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Abstract. This paper aims to investigate the Hessian of second
order Sobolev isometric immersions below the natural W 2,2 set-
ting. We show that the Hessian of each coordinate function of a
W 2,p, p < 2, isometric immersion satisfies a low rank property in
the almost everywhere sense, in particular, its Gaussian curvature
vanishes almost everywhere. Meanwhile, we provide an example of
a W 2,p, p < 2, isometric immersion from a bounded domain of R2

into R3 that has multiple singularities.

1. Introduction

An isometric immersion of an n-dimensional domain to Rn+m is a
mapping which preserves length of any curve that passes through each
point in its domain and angles between any two of them. Precisely, it
is defined as a Lipschitz mapping u that satisfies Du>Du = In×n al-
most everywhere. The graph of such a mapping is called a flat surface,
meaning it is isometrically equivalent to a flat domain. It is well-known
in differential geometry since the end of 19th century that a smooth
surface in R3 which is isometrically equivalent to the plane is devel-
opable: following the terminology of [7], it means that passing through
any point on the surface there is a line segment lying on that sur-
face. This terminology is used to indicate that it is developed from the
plane without any stretching or compressing. In the mid-20th century,
striking developments appeared showing that the rigidity or flexibility
of isometric immersion relies heavily on the regularity of the surface.
Among them there was the surprising work of Nash [14] and Kuiper
[9], where they established the existence of a C1 isometric embedding
of any Riemannian manifold into another manifold of one higher di-
mension, in particular, balls of arbitrarily small radius. As a contrast,
Hartman and Nirenberg [5] showed that any C2 isometric immersion
has its image as a developable surface. Even stronger result below C2

regularity has been obtained by Pogorelov [17], [16], where the key
assumption is that the image under the gradient map has vanishing
Lebesgue measure.

Key words and phrases. Isometric immersions; degenerate Monge-Ampère equa-
tion; Hessian determinant.
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In the 21th century, due to its important role in nonlinear elasticity,
analysts start looking into isometric immersions of Sobolev regularity.
The natural setting are the intermediate classes between C1 and C2:
the second order Sobolev spaces. A first positive results in this direc-
tion was due to Kirchheim [8] who proved that any W 2,∞ function f
in a bounded domain in R2 with almost everywhere vanishing Hessian
determinant must be 1-developable. Following this method, Pakzad
[15] improved W 2,∞ to W 2,2 and applied this result to the rigidity of
isometric immersions from a bounded domain of R2 into R3. Pakzad’s
generalization relies on an important observation: such an isometric
immersion satisfies the property that the determinant of the Hessian of
each coordinate function vanishes in the L1 sense, or, vanishes as a mea-
sure. Liu and Pakzad [11] generalized this result to isometric immersion
from a bounded domain in Rn into Rn+1, still under W 2,2 regularity
assumption, based on the same observation that such a map has all the
2 × 2 minors of the Hessian of each coordinate function vanishing in
the L1 sense, or again, as a measure. Therefore, it is natural to expect
that W 2,2 is the lowest Sobolev regularity for an isometric immersion
to be developable and this is indeed the case. Consider, for example,

when n = 2, the map u(r cos θ, r sin θ) := ( r
2

cos(2θ), r
2

sin(2θ),
√

3
2
r),

which sends the unit disc to the cone in R3 with a singularity at the
origin: it is an isometric immersion of class W 2,p, p < 2, but it fails
to be affine on any of the line segments passing through the origin.
More generally, Jerrard and Pakzad [7] proved that any W 2,p isometric
immersion of co-dimension m,m ∈ {1, ..., n− 1} is weakly (n−m+ 1)-
developable whenever p ≥ m. Roughly speaking, weak developability
allows for a point to belong to two m-dimensional hyperplanes, along
each of which the gradient of the isometry f is Hm a.e. constant, but
the corresponding values of ∇f do not meet, see [7] for the precise
definition. Again, their first step was to prove that such an isometric
immersion of co-dimension k has all the m×m minors of the Hessian
of each coordinate function vanishing as an L1 function. However, it is
worth pointing out that in their proof, W 2,2 regularity was enough to
obtain that all these m×m minors vanish almost everywhere. It is the
W 2,m assumption that excludes the possibility of them being singular
measures.

