paths in X such that each γ ∈ Γ has a meeting of order α with E. Then
AMLp,1(Γ) = 0 provided that 1 ≤ p ≤ αq.

Proof. Pick first a sequence 1 ≥ δ1 > δ2 > ... such that limi→∞ δi = 0
and for some M <∞

ν({x ∈ X : d(x,E) < δi})
δqi

≤M.

Let ε > 0 and for i = 1, 2, ... let

ρi = εδ
−1/α
i χE(δi)

where E(t) = {x ∈ X : d(x,E) < t}. Then

‖ρi‖Lp,1(X) = εδ
−1/α
i p (ν(E(δi)))

1
p .

We show that the sequence (ρi) is admissible for Γ.
To this end, fix γ ∈ Γ. Since γ has a meeting of order α with E,

there is i0 such that

ε |{s ∈ [0, `(γ)] : d(γ(s), E) < δi}| ≥ δ
1/α
i .

for i ≥ i0. Now for i ≥ i0∫
γ

ρi ds = εδ
−1/α
i |{s ∈ [0, `(γ)] : d(γ(s), E) < δi}| ≥ 1,

and so the sequence (ρi) is admissible for Γ.
Since p/α ≤ q and since (ρi) is admissible for Γ, we can use the

sequence (ρi) to obtain

AMLp,1(Γ) ≤ lim inf
i→∞

‖ρi‖Lp,1(X) ≤ ε lim inf
i→∞

p ν(E(δi))
1/p

δ
1/α
i

≤ ε lim inf
i→∞

(
ν(E(δi))

δqi

)1/p

≤M1/pε.

Since M is independent of ε, we have AMLp,1(Γ) = 0 as required. �

Remark 8. The above theorem is not true if the the lower Minkowski
content of codimension q is replaced by the Hausdorff measure of codi-
mension q. Easy examples can be constructed by adding a countable
set to the set E. This has no effect on coHq(E) but the meeting prop-
erty holds for a much larger family Γ of paths than before and so the
condition AMp(Γ) = 0 need not hold for p ≤ αq.
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Corollary 1. Let E ⊂ Rn be an (n−k)-dimensional C1 surface, k ∈
{1, 2, . . . , n}, and Γ be a family of paths such that each γ ∈ Γ has a
meeting of order 1 with E. Then AMLk,1(Γ) = 0.

Proof. Obviously, for each compact part K of E, coM k(K) <∞. Now,
we can use the countable subadditivity of the approximative modulus
(Theorem 5). �

Proposition 4. Let E ⊂ X and Γi(E) be as in Definition 1. Then
each γ ∈ Γi(E) has a meeting of order 1 with E.

Proof. Choose m ∈ N and pick distinct points t1, . . . , tm ∈ (0, `(γ))
such that γ(ti) ∈ E, i = 1, . . . ,m. Find δ > 0 such that the intervals
(ti − δ, ti + δ), i = 1, . . . ,m, are pairwise disjoint and contained in
(0, `(γ)). Let 0 < s < δ. Then for each i = 1, . . . ,m and t ∈ (ti−s, ti+
s) we have d(γ(t), E) < s due to the 1-Lipschitz property of γ. Hence

|{t ∈ [0, `(γ)] : d(γ(t), E) < s}| ≥ 2ms.

Letting m→∞ we obtain the assertion. �

Corollary 2. Let E ⊂ X and coM p(E) <∞. Then AMLp,1(Γi(E)) =
0.

Remark 9. If we replace the assumption coM p(E) <∞ by coH p(E) <
∞, it can be proved that AMLp(Γi(E)) = 0, see [7]. Thus, for p = 1
the conclusion of Corollary 2 can be obtained under a weaker assump-
tion, whereas for p > 1 the conclusion is also weaker (Lebesgue spaces
instead of Lorentz spaces).

Definition 12. For E ⊂ X we define

Γτ (E) =
{
γ ∈ Γ(E) : lim

t→0+

d(γ(t), E)

t
= 0
}
.

Remark 10. If γ is right tangential in the sense of Definition 2, then
there is a subpath of γ in Γτ (E).

Proposition 5. Let E ⊂ X and γ ∈ Γτ (E). Then γ has a meeting of
order 1 with E.

Proof. Choose m ∈ N and find δ > 0 such that

0 < t < δ =⇒ d(γ(t), E) ≤ t

m
.

Let s < δ
m

. Then for each t ∈ (0,ms) we have t < δ and d(γ(t), E) ≤ s.
Thus,

|{t ∈ [0, `(γ)] : d(γ(t), E) < s}| ≥ ms.

