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Abstract. The question is addressed of when a Sobolev type space, built upon a general rearrangement-
invariant norm, on an n-dimensional domain, is a Banach algebra under pointwise multiplication of
functions. A sharp balance condition among the order of the Sobolev space, the strength of the norm,
and the (ir)regularity of the domain is provided for the relevant Sobolev space to be a Banach algebra.
The regularity of the domain is described in terms of its isoperimetric function. Related results on the
boundedness of the multiplication operator into lower-order Sobolev type spaces are also established.
The special cases of Orlicz-Sobolev and Lorentz-Sobolev spaces are discussed in detail. New results for
classical Sobolev spaces on possibly irregular domains follow as well.

1. Introduction and main results

The Sobolev space Wm,p(Ω) of those functions in an open set Ω ⊂ Rn, n ≥ 2, whose weak derivatives
up to the order m belong to Lp(Ω), is classically well known to be a Banach space for every m ∈ N and
p ∈ [1,∞]. In particular, the sum of any two functions from Wm,p(Ω) always still belongs to Wm,p(Ω).
The situation is quite different if the operation of sum is replaced by product. In fact, membership
of functions to a Sobolev space need not be preserved under multiplication. Hence, Wm,p(Ω) is not
a Banach algebra in general. A standard result in the theory of Sobolev spaces tells us that if Ω is
regular, say a bounded domain with the cone property, then Wm,p(Ω) is indeed a Banach algebra if
and only if either p > 1 and pm > n, or p = 1 and m ≥ n. Recall that this amounts to the existence
of a constant C such that

(1.1) ‖uv‖WmX(Ω) ≤ C‖u‖WmX(Ω)‖v‖WmX(Ω)

for every u, v ∈ WmX(Ω). We refer to Section 6.1 of the monograph [48] for this result, where a
comprehensive updated treatment of properties of Sobolev functions under product can be found. See
also [1, Theorem 5.23] for a proof of the sufficiency part of the result.

In the present paper abandon this classical setting, and address the question of the validity of an
inequality of the form (1.1) in a much more general framework. Assume that Ω is just a domain in
Rn, namely an open connected set, with finite Lebesgue measure |Ω|, which, without loss of gener-
ality, will be assumed to be equal to 1. Moreover, suppose that Lp(Ω) is replaced with an arbitrary
rearrangement-invariant space X(Ω), loosely speaking, a Banach space of measurable functions en-
dowed with a norm depending only on the measure of level sets of functions. We refer to the next
section for precise definitions concerning function spaces. Let us just recall here that, besides Lebesgue
spaces, Lorentz and Orlicz spaces are classical instances of rearrangement-invariant spaces.

Given any m ∈ N and any rearrangement-invariant space X(Ω), consider the m-th order Sobolev
type space VmX(Ω) built upon X(Ω), and defined as the collection of all m times weakly differentiable
functions u : Ω → R such that |∇mu| ∈ X(Ω). Here, ∇mu denotes the vector of all m-th order weak
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derivatives of u, and |∇mu| stands for its length. For notational convenience, we also set ∇0u = u
and V0X(Ω) = X(Ω). Given any fixed ball B ⊂ Ω, we define the functional ‖ · ‖VmX(Ω) by

(1.2) ‖u‖VmX(Ω) =
m−1∑
k=0

‖∇ku‖L1(B) + ‖∇mu‖X(Ω)

for u ∈ VmX(Ω). Observe that in the definition of VmX(Ω) it is only required that the derivatives of
the highest order m of u belong to X(Ω). This assumption does not ensure, for an arbitrary domain
Ω, that also u and its derivatives up to the order m− 1 belong to X(Ω), or even to L1(Ω). However,
owing to a standard Poincaré inequality, if u ∈ VmX(Ω), then |∇ku| ∈ L1(B) for k = 0, . . . ,m − 1,
for every ball B ⊂ Ω. It follows that the functional ‖ · ‖VmX(Ω) is a norm on VmX(Ω). Furthermore,
a standard argument shows that VmX(Ω) is a Banach space equipped with this norm, which results
in equivalent norms under replacements of B with other balls.

We shall exhibit minimal conditions on m, Ω and ‖ · ‖X(Ω) for VmX(Ω) to be a Banach algebra
under pointwise multiplication of functions, namely for an inequality of the form

‖uv‖VmX(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

to hold for some constant C and every u, v ∈ VmX(Ω). Variants of this inequality, where VmX(Ω) is
replaced by a lower-order Sobolev space on the left-hand side, are also dealt with.

In our discussion, we neither a priori assume any regularity on Ω, nor we assume that X(Ω) is a
Lebesgue space (or any other specific space). We shall exhibit a balance condition between the degree
of regularity of Ω, the order of differentiation m, and the strength of the norm in X(Ω) ensuring that
VmX(Ω) be a Banach algebra. The dependence on X(Ω) is only through the representation norm
‖ · ‖X(0,1) of ‖ · ‖X(Ω). In particular, the associate norm ‖ · ‖X′(0,1) of ‖ · ‖X(0,1), a kind of measure
theoretic dual norm of ‖ · ‖X(0,1), will be relevant.
As for our assumptions on the domain Ω, a key role in their formulation will be played by the relative
isoperimetric inequality. Let us recall that the discovery of the link between isoperimetric inequalities
and Sobolev type inequalities can be traced back to the work of Maz’ya on one hand ([45, 46]), who
proved the equivalence of general Sobolev inequalities to either isoperimetric or isocapacitary inequal-
ities, and that of Federer and Fleming on the other hand ([29]) who used the standard isoperimetric
inequality by De Giorgi ([26]) to exhibit the best constant in the Sobolev inequality for W 1,1(Rn). The
detection of optimal constants in classical Sobolev inequalities continued in the contributions [50], [55],
[4], where crucial use of De Giorgi’s isoperimetric inequality was again made. An extensive research
followed, along diverse directions, on the interplay between isoperimetric and Sobolev inequalities. We
just mention the papers [2, 5, 6, 9, 10, 11, 12, 15, 17, 18, 19, 22, 24, 27, 28, 30, 32, 33, 35, 36, 37, 38,
40, 41, 42, 43, 49, 54, 56] and the monographs [13, 14, 16, 31, 34, 47, 53].

Before stating our most general result, let us focus on the situation when m and X(Ω) are arbitrary,
but Ω is still, in a sense, a best possible domain. This is the case when Ω is a John domain. Recall
that a bounded open set Ω in Rn is called a John domain if there exist a constant c ∈ (0, 1), an
l ∈ (0,∞) and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable curve $ : [0, l]→ Ω,
parameterized by arclength, such that $(0) = x, $(l) = x0, and

dist ($(r), ∂Ω) ≥ cr for r ∈ [0, l].

Lipschitz domains, and domains with the cone property are customary instances of John domains.
When Ω is any John domain, a necessary and sufficient condition for VmX(Ω) to be a Banach

algebra is provided by the following result.

Theorem 1.1. Let m,n ∈ N, n ≥ 2. Assume that Ω is a John domain in Rn. Let ‖ · ‖X(0,1) be a
rearrangement-invariant function norm. Then VmX(Ω) is a Banach algebra if and only if

(1.3) ‖r−1+m
n ‖X′(0,1) <∞.
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As a consequence of Theorem 1.1, and of the characterization of Sobolev embeddings into L∞(Ω),
we have the following corollary.

Corollary 1.2. Let m,n ∈ N, n ≥ 2. Assume that Ω is a John domain in Rn. Let ‖ · ‖X(0,1) be a
rearrangement-invariant function norm. Then the Sobolev space VmX(Ω) is a Banach algebra if and
only if VmX(Ω)→ L∞(Ω).

Let us now turn to the general case. Regularity on Ω will be imposed in terms of its isoperimetric
function IΩ : [0, 1]→ [0,∞], introduced in [45], and given by

(1.4) IΩ(s) = inf
{
P (E,Ω) : E ⊂ Ω, s ≤ |E| ≤ 1

2

}
if s ∈ [0, 1

2 ],

and IΩ(s) = IΩ(1−s) if s ∈ (1
2 , 1]. Here, P (E,Ω) denotes the perimeter of a measurable set E relative

to Ω, which agrees with Hn−1(Ω ∩ ∂ME), where ∂ME denotes the essential boundary of E, in the
sense of geometric measure theory, and Hn−1 stands for (n− 1)-dimensional Hausdorff measure. The
very definition of IΩ implies the relative isoperimetric inequality in Ω, which tells us that

(1.5) P (E,Ω) ≥ IΩ(|E|),

for every measurable set E ⊂ Ω. In other words, IΩ is the largest non-decreasing function in [0, 1
2 ],

symmetric about 1
2 , which renders (1.5) true.

The degree of regularity of Ω can be described in terms of the rate of decay of IΩ(s) to 0 as s→ 0.
Heuristically speaking, the faster IΩ decays to 0, the less regular Ω is. For instance, the isoperimetric
function IΩ of any John domain Ω ⊂ Rn is known to satisfy

(1.6) IΩ(s) ≈ s
1
n′

near 0, where n′ = n
n−1 . Here, and in what follows, the notation f ≈ g mans that the real-valued

functions f and g are equivalent, in the sense that there exist positive constants c, C such that
cf(c·) ≤ g(·) ≤ Cf(C·). Notice that (1.6) is the best (i.e. slowest) possible decay of IΩ, since, if Ω is
any domain, then

(1.7)
IΩ(s)

s
1
n′
≤ C for s ∈ (0, 1],

for some constant C [25, Proposition 4.1].
What enters in our characterization of Sobolev algebras is, in fact, just a lower bound for IΩ. We

shall thus work with classes of domains whose isoperimetric function admits a lower bound in terms
of some non-decreasing function I : (0, 1) → (0,∞). The function I will be continued by continuity
at 0 when needed. Given any such function I, we denote by JI the collection of all domains Ω ⊂ Rn
such that

(1.8) IΩ(s) ≥ cI(cs) for s ∈ (0, 1
2 ],

for some constant c > 0. The assumption that I(t) > 0 for t ∈ (0, 1) is consistent with the fact that
IΩ(t) > 0 for t ∈ (0, 1), owing to the connectedness of Ω [47, Lemma 5.2.4].
In particular, if I(s) = sα for s ∈ (0, 1), for some α ∈ [ 1

n′ ,∞), we denote JI simply by Jα, and call it
a Maz’ya class. Thus, a domain Ω ∈ Jα if there exists a positive constant C such that

IΩ(s) ≥ Csα for every s ∈ (0, 1
2 ].

