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1 Introduction

Historically, the classical Newtonian mechanics has been closely connected with the devel-
opment of Calculus, and it still remains a rich source of problems to be formulated and
solved in the language of differential and integro-differential equations. Perhaps one of the
simplest examples of an important practical problem that is solved within the context of
ordinary differential equations is the forced conservative oscillator

mx”'i'Fs :f(t) (1)

of a mass m > 0, with unknown displacement x = z(t), driven by an external force f(t)
and a restoring (spring) force Fs. It is customary to close the system by a constitutive
relation of the form

with some reasonable function h(z), as e.g. in the linear so-called Hooke’s law h(z) =
kx. This turns (1) into a second order ODE, a thoroughly-studied mathematical object
for which a well-developed theory of existence, uniqueness and qualitative properties of
solutions is available. For h(x) linear or piecewise affine, one can also express the solution
explicitely in terms of quadratures and elementary functions.

There, however, exist modifications both physically reasonable and interesting from
point of view of applications, of the forced oscillator problem (1), for which the classical
framework no longer suffices. It might be that the relationship between xz and Fs does not
assume the explicit functional form (2) — see [9] for a discussion of the relevance of implicit
relationships between the displacement and spring force. A related possibility is that the
motion is further restricted by some obstacles. Both these clearly go beyond the classical
setting: globally smooth solutions cannot exist.

Implicit relationships between x and F; can be studied via the general theory of differ-
ential inclusions [2], and the so-called non-smooth dynamical systems [4]. For particular
simple examples of oscillators with obstacles, it is possible to “patch” the global solution
by imposing bounce conditions, see e.g. [7], [5], [6]. In the present paper, we propose an
alternative way. Instead of providing an ad hoc generalized mathematical framework, we
systematically enlarge our universe by working within the context of non-standard analysis
(NSA). In virtue of the well-known principle of transfer, the whole classical ODE theory



remains to our disposal, and the new universe has the best of both worlds: it remains
conceptually simple, yet rich enough to capture a number of non-classical phenomena.

In particular, we focus here on the problem of oscillator whose motion is restricted to
x < 0 by an inextensible string; perhaps more aptly, we will think of an infinitely tough
wall located at « = 0. The description of this problem in the framework of NSA suggests
the following: we model the wall as a spring with infinitely large stiffness. More precisely,
we extend the equation (1), valid for < 0, by ma” + La = f(t) for > 0, where L > 0 is
an infinitely large positive number. The question of existence of solution is then solved in
one shot, transferring the classical Picard’s theorem. It is also easy to see that the solution
does what we expect: the mass is bounced back immediately with opposite velocity (cf.
Proposition 1 below).

Our main focus is the problem of uniqueness, or perhaps more precisely, of macroscopic
stability. The question is: does infinitely small perturbation of initial data only lead to
infinitely small deviation of solution? Note that this does not follow from Picard’s theorem:
there is an infinitely large Lipschitz constant L > 0 in our equation, hence the general theory
allows for a factor e* growth of disturbances, which is infinitely large for standard ¢ > 0.
A second natural and related question reads: is the macroscopic (i.e. modulo infinitely
small error) behavior of solution independent of the particular choice of the infinitely large
constant L > 07 In the main result of the paper (Theorem 2) we are able answer both of
these questions affirmatively.

We also note that the “standard” way to treat the problem of inextensible string would
eventually lead to a sequence of approximating problems, where L is replaced with standard
L, — 400. The expected result is that the approximating solutions x,, converge to some z,
which is a continuous (even smooth if x < 0) function, cf. [12]. And this is precisely what
we arrive at in our last Theorem 3, simply by transferring both our original equation and
the result of Theorem 2 to the standard world. The theorems are logically equivalent, but
one can argue that the language of NSA is better suited both for the physical description
of the problem, and the mathematical theorem and its proof.

Two points seem worth emphasizing. Any application of the NSA means that some
initial theory is taken into an extended universe, giving rise to new concepts and new
methods of reasoning. Our initial theory is, however, highly nontrivial: essentially what
we need is to transfer the classical ODE theory for Lipschitz nonlinearities, Riemann in-
tegral, Picard’s theorem, and also the variation of constants formula. What we gain, in
turn, is a conceptually simple, yet highly powerful framework, in which problems involving
differential inclusions, weak convergence and estimates of oscillations are tractable by truly
elementary analytical means.

Secondly, we would like to pinpoint what in our opinion is the central issue of the paper.
It is the question as to what the oscillator does when the constraint at x = 0 is reached,
but the external force f(¢) is positive. In particular, what will happen if the velocity is zero
at such a moment? This is precisely the point where the classical description fails most
markedly, possibly also the situation that even baffles our intuition as to what the dynamics
ought to be. To solve the problem, we impose an additional structural assumption on the
right-hand side f(t), cf. (10) below. We are then able to show that although the system can
switch between the two regimes z > 0 and z < 0 infinitely (more precisely, hyper-finitely)
many times, only an infinitesimal increase of energy is possible as long as f(¢) > 0.