Motivated by the result of [7], Liu and Malý [10] constructed a
strictly convex function of Sobolev class W 2,p, p < m, whose Hes-
sian has rank strictly less than m almost everywhere for any m ∈
{1, ..., n − 1}. In particular, it is not affine on any line segment, a
strong contrast to Jerrard and Pakzad’s result. In fact, our original
intention was to construct a more “complicated” example of isometric
immersion than the cone with a singularity at the origin. However,
counterexamples for Sobolev isometric immersion with second order
Sobolev differentiability are extremely difficult to construct. In fact it
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has been wondering since Pakzad’s result in 2004 [15] whether there
exists an example of W 2,p, p < 2, isometric immersion of a flat domain
in R2 into R3 that has more than one singularity (The exact meaning
of the notion of singularity in this context will be defined soon). In re-
cent years, using the technique of convex integration, there have been
successful constructions of C1,α isometric immersions for some α > 0
into higher dimensional spaces with the same Nash-Kuiper flexibility
(in particular, they are nowhere affine). We refer the readers to the
pioneering work of Conti, De Lellis and Székelyhidi [2] for α < 1/3
and a series of work by De Lellis, Székelyhidi and others for higher and
higher α. The convex integration technique, to our knowledge, does
not apply in the framework of W 2,p for any p due to the fact that it
blows up the second order derivative uniformly. For a map to be in
W 2,p for any p, the blowing up must be concentrated.

The strictly convex Sobolev function constructed in [10], even though
not an example of isometric immersions, is a related one, as connected
by our first result:

Theorem 1.1. Let Ω be a domain in Rn and let u = (u1, ..., un+m) ∈
W 2,1(Ω,Rn+m), m ∈ {1, ..., n − 1}, be an isometric immersion. Then
each coordinate function uν , ν ∈ {1, ..., n + m}, satisfies the Hessian
rank inequality rankD2uν ≤ m almost everywhere.

Differently from [7], where the same Hessian rank inequality was
proved for isometric immersion under W 2,2 regularity, the integrability
of the second gradient does not allow us to control the 2 × 2 minors
of the Hessian. Therefore, any computation in the integral sense such
as integration by parts cannot be carried on. To overcome the lack of
integrability, we borrowed a technique from [13], where they proved a
low rank property for Sobolev mapping via slicing and lower dimen-
sional pullback Sobolev differential forms, the same technique was also
used in [1] and [12] in the context of weak contact equations.

Let us discuss a bit further regularity questions. For simplicity, we
restrict our attention to the planar case. The distributional Hessian of
a function u ∈ W 1,2(Ω) (where Ω ⊂ R2 is open) is defined as

DetD2u :=
1

2
curl>curlDu⊗Du,

see [7, 1.3]. If f ∈ W 2,p(Ω,R3) is an isometric immersion, then our
result implies that each coordinate function v of f satisfies the degen-
erate Monge-Ampère equation detD2v = 0 pointwise a.e. However, it
can violate the equation DetD2v = 0. For example, recall the map

f(r cos θ, r sin θ) := ( r
2

cos(2θ), r
2

sin(2θ),
√

3
2
r), which sends the unit

disc B to the cone in R3 with a singularity at the origin; it is an
isometric immersion of class W 2,p, p < 2, but the distributional Hes-

sian of f3 : x 7→
√

3
2
|x| is a constant multiple of the Dirac delta measure
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δ0. Indeed, under this regularity the distributional Hessian of f3 can
be computed as the distributional Jacobian of Df3. It is well known
that the distributional Jacobian of x 7→ x

|x| is πδ0.