Observe that, thanks to (1.6), any John domain belongs to the class J 1
n′

.

Our most general result about Banach algebras of Sobolev spaces is stated in the next theorem.
Let us emphasize that, if Ω is not a regular domain, it brings new information even in the standard
case when X(Ω) = Lp(Ω).
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Theorem 1.3. Assume that m,n ∈ N, n ≥ 2, and let ‖ ·‖X(0,1) be a rearrangement-invariant function
norm. Assume that I is a positive non-decreasing function on (0, 1). If Ω ∈ JI and

(1.9)

∥∥∥∥∥ 1

I(t)

(∫ t

0

ds

I(s)

)m−1
∥∥∥∥∥
X′(0,1)

<∞,

then

VmX(Ω) is a Banach algebra,

or, equivalently, there exists a constant C such that

(1.10) ‖uv‖VmX(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for every u, v ∈ VmX(Ω).
Conversely, if, in addition,

(1.11)
I(t)

t
1
n′

is equivalent to a non-decreasing function on (0, 1),

then (1.9) is sharp, in the sense that if VmX(Ω) is a Banach algebra for every Ω ∈ JI , then (1.9)
holds.

Remark 1.4. Assumption (1.11) is not restrictive in view of (1.7), and can just be regarded as a
qualification of the latter.

Remark 1.5. If condition (1.9) holds for some X(0, 1) and m, then necessarily∫
0

ds

I(s)
<∞.

This is obvious for m ≥ 2, whereas it follows from (2.5) below for m = 1.

An analogue of Corollary 1.2 is provided by the following statement.

Corollary 1.6. Let m,n ∈ N, n ≥ 2, and let ‖ · ‖X(0,1) be a rearrangement-invariant function norm.
Assume that I is a positive non-decreasing function on (0, 1) satisfying (1.11). Then the Sobolev space
VmX(Ω) is a Banach algebra for all domains Ω satisfying (1.8) if and only if VmX(Ω)→ L∞(Ω) for
every Ω ∈ JI .

The next corollary of Theorem 1.3 tells us that VmX(Ω) is always a Banach algebra, whatever
X(Ω) is, provided that IΩ is sufficiently well behaved near 0, depending on m.

Corollary 1.7. Let m,n ∈ N, n ≥ 2, and let Ω ∈ JI for some positive non-decreasing function I on
(0, 1). Suppose that

(1.12) lim sup
t→0+

1

I(t)

(∫ t

0

dr

I(r)

)m−1

<∞.

Then the Sobolev space VmX(Ω) is a Banach algebra for every rearrangement-invariant space X(Ω).

Remark 1.8. Besides VmX(Ω), one can consider the m-th order Sobolev type space V mX(Ω) of
those functions u such that the norm

(1.13) ‖u‖VmX(Ω) =
m−1∑
k=0

‖∇ku‖L1(Ω) + ‖∇mu‖X(Ω)

is finite, and the space WmX(Ω) of those functions whose norm

‖u‖WmX(Ω) =
m∑
k=0

‖∇ku‖X(Ω)
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is finite. Both V mX(Ω) and WmX(Ω) are Banach spaces. Since any rearrangement-invariant space
is embedded into L1(Ω), one has that

(1.14) WmX(Ω)→ V mX(Ω)→ VmX(Ω),

and the inclusions are strict, as noticed above, unless Ω satisfies some additional regularity assumption.
In particular, if

(1.15) inf
t∈(0,1)

IΩ(t)

t
> 0,

then

(1.16) V mX(Ω) = VmX(Ω),

with equivalent norms, as a consequence of [47, Theorem 5.2.3] and of the closed graph theorem.
If assumption (1.15) is strengthened to

(1.17)

∫
0

ds

IΩ(s)
<∞,

then, in fact,

(1.18) WmX(Ω) = V mX(Ω) = VmX(Ω),

up to equivalent norms [25, Proposition 4.5].
If Ω ∈ JI for some I fulfilling (1.9), then, by Remark 1.5, condition (1.17) is certainly satisfied. Thus,
by the first part of Theorem 1.3, assumption (1.9) is sufficient also for V mX(Ω) and WmX(Ω) to be
Banach algebras. Under (1.11), such assumption is also necessary, provided that the function I is a
priori known to fulfil either

(1.19) inf
t∈(0,1)

I(t)

t
> 0,

or

(1.20)

∫
0

ds

I(s)
<∞,

according to whether V mX(Ω) or WmX(Ω) is in question. Let us emphasize that these additional
assumptions cannot be dispensed with in general. For instance, it is easily seen that WmL∞(Ω) is
always a Banach algebra, whatever m and Ω are.

So far we have analyzed the question of whether VmX(Ω) is a Banach algebra, namely of the validity
of inequality (1.10). We now focus on inequalities in the spirit of (1.10), where the space VmX(Ω)
is replaced with a lower-order Sobolev space Vm−kX(Ω) on the left-hand side. The statement of our
result in this connection requires the notion of the fundamental function ϕX : [0, 1] → [0,∞) of a
rearrangement-invariant function norm ‖ · ‖X(0,1). Recall that

(1.21) ϕX(t) = ‖χ(0,t)‖X(0,1) for t ∈ (0, 1].

Theorem 1.9. Let m, n, k ∈ N, n ≥ 2, 1 ≤ k ≤ m, and let ‖ · ‖X(0,1) be a rearrangement-invariant
function norm. Assume that I is a positive non-decreasing function on (0, 1). If Ω ∈ JI and

(1.22) sup
t∈(0,1)

1

ϕX(t)

(∫ t

0

ds

I(s)

)m+k

<∞,

then

(1.23) ‖uv‖Vm−kX(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for every u, v ∈ VmX(Ω).



6 ANDREA CIANCHI, LUBOŠ PICK AND LENKA SLAVÍKOVÁ

Conversely, if, in addition, (1.11) is fulfilled, then (1.22) is sharp, in the sense that if (1.23) is
satisfied for all domains Ω ∈ JI , then (1.22) holds.

Remark 1.10. Considerations on the replacement of the space VmX(Ω) with either the space
V mX(Ω), or WmX(Ω) in Theorem 1.9 can be made, which are analogous to those of Remark 1.8
about Theorem 1.3.

In the borderline case when k = 0, condition (1.22) is (essentially) weaker than (1.9) - see Proposition
3.3 and Remark 3.4, Section 3. The next result asserts that it “almost” implies inequality (1.10), in
that it yields an inequality of that form, with the borderline terms u∇mv and v∇mu missing in the
Leibniz formula for the m-th order derivative of the product uv.

Theorem 1.11. Let m,n ∈ N, m,n ≥ 2, and let ‖ · ‖X(0,1) be a rearrangement-invariant function
norm. Assume that I is a positive non-decreasing function on (0, 1). If Ω ∈ JI and

(1.24) sup
t∈(0,1)

1

ϕX(t)

(∫ t

0

ds

I(s)

)m
<∞ ,

then there exists a positive constant C such that

(1.25)

m−1∑
k=1

‖|∇ku||∇m−kv|‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for every u, v ∈ VmX(Ω).
Conversely, if, in addition, (1.11) is fulfilled, then (1.24) is sharp, in the sense that if (1.25) is satisfied
for all domains Ω ∈ JI , then (1.24) holds.

Theorem 1.3 enables us, for instance, to characterize the Lorentz–Zygmund-Sobolev spaces and
Orlicz-Sobolev spaces which are Banach algebras for all domains Ω ∈ Jα.
Let us first focus on the Lorentz–Zygmund-Sobolev spaces VmLp,q;β(Ω). Recall (see e.g. [52, The-
orem 9.10.4] or [51, Theorem 7.4]) that a necessary and sufficient condition for Lp,q;β(Ω) to be a
rearrangement-invariant space is that the parameters p, q, β satisfy either of the following conditions:

(1.26)


1 < p <∞, 1 ≤ q ≤ ∞, β ∈ R;

p = 1, q = 1, β ≥ 0;

p =∞, q =∞, β ≤ 0;

p =∞, 1 ≤ q <∞, β + 1
q < 0.

Proposition 1.12. Let m,n ∈ N, n ≥ 2, and let α ∈ [ 1
n′ ,∞). Assume that 1 ≤ p, q ≤ ∞, β ∈ R and

one of the conditions in (1.26) is in force. Then VmLp,q;β(Ω) is a Banach algebra for every domain
Ω ∈ Jα if and only if α < 1 and either of the following conditions is satisfied:

(1.27)


m(1− α) > 1

p ,

m(1− α) = 1
p , q = 1, β ≥ 0,

m(1− α) = 1
p , q > 1, β > 1

q′ .

The Orlicz-Sobolev spaces VmLA(Ω) are the object of the next result. In particular, it recovers a
result from [21], dealing with the case of regular domains.