The paper is organized as follows: the problem under study is described in Section 2, and
the main three theorems are formulated. In Section 3, we outline the required background
from NSA. In particular, we explain the theory within which we work, and prove Theorem 1
in detail. We also show how Theorem 3 follows from Theorem 2.

Section 4 forms the main core of the paper, and it deals with the crucial problem: how
will the solution with initial conditions infinitely close to the wall x = 0 behave?

Section 5 is devoted to the proof of the main Theorem 2. In Section 6 we prove



three auxiliary lemmata on “integration” of various type difference inequalities, which are
instrumental in the proof of the key Proposition 3.

2 Problem formulation and main theorems.

We study the behavior of a standard oscillator with external forcing, whose motion is
restricted to x < 0 by an infinitely elastic wall:

mz" + s(z) = f(t), tel (3)
z(0) = o, (4)
2'(0) = vo, (5)

with

o(@) {h(x), <0 ©)

Lz, x>0,

We set! I = *[0,T], where T' > 0 is a standard positive number, the restoring force is given
by a standard function h(z) € CL_((—00,0]). It is convenient and without loss of generality
to assume that h(0) = 0 and h(z) is globally (standard) Lipschitz. Finally L > 0, modelling
the response of the wall, is infinitely large positive number.

The initial data xq, vy are hyperreal limited, with xq é 0. External force is a standard
continuous function, and for the sake of notational simplicity we henceforth set the mass
m equal to 1.

Theorem 1. The problem (3-6) has a unique solution on I.

Proof. This follows immediately by transferring the Picard’s existence theorem; see Sec-
tion 3 for more details. O

The energy is defined in the usual manner:

Ba2(0) + Fa%(0), a(t) 20,
E(t) - {%(x')Q(t) + H x(t))7 l‘(t) <0, (7)

where H(x) = [ h(£)d¢ is primitive to h(z). It is easy to show that the energy remains
limited, provided the data are so. Here and in what follows, ¢ > 0 stands for a generic
standard constant.

Lemma 1. One has E(t) < ¢ for any t € I, where ¢ is a standard constant depending on
the data xo, vo, f(t) and T > 0. Moreover, if z(t) > 0, then x(t) < cL™12 ~ 0.

Proof. Multiply the equation by z’. We have

d :
SB() =2 (01(0) <

(@ (@) + 3 (1) < B() +c ®)

N =

and estimate E'(t) using transferred version of the Gronwall’s lemma. Then second assertion
follows since for x > 0, (7) implies |z| < (2E/L)"/2. O

From this point of view, the existence part of the theory seems satisfactory. We also
note that |2/ < ¢, i.e. the solutions are globally Lipschitz. But there is a serious problem
lurking behind the uniqueness. Note that by standard argument, we obtain the following.

1See next Section for definition of *, 2, etc.



Lemma 2. Let xz(t), Z(t) be two solutions that are negative on some [to,t1] C [0,T]. Then
(I2(t) — 30)] + 12/ (1) — (D)) < e(|a(to) — F(to)| + |#'(te) — #' (o)) VE€ [torta] (9)

where ¢ is a standard constant only depending on the Lipschitz constant of h(x).

Proof. In the usual manner, the equation can be rewritten as

=y
y' = f(t) — h(x)

where the right-hand side Lipschitz with respect to z, y. The conclusion follows by Gron-
wall’s lemma. O

This lemma implies in particular what we would call a macroscopic stability: if the
initial data are infinitely close at t = t, the solutions remain so for all ¢ € [to,t;]. But this
argument cannot be extended to cover the situation where possibly x(t) or Z(t) becomes
positive, since then h(x) must be replaced by s(z) and the Lipschitz constant of the right-
hand side becomes infinitely large; cf. (6).

Indeed, the equation is not in the above sense stable with respect to initial conditions.
Assume that f(t) =0, vo = 0 and 29 = L~'/2. Tt follows from Lemma 3 below that for
ty = wL=Y2/2, 2(t;) = 0 and 2'(t;) = —1, and thus z(t) = (t; —t) for t > t;. Such a
solution deviates appreciably from the equilibrium x = 0, though it has an infinitely close
initial condition. Note also that the velocity of the former solution has a macroscopic jump
— more precisely, the function ¢ — st 2/(*t) is not continuous at ¢ = 0.

On the other hand, it is reasonable to expect that two solutions arriving at the wall
from the outside, with infinitely close distances and velocities, will remain so after colliding
with it. Even more, the value of L should not play any role, as long as it is infinitely large.
However, it also turns out that the right-hand side f(¢) cannot be too wild — additional
structural assumption on the right-hand side seems necessary, and we henceforth require:

f(t) is a standard C* function and if f(ty) = 0 for some t, € [0, 7],

10
then either f (to) # 0 or f = 0 on some right neighbourhood of ty. (10)

The main result of our paper is the following theorem.