Thus, the failure of DetD2v = 0 indicates the singularity at the
origin. However, there is an example of a W 2,1 function u such that
DetD2u vanishes and u still does not deserve to be called regular; see
the discussion around [6, (6.2)]. To give an appropriate definition of
singularity, we associate a currentGDu with the graph ofDu (Definition
5.1) and say that the W 2,1-solution of the degenerate Monge-Ampère
equation is regular in an open set U if the boundary of the current GDu

in U × R2 vanishes. (For the definition of the boundary of a current
and related discussion see [4, Section 2.3].) Singular points are those
that do not belong to the maximal domain of regularity. In case of an
isolated singularity then there exists a neighborhood U of x such that
the boundary of GDu in U × R2 is concentrated in {x} × R2.

In the regular case, u is a Monge-Ampère function in the sense of
[6] (or [3]) and a rigidity result due to Jerrard [6, Theorem 6.1] can be
applied. In Proposition 5.2 we present its simplified version taking into
account that our function u belongs to W 2,1, so that we do not need
to take care of the singular part fo D2u. On the other hand, we get a
slightly stronger conclusion that in [6].

Our example from [10] is a “nowhere regular” W 2,1 solution of the
(pointwise) null Monge-Ampére equation. In contrast, all known ex-
amples of W 2,1 isometric immersions have been similar to the cone
example above, with a single point singularity. Here we present an
example with a prescribed finite number of singularities:

Theorem 1.2. Let m be an positive integer. Then there exists a bound-
ed open set Ω ⊂ R2 and an isometric immersion f ∈ W 2,p(Ω,R3) such
that f has m singularities.

Note that f in this example satisfies the conclusion of Theorem 1.1.
On the other hand, by the developability properties of W 2,2 isometric
immersions in [15], its W 2,2-norm must blow up around any singular
point z.

We must note that the domain in our example is non-convex. We
do not know whether there is an example of an isometric immersion
defined on a convex domain with multiple singularities.

2. Sobolev pullback of a differential form: n = 2

In this section we apply an useful tool from [13], which is based on
a method developed in [1] and [12]. Let Ω ⊂ R2 be an open set and
f1, . . . , fN , g1, . . . , gN ∈ W 1,1(Ω). Then the sum

f1∇g1 + · · ·+ fN∇gN
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can be interpreted as the pullback of the differential form

ω = x1 dy1 + · · ·+ xN dyN

on R2N under the Sobolev mapping (f, g) ∈ W 1,1(Ω,R2N). The pull-
back of the differential

dω = dx1 dy1 + · · ·+ dxN dyN

is the function

det(∇f1,∇g1) + · · ·+ det(∇fN ,∇gN).

Therefore we can use [13, Theorem 3.2] and deduce immediately the
following result.

Lemma 2.1. Let Ω ⊂ R2 be an open set and f1, . . . , fN , g1, . . . , gN ∈
W 1,1(Ω). Assume that

f1∇g1 + · · ·+ fN∇gN = 0.

Then
det(∇f1,∇g1) + · · ·+ det(∇fN ,∇gN) = 0.

3. n-dimensional case

In this section we derive the n-dimensional counterpart of Lemma
2.1 by the slicing method (see also [1], [12]). Here and in the sequel we
use the notation

∂kf =
∂f

∂xk
,

∂k,`f =
∂2f

∂xk∂x`
,

〈f, g〉 = f1g1 + · · ·+ fNgN .

Lemma 3.1. Let n ≥ 2. Let Ω ⊂ Rn be an open set and f, g ∈
W 1,1(Ω;RN). Assume that

〈f, ∂kg〉 = 0 a.e. in Ω, k = 1, . . . , n.

Then

〈∂kf, ∂`g〉 − 〈∂`f, ∂kg〉 = 0 a.e. in Ω, k, ` = 1, . . . , n.

Proof. For n = 2, the claim is trivial if k = ` and reduces to Lemma
2.1 if k 6= `. Now let n ≥ 3. It suffices to consider any n-dimensional
cube Q ⊂⊂ Ω. Let Qk` be the projection of Q onto the linear space
spanned by ek and e` and Q̂k` be the projection of Q onto the space
{x ∈ Rn : xk = 0, x` = 0}. Fix z ∈ Q̂k` and denote

fz(y) := f(z + y), gz(y) := g(z + y), y ∈ Qk`.