Proposition 1.13. Let m ∈ N, n ≥ 2, and α ∈ [ 1
n′ ,∞). Let A be a Young function. Then VmLA(Ω)

is a Banach algebra for every domain Ω ∈ Jα if and only if α < 1 and either of the following conditions
is satisfied:

(1.28)

{
m ≥ 1

1−α ,

m < 1
1−α and

∫∞ ( t
A(t)

) (1−α)m
1−(1−α)mdt <∞.
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The Lorentz–Zygmund-Sobolev and Orlicz-Sobolev spaces for which the product operator is bounded
into a lower-order space for every Ω ∈ Jα can be characterized via Theorem 1.9.

Proposition 1.14. Let n,m, k ∈ N, n ≥ 2, 1 ≤ k ≤ m, and let α ∈ [ 1
n′ ,∞). Assume that 1 ≤ p, q ≤

∞, β ∈ R and one of the conditions in (1.26) is in force. Then, for every domain Ω ∈ Jα there exists
a constant C such that

‖uv‖Vm−kLp,q;β(Ω) ≤ C‖u‖VmLp,q;β(Ω)‖v‖VmLp,q;β(Ω)

for every u, v ∈ VmLp,q;β(Ω) if and only if α < 1, and either of the following conditions is satisfied:

(1.29)

{
(m+ k)(1− α) > 1

p ,

(m+ k)(1− α) = 1
p , β ≥ 0.

Proposition 1.15. Let n,m, k ∈ N, n ≥ 2, 1 ≤ k ≤ m, and let α ∈ [ 1
n′ ,∞). Let A be a Young

function. Then, for every domain Ω ∈ Jα there exists a constant C such that

‖uv‖Vm−kLA(Ω) ≤ C‖u‖VmLA(Ω)‖v‖VmLA(Ω)

for every u, v ∈ VmLp,q;β(Ω) if and only if α < 1 and either of the following conditions is satisfied:

(1.30)

{
(m+ k) ≥ 1

1−α ,

(m+ k) < 1
1−α and A(t) ≥ Ct

1
(1−α)(m+k) for large t ,

for some positive constant C.

2. Background

We denote by M(Ω) the set of all Lebesgue measurable functions from Ω into [−∞,∞]. We also
define M+(Ω) = {u ∈M(Ω) : u ≥ 0}, and M0(Ω) = {u ∈M(Ω) : u is finite a.e. in Ω}.

The decreasing rearrangement u∗ : (0, 1)→ [0,∞] of a function u ∈M(Ω) is defined as

u∗(s) = sup{t ∈ R : |{x ∈ Ω : |u(x)| > t}| > s} for s ∈ (0, 1).

We also define u∗∗ : (0, 1)→ [0,∞] as

u∗∗(s) =
1

s

∫ s

0
u∗(r) dr.

We say that a functional ‖ · ‖X(0,1) : M+(0, 1) → [0,∞] is a function norm, if, for all f , g and
{fj}j∈N in M+(0, 1), and every λ ≥ 0, the following properties hold:

(P1) ‖f‖X(0,1) = 0 if and only if f = 0 a.e.; ‖λf‖X(0,1) = λ‖f‖X(0,1);
‖f + g‖X(0,1) ≤ ‖f‖X(0,1) + ‖g‖X(0,1);

(P2) f ≤ g a.e. implies ‖f‖X(0,1) ≤ ‖g‖X(0,1);
(P3) fj ↗ f a.e. implies ‖fj‖X(0,1) ↗ ‖f‖X(0,1);
(P4) ‖1‖X(0,1) <∞;

(P5)
∫ 1

0 f(x) dx ≤ C‖f‖X(0,1) for some constant C independent of f .

If, in addition,

(P6) ‖f‖X(0,1) = ‖g‖X(0,1) whenever f∗ = g∗,

we say that ‖ · ‖X(0,1) is a rearrangement-invariant function norm.
Given a rearrangement-invariant function norm ‖·‖X(0,1), the space X(Ω) is defined as the collection

of all functions u ∈M(Ω) such that the expression

‖u‖X(Ω) = ‖u∗‖X(0,1)

is finite. Such expression defines a norm on X(Ω), and the latter is a Banach space endowed with
this norm, called a rearrangement-invariant space. Moreover, X(Ω) ⊂M0(Ω) for any rearrangement-
invariant space X(Ω).
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With any rearrangement-invariant function norm ‖ · ‖X(0,1), it is associated another functional on
M+(0, 1), denoted by ‖ · ‖X′(0,1), and defined, for g ∈M+(0, 1), by

(2.1) ‖g‖X′(0,1) = sup
f∈M+(0,1)

‖f‖X(0,1)≤1

∫ 1

0
f(s)g(s) ds.

It turns out that ‖ · ‖X′(0,1) is also an rearrangement invariant function norm, which is called the as-
sociate function norm of ‖ · ‖X(0,1). The rearrangement invariant space X ′(Ω) built upon the function
norm ‖ · ‖X′(0,1) is called the associate space of X(Ω). Given an rearrangement-invariant function
norm ‖ · ‖X(0,1), the Hölder inequality

(2.2)

∫
Ω
|u(x)v(x)| dx ≤ ‖u‖X(Ω)‖v‖X′(Ω)

holds for every u ∈ X(Ω) and v ∈ X ′(Ω). For every rearrangement-invariant space X(Ω) the identity
X ′′(Ω) = X(Ω) holds and, moreover, for every f ∈M(Ω), we have that

(2.3) ‖u‖X(Ω) = sup
v∈M(Ω); ‖v‖X′(Ω)≤1

∫ 1

0
|u(x)v(x)| dx.

The fundamental functions of a rearrangement-invariant space X(Ω) and its associate space X ′(Ω)
satisfy

(2.4) ϕX(t)ϕX′(t) = t for every t ∈ (0, 1).

Since we are assuming that Ω has finite measure,

(2.5) L∞(Ω)→ X(Ω)→ L1(Ω)

for every rearrangement-invariant space X(Ω).
A basic property of rearrangements is the Hardy-Littlewood inequality which tells us that, if u, v ∈
M(Ω), then

(2.6)

∫
Ω
|u(x)v(x)|dx ≤

∫ 1

0
u∗(t)v∗(t)dt.

A key fact concerning rearrangement-invariant function norms is the Hardy–Littlewood–Pólya principle
which states that if, for some u, v ∈M(Ω),

(2.7)

∫ t

0
u∗(s) ds ≤

∫ t

0
v∗(s) ds for t ∈ (0, 1),

then

‖u‖X(Ω) ≤ ‖v‖X(Ω)

for every rearrangement-invariant function norm ‖ · ‖X(0,1). Moreover,

(2.8) ‖uv‖X(Ω) ≤ ‖u∗v∗‖X(0,1)

for every rearrangement-invariant function norm ‖ · ‖X(0,1), and all functions u, v ∈M(Ω). Inequality
(2.8) follows from the inequality ∫ t

0
(uv)∗(s) ds ≤

∫ t

0
u∗(s)v∗(s) ds,

and the Hardy–Littlewood–Pólya principle.
We refer the reader to [7] for proofs of the results recalled above, and for a comprehensive treatment

of rearrangement-invariant spaces.
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Let 1 ≤ p, q ≤ ∞ and β ∈ R. We define the functional ‖ · ‖Lp,q;β(0,1) as

‖f‖Lp,q;β(0,1) =
∥∥∥s 1

p
− 1
q logβ

(
2
s

)
f∗(s)

∥∥∥
Lq(0,1)

for f ∈ M+(0, 1). If one of the conditions in (1.26) is satisfied, then ‖ · ‖Lp,q;β(0,1) is equivalent to

a rearrangement-invariant function norm, called a Lorentz–Zygmund norm (for details see e.g [8], [51]
or [52]). The corresponding rearrangement-invariant space Lp,q;β(Ω) is called the Lorentz–Zygmund
space. When β = 0, the space Lp,q;0(Ω) is denoted by Lp,q(Ω) and called Lorentz space. It is known
(e.g. [51, Theorem 6.11] or [52, Theorem 9.6.13]) that

(2.9) (Lp,q;β)′(Ω) =


Lp
′,q′;−β(Ω) if p <∞;

L(1,q′;−β−1)(Ω) if p =∞, 1 ≤ q <∞, β + 1
q < 0;

L1(Ω) if p =∞, q =∞, β = 0,

where L(p,q;β)(Ω) denotes the function space defined analogously to Lp,q;β(Ω) but with the functional
‖ · ‖L(p,q;β)(0,1) given by

‖f‖L(p,q;β)(0,1) =
∥∥∥s 1

p
− 1
q logβ

(
2
s

)
f∗∗(s)

∥∥∥
Lq(0,1)

for f ∈M+(0, 1). Note that, if β = 0, then

Lp,q;0(Ω) = Lp,q(Ω),

a standard Lorentz space. In particular, if p = q, then

Lp,p(Ω) = Lp(Ω),

a Lebesgue space.
A generalization of the Lebesgue spaces in a different direction is provided by the Orlicz spaces.

Let A : [0,∞) → [0,∞] be a Young function, namely a convex (non-trivial), left-continuous function
vanishing at 0. The Orlicz space LA(Ω) is the rearrangement-invariant space associated with the
Luxemburg function norm defined as

‖f‖LA(0,1) = inf

{
λ > 0 :

∫ 1

0
A

(
f(s)

λ

)
ds ≤ 1

}
for f ∈M+(0, 1). In particular, LA(Ω) = Lp(Ω) if A(t) = tp for some p ∈ [1,∞), and LA(Ω) = L∞(Ω)
if A(t) =∞χ(1,∞)(t).