Theorem 2. Let x(t) be a solution to (3-6). Let f(t) satisfy (10), and let &(t) be another
solution with possibly different L = oo in (6) such that Z(0) = xo and T'(0) = vg. Then
x(t) = Z(t) for allt € I; and in the regime where x(t) and Z(t) < 0 there holds 2’ (t) ~ Z'(t).

Our result can also be translated (more precisely, transferred) to the standard language;
note that this also requires that the equation being studied must be reformulated.

Theorem 3. Let z,(t) be a sequence of solutions to (3-6) in a standard setting with
L = L, being standard numbers converging to +00, subject to initial conditions xg,vy € R,
xo < 0. Then x,(t) converge to some x(t) uniformly in [0,T]). Moreover, the mapping
(xo,v0) = x(t) is continuous; also (xg,vo) — z'(t) is continuous at points where x(t) < 0.

3 A brief review of NSA

In this section we offer a brief and rather informal review of NSA. For a more exhaustive
and detailed treatment we refer the reader to [3] or [11].
Let S be a set and let Sy = S and Sp4+1 = So UP(Sy,). Then the superstructure of S is

defined by
S=J S
n=1

4



The elements of S are called atoms and the elements of S that are not atoms are called
entities.

Observe that the superstructure is large enough to contain practically every mathemat-
ical object we may be interested in, specially all the functions f : X — R if X and R are
entities in S. R

The basic concept of NSA is the construction of a superstructure 7' and of a map
* 1 S — T, the so-called elementary embedding, that serve as an abstract idealization
of the superstructure S and a transition map between the original superstructure and the
idealized one. Although the actual construction of the superstructure 7" and the elementary
embedding * can be achieved by different means (e.g. by abstract model theory, by working
with ultrafilters or by axiomatization, cf. [1] or [8]), the particular method by which we
obtain the elementary embedding plays no role in the applications.

Let us write =S instead of 7' and * A instead of *(A) and let * : S — *S be an elementary
embedding. R

Let « be a first order formula with constants in S. Then « is called transitively bounded
if the scope of any quantifier is explicitly bounded, e.g. (Vo € [0,1])(3y € [0,1])[y* = x].
Obviously, any formula of the usual mathematical practice can be written in this form.
The *-transform of « is the formula *« where we replace any constant ¢ by *c.

The following proposition, which will be referred to as “the transfer principle” rather
than Theorem 4, is essential in NSA and justifies the transition from the original super-
structure S to the idealized superstructure *S. At the same time it ensures that all the
tools we have in the original superstructure work in the idealization as well.

Theorem 4 (Transfer principle, [11, Theorem 3.7]). Let v be a transitively bounded formula
with constants in S. Then a holds true if and only *« holds true.

We emphasize that the elementary embedding * : S — *S is not onto unless the set S
is finite, in which case the transition to *S does not bring anything new. If an element is
in the range of *, we call it a standard element. The elements of standard sets are called
internal and the elements which are not internal are called ezternal. In other words, b is
standard if b = *a for some a € S and b is internal if b € *A for some entity A € S.

We may think of the internal elements as the elements of “S which can be described
by the language of the original superstructure S. This can be made precise by the so-
called internal definition principle but will not be needed in the rest of the paper. We only
remark that the set of all internal entities is closed under finite set operations such as unions,
intersections and subtractions (cf. [11, Theorem 3.19]), and the following characterization
holds.

Theorem 5 ([11, Theorem 3.21)). Let A, B € S be entities and let B4 denote the set of
all functions f : A— B. Then

* (BA) ={f:*A — *B;f is internal}.

From now on, we assume that R is an entity in S. From the transfer principle and
Theorem 5 we see that there exists a standard (and therefore internal) function *| - | :
*R — *R such that it satisfies all the properties of the standard modulus function, such as
the non-negativity or subadditivity. This concept can actually be applied to all functions
and relations on R, e.g. the function sin or the ordering <. In the following we will drop
the symbol * for all the standard functions and relations defined on *R, e.g. we will write
|r| instead of *|r| and r < ¢ instead of r*<s, where r,s € *R. We will also identify the
real numbers with their hyperreal counterpart, e.g. we will simply write 1 instead of *1.
Similarly for a,b € *R we will use the notation

[a,b] = {x € "R;a < z < b}, (a,b) ={z € "Rya < x < b}.



Observe that in view of the above we have [*a,*b] = *[a,b] for a,b € R and these sets are
internal.

We will call the elements of *R (or *N) hyperreal (or hypernatural) numbers. A hyperreal
number r € *R will be called limited if there exists n € N such that |r| < *n, unlimited if
[t| > *n for every n € N, infinitesimal if |t| < *(n~!) for every n € N. The keys point is
that the sets of all unlimited (infinitesimal) numbers are not empty, cf. [11, Corollary 5.10].