Letting m→∞ we obtain the assertion. �

The converse of Proposition 5 is not true. For example, consider the
set E = (−∞,∞)× {0} in R2 and the curve γ with locus

[0, 1]× {0} ∪ ∪∞i=1{2−i} × [0, 2−i].
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Corollary 3. Let coM q(E) < ∞. Then AMLp,1(Γτ (E)) = 0 provided
that 1 ≤ p ≤ q.

Corollary 4. Let k ∈ {1, . . . , n− 1} and E be an (n− k)-dimensional
C1 surface in Rn. Then

AMLk,1(Γi(E)) = AMLk,1(Γt(E)) = AMLk,1(Γτ (E)) = 0.

7. Density-tangential curves

In this section, X will be a metric space with a doubling measure ν.
We derive an estimate which will be needed in applications (see [7]).
We are able to handle sets of finite Hausdorff measure, but the result
does not seem to extend easily to Lorentz spaces.

Definition 13. Let µ be a finite Borel measure on X, x ∈ X and
τ > 0. We denote

Rτ (x, µ) = inf{r > 0: rµ(B(x, r))} ≥ τν(B(x, r))}.
We say that γ is τ -density tangential to µ if

lim
t→0+

Rτ (γ(t), µ)

d(γ(t), γ(0))
= 0.

Remark 11. Typically µ is the Hausdorff measure of codimension 1
restricted to some set E.

Theorem 10. Let Γµ,τ be the family of all paths which are τ -density
tangential to µ. Then AM1(Γµ,τ ) = 0.

Proof. Consider the family of all balls B(x, r) with the property that
rµ(B(x, r)) ≥ τν(B(x, r)) and 0 < r ≤ 1

k
. Using the Vitali type

theorem, there exists a disjointed subsystem {B(xki , r
k
i )}i of this family

such that

Fk :=
{
x ∈ X : Rτ (x, µ) ≤ 1

k

}
⊂
⋃
i

B(xki , 5r
k
i ).

Set

ρk(x) =
∑
i

χB(xki ,6r
k
i )

rki
.

Using the doubling property of ν we estimate∫
X

ρk dν =
∑
i

ν(B(xki , 6r
k
i ))

rki
≤ C

∑
i

ν(B(xki , r
k
i ))

rki

≤ C
∑
i

µ(E ∩B(xki , r
k
i )) ≤ Cµ(X).

Pick γ ∈ Γµ,τ . Choose m ∈ N and find δ > 0 such that

(22) 0 < t < δ =⇒ Rτ (γ(t), µ)

d(γ(t), γ(0))
<

1

20m
.
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Choose T < δ such that d(γ(T ), γ(0)) > 0. Find km such that 20m
km

<

d(γ(T ), γ(0)). Let k ≥ km. Find 0 < t1 < · · · < tm such that

d(γ(tj), γ(0)) =
20j

k
, j = 1, . . . ,m.

By (22),

Rτ (γ(tj), µ) <
1

20m
d(γ(tj), γ(0)) =

20j

20mk
≤ 1

k
.

Thus, for each j it holds that γ(tj) ∈ Fk and there exists i(j) such that

γ(tj) ∈ B(xki(j), 5r
k
i(j)).

Since rki ≤ 1
k

and the mutual distance of γ(tj) is estimated below by 20
k

,

the indices i(j) are distinct. The path γ travels in each B(xki(j), 6r
k
i(j))

at least distance rki(j) and thus∫
γ

ρk ≥ m, k ≥ km.

By Theorem 7 it follows that AM1(Γµ,τ ) = 0. �

8. Estimates of M-modulus

In this section we assume thatX is locally compact and ν is doubling.
We first recall some notions from analysis on metric measure spaces,

see [2], [6].
A Borel measurable function ρ : X → [0,∞] is said to be an upper

gradient to u : X → R if

|u(y)− u(x)| ≤
∫
γ

ρ ds

for each x, y ∈ X and each path γ connecting x to y.
Let B = B(z,R) be a ball and E ⊂ B. We say that a function

u : X → R is a cap-competitor for (E,B) if u ≥ 1 on E and u = 0 on
X \B. The Newtonian-Lorentz NLp,1 norm of a ν-measurable function
u : X → R is defined by

‖u‖NLp,1 := ‖u‖Lp,1 + inf
{
‖ρ‖Lp,1 : ρ is an upper gradient to u

}
.

The Newtonian-Lorentz NLp,1-capacity of a set E ⊂ B is defined as

capNLp,1(E;B) = inf
{
‖u‖pNLp,1 : u is a cap-competitor for (E,B)

}
.