The associate function norm of ‖ · ‖LA(0,1) is equivalent to the function norm ‖ · ‖
LÃ(0,1)

, where Ã is

the Young conjugate of A defined as

Ã(t) = sup{ts−A(s) : s ≥ 0} for t ≥ 0.

3. Key one-dimensional inequalities

In this section we shall state and prove two key assertions concerning one-dimensional inequalities
involving non-increasing functions and rearrangement-invariant spaces defined on an interval. Both
these results are of independent interest and they constitute a new approach to inequalities involving
products of functions.

Assume that I is a positive non-decreasing function on (0, 1). We denote by HI the operator defined
at every nonnegative measurable function g on (0, 1) by

HIg(t) =

∫ 1

t

g(r)

I(r)
dr for t ∈ (0, 1).

Moreover, given m ∈ N, we set
Hm
I = HI ◦HI ◦ · · · ◦HI︸ ︷︷ ︸

m−times

.
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We also denote by H0
I the identity operator. It is easily verified that

Hm
I g(t) =

1

(m− 1)!

∫ 1

t

g(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds for m ∈ N and t ∈ (0, 1),

see [25, Remark 8.2 (iii)].
Let X(0, 1) be a rearrangement-invariant space and let m ∈ N. If the function I satisfies (1.19),

then the optimal (smallest) rearrangement-invariant space Xm(0, 1) such that

(3.1) Hm
I : X(0, 1)→ Xm(0, 1)

is endowed with the function norm ‖ · ‖Xm(0,1), whose associate function norm is given by

(3.2) ‖g‖X′m(0,1) =

∥∥∥∥∥ 1

I(t)

∫ t

0
g∗(s)

(∫ t

s

dr

I(r)

)m−1

ds

∥∥∥∥∥
X′(0,1)

for g ∈M(0, 1) [25, Proposition 8.3].

The following lemma provides us with a pointwise inequality involving the operator Hk
I for k =

1, . . . ,m− 1 for I satisfying (1.20). For every such I we denote by ψI the function defined by

(3.3) ψI(t) =

(∫ t

0

dr

I(r)

)m
for t ∈ (0, 1).

Lemma 3.1. Assume that m, k ∈ N, m ≥ 2, 1 ≤ k ≤ m − 1. Let I be positive a non-decreasing
function on (0, 1) satisfying (1.20) and let ψI be the function defined by (3.3). There exists a constant
C = C(m) such that, if g ∈M+(0, 1) and

(3.4) g∗(t) ≤ 1

ψI(t)
for t ∈ (0, 1),

then

(3.5) Hk
I g
∗(t) ≤ Cg∗(t)1− k

m for t ∈ (0, 1) and k ∈ {1, . . . ,m}.

Proof. Fix g ∈M+(0, 1) such that (3.4) holds, and any t ∈ (0, 1). Define a ∈ (0, 1] by the identity

g∗(t) =
1

ψI(a)
if g∗(t) >

1

ψI(1)

and a = 1 otherwise. Note that the definition is correct since ψI is continuous and strictly increasing
on (0, 1), and limt→0+ ψI(t) = 0.

Assume first that g∗(t) > 1
ψI(1) . Then (3.4) and the monotonicity of ψI imply that t ≤ a ≤ 1. We

thus get

g∗(s) ≤

{
g∗(t) if s ∈ [t, a),

1
ψI(s) if s ∈ [a, 1).

Fix k ∈ {1, . . . ,m− 1}. Then, consequently,

(k − 1)!Hk
I g
∗(t) =

∫ a

t

g∗(s)

I(s)

(∫ s

t

dr

I(r)

)k−1

ds+

∫ 1

a

g∗(s)

I(s)

(∫ s

t

dr

I(r)

)k−1

ds

≤ g∗(t)
∫ a

t

1

I(s)

(∫ s

t

dr

I(r)

)k−1

ds+

∫ 1

a

1

ψI(s)I(s)

(∫ s

t

dr

I(r)

)k−1

ds.

By the definition of a,

g∗(t)

∫ a

t

1

I(s)

(∫ s

t

dr

I(r)

)k−1

ds =
g∗(t)

k

(∫ a

t

dr

I(r)

)k
≤ g∗(t)

k

(∫ a

0

dr

I(r)

)k
=
g∗(t)

k
ψI(a)

k
m =

1

k
g∗(t)1− k

m
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and ∫ 1

a

1

ψI(s)I(s)

(∫ s

t

dr

I(r)

)k−1

ds =

∫ 1

a

1

I(s)

(∫ s
t

dr
I(r)

)k−1(∫ s
0

dr
I(r)

)m ds ≤
∫ 1

a

1

I(s)

(∫ s

0

dr

I(r)

)k−m−1

ds

= 1
m−k

[(∫ a

0

dr

I(r)

)k−m
−
(∫ 1

0

dr

I(r)

)k−m]

≤ 1
m−k

(∫ a

0

dr

I(r)

)k−m
= 1

m−kψI(a)
k
m
−1 = 1

m−kg
∗(t)1− k

m .

Assume next that g∗(t) ≤ 1
ψI(1) . Then a = 1. Similarly as above, we have that

(k − 1)!Hk
I g
∗(t) =

∫ 1

t

g∗(s)

I(s)

(∫ s

t

dr

I(r)

)k−1

ds ≤ g∗(t)
∫ 1

t

1

I(s)

(∫ s

t

dr

I(r)

)k−1

ds

=
g∗(t)

k

(∫ 1

t

dr

I(r)

)k
≤ g∗(t)

k
ψI(1)

k
m ≤ 1

k
g∗(t)1− k

m .

Altogether, inequality (3.5) follows. �

Given a rearrangement-invariant function norm ‖ · ‖X(0,1) and p ∈ (1,∞), we define the functional
‖ · ‖Xp(0,1) by

‖g‖Xp(0,1) = ‖gp‖
1
p

X(0,1) for g ∈M+(0, 1).

The functional ‖ · ‖Xp(0,1) is also an rearrangement invariant function norm. Moreover, the inequality

(3.6) ‖fg‖X(0,1) ≤ ‖f‖Xp(0,1)‖g‖Xp′ (0,1)

holds for every f, g ∈M(0, 1) (see e.g. [44, Lemma 1]).
The following lemma, of possible independent interest, is a major tool in the proofs of our main

results.

Lemma 3.2. Assume that m ∈ N, m ≥ 2. Let I be a positive non-decreasing function on (0, 1), and
let ψI be the function defined by (3.3). Let ‖ · ‖X(0,1) be a rearrangement-invariant function norm.
Then the following statements are equivalent:

(i) Condition (1.20) holds, and there exists a positive constant C such that

(3.7) sup
t∈(0,1)

g∗∗(t)ψI(t) ≤ C‖g‖X(0,1)

for every g ∈M+(0, 1).
(ii) Condition (1.20) holds, and there exists a positive constant C such that

(3.8) sup
t∈(0,1)

g∗(t)ψI(t) ≤ C‖g‖X(0,1)

for every g ∈M+(0, 1).
(iii) For every k ∈ N, 1 ≤ k ≤ m− 1, there is a positive constant C such that

(3.9) ‖g‖
X

m
m−k (0,1)

≤ C‖g‖Xk(0,1)

for every g ∈M+(0, 1).
(iv) For every k ∈ N, 1 ≤ k ≤ m− 1, there exists a positive constant C such that

(3.10) ‖fg‖X(0,1) ≤ C‖f‖Xk(0,1)‖g‖Xm−k(0,1)

for every f, g ∈M+(0, 1).
(v) There exists k ∈ N, 1 ≤ k ≤ m− 1, and a positive constant C such that (3.10) holds.
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(vi) There exists k ∈ N, 1 ≤ k ≤ m− 1, and a positive constant C such that

(3.11) ‖Hk
I f H

m−k
I g‖X(0,1) ≤ C‖f‖X(0,1)‖g‖X(0,1)

for every f, g ∈M+(0, 1).
(vii) There exists a positive constant C such that

(3.12)

(∫ t

0

ds

I(s)

)m
≤ CϕX(t) for t ∈ (0, 1).

Proof. (i)⇒(ii) This implication is trivial thanks to the universal pointwise estimate g∗(t) ≤ g∗∗(t)
which holds for every g ∈M(0, 1) and every t ∈ (0, 1).

(ii)⇒(iii) Fix k ∈ N, 1 ≤ k ≤ m − 1. In view of the optimality of the space Xk(0, 1) in Hk
I :

X(0, 1)→ Xk(0, 1), mentioned above Lemma 3.1, the assertion will follow once we show that

(3.13) Hk
I : X(0, 1)→ X

m
m−k (0, 1).

Let g ∈ X(0, 1), g 6≡ 0, and let C be the constant from (3.8). Define h = g
C‖g‖X(0,1)

. Inequality (3.8)

implies that h∗(t) ≤ 1
ψI(t) for t ∈ (0, 1), whence, by Lemma 3.1,

Hk
I h
∗(t) ≤ C ′h∗(t)1− k

m for t ∈ (0, 1),

for some constant C ′ = C ′(m, k). Thus,

‖Hk
I g
∗‖
X

m
m−k (0,1)

= C‖g‖X(0,1)‖Hk
I h
∗‖
X

m
m−k (0,1)

≤ C ′C‖g‖X(0,1)‖h∗1−
k
m ‖

X
m

m−k (0,1)

= C ′C‖g‖X(0,1)‖h∗‖
1− k

m

X(0,1) = C ′C
k
m ‖g‖X(0,1).