By a ~ b we mean that « is infinitely close to b, i.e. |a — b| is infinitesimal. Symbol
a % b means that a < b and a % b. With a slight abuse of notation, the symbol b ~ oo
means that b is unlimited positive. Observe that the relation ~ is not transitive anytime
oo is involved.

By stz we denote the standard part of a limited number x € *R, i.e. the uniquely
defined real number r € R such that *r ~ 2. For A C *R, we define st A = {sta;a € A}.

An entity A € *S will be called hyperfinite if there exists some N € *N and an internal
bijection f: {n € *N;n < N} — A.

Let f:*R — *R be a function. The domain *R is chosen only for simplicity as all of
the discussed features have an obvious analogue for suitable subsets of *R. We say that f
is x-continuous in x € *R, if the function satisfies the transferred definition of continuity,
namely

(Ve € *R) (36 € *R) (Va € B(wo,6) \ {zo}) e >0V >0 = |f(z) — f(zo)] < .

We say that f is S-continuous in xg € *R if © ~ z( implies f(z) ~ f(zo) with z € *R.
__ To relate the results obtained in the nonstandard idealization, i.e. the superstructure
*S, to the standard superstructure S, we will use the following theorem.

Theorem 6 ([3, Excercise I11.3.17]). Let [a,b] C R and let f : *[a,b] — R be an internal
S-continuous function such that f(*xz) is limited for all x € [a,b]. Let g : [a,b] — R be
defined by g(x) = st f(x). Then g is continuous on [a,b].

Next we will discuss the calculus with internal *-continuous functions. It is quite com-
mon in the NSA-related research concerning differential equations to discretize the time
or the space with an infinite precision and treat the differential equation as a difference
equation with infinitesimal steps. We will use a different approach and work with the
transferred version of the standard derivative and Riemann integral. However, this is only
possible since we restrict ourselves to standard continuously differentiable right-hand sides
of the equation (3). If we were to consider less regular right-hand sides, e.g. measures, a
more refined approach would be required.

Let D : C1(R) — C(R) be an operator defined by

(DUN@) = (@), zek

Then the transfer principle allows us to work with the operator *D : *(C*(R)) — *(C(R))
which we will call the x-derivative. The operator *D satisfies the same properties as the
operator D, specially *D is linear and all the differentiation rules still apply. The transfer
principle and Theorem 5 also shows that *(C*(R)) is the set of all the *-continuous internal
functions defined on *R with *-continuous *-derivative.

Similarly, let a,b € R and let I? : C([a,b]) — R denote the Riemann integral

b
1) = [ s
Then by the transfer principle for every a,b € *R there exists an operator

*IY . {f :[a,b] — *R; f internal and * -continuous} — *R



with properties matching the ones of the Riemann integral.

With another slight abuse of notation, we will not distinguish between the “standard”
versions of the derivative and the integral and the transferred versions unless explicitly
mentioned and we will use the standard notation.

Now we are ready to prove Theorem 1 and Theorem 3. Before the proofs, let us
precisely state the definition of the solution to the problem (3-5), although it is clearly just
a transferred version of the standard definition.

Definition. An internal function x : (a,b) — *R, where a,b € *R and *[0,T] C (a,b), is
a solution of the problem (3-5) if x is twice x— differentiable on (a,b), solves the equation
(3) on (a,b) and satisfies the initial conditions (4) and (5).

Proof of Theorem 1. Observe that function s(x) defined in (6) is globally Lipschitz con-
tinuous in nonstandard sense (with Lipschitz constant L). The existence of unique global
solution then follows by transfer of the corresponding result from the classical ODE the-
ory. Note that the solution operator (t,xo,v9) — (z(t),2'(t)) is internal, x-continuous
function. U

Theorem 7 ([10, Theorem 4.2.1)). Let (X,d) be a metric space and let x € X. Let {x,}
be a sequence in X. Then x, — x in X if and only if d(*zn,*x) = 0 for every N € *N
unlimited.

Proof of Theorem 3. Let L = oo be arbitrary and let x; be a solution to (3-6) from
Theorem 1. Denote z(t) = stz (t) for t € [0,T]. From Theorem 2 it follows that =(¢) does
not depend on the particular choice of L. Moreover, the solution operator (¢, zg, vg) — z(t)
is S-continuous, as is (¢, zo,vo) + 27 (t) if x(¢) 7 0. Hence the assertion about continuity
of (xg,v0) — sta(t) = z(t) and (xq,v) — st z’(t) follows from Theorem 6.

To prove that z(t) is a uniform limit of solutions to approximating problems, let L,, — oo
be a sequence of real numbers and x,(¢) solutions of (3-6) posed in the standard setting
with L, instead of L. Let (X,d) be the space of continuous functions on [0,7] with a
metric d induced by the supremum norm, i.e. with the topology of uniform convergence.
Then by the transfer principle and Theorem 5 we have

*X ={z:7[0,T] — *R; Z is internal and * -continuous},
d(f,g) = sup{[f(t) —g(O)|;t € *[0, T]} ~ for  f,ge™X.