For a.e. z ∈ Q̂k`, Fubini’s theorem gives fz, gz ∈ W 1,1(Qk`) and more-
over,

∂kfz = (∂kf)z, ∂kfz = (∂kf)z, k = 1, . . . , n.
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Then from what has been establishes in 2-dimensional case,

〈(∂kf)z, (∂`g)z〉 − 〈(∂`f)z, (∂kg)z〉 = 0 a.e. in Qk`.

In another word, for a.e. z ∈ Q̂k` and a.e. y ∈ Qk`,

〈∂kf(z + y), ∂`g(z + y)〉 − 〈∂`f(z + y), ∂kg(z + y)〉 = 0

for all i, j ∈ {1, ..., n}. By Fubini’s theorem, this implies

(3.1) 〈∂kf, ∂`g〉 − 〈∂`f, ∂kg〉 = 0 a.e. in Q.

This concludes the proof. �

4. Hessian of isometric immersion

Proof of Theorem 1.1. Recall that the W 2,1 Sobolev isometric immer-
sions of co-dimension m are mappings u ∈ W 2,1(Ω,Rn+m) satisfying

(4.1) Du>Du = In×n a.e. in Ω

Note that this condition implies immediately that u is 1-Lipschitz.
Following [7], it suffices to prove the following identity

(4.2) 〈∂i,ku, ∂j,`u〉 − 〈∂i,`u, ∂j,ku〉 = 0 a.e. in Ω

Once this identity is established, Theorem 1.1 follows the same argu-
ment as [7, Proposition 2.1].

We can rewrite (4.1) as

(4.3) 〈∂iu, ∂ju〉 = δij a.e. in Ω, i, j ∈ {1, ..., n}.

Since Du ∈ W 1,1(Ω,Rn+1) ∩ L∞(Ω,Rn+1), we can differentiate (4.3)
using the product rule to obtain

(4.4) 〈∂i,ku, ∂ju〉+ 〈∂iu, ∂j,ku〉 = 0 a.e. in Ω, i, j, k ∈ {1, ..., n}.

Permutation of indices i, j, k yields,

(4.5) 〈∂i,ju, ∂ku〉+ 〈∂iu, ∂k,ju〉 = 0 a.e. in Ω, i, j, k ∈ {1, ..., n}.

(4.6) 〈∂k,iu, ∂ju〉+ 〈∂ku, ∂j,iu〉 = 0 a.e. in Ω, i, j, k ∈ {1, ..., n}.

Using the fact that ∂i,ju = ∂j,iu for all i, j, we add (4.4) and (4.5), then
subtract (4.6) to obtain,

(4.7) 〈∂iu, ∂j,ku〉 = 0 a.e. in Ω, i, j, k ∈ {1, ..., n}.

Now, that (4.7) implies (4.2) indeed follows from Lemma 3.1 if we set
f = ∂iu, g = ∂ju. �
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5. Regularity in dimension 2

To study singularity in a broader setting we need to define non-
convex Monge-Ampère functions. We refer to [6] for terminology and
notation concerning currents and, in particular, Cartesian currents,
see also [4]. For simplicity we restrict our attention to a W 2,1-isometric
immersion f of a planar domain Ω to R3. Let u be one of coordinate
components of f . In view of our Theorem 1.1, u is a pointwise solution
of the null Monge-Ampère equation, so that, in particular the Hessian
determinant ofD2u is integrable, whereasD2u itself is integrable as well
by the W 2,1 assumption. Now, we define the corresponding Cartesian
current.