By [25, Corollary 9.8], this is equivalent to the existence of a positive constant C(m, k,X) such that

‖Hk
I g‖X m

m−k (0,1)
≤ C(m, k,X)‖g‖X(0,1)

for every g ∈M+(0, 1). Hence, (3.13) follows.
(iii)⇒(iv) Fix k ∈ {1, . . . ,m− 1} and let f, g ∈M+(0, 1). On applying first (3.9) to f in place of

g, and then (3.9) again, this time with k replaced by m− k, we obtain

‖f‖
X

m
m−k (0,1)

≤ C‖f‖Xk(0,1) and ‖g‖
X
m
k (0,1)

≤ C‖g‖Xm−k(0,1).

Combining these estimates with (3.6), with p = m
m−k , yields

‖fg‖X(0,1) ≤ C2‖f‖Xk(0,1)‖g‖Xm−k(0,1),

and (iv) follows.
(iv)⇒(v) This implication is trivial.
(v)⇒(vi) Let k ∈ N, 1 ≤ k ≤ m − 1, be such that (3.10) holds, and let f, g ∈ M+(0, 1). On

making use of (3.10) with Hk
I f and Hm−k

I g in the place of f and g, respectively, we obtain

‖Hk
I f H

m−k
I g‖X(0,1) ≤ C‖Hk

I f‖Xk(0,1)‖Hm−k
I g‖Xm−k(0,1).

It follows from (3.1) that

Hk
I : X(0, 1)→ Xk(0, 1) and Hm−k

I : X(0, 1)→ Xm−k(0, 1).

Coupling these facts with the preceding inequality implies that

‖Hk
I f H

m−k
I g‖X(0,1) ≤ C ′‖f‖X(0,1)‖g‖X(0,1)

for some positive constant C ′ = C ′(m, k, I,X) but independent of f, g ∈M+(0, 1). Thus, the property
(vi) follows.
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(vi)⇒(vii) Let k ∈ N, 1 ≤ k ≤ m− 1, be such that (3.11) holds. Assume, for the time being, that
m < 2k. On replacing, if necessary, ‖ · ‖X(0,1) with the equivalent norm C‖ · ‖X(0,1), we may suppose,
without loss of generality, that C = 1 in (3.11). Thus,

(3.14) ‖(Hk
I f)(Hm−k

I g)‖X(0,1) ≤ ‖f‖X(0,1)‖g‖X(0,1)

for every f, g ∈M+(0, 1).
Let b > −1. Fix a ∈ (0, 1] and ε ∈ (0, a). Set

(3.15) f(t) = χ(ε,a)(t)

(∫ a

t

dr

I(r)

)b
, g(t) = χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) k
m−k+k−m

for t ∈ (0, 1). One can verify that

(3.16) Hk
I f(t) =

1

(b+ 1) . . . (b+ k)

(∫ a

t

dr

I(r)

)(b+k)

for t ∈ (ε, a).

Since we are assuming that m < 2k and b > −1,

(3.17) (b+ k) k
m−k + k −m > (−1 + k) k

2k−k + k − 2k = −1.

Hence, analogously to (3.16),

(3.18) Hm−k
I g(t) =

1

[(b+ k) k
m−k + k −m+ 1] . . . [(b+ k) k

m−k ]

(∫ a

t

dr

I(r)

)(b+k) k
m−k

for t ∈ (ε, a).

Note that

(3.19) (b+ k) k
m−k + k −m = bm−kk + (b+ k) m

m−k
2k−m
k .

Set p = k
m−k . The assumption m < 2k guarantees that p > 1. Moreover, p′ = k

2k−m . Thus,

inequality (3.6), applied to this choice of p, and equation (3.19) tell us that

‖g‖X(0,1) =

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) k
m−k+k−m

∥∥∥∥∥
X(0,1)

(3.20)

≤

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)b∥∥∥∥∥
m−k
k

X(0,1)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
2k−m
k

X(0,1)

= ‖f‖
m
k
−1

X(0,1)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
2k−m
k

X(0,1)

.

Coupling (3.14) with (3.20) yields

(3.21) ‖Hk
I f H

m−k
I g‖X(0,1) ≤ ‖f‖

m
k

X(0,1)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
2k−m
k

X(0,1)

.

By (3.16) and (3.18),

Hk
I f(t)Hm−k

I g(t) =
1

(b+ 1) . . . (b+ k)[(b+ k) k
m−k + k −m+ 1] . . . [(b+ k) k

m−k ]

(∫ a

t

dr

I(r)

)(b+k) m
m−k

for t ∈ (ε, a). On setting

(3.22) B(b) = (b+ 1) . . . (b+ k)
[
(b+ k) k

m−k + k −m+ 1] . . . [(b+ k) k
m−k

]



14 ANDREA CIANCHI, LUBOŠ PICK AND LENKA SLAVÍKOVÁ

and making use of (3.21), we obtain

1

B(b)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
X(0,1)

=
∥∥∥χ(ε,a)H

k
I f H

m−k
I g

∥∥∥
X(0,1)

(3.23)

≤
∥∥∥Hk

I f H
m−k
I g

∥∥∥
X(0,1)

≤ ‖f‖
m
k

X(0,1)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
2k−m
k

X(0,1)

.

The function

(0, 1) 3 t 7→ χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

is bounded and hence, by (2.5), belongs to X(0, 1). Thus,∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
X(0,1)

<∞.

Moreover, 1− 2k−m
k = m

k − 1. Therefore, (3.23) yields∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
m
k
−1

X(0,1)

≤ B(b) ‖f‖
m
k

X(0,1) .

On raising this inequality to the power k
m , and recalling the definition of f , we get

(3.24)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)(b+k) m
m−k

∥∥∥∥∥
1− k

m

X(0,1)

≤ B(b)
k
m

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)b∥∥∥∥∥
X(0,1)

.

Next, assume that m = 2k. Note that (3.17) holds also in this case. Let f and g be defined by (3.15)
again. Then

(b+ k) k
m−k + k −m = b,

whence f = g. Moreover, since k = m− k, we also have that Hk
I f = Hm−k

I g. Therefore, (3.14), (3.16)
and (3.18) imply that∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)2(b+k)
∥∥∥∥∥

1
2

X(0,1)

≤ (b+ 1) . . . (b+ k)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)b∥∥∥∥∥
X(0,1)

.

The assumption m = 2k entails that B(b) = [(b + 1) . . . (b + k)]2, and k
m = 1

2 . Hence, (3.24) follows.
We have thus established (3.24) whenever m ≤ 2k. From now on, we keep this assumption in force.
Define b0 = 0 and, for j ∈ N,

bj = (bj−1 + k) m
m−k ,

namely

(3.25) bj = m
[
( m
m−k )j − 1

]
.

We next set, for j ∈ N,

Kj =

j−1∏
i=0

B(bi)
k
m

(m−k
m

)i .

Let us note that the assumption 2k ≥ m implies that B(bj) ≥ 1 for j ∈ N∪ {0}, and hence Kj ≥ 1 as
well.
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We claim that, for every j ∈ N,

(3.26)

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)bj∥∥∥∥∥
(m−k
m

)j

X(0,1)

≤ Kj‖χ(ε,a)‖X(0,1).

Indeed, choosing b = 0 in (3.24), yields (3.26) for j = 1. Assume now that (3.26) holds for some fixed
j ∈ N. Then, by (3.24) with b = bj ,∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)bj+1

∥∥∥∥∥
(m−k
m

)j+1

X(0,1)

≤ B(bj)
k
m

(m−k
m

)j

∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)bj∥∥∥∥∥
(m−k
m

)j

X(0,1)

.

Thus, by the induction assumption,∥∥∥∥∥χ(ε,a)(t)

(∫ a

t

dr

I(r)

)bj+1

∥∥∥∥∥
(m−k
m

)j+1

X(0,1)

≤ B(bj)
k
m

(m−k
m

)jKj

∥∥χ(ε,a)‖X(0,1) = Kj+1‖χ(ε,a)

∥∥
X(0,1)

,

and (3.26) follows.
Letting ε→ 0+ in (3.26) and making use of property (P3) of rearrangement-invariant function norms
yields

(3.27)

∥∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

I(r)

)bj∥∥∥∥∥
(m−k
m

)j

X(0,1)

≤ Kj‖χ(0,a)‖X(0,1).

Fix j ∈ N, and set

gj(t) = χ(0,a)(t)

(∫ a

t

dr

I(r)

)bj
for t ∈ (0, 1).

Then, owing to (3.27)

(3.28) ‖gj‖
(m−k
m

)j

X(0,1) ≤ Kj‖χ(0,a)‖X(0,1).

By the Hölder inequality and (2.4),∫ a

0
gj(t) dt ≤ ‖gj‖X(0,1)‖χ(0,a)‖X′(0,1) =

a‖gj‖X(0,1)

‖χ(0,a)‖X(0,1)
.

By (3.28),

1

a

∫ a

0
gj(t) dt ≤ K

1

(m−km )j

j ‖χ(0,a)‖
1−(m−km )j

(m−km )j

X(0,1) .

We have thus shown that

(3.29)

(
1

a

∫ a

0
gj(t) dt

) (m−km )j

1−(m−km )j ≤ K
1

1−(m−km )j

j ‖χ(0,a)‖X(0,1)

for j ∈ N.
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Observe that

lim
j→∞

(
1

a

∫ a

0
gj(t) dt

) (m−km )j

1−(m−km )j

= lim
j→∞

(
1

a

∫ a

0

(∫ a

t

dr

I(r)

)bj
dt

) 1

( m
m−k )j−1

(3.30)

= lim
j→∞

(
1

a

∫ a

0

(∫ a

t

dr

I(r)

)m(( m
m−k )j−1)

dt

) 1

( m
m−k )j−1

=

∥∥∥∥χ(0,a)(t)

(∫ a

t

dr

I(r)

)m∥∥∥∥
L∞(0,1)

=

(∫ a

0

dr

I(r)

)m
.