The supremum is well defined as the functions are x-continuous on a *-closed interval. Let
N € *N, N =~ oo be arbitrary. Then using Theorem 2 we get *z(t) ~ zx(t) for t € *[0, T
and thus d(*z,zx) & 0, as the supremum is attained. From Theorem 7 we obtain x,, — x
in X,ie x, =z onl0,T] O

4 Behavior near the wall

The aim of this Section is to describe the interaction of the oscillator with the wall. We
show that we can distinguish three mutually exclusive scenarios, given by Propositions 1-3,
which are stable in terms of infinitesimal perturbations of the initial condition. It is also
important that they are independent of the actual value of L, as long as it remains infinitely
large.

The first scenario describes the (strict) bounce off the wall. We will need the usual
variation of constants formula to write the solution for x > 0 explicitly.



Lemma 3. Let to,t1 € *R be such that [to,t1] C *[0,T] and x > 0 on [to,t1]. Then

2(t) = w(to) cos VL(t —to) + x'(tofmﬁ\/%m +/ e )nﬁﬁﬂ

2’ (t) = —x(to)VLsin VL(t — to) + 2’ (to) cos VL(t — to) + t f(t —s)cosVL(s —to)ds
° (12)

ds (11)

for all t € [to,t1].

Proof. For z > 0, the equation reduces to 2’4+ Lz = f(t), whence the formulas are obtained
by variation of constants. O

The proposition describing the bounce can be now stated as follows. Recall that E(t)
is the total energy of the system, defined by (7) above.

Proposition 1. Let ty € *(0,T) be such that x(tg) =~ 0, and E(tg) z 0. Then there exist

tin < tout infinitely close to tg, such that x(tyn) = x(tour) = 0, « > 0 in (tin, tout) and
@' (tin) = —2'(tout) are not infinitesimal.

R

Proof. Assume first z(tg) = 0, and z'(tg) =: vo > 0 is not infinitesimal. We set ¢;, = to
and look for the first ¢4y > t;, such that (toy:) = 0. By (11) of Lemma 3 we have

*ﬂsin —t; i t — §)sin s —t; s
x(t)f\/z VL(t tm)+ﬁ/tmf(t )sin VL(s — tin) d

as long as z(t) > 0. Now for t; = t;, + n/v/L, the first term is zero, and its derivative
equals —vg. The second term and its derivative can be estimated by L=%/2 ~ 0. Thus,
by an elementary argument, there exists a unique tyur = ti + 7/ VL + O(L~1) such that
Z(tout) = 0 and &' (tout) = —vo.

If 2(tg) # 0 with x(t9) ~ 0, and E(tg) % 0, then by elementary argument again, there
exists ¢;, & to such that z(t;,) = 0, and 2’(¢;,) > 0 is not infinitesimal. It is clear that
if x(tg) < 0, then z'(¢;,) ~ 2’(tp), as the terms h(z(t)) and f(¢) will not have time to
affect the velocity but infinitesimally. If z(to) > 0, we can have 2/(t;,) > 2/(to) strictly in
general, as follows from the equation 2"/ + Lz = f(t) by an argument similar to the above.
The case z'(tg) g 0 is entirely analogous. O

It remains to consider the case x(tg) ~ 0, E(tg) ~ 0. We now employ the assumption
(10), dealing first with zero force. In fact a somewhat weaker assumption on f(¢) would
suffice.

Lemma 4. Let x(tg) = 0 and E(tg) =~ 0, and let f(t) be an internal continuous function
such that f(t) = 0 on [to,to + A]. Then E(t) =0, z(t) = 0 on [to, to + A].

Proof. Multiplying the equation by z’ yields %E(t) ~ 0 and so E(t) ~ 0 follows by
integration, whence obviously z(t) = 0, too. O

If f(to) % 0, then either f(t) > ¢ > 0or f(t) < —c close enough to tg, for some standard
¢ > 0. If f(to) = 0, then we can actually assume f(tg) = 0. Indeed, as f(¢) is a standard
function, there is #o ~ to such that f(fy) = 0; clearly x(fy) ~ 0 and E(fy) ~ 0 holds.
Having now set the case f(t) = 0 aside, by the second part of (10), we have that f’(¢o)
is a standard non-zero number. But this again means that on some right neighborhood of



to, either f(t) > 0 or f(t) > 0 with the derivative close to f’ (to). To summarize, we can
assume that:

there exist A > 0 standard such that one of the following holds for ¢ € [tg,to + Al
i) ft) < —c

i) f(t)>c

iii) f(to) =0and f'(t) < —a

iv) f(to)=0and a < f'(t) < 3a

(
(
(
(
with some ¢, a standard positive.

Since we are now in situation when solution can switch between the regimes > 0 and
x < 0, that is to say between the equation z” + Lz = f(¢) and 2" + h(z) = f(t), we will
further simplify our considerations by showing that it is actually possible to set h(z) = 0
without loss of generality.