Theorem 11. Let p ≥ 1 and let E be a subset of a relatively compact
ball B ⊂ X with capNLp,1(E,B) > 0. Then MLp,1(X)(Γi(E) ∩ Γτ (E)) =
∞.
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Proof. Let ρ ∈ Lp,1(B), ρ ≥ 0, be a lower semicontinuous function. We
may assume that ρ is bounded away from 0. For x ∈ B, let Γx be the
family of all paths γ : [0, `] → B such that γ(0) = x, γ(`) /∈ B and
γ((0, `)) ⊂ B. Set

u(x) = inf
{∫

γ

ρ ds : γ ∈ Γx

}
.

Let x, xi ∈ B be such that xi → x and supi u(xi) < ∞. Consider a
sequence (γi) such that γi ∈ Γxi and∫

γi

ρ ds < u(xi) + 2−i.

Then, as ρ is bounded away from zero, the lengths of γi are bounded
and we can reparametrize these paths to be defined on the same in-
terval with a bounded Lipschitz constant. Then by the Arzela-Ascoli
argument, we can find a subsequence converging to a limit path γ such
that (as ρ is lower semicontinuous)∫

γ

ρ ds ≤ lim inf
i

∫
γi

ρ ds ≤ lim inf
i

u(xi).

Hence the function u is lower semicontinuous. Also we easily verify that
ρ is an upper gradient of u. Assume first that u =∞ on E ∩ B(z,R).
Then all the functions u/j serve as cap-competitors for (E,B) and it
follows that capNLp,1(E,B) = 0, a contradiction. Thus, there exists
y ∈ E such that, under the notation above, u(y) < ∞. We can find a
path parametrized by its arc length γ : [0, `] → X, γ(0) = y such that∫
γ
ρ ds <∞.

Now, we can construct a path γ̃ ∈ Γi(E) ∩ Γτ (E). The path γ̃ has
the same locus as the path γ but goes to γ(0) infinitely often and has,
at the same time, the required tangential property.

Find a sequence δm ↘ 0 such that

δ1 = `,

and

(23)
∞∑
m=1

m

∫ δm

0

ρ(γ(t)) dt <∞.

Let qm be positive integers such that

(24) qm ≥
δm
δm+1

.

Set
tm =

∑
n>m

(2n+ 2)δn, m = 0, 1, 2, . . . ,

hm =
δm
qm
, m = 1, 2, . . .
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Our plan is to find the new curve γ̃ as

γ̃(t) = γ(ξ(t)), t ∈ [0, ˜̀],

where

˜̀= t0 =
∞∑
n=1

(2n+ 2)δn

and ξ : [0, ˜̀]→ [0, `] is defined as follows. Fix m ∈ N and set

ξ(tm−1 − s) = s, 0 ≤ s ≤ δm.

Now, we define ξ on [tm, tm−1 − δm] to be linear on each

[tm + (i− 1)hm, tm + ihm], i = 1, . . . , (2m+ 1)qm

and attaining the values

ξ(tm + ((k − 1)(2m+ 1) + 2j)hm) = (k − 1)hm,

ξ(tm + ((k − 1)(2m+ 1) + (2j + 1))hm) = khm,

}
j = 1, . . . ,m,

k = 1, . . . , qm.

For completeness we set ξ(0) = 0. Observe that |ξ′| = 1 at all points
except for the partition ones, so that γ̃ is parametrized by its arclength.

Since γ̃(tm) = γ(0) = y for each m ∈ N, we verify that γ̃ ∈ Γi(E).
Next, we want to show that γ̃ is tangential according to the definition

of Γτ (E). This reduces to the property

(25) lim
t→0+

ξ(t)

t
= 0.

Let t ∈ [tm, tm−1] Then (using (24))

ξ(t)

t
≤

t−tm
2m+1

+ hm

t− tm + (2m+ 3)δm+1

≤ 1

2m+ 1

which tends to 0 as m→∞ and (25) is verified.
By (23) ∫

γ̃

ρ ds =
∞∑
m=1

(2m+ 2)

∫ δm

0

ρ(γ(t)) dt <∞.

Making γ̃ shorter, we can achieve that
∫
γ̃
ρ ds < 1 and still γ̃ ∈

Γi(E)∩ Γτ (E), so that ρ is not admissible for Γi(E)∩ Γτ (E). We have
shown that there does not exist any lower semicontinuous admissible
function for Γi(E)∩Γτ (E) in Lp,1(X). Since admissible functions for a
curve family can be approximated by lower semicontinuous admissible
functions, it follows that

MLp,1(X)(Γi(E) ∩ Γτ (E)) =∞.
�

Corollary 5. Let k ∈ {1, . . . , n} and E ⊂ Rn be a (n−k)-dimensional
C1 surface. Then MLk,1(Γt(E) ∩ Γi(E)) =∞.
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Remark 12. In Euclidean spaces, the Newtonian-Lorentz capacity
capNLp,1 is just the Sobolev-Lorentz capacity. By [10, Theorem 8.19
and Corollary 9.6],

(26) Hn−p
∞ (E) ≤ C capNLp,1(E), E ⊂ Rn.