On the other hand, since m−k
m < 1,

1−
(
m−k
m

)j ≥ 1− m−k
m = k

m

for j ∈ N. As observed above, Kj ≥ 1 for every j ∈ N. By (3.22), if b > −1, then

B(b) ≤ (b+ k)k((b+ k) k
m−k )m−k ≤ (b+ k)m( m

m−k )m.

With the choice b = bj , the last chain and (3.25) yield

B(bj) ≤ (m(( m
m−k )j − 1) + k)m( m

m−k )m ≤ (m( m
m−k )j+1)m

for j ∈ N ∪ {0}. Altogether, we deduce that

K

1

1−(m−km )j

j ≤ K
m
k
j =

j−1∏
i=0

B(bi)
(m−k
m

)i ≤
∞∏
i=0

((
m
(

m
m−k

)i+1
)m)(m−k

m
)i

<∞.

On setting

K =

∞∏
i=0

((
m
(

m
m−k

)i+1
)m)(m−k

m
)i

,

we have that

(3.31) lim sup
j→∞

K

1

1−(m−km )j

j ≤ K.

Therefore, combining (3.29), (3.30) and (3.31) tells us that(∫ a

0

dr

I(r)

)m
≤ K‖χ(0,a)‖X(0,1).

Hence, inequality (3.12) follows. Thus, property (vii) is proved when m ≤ 2k. However, if this is not
the case, then m ≤ 2(m − k). The same argument as above, applied with m − k in the place of k,
leads to the conclusion.

(vii)⇒(i) Let g ∈M(0, 1). Then, by (3.12),

sup
t∈(0,1)

g∗∗(t)ψI(t) ≤ C sup
t∈(0,1)

g∗∗(t)ϕX(t).

One has that

sup
t∈(0,1)

g∗∗(t)ϕX(t) ≤ ‖g‖X(0,1)

for every g ∈M(0, 1) (see e.g. It is a classical fact (see e.g. [7, Chapter 2, Proposition 5.9]). Combining
the last two estimates yields

sup
t∈(0,1)

g∗∗(t)ψI(t) ≤ C‖g‖X(0,1)

for g ∈M(0, 1), namely (3.7). �
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We conclude this section by showing that assumption (1.9) is actually essentially stronger than
(1.24).

Proposition 3.3. Let m,n ∈ N, n ≥ 2, m ≥ 2, and let ‖·‖X(0,1) be a rearrangement-invariant function
norm. Assume that I is a positive non-decreasing function on (0, 1). If (1.9) holds, then (1.24) holds
as well.

Proof. By the Hölder inequality in rearrangement-invariant spaces,(∫ t

0

ds

I(s)

)m
= m

∫ t

0

1

I(s)

(∫ s

0

dr

I(r)

)m−1

ds ≤ m

∥∥∥∥∥ 1

I(s)

(∫ s

0

dr

I(r)

)m−1
∥∥∥∥∥
X′(0,1)

‖χ(0,t)‖X(0,1)

= m

∥∥∥∥∥ 1

I(s)

(∫ s

0

dr

I(r)

)m−1
∥∥∥∥∥
X′(0,1)

ϕX(t) for t ∈ (0, 1).

Hence, the assertion follows. �

Remark 3.4. It is easily seen that (1.9) is in fact essentially stronger than (1.24), in general. Indeed,
let I(t) = tα for some α ∈ R such that α ≥ 1

n′ and α > 1
m′ , and let ‖ · ‖X(0,1) = ‖ · ‖Lq(0,1)

with q = 1
m(1−α) . Then (1.24) holds but (1.9) does not. In other words, by Theorems 1.3 and 1.9,

VmL
1

m(1−α) (Ω) is not a Banach algebra for every Ω ∈ Jα, yet it satisfies (1.25) for every Ω ∈ Jα.

4. Proofs of the main results

Here, we accomplish the proofs of the results stated in Section 1.
A result to be exploited in our proofs is an embedding theorem for the space VmX(Ω), which tells us
that, under assumption (1.19),

(4.1) V mX(Ω)→ Xm(Ω)

where Xm(Ω) is the rearrangement-invariant space built upon the function norm ‖ · ‖Xm(0,1) given by
(3.1), and that Xm(Ω) is the optimal (smallest) such rearrangement-invariant space [25, Theorem 5.4]
(see also [27], [19] and [39] for earlier proofs in special cases).

The next three lemmas are devoted to certain “worst possible” domains whose isoperimetric function
has a prescribed decay. Such domains will be of use in the proof of the necessity of our conditions in
the main results.

Lemma 4.1. Let n ∈ N, n ≥ 2, and let I be a positive , non-decreasing function satisfying (1.11).

Then there exists a positive non-decreasing function Î in (0, 1) such that Î ∈ C1(0, 1), În
′

is convex
on (0, 1), and

(4.2) Î(s) ≈ I(s) for s ∈ (0, 1).

Proof. By (1.11), there exists a non-decreasing function ς : (0, 1)→ (0,∞) such that

(4.3)
I(s)n

′

s
≈ ς(s) for s ∈ (0, 1).

Set

I1(s) =

(∫ s

0
ς(r) dr

)1/n′

for s ∈ (0, 1).

Then I1 ∈ C0(0, 1), and In
′

1 is convex in (0, 1). Moreover, we claim that

(4.4) I1(s) ≈ I(s) for s ∈ (0, 1).
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Indeed, by the monotonicity of ς,

1
2 ς(s/2) ≤ 1

s

∫ s

s/2
ς(r)dr ≤ I1(s)n

′

s
=

1

s

∫ s

0
ς(r)dr ≤ ς(s) for s ∈ (0, 1).(4.5)

Equation (4.4) follows from (4.3) and (4.5). Similarly, on setting

Î(s) =

(∫ s

0

I1(r)n
′

r
dr

)1/n′

for s ∈ (0, 1),

one has that Î ∈ C1(0, 1), În
′

is convex in (0, 1), and

(4.6) Î(s) ≈ I1(s) for s ∈ (0, 1).

Coupling (4.4) with (4.6) yields (4.2). Thus, the function Î has the required properties. �

Lemma 4.2. Let n ∈ N, n ≥ 2, and let I be a positive, non-decreasing function on (0, 1) satisfy-
ing (1.11). Then there exist L ∈ (0,∞] and a convex function η : (0, L) → (0,∞) such that the
domain ΩI ⊂ Rn, defined by

(4.7) ΩI = {x ∈ Rn : x = (x′, xn), xn ∈ (0, L), x′ ∈ Rn−1, |x′| < η(xn)},

satisfies |ΩI | = 1 and

(4.8) IΩI (s) ≈ I(s) for s ∈ (0, 1
2 ].

Proof. By Lemma 4.1, we can assume with no loss of generality that I ∈ C1(0, 1) and In
′

is convex in
(0, 1). Let L ∈ (0,∞] be defined by

(4.9) L =

∫ 1

0

dr

I(r)
,

and let M : [0, L)→ (0, 1] be the function implicitly defined as

(4.10)

∫ 1

M(t)

dr

I(r)
= t for t ∈ [0, L).

The function M strictly decreases from 1 to 0. In particular, M is continuously differentiable in (0, L),
and

(4.11) I(M(r)) = −M ′(r) for r ∈ (0, L) .

On defining η : (0, L)→ (0,∞) as

(4.12) η(r) =

(
I(M(r))

ωn−1

) 1
n−1

for r ∈ (0, L),

where ωn−1 is the volume of the (n − 1)-dimensional unit ball, we have that η(r) > 0 for r ∈ (0, L),
and, by (4.11),
(4.13)

|{x ∈ ΩI : t < xn < L}| = ωn−1

∫ L

t
η(r)n−1 dr =

∫ L

t
I(M(r)) dr =

∫ L

t
−M ′(r) dr = M(t) for t ∈ (0, L).

Moreover, η is convex. To see this, notice that, by (4.11),

ω
1

n−1

n−1η
′(r) =

(
I(M(r))

1
n−1
)′

=
1

n− 1
I ′(M(r))I(M(r))

1
n−1
−1M ′(r)(4.14)

= − 1

n− 1
I ′(M(r))I(M(r))

1
n−1 for r ∈ (0, L).
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Thus, since M(r) is decreasing, η′(r) is increasing if and only if I ′(s)I(s)
1

n−1 is increasing, and this is

in turn equivalent to the convexity of I(s)n
′
. Equation (4.14) also tells us that

η′(0+) = − 1

n− 1
ω
− 1
n−1

n−1 I ′(1−)I(1−)
1

n−1 > −∞.

By (4.13), with t = 0, the set ΩI as in (4.7), with η given by (4.12), satisfies |ΩI | = 1. Furthermore,
owing to the properties of η, from either [47, Example 5.3.3.1] or [47, Example 5.3.3.2], according to
whether L <∞ or L =∞, we infer that there exist positive constants C1 and C2 such that

(4.15) C1 η(M−1(s))n−1 ≤ IΩI (s) ≤ C2 η(M−1(s))n−1 for s ∈ (0, 1
2 ].

Hence, by (4.12),

(4.16)
C1

ωn−1
I(s) ≤ IΩI (s) ≤

C2

ωn−1
I(s) for s ∈ (0, 1

2 ],

and (4.8) follows. �

Lemma 4.3. Let n ∈ N, n ≥ 2. Let I be a positive non-decreasing function on (0, 1) such that

I ∈ C1(0, 1) and In
′

is convex in (0, 1). Let L, M , η and ΩI be as in Lemma 4.2. Given h ∈M+(0, 1),
let F : ΩI → [0,∞) be the function defined by

F (x) = h(M(xn)) for x ∈ ΩI .