Lemma 5. Let ty be such that x(to) ~ 0, E(to) ~ 0 and one of the cases in (13) holds on
[to, to + A]. Then for x(t) < 0, the solution satisfies x" = f(t), where f(t) = f(t) — h(x(t))
has the same property in (13) as f(t) does, up to a possible adjustment of the constants c,
a, or A > 0.

Proof. By (8) above, Gronwall’s lemma and the fact that E(tp) ~ 0 we have E(t) <
@~ c(t — o), for some p ~ 0 and hence h(z(t)) and (h(z(t))" = h'(z(t))2’(t) can be
estimated by a small standard € > 0. So after a possible adjustment of ¢, a or A, the

variant of (13) holding for f(t) holds for f(t), too. O

For the rest of this Section, we will constantly make use of this lemma, by assuming
that (1) has the simple form z” = f(t) whenever z(t) < 0.

We now observe that in cases (i) or (iii) of (13), the solution is pulled-out from the wall
immediately.

Proposition 2. Let tg € *[0,T) be such that x(ty) and E(to) ~ 0. Let f(t) < 0 on
(to,to —|—A} Then

x(t) = /t F(s)ds, t € [to,to + A] (14)

to

where F(t) = ftto [(s)ds, and in particular, x(t) < 0 whenever t Z to.

Proof. 1f 2(ty) < 0, then (14) follows simply by integration. If z(¢y) > 0, we again employ
the formula (11). It follows that no later than at t = to + 7/v/L, the first two terms are
negative, to which the second term also gives a negative (albeit infinitesimal) contribution.
Hence, there is toys € (to,to + 7/v/L) such that 2(t,;) = 0, and clearly @/ (toy:) < 0, with
@' (tout) = 0. We are thus reduced to a previous case with ¢4, = to. O

It remains to deal with the most interesting case, namely that f(¢) > 0 acting on a
system for which z(ty) and E(typ) =~ 0. The problem is that we cannot say a priori where
the solution will be. Indeed the situation z(¢) > 0 and x(¢) < 0 can change infinitely many
times, switching between the equation =’/ = f(¢) and =/ + Lz = f(t). We however do
observe the following.

Lemma 6. Let f(t) satisfy (13). Then the set of zero times {t € [to, to + A]; x(t) = 0} is
an internal hyperfinite set.



Proof. This is an easy application of the transfer principle. Assume that L > 0 in (6) is a
standard number. Let z(¢) be an arbitrary solution. If x(tg) = 0, then either z'(tg) # 0,
or, if 2'(tg) = 0, we invoke the equation and (10) to show that 2'(¢) # 0 on some P (¢, ).
It follows that each zero point is isolated, hence the set of zero points in [0, 7] is finite.
By transferring a suitable formalization of the last assertion, it follows that for arbitrary
hyperreal L > 0, the set of zero points is hyperfinite. O

Our strategy is as follows: by the previous lemma, the zero points of z(t) in [to, to + 4]
can be denoted by t;, i = 1,...N with some N € N*°. Set E;, = E(¢t;). We will prove
recursive estimates of E;11 in terms of E;, and the result is then obtained by “integration”
of these local estimates into a global one which would entail E; =~ 0 for all ¢ < N. It then
follows that z(t) = 0 and 2/(t) = 0 on [tg, o + A].

Let us start with the intervals where z > 0.

Lemma 7. Let z(t) > 0 on (t;,ti41).
1. There holds
Eip1 — By < pltivr — i) (15)

where =~ 0 only depends on f(t).
2. Moreover, if f(t) is nondecreasing, then even

Ei1—E; <0 (16)

Proof. We write

Bltun) = B(t) = [ 2050 = [« )20 = [ soroa an

i i

The increment is zero since z(t;) = z(t;+1) = 0. By the boundedness of the energy (cf.
Lemma 1) we have |z(t)| < ¢/L'/?. Hence the integrand is estimated by an infinitesimal
constant and (15) follows. Moreover, if f'(t) > 0, the integrand is non-positive and we
obtain (16). O

The situation for x < 0 is more delicate and it will require several different estimates.
It is also more convenient to work with the velocities v; = 2/(¢;). Recall that ¢ > 0 is a
standard positive constant, the value of which can change from line to line in the inequalities
appearing below.

Lemma 8. Let and x < 0 and f(t) >0 on (t;,tit1).
1. If f(t) is nonincreasing, then

[vi1] — |vi] <0 (18)

2. If f(t) > ¢ >0, then
[vig1| — v < clvi|(tivr — 1) (19)

3. If f'(t) > a > 0, then
vir1] = Jvi| < clvil Y (tig1 — ts) (20)

4. Finally, if 0 < a < f'(t) < 5a/3 and f(to) = 0 holds, then

s
[vi1] = fvi] < %I(tiﬂ = 1) (21)

2

for anyi>1.
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Proof. 1. If f(t) > 0 is nonincreasing, then f’(¢) < 0 and we deduce that F;1; < E; as in
second part of Lemma 7, and since z(t;) = (t;+1) = 0, we obtain |v;41] < |v;].