Definition 5.1. Let Ω ⊂ R2 be an open set and u ∈ W 2,1(Ω). Suppose
that detD2u ∈ L1(Ω). The current GDu of integration over the graph
of Du is defined by

(5.1)

GDu(φ) =

∫
Ω

(
φ(1,2),∅(x,Du(x))− φ1,1(x,Du(x))D21u(x)

+ φ2,1(x,Du(x))D11u(x)− φ1,2(x,Du(x))D22u(x)

+ φ2,2(x,Du(x))D12u(x)

+ φ∅,(1,2)(x,Du(x)) detD2u(x)
)
dx, φ ∈ C∞c (Ω).

In fact, the last term vanishes in our case by the null Monge-Ampère
equation. Recall that u is regular if the boundary of GDu in Ω × R2

vanishes. The following result is a simplified version of [6, Theorem
6.1]. Note, however, that in the original version, instead of continuous
differentiability it is only claimed that all points of Ω are Lebesgue
points for Du.

Proposition 5.2. Let u be a regular solution of the null Monge-Ampère
equation in Ω ⊂ R2. Then u is continuously differentiable and for each
x ∈ Ω at least one of the following statements holds:

(a) Du is constant on a neighborhood of x,
(b) there exists a line segment `x passing through x with each of end-

points either at infinity or on ∂Ω, such that Du is constant along
`x.

Proof. It is only the continuity of the derivative which remains to be
proved. Consider a point z ∈ Ω. There is nothing to prove if Du is
constant on the neighborhood of z. In the case (b), there is a line
segment ` passing through z such that Du is constant on `. We may
assume that z = 0 and ` is a part of the x1-axis. Also, there is r > 0
such that (−r, r)2 ⊂ Ω. Choose 0 < δ < r and x ∈ (−δ, δ)2. Then
there is a line segment `x passing through x such that Du is constant
on `x. If Du(x) 6= Du(0) (which is the only case that matters), `x
does not cross ` inside [−r, r]2. Hence there exists a linear polynomial
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p : R→ R such that `x = {(t, p(t)) : t ∈ (−r, r)} and (as a result of an
elementary geometric observation)

|p(t)| ≤ 2rδ

r − δ
, t ∈ (−r, r).

For simplicity assume δ < r/2, then the estimate |p(t)| ≤ 4δ follows.
For a.e. t ∈ (−r, r) we have

|Du(x)−Du(0)| = |Du(t, p(t))−Du(t, 0)| ≤
∫ 4δ

−4δ

|D2u(t, s)| ds,

and by Fubini theorem

2r|Du(x)−Du(0)| ≤
∫

(−4δ,4δ)×(−r,r)
|D2u(y)| dy

which tends to 0 as δ → 0+. It follows that Du is continuous at 0. �

6. Example of Sobolev isometric immersion with multiple
singularities

In what follows, S will be the unit sphere in R3, whereas B(z,R) will
denote 2-dimensional balls (discs) centered at z with radius R.

Lemma 6.1. Let γ : R→ S be a 2π-periodic C2 curve parametrized by
its arclength. Define the mapping f : B(0, R)→ R3 as

f(r cosα, r sinα) = rγ(α), 0 ≤ r < R, −π ≤ α ≤ π.

Then f ∈ W 2,p(B(0, R),R3) for each 1 ≤ p < 2 and it is an isometric
immersion.

Proof. We easily verify that f ∈ W 2,p(B(0, R),R3). We compute
(6.1)

γ(α) =
∂

∂r
(rγ(α))

=
∂f

∂x1

(r cosα, r sinα) cosα +
∂f

∂x2

(r cosα, r sinα) sinα,

rγ′(α) =
∂

∂α
(rγ(α))

= − ∂f

∂x1

(r cosα, r sinα) r sinα +
∂f

∂x2

(r cosα, r sinα) r cosα.

We use these equations to express partial derivatives of f at x 6= 0.
Using invariance with respect to rotation, we may assume that x =
(r, 0) with r > 0. Then we solve (6.1) as

∂f

∂x1

(r, 0) = γ(0),

∂f

∂x2

(r, 0) = γ′(0).
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Then

∇f(r, 0)>∇f(r, 0) =

(
|γ(0)|2, γ(0) · γ′(0)

γ(0) · γ′(0), |γ′(0)|2
)
.