Then

(4.17) F ∗(t) = h∗(t) for t ∈ (0, 1).

Proof. On making use of (4.12), of a change of variables and of (4.11), we obtain that

|{x ∈ ΩI : F (x) > λ}| = |{x ∈ ΩI : h(M(xn)) > λ}| = ωn−1

∫
{r∈(0,L) : h(M(r))>λ}

η(r)n−1 dr

=

∫
{r∈(0,L) : h(M(r))>λ}

I(M(r)) dr =

∫
{t∈(0,1) : h(t)>λ}

− I(t)

M ′(M−1(t))
dt

= |{t ∈ (0, 1) : h(t) > λ}| for λ > 0.

Equation (4.17) hence follows, via the definition of the decreasing rearrangement. �

Proposition 4.4. Assume that m,n ∈ N, n ≥ 2, and let I be a positive non-decreasing function
satisfying (1.11). Let ‖ · ‖X(0,1) be a rearrangement-invariant function norm. Assume that for every
domain Ω ∈ JI , the Sobolev space VmX(Ω) is a Banach algebra. Then condition (1.9) holds. Moreover,

(4.18) VmX(Ω)→ L∞(Ω)

for every such domain Ω.

Proof. By Lemma 4.1, we can assume, without loss of generality, that I ∈ C1(0, 1) and In
′

is convex
in (0, 1). Let L, M , η and ΩI be as in Lemma 4.2. Let f, g ∈ M+(0, 1). We define the functions
u, v : ΩI → [0,∞] by

(4.19) u(x) =

∫ 1

M(xn)

1

I(r1)

∫ 1

r1

1

I(r2)
. . .

∫ 1

rm−1

f(rm)

I(rm)
drm drm−1 . . . dr1 for x ∈ ΩI ,

and

(4.20) v(x) =

∫ 1

M(xn)

1

I(r1)

∫ 1

r1

1

I(r2)
. . .

∫ 1

rm−1

g(rm)

I(rm)
drm drm−1 . . . dr1 for x ∈ ΩI .
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Then the functions u and v are m times weakly differentiable in ΩI . Since u is a non-decreasing
function of the variable xn,

|∇u(x)| = ∂u

∂xn
(x) = − M ′(xn)

I(M(xn))

∫ 1

M(xn)

1

I(r2)

∫ 1

r2

. . .

∫ 1

rm−1

f(rm)

I(rm)
drm drm−1 . . . dr2

=

∫ 1

M(xn)

1

I(r2)

∫ 1

r2

. . .

∫ 1

rm−1

f(rm)

I(rm)
drm drm−1 . . . dr2 for a.e. x ∈ ΩI ,

where the last equality holds by (4.11). Similarly, if 1 ≤ k ≤ m− 1,
(4.21)

|∇ku(x)| = ∂ku

∂xkn
(x) =

∫ 1

M(xn)

1

I(rk+1)

∫ 1

rk+1

. . .

∫ 1

rm−1

f(rm)

I(rm)
drm drm−1 . . . drk+1 for a.e. x ∈ ΩI ,

and

(4.22) |∇mu(x)| = ∂mu

∂xmn
(x) = f(M(xn)) for a.e. x ∈ ΩI .

Thus, if 0 ≤ k ≤ m, then

(4.23) |∇ku(x)| = ∂ku

∂xkn
(x) = Hm−k

I f(M(xn)) for a.e. x ∈ ΩI ,

where, as agreed, H0
I f = f . Analogously, if 0 ≤ k ≤ m,

(4.24) |∇kv(x)| = ∂kv

∂xkn
(x) = Hm−k

I g(M(xn)) for a.e. x ∈ ΩI .

By the Leibniz Rule,

|∇m(uv)(x)| = ∂m(uv)

∂xmn
(x) =

m∑
k=0

(
m

k

)
∂ku

∂xkn
(x)

∂m−kv

∂xm−kn

(x)

=
m∑
k=0

(
m

k

)
Hm−k
I f(M(xn))Hk

I g(M(xn)) for a.e. x ∈ ΩI .

Since ΩI ∈ JI , the space VmX(ΩI) is a Banach algebra by our assumption. Therefore, in particular,
there exists a positive constant C such that

‖∇m(uv)‖X(ΩI) ≤ C‖u‖VmX(ΩI)‖v‖VmX(ΩI),

namely,

(4.25)

∥∥∥∥∥
m∑
k=0

(
m

k

)
Hm−k
I f(M(xn))Hk

I g(M(xn))

∥∥∥∥∥
X(ΩI)

≤ C‖u‖VmX(ΩI)‖v‖VmX(ΩI).

Now, if 0 ≤ k ≤ m, then

Hm−k
I f(M(xn))Hk

I g(M(xn)) ≥ 0 for a.e. x ∈ ΩI .

Therefore, we can disregard the terms with k 6= 0 in (4.25), and obtain

(4.26) ‖Hm
I f(M(xn)) g(M(xn))‖X(ΩI) ≤ C‖u‖VmX(ΩI)‖v‖VmX(ΩI).

By Lemma 4.3, the function Fm,I : ΩI → [0,∞), defined as

Fm,I(x) = Hm
I f(M(xn))g(M(xn)) for x ∈ ΩI ,

is such that

F ∗m,I = (Hm
I fg)∗ .
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Hence,

(4.27) ‖Hm
I f(M(xn))g(M(xn))‖X(ΩI) = ‖Hm

I fg‖X(0,1).

As for the terms on the right-hand side, note that, by (1.2), (4.22) and Lemma 4.3,

(4.28) ‖u‖VmX(Ω) = ‖f‖X(0,1) +

m−1∑
k=0

‖∇ku‖L1(B),

where B is any ball in ΩI . It is readily verified from (4.13) that there exists a constant c > 0 such
that M(xn) ≥ c for every x ∈ B. Thus,

1

I(r)
≤ 1

I(c)
if x ∈ B and r ∈ [M(xn), 1].

Hence, by (4.19) and (4.21), if 0 ≤ k ≤ m− 1,

|∇ku(x)| ≤ 1

I(c)m−k

∫ 1

M(xn)

∫ 1

rk+1

. . .

∫ 1

rm−1

f(rm)drm drm−1 . . . drk+1 ≤
C1

I(c)m−k

∫ 1

M(xn)
f(rm)drm

≤ C2

∫ 1

0
f(r) dr for a.e. x ∈ B,

for suitable positive constants C1 and C2. Consequently, by (2.5), if 0 ≤ k ≤ m− 1

‖∇ku‖L1(B) ≤ C2|B|‖f‖L1(0,1) ≤ C3‖f‖X(0,1)

for a suitable constant C3. Hence, via (4.28),

(4.29) ‖u‖VmX(Ω) ≤ C‖f‖X(0,1)

for some constant C. Analogously,

(4.30) ‖v‖VmX(Ω) ≤ C‖g‖X(0,1).

From (4.26), (4.27), (4.29) and (4.30) we infer that

(4.31) ‖gHm
I f‖X(0,1) ≤ C‖f‖X(0,1)‖g‖X(0,1)

for some positive constant C.
We now claim that

(4.32) ‖Hm
I f‖L∞(0,1) ≤ sup

g≥0,‖g‖X(0,1)≤1
‖gHm

I f‖X(0,1).

Indeed, if λ < ‖Hm
I f‖L∞(0,1), then there exists a set E ⊂ (0, 1) of positive measure such that Hm

I f ≥
λχE . Thus,

sup
g≥0,‖g‖X(0,1)≤1

‖gHm
I f‖X(0,1) ≥ λ sup

g≥0,‖g‖X(0,1)≤1
‖gχE‖X(0,1) = λ ,

whence (4.32) follows. Coupling inequality (4.32) with (4.31) tells us that

‖Hm
I f‖L∞(0,1) ≤ C‖f‖X(0,1)

for every f ∈ X(0, 1). The last inequality can be rewritten in the form∫ 1

0

f(r)

I(r)

(∫ r

0

dt

I(t)

)m−1

dr ≤ C‖f‖X(0,1),

and hence, by (2.1), ∥∥∥∥∥ 1

I(t)

(∫ t

0

ds

I(s)

)m−1
∥∥∥∥∥
X′(0,1)

≤ C,

namely (1.9).
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In particular, we have established (1.20), and hence also (1.17). Therefore, by Remark 1.8, the
three spaces V mX(Ω), VmX(Ω) and WmX(Ω) coincide. Moreover, thanks to (1.9), we may apply [25,
Corollary 5.5] and obtain thereby that V mX(Ω)→ L∞(Ω) for every Ω ∈ JI . This establishes (4.18).
Since V mX(Ω) = VmX(Ω), the proof is complete. �

The following theorem shows that the embedding into the space of essentially bounded functions is
necessary for a Banach space to be a Banach algebra, in a quite general framework.

Theorem 4.5. Assume that Z(Ω) is a Banach algebra such that Z(Ω) ⊂M(Ω) and

(4.33) Z(Ω)→ L1,∞(Ω).

Then

(4.34) Z(Ω)→ L∞(Ω).

Proof. Since Z(Ω) is a Banach algebra, there exists a constant C ≥ 1 such that

(4.35) ‖uv‖Z(Ω) ≤ C‖u‖Z(Ω)‖v‖Z(Ω)

for every u, v ∈ Z(Ω). Suppose, by contradiction, that (4.34) fails. Then there exists a function
w ∈ Z(Ω) such that

‖w‖L∞(Ω) > 2C‖w‖Z(Ω),

where C is the constant from (4.35). In other words, the set

E = {x ∈ Ω; |w(x)| > 2C‖w‖Z(Ω)}

has positive Lebesgue measure. Fix j ∈ N. Applying (4.35) (j − 1)-times, we obtain

‖wj‖Z(Ω) ≤ Cj−1‖w‖jZ(Ω).