For the rest of the proof, we shift to t; = 0 and t;41 = t; in order to simplify the
notation. Recall that in virtue of Lemma 5, we work with the equation

=10 (22)
Writing F (¢ fo s) ds, we have
' (t) =wvo+ F(t (23)
=ty + / F (24)
and the return time ¢; is given by the condition
1M
gy = / F(s) ds (25)
tl 0
Our aim is to estimate
M
|?)1‘7|’U0| :x'(t1)+v0:2v0+F(t1): ?/ F(t1)72F(S)d8 (26)
1 Jo
In the remaining estimates, we use the Taylor expansion:
1 1
F(t) :F(0)+tF(0)+§t2F’( 7) =tf(0) + t2f( ) (27)

for some 7 € (0,1).
2. In particular, (27) implies |F(t) — t£(0)| < ct?, which gives

1 t1 1 11
- F(t)) —2F(s)ds < ?/ t1£(0) — 25£(0) + ctids < ct? (28)
1 1 Jo
On the other hand, for f(t) > ¢ > 0, we have F(t) > ct, and from (25) one obtains
tq < C"Uo| (29)

Combining with (28) yields the conclusion.
3. For f'(t) > a > 0, we have f(t) > at and thus F(t) > ct®. From (25) we deduce

tl S C|Uo|1/2 (30)

and again use (28) to arrive at the conclusion.
4. We again employ (27), recalling that a < f’(7) < 5a/3. Consequently

I 1
o F(t1) —2F(s)ds < —/ t1£(0) + tla 25f(0) — sads = iatf (31)
1

On the other hand, we have F(t) > f(0)t, hence by (25)

1

[vo| = if(o)tl (32)

Combining (31), (32) with (26) gives

alvol

— < t 33
[o1] = Jvo| < 7o) (33)
Shifting back to original time, ¢; becomes t;11 —t; and f(0) becomes f(t;). But f(¢;) > at;
by our assumptions on f(t) and we are done. O
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The synthesis of the above difference estimates is completed in the following key result.

Proposition 3. Let z(tg) ~ 0, E(tg) = 0. Let f(t) >0 on [to,to + A]. Then E(t) =0 on
[to, to + A].

Proof. We will show that F; ~ 0 for all ¢ = 0,...,N. It is easy to observe that F; ~ 0
implies E(t) ~ 0 for all ¢ € [t;, t;+1]. In view of (13), we only need to deal with two cases.
1. Let f(t) > ¢>0. If z(t) > 0 on (¢;,t;11), by Lemma 7, part 1, we have

Eip1 — B < p(tiyr —t;) (34)

with some positive p ~ 0. If, on the other hand, z(t) < 0, we have |v;11| — |v;| <
clvi|(ti+1 — t;) with some standard ¢ > 0. Noting that E; = é|vi|2, it is easy to deduce

Eit1 — E; <cEi(tiv1 —ti) (35)
with possibly different ¢ > 0. Combining the both we always have
Eiy1 — By < (kE; + p)(tiv1 — t;) (36)

for some standard £ > 0 and infinitesimal g > 0. If follows by Lemma 9 that E; <
(Eo + u/k)exp(k(t; — to)). Hence if Ey = 0, we have E; ~ 0 for all i.

2. Let f(to) = 0 and a < f'(t) < 2a on [to, o + A], where a > 0 is standard. We can
again set top = 0 for simplicity.

On intervals where z(t) < 0, we have two estimates at our disposal, namely (20) and
(21) from part 3 and 4 of Lemma 8.

On intervals where x(t) > 0, since f(t) is increasing, E;11 — E; < 0 by part 2 of
Lemma 7, and so |v;4+1| — |v;| < 0, which means that (20) and (21) actually hold for all .

One first employs (20). By Lemma 11 with g(u) = u/? and f(t) = 1, we obtain
lvg| /% < |uo|'/? + ct;, and hence

[vi] < e(£7 + [vo]) (37)
Therefore, one can choose ¢, > 0 infinitesimal so that |v,|/t, = 0. By Lemma 10 and (21),
the values of z; = |v;|/t; are nonincreasing, and thus |v;|/t; < |v,|/t, = 0 for all i > «.
Hence |v;| = 0 for all ¢ and we are done. O

5 Proof of Theorem 2

Set
J=st{teI; x~ % on [0,t]}

38
to =supJ (38)

Note that the supremum is taken in R (not in *R) here. Clearly J C R is an interval. Since
by Lemma 1 the energy is bounded, and thus z(¢) — Z(t) is (standard) Lipschitz, one sees
that J is closed, i.e. I = [0,¢o] for some tg € [0,7]. We will show that ¢ty < T leads to
contradiction by a variant of the usual creeping argument.