A similar estimate holds also in metric measure spaces satisfying the
(1, 1)-Poincaré inequality [8], see also [12]. For the Newtonian-Lorentz
capacity see also [3] and [11].

9. Estimates of modulus: smooth tangential paths

In this section we provide an elementary proof of Corollary 5. In fact,
we prove a stronger assertion, as the paths considered in the proof of
Theorem 11 are not smooth. Since null sets for the modulus in consi-
deration are obviously invariant with respect to smooth deformations,
we may consider that our surface is flat.

Definition 14. Let E ⊂ Rn be a C1 surface and Tx(E) denote the
tangent space to E at a point x ∈ E. Then Γs(E) is the family of all
paths γ : [0, `]→ Rn which are C1-smooth in [0, `] and satisfy

γ′+(0) ∈ Tγ(0)(E).

Definition 15. Let k ∈ {1, . . . , n} and

Hn−k = {x = (x1, . . . , xn) ∈ Rn : xn−k+1 = · · · = xn = 0}.
Define Dk = Hn−k ∩Bn(0, 1).

Theorem 12. Let k ∈ {1, . . . , n−1}. Then MLk,1(Rn)(Γs(Dk)) =∞.

Proof. Write x ∈ Rn as x = (y, z), where y ∈ Rn−k and z ∈ Rk. Denote

Bk = Bk(0, 1),

Bn−k = Bn−k(0, 1),

Sk−1 = ∂Bk,

P = Bn−k ×Bk.

Then Dk = Bn−k × {0k},
|z| = d((y, z), Dk) in P

and a routine calculation shows that the function

(y, z) 7→ |z|1−k

belongs to Lk
′,∞(P ) = (Lk,1(P ))∗. Pick ρ ∈ Lk,1(Rn). Then the duality

argument (see (7)) yields∫∫
P

ρ(y, z)|z|1−k dy dz <∞.

Find a continuous function f : [0,∞)→ R such that

(27) lim
t→0+

f(t)

tk−1
= 0,
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and still

(28)

∫∫
P

ρ(y, z)

f(|z|)
dy dz <∞.

Further assume that

(29)

∫ 1

0

sk−1

f(s)
ds <∞

and

(30) 0 ≤ f(t) ≤ tk−1, t ≥ 0.

Let β : [0, 1]→ R be the positive solution of the initial value problem

(31)
β′(t) =

(
β(t)

)1−k
f(β(t)),

β(0) = 0.

The existence of such a solution is guaranteed by (29). By (30), we
have 0 ≤ β′(t) ≤ 1. Thus we may set

(32) α(t) =

∫ t

0

√
1− (β′(s))2 ds, t ∈ [0, 1].

Given y ∈ Bn−k and ζ ∈ Sk−1, set

γy,ζ(t) = (y + α(t)e1, β(t) ζ), t ∈ [0, 1],

where
e1 = (1, 0, . . . , 0).

By (32), each γy,ζ is parametrized by its arclength and from (27) and
(31) it follows that γy,ζ ∈ Γs(Dk). We consider the transformation
of variables

(ỹ, z̃) = Φ(y, z) = γy, z|z| (|z|),
so that

Φ(y, tζ) = (y + α(t)e1, β(t) ζ), y ∈ Bn−k, ζ ∈ Sk−1, t ∈ (0, 1).

Then

Φ′(y, z) =

(
I, F
0, A

)
,

where I is the (n− k)× (n− k) unit matrix, F is a (n− k)× k matrix
and A is the derivative of the radial deformation

z 7→ β(|z|) z
|z|
.