Combining this inequality with (4.33) yields

λ|{x ∈ Ω : |w(x)|j > λ}| ≤ C ′Cj−1‖w‖jZ(Ω).

for some constant C ′, and for every λ > 0. In particular, the choice λ = (2C‖w‖Z(Ω))
j yields

(2C‖w‖Z(Ω))
j |E| ≤ C ′Cj−1‖w‖jZ(Ω),

namely

2j |E| ≤ CC−1.

However, this is impossible, since |E| > 0 and j is arbitrary. �

Given a multi-index γ = (γ1, . . . , γn), with γi ∈ N∪ {0} for i = 1, . . . , n, set |γ| = γ1 + · · ·+ γn, and

Dγu = ∂|γ|u
∂x
γ1
1 ...∂xγnn

for u : Ω→ R. Moreover, given two multi-indices γ and δ, we write γ ≤ δ to denote

that γi ≤ δi for i = 1, . . . , n. Accordingly, by γ < δ we mean that γ ≤ δ and γi < δi for at least one
i ∈ {1, . . . , n}.

Proof of Theorem 1.9. Let 1 ≤ k ≤ m. Fix any multi-index γ satisfying |γ| ≤ m − k. Assump-
tion (1.22) implies that

(4.36)

∫ 1

0

ds

I(s)
<∞.

From (1.22) and (4.36), we obtain that there exists a positive constant C such that

(4.37)

(∫ t

0

ds

I(s)

)2m−|γ|
≤
(∫ 1

0

ds

I(s)

)m−k−|γ|(∫ t

0

ds

I(s)

)m+k

≤ CϕX(t).
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Suppose that δ is any multi-index fulfilling δ ≤ γ. Since (1.22) holds, Lemma 3.2, implication (vii) ⇒
(iii), combined with (4.1), tells us that

(4.38) V m−|δ|X(Ω)→ X
2m−|γ|

m−|γ|+|δ| (Ω) and V m−|γ|+|δ|(Ω)→ X
2m−|γ|
m−|δ| (Ω).

On applying (3.6) with p = 2m−|γ|
m−|γ|+|δ| and the two embeddings in (4.38), we deduce that

‖DδuDγ−δv‖X(Ω) ≤ ‖Dδu‖
X

2m−|γ|
m−|γ|+|δ| (Ω)

‖Dγ−δv‖
X

2m−|γ|
m−|δ| (Ω)

(4.39)

≤ C‖Dδu‖Vm−|δ|X(Ω)‖D
γ−δv‖Vm−|γ|+|δ|X(Ω) ≤ C

′‖u‖VmX(Ω)‖v‖VmX(Ω),

for some constants C and C ′, and for every u, v ∈ V mX(Ω). In particular, inequality (4.39) implies
that

∑
δ≤γ |DδuDγ−δv| ∈ L1(Ω). Hence, via [3, Ex. 3.17], we deduce that the function uv is (m− k)-

times weakly differentiable and

Dγ(uv) =
∑
δ≤γ

γ!

δ!(γ − δ)!
DδuDγ−δv.

It follows from (4.39) that

‖Dγ(uv)‖X(Ω) ≤
∑
δ≤γ

γ!

δ!(γ − δ)!
‖DδuDγ−δv‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω),

for some constant C. Thus,

(4.40) ‖uv‖Wm−kX(Ω) =
∑

|γ|≤m−k

‖Dγ(uv)‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for some constant C, and for every u, v ∈ V mX(Ω). Since (4.36) is in force, Wm−kX(Ω) = Vm−kX(Ω)
and V mX(Ω) = VmX(Ω), up to equivalent norms. As a consequence of (4.40), inequality (1.23)
follows.

In order to prove the converse assertion, observe that, by Lemma 4.1, we can assume with no loss
of generality that I ∈ C1(0, 1) and In

′
is convex. Let L, M , η and ΩI be as in Lemma 4.2. Since,

by (4.8), ΩI ∈ JI , condition (1.23) is fulfilled. Thus, there exists a positive constant C such that

(4.41) ‖∇m−k(uv)‖X(ΩI) ≤ C‖u‖VmX(ΩI)‖v‖VmX(ΩI)

for every u, v ∈ VmX(ΩI). Given f, g ∈ M+(0, 1), define u, v : ΩI → [0,∞] as in (4.19) and (4.20),
respectively. The functions u and v are m-times weakly differentiable in ΩI . Furthermore, by (4.23)
and (4.24),

|∇m−k(uv)(x)| = ∂m−k(uv)

∂xm−kn

(x) =

m−k∑
`=0

(
m− k
`

)
∂`u

∂x`n
(x)

∂m−k−`v

∂xm−k−`n

(x)(4.42)

=

m−k∑
`=0

(
m− k
`

)
Hm−`
I f(M(xn))Hk+`

I g(M(xn))

≥ Hm
I f(M(xn))Hk

I g(M(xn)) for a.e. x ∈ ΩI .

From (4.41), (4.42), (4.29) and (4.30) we infer that

‖Hm
I f H

k
I g‖X(0,1) = ‖Hm

I f(M(xn))Hk
I g(M(xn))‖X(Ω) ≤ C‖f‖X(0,1)‖g‖X(0,1)

for some constant C, and for every f, g ∈ M+(0, 1). Since 1 ≤ k ≤ m ≤ m + k − 1, it follows from
Lemma 3.2, implication (vi) ⇒ (vii), that (1.22) holds. �
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Proof of Theorem 1.11. Let Ω ∈ JI , ‖ · ‖X(0,1) and 1 ≤ k ≤ m be such that (1.22) is fulfilled. By
Theorem 1.9, there exists a positive constant C such that

(4.43)
m−k∑
l=0

‖|∇lu||∇m−k−lv|‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for every u, v ∈ VmX(Ω).
In order to prove (1.25), it suffices to show that there exists C > 0 such that

(4.44) ‖DγuDδv‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for every u, v ∈ VmX(Ω) and every multi-indices γ and δ satisfying |γ|+ |δ| = m, |γ| ≥ 1 and |δ| ≥ 1.
Fix such u, v, γ and δ. Without loss of generality we may assume that |γ| ≤ |δ|. Let σ be an arbitrary
multi-index such that σ ≤ δ and |σ| = |γ|. Assumption (1.24) ensures that condition (1.22) is fulfilled,
with m and k replaced with m−|γ| and |γ|. Thus, owing to (4.43), applied with u, v, m and k replaced
by Dγu, Dδ0v, m− |γ| and |γ|, respectively, (and disregarding the terms with ` > 0 on the left-hand
side) we obtain that

‖DγuDδv‖X(Ω) ≤ ‖Dγu|∇m−2|γ|Dσv|‖X(Ω)

≤ C‖Dγu‖Vm−|γ|X(Ω)‖D
σv‖Vm−|γ|X(Ω)

≤ C‖u‖VmX(Ω)‖v‖VmX(Ω),

whence (4.44) follows.
A proof of the necessity of condition (1.24), under (1.25) and (1.11) follows along the same lines as in
the proof of (1.22) in Theorem 1.9, and will be omitted for brevity. �

We shall now prove a general sufficient condition for the space WmX(Ω) to be a Banach algebra.

Proposition 4.6. Let m,n ∈ N, n ≥ 2, and let I be a positive non-decreasing function in (0, 1).
Assume that Ω ∈ JI . Let ‖ · ‖X(0,1) be a rearrangement invariant function norm. If (1.9) holds, then
the Sobolev space WmX(Ω) is a Banach algebra.

Proof. It suffices to show that, for each pair of multi-indices γ and δ such that |γ| ≤ m and δ ≤ γ,
there exists a positive constant C such that inequality

(4.45) ‖DδuDγ−δv‖X(Ω) ≤ C‖u‖WmX(Ω)‖v‖WmX(Ω).

holds for all u, v ∈WmX(Ω). Indeed, such inequality implies, in particular, that
∑

δ≤γ |DδuDγ−δv| ∈
L1(Ω). Hence, once again, one can use [3, Ex. 3.17] to deduce that the function uv is m-times weakly
differentiable in Ω, and that, for each γ with 1 ≤ |γ| ≤ m,

(4.46) Dγ(uv) =
∑
δ≤γ

γ!

δ!(γ − δ)!
DδuDγ−δv.

In order to prove (4.45), let us begin by noting that, by (1.9) and (2.3),

(4.47)

∫ 1

0

g(t)

I(t)

(∫ t

0

dr

I(r)

)m−1

dt ≤ C‖g‖X(0,1),

for some constant C and every function g ∈M+(0, 1). Since (4.47) can be rewritten in the form∥∥∥∥∥
∫ 1

t

g(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds

∥∥∥∥∥
L∞(0,1)

≤ C‖g‖X(0,1),



BANACH ALGEBRAS OF WEAKLY DIFFERENTIABLE FUNCTIONS 25

it follows from [25, Theorem 5.1] that V mX(Ω) → L∞(Ω). Thus, by (1.14), WmX(Ω) → L∞(Ω) as
well.
Assume now that γ is an arbitrary multi-index such that 0 ≤ |γ| ≤ m. Then, for every u, v ∈WmX(Ω),

‖uDγv‖X(Ω) ≤ ‖u‖L∞(Ω)‖Dγv‖X(Ω) ≤ C‖u‖WmX(Ω)‖v‖WmX(Ω),

and, analogously,

‖(Dγu)v‖X(Ω) ≤ C‖u‖WmX(Ω)‖v‖WmX(Ω).

This establishes (4.45) whenever |γ| ≤