Observe first that z(t) and Z(t) < 0 on some [0, A] by continuity, and thus remain
infinitely close by Lemma 2. This means that t; > 0, and we track down for repeated
future use that in particular

x(t) =~ Z(t) on (tg — Ag, to] for some Ag > 0 standard (39)
1. Let x(tp) < 0 and z(tg) % 0. Then in addition to (39) we have x(t), Z(t) < 0 and
thus also 2/(t) = &'(t) on (tg — Ao, to]. In particular it follows that x'(tg) =~ Z'(to) and by

12



Lemma 2 we deduce z(t) &~ Z(t) also for t € [tg,to + A) with some standard A > 0, which
contradicts the definition of ¢g.

2. Tt remains to discuss the situation where z(tg) ~ 0. We further distinguish the
following sub-cases:

2b. Let E(tyg) % 0. Then we are in the situation of Proposition 1 (strict bounce),
which asserts the existence of “in” and “out” times t;, < toy: infinitely close to ty. Since
@' (tin) % 0 and z(t;n) = 0, we can by adjusting (standard) Ag > 0 assume that z(t) < 0
on (tg — Ag,t;). By elementary reasoning, there is t;, ~ t;, such that Z(¢;,) = 0 and

' (tin) =~ x'(t;n). Hence, the situation of Proposition 1 applies to Z(t) as well and in
particular, there is £,y & tous such that &' (fous) = 2/ (tour) é 0. Hence z(t) =~ Z(t) on some
standard [to, to + A), which contradicts (38).

2¢. Let x(tg) = 0 and also E(tg) = 0. We also have Z(ty) =~ 0. We also necessarily have
E(to) ~ 0; for otherwise we argue as in 2b. We now invoke the structural assumption (10).
If f(t) = 0 on some [tg,to + A], then both solutions remain infinitely close to 0 and hence
to each other by Lemma 4.

Otherwise, we can assume that (13) applies. Either by Proposition 2 both solutions are
pulled-out and keep infinitely close in virtue of (14), or by Proposition 3 both solutions
remain infinitely close to x = 0 up to some tg + A. At any rate, this again contradicts the
definition of tg and the proof is complete.

6 Appendix

Here we prove three auxiliary lemmas on “integration” of certain difference equations. The
results are proven by induction for standard sequences; hence by transfer they hold for
internal hyper-finite sequences as required.

The first lemma is just a discrete version of Gronwall’s lemma.

Lemma 9. Let E; > 0 satisfy
Eiy1 — By < (kB 4 p)(tiy1 — i), Vi=0,...,N (40)
where k>0, u > 0. Then

E; < Eyexp(k(t; — to)) + %(exp(k(ti —t0))—1), Vi=0,...,N (41)

Proof. Set F; = kE; + u. Then F; > 0 and (40) can be can be rewritten as

Fin—F
——— < k(g1 — t;
T (tig1 —ti)
Furthermore,
InFii1—InF;,=In Ftlzln(lJr l;;l—l)g F":lfl: +1FZ

by an elementary inequality In(1 + z) < x, which is true for any 2 > —1. Thus we have
InF;11 —InF; < k(t;x1 —t;). Summing up and exponentiating we obtain

Fi < Fl‘ exp(k(ti — to)) (42)
which can be rewritten as the desired conclusion (41). O

Second lemma deals with homogeneous equations.

13



Lemma 10. Let u; satisfy
Uit+1 — U = f(ti,’ui)(ti+1 7ti), Vi = 0,...,N (43)

where f = f(t,u) is 0-homogeneous: for any X\ > 0, one has f(At, \u) = f(t,u). Set
u; = t;2;. Then z; satisfy

(Ziv1 — zi)tivr = (f(1, 2z0) — 2i) (tig1 — 1) (44)
Proof. One writes
Uip1 — Ui = tip12ip1 — tizi = (2ig1 — 2i)tig1 + 2i(tig1 — )
Further, the homogeneity gives f(t;,u;) = f(1, z;) and (44) follows at once from (43). O

The last lemma corresponds to integration of separable equations.

Lemma 11. Let u; satisfy

wir1 — u; < g(u;) f(t:) (i1 — ti), Vi=0,...,N (45)
with g(u), f(t) nondecreasing and g(u) > 0. Then

G(u;) — G(ug) < F(t;) — F(to), Vi=0,...,N (46)
where G(u), F(t) are primitive functions to 1/g(u) and f(t), respectively.

Proof. Dividing by g(u;) > 0 preserves the inequality. On the left hand side, we employ
the mean value theorem to estimate

g = G )i —w) > G iy —w) = Clui) = Glu) (47

where 7 is between w; and u;11. Likewise the right hand side is estimated through

) (tivr — t;) < F'(T)(tign — ti) = F(tiza) — F(t:) (48)
with 7 between t; and ¢;1;. Combining and summing up the estimates, we arrive at
(46). O
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