Now, we verify the following:
|γ(0)| = 1, as γ(0) ∈ S.
|γ′(0)| = 1, as γ is parametrized by its arclength.
Finally, γ(0) · γ′(0) = 0, as γ(0) is a normal vector with respect

to S whereas γ′(0) is tangential. Therefore, ∇f(r, 0)>∇f(r, 0) is the
identity matrix.

�

Lemma 6.2. For any 0 < α < π/2 there exists a 2π-periodic C2

closed curve γ : R → S parametrized by its arclength such that γ(t) =
(cos t, sin t, 0) for t ∈ (−α, α), and γ3(π) > 0.

Proof. Let 0 < s < 1 be fixed and η : R → R be an infinitely smooth
function such that η(τ) = 0 for τ ≤ 0, η(τ) = 1 for τ ≥ 2s and
0 < η′(τ) < 1/s if 0 < τ < 2s. Given 0 < β < π, define

ψ1
β(t) = cos(sη(t− β)) cos

(
t+ η(t− β)(2β + 2s− 2t)

)
,

ψ2
β(t) = cos(sη(t− β)) sin

(
t+ η(t− β)(2β + 2s− 2t)

)
,

ψ3
β(t) = sin(sη(t− β)), t ∈ [0, 2β + 2s],

and extend ψβ to a (4β + 4s)-periodic function on R such that ψ1
β and

ψ3
β are even whereas ψ2

β is odd. Then ψβ is a C2 curve. Further, we
claim that ψ′β nowhere vanishes; this property guarantees that after

a reparametrization by the arclength the C2 smoothness is not lost.
Indeed, if η = 0 or η = 1, then the equations ψ1,2

β describe an uniform

motion along a circle, whereas obviously (ψ3
β)′ 6= 0 if 0 < η < 1. An

easy computation shows that |ψ′β| ≤ C with constant C independent of
s, and |ψ′β(t)| ≤ 1 if |t| ≤ β or β+2s ≤ |t| ≤ 2β+2s. It follows that the
length `β of ψβ over [−2β−2s, 2β+2s] is estimated by 4β+4Cs. Now,
we may assume that s is so small that 4α+ 4Cs < 2π. Then `α < 2π.
On the other hand, ψπ/2 connects antipodal points on (−π/2, π/2) and
on (π/2, 3π/2 + 4s) and thus `π/2 > 2π. Therefore there exists an
intermediate β such that `β = 2π. If we reparametrize this ψβ by its
arclength, we obtain a curve γ with the desired property. �

Lemma 6.3. Let K be a convex cone in R2 (not a halfplane) with
vertex at z, R > 0 and 1 ≤ p < 2. Then there exists an isometric
immersion f ∈ W 2,p(B(z, R),R3) such that f is singular at z and

x ∈ K ∩B(z, R) =⇒ f(x) = (x1, x2, 0).

Proof. Without loss of generality we may assume that z = 0 and

K = {x ∈ R2 : x · e1 < |x| cosα}
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for some α ∈ (0, π/2). By Lemma 6.1, the desired property is satisfied
by the mapping

f(r cosα, r sinα) = rγ(α), 0 ≤ r < R, −π ≤ α ≤ π,

where γ is as in Lemma 6.2. Appealing to Proposition 5.2, we infer
that the regularity of f fails at 0 as Df is not continuous at 0. �

Proof of Theorem 1.2. Let Q ⊂ R2 be a convex m-angle with vertices
z1, . . . , zm. Let R > 0 be a radius which makes the discs B(zj, R), j =
1, . . . ,m pairwise disjoint. Using Lemma 6.3, we construct isometric
immersions fj ∈ W 2,p(B(zj, R),R3) such that fj(x) = (x1, x2, 0) if
x ∈ Q and each fj is singular at zj. Now, we merge the constructed
mappings to

f(x) =

{
fj(x), x ∈ B(zj, R),

(x1, x2, 0), x ∈ Q.

This defines f on Ω := Q ∪
⋃m
j=1B(zj, R). �
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