Now the Jacobian determinant JΦ of Φ has the form

JΦ(y, z) = det(A) =
(β(|z|)
|z|

)k−1
β′(|z|)

Using (31) we obtain

|z|1−k =
JΦ(y, z)

f(|β(z)|)
.
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It follows∫
Bn−k

(∫
Sk−1

(∫
γy,ζ

ρ ds
)
dHk−1(ζ)

)
dy

=

∫
Bn−k

(∫
Sk−1

(∫ 1

0

ρ
(
y + α(t)e1, β(t)ζ

)
dt
)
dHk−1(ζ)

)
dy

=

∫
Bn−k

(∫ 1

0

(∫
Sk−1

ρ
(
y + α(t)e1, β(t)ζ

)
dHk−1(ζ)

)
dt
)
dy

=

∫
Bn−k

(∫ 1

0

(∫
∂Bk

ρ
(
Φ(y, tζ)

)
dHk−1(ζ)

)
dt
)
dy

=

∫
Bn−k

(∫ 1

0

(
t1−k

∫
∂Bk(0,t)

ρ
(
Φ(y, ξ)

)
dHk−1(ξ)

)
dt
)
dy

=

∫
Bn−k

(∫
Bk

|z|1−kρ
(
Φ(y, z)

)
dz
)
dy

=

∫
Bn−k

(∫
Bk

ρ
(
Φ(y, z)

) JΦ(y, z)

f(|β(z)|)
dz
)
dy

=

∫∫
Bn−k×Bk

ρ(ỹ, z̃)

f(|z̃|)
dỹ dz̃ <∞,

where the last integral is finite by (28). Therefore there must exist
(y, z|z|) ∈ Bn−k × Sk−1 such that∫

γy, z|z|

ρ ds <∞.

If we truncate the domain of γy, z|z| , we obtain a subpath γ̃y, z|z| ∈ Γs(Dk)

such that ∫
γ̃y, z|z|

ρ ds < 1.

Therefore there is no admissible function for Γs(Dk) in Lk,1(P ). We
conclude that

MLk,1(Rn)(Γs(Dk)) =∞.
�

Remark 13. In contrast to Corollary 5, this result does not hold for
k = n.

10. Comparison results

In this section, we show that in some instances, AM -modulus gives
other results than the corresponding M -modulus. We prove Theorems
2 and 3 from the introduction.

Proof of Theorem 3. The assertion is a mere combination of Corollary
4 and Corollary 5. �
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To show examples for p noninteger, we seek for a fractal set E in Rn

such that
0 < capNLp,1(E) and coM p(E) <∞.

By (26), the capacitary inequality is verified whenever Hn−p(E) > 0.
(See Remark 12 which clarifies the situation.) On the other hand, for
the simplest examples of sets with

Hn−p(E) <∞
it also holds that coMp(E) < ∞, but it is not easy to find a proof in
literature. Thus, we look for a fractal set K with

0 < Hn−p(K) <∞
but the upper Hausdorff measure estimate must be refined to an esti-
mate of the Minkowski content.

Definition 16. Let 0 < λ < 1. Let K0 be the unit interval [0, 1]. If
Km is a disjointed union of 2m intervals Im1 , . . . I

m
2m of length 2rm =(

1
2
(1−λ)

)m
, we produce Km+1 by removing a concentric open interval

of length 2λrm from each Imi . The resulting fractal

K =
⋂
m

Km

is called the middle λ Cantor set.

Lemma 2. [4, Example 4.5, Proposition 7.1] Let K be the middle λ
Cantor set, Kn be the Cartesian product of n copies of K and

(33) s =
log 2

log( 2
1−λ)

.

Then Hns(Kn) > 0.

Lemma 3. Let K be the middle λ Cantor set and s be as in (33).
Then coMn−ns(Kn) <∞.

Proof. Let 0 < r < 1 and find m such that rm+1 ≤ r < rm. If xmi are
the centers of Imi , then

{x ∈ Rn : d(x,Kn) < r} ⊂
(2m⋃
i=1

(xmi − rm − r, xmi + rm + r)
)n

and thus

|{x ∈ Rn : d(x,Kn) < r}| ≤ (2m+1(rm+ r))n ≤ (2m+2rm)n . (1−λ)nm,

whereas

rn−ns ≥ r
n(1−s)
m+1 &

(
1
2
(1− λ)

)nm(1−s)
= (1− λ)nm.

Here symbols ., & mean inequalities up to a positive multiplicative
constant independent of m. Now

|{x ∈ Rn : d(x,Kn) < r}|
rn−ns

≤ c
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where the constant c is independent of r and letting r → 0 we see that
coMn−ns(Kn) <∞ as required. �

Proof of Theorem 2. Let K be the middle λ Cantor set and s be given
by (33). If λ is chosen so that ns = n−p and E = Kn, then coM p(E) <
∞ and coH p(E) > 0. By Corollary 2, (26) and Theorem 11,

AMLp,1(Γi(E)) = 0 but MLp,1(Γi(E)) =∞.

�
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[10] J. Malý, D. Swanson, and W. P. Ziemer. Fine behavior of functions whose
gradients are in an Orlicz space. Studia Math., 190(1):33–71, 2009.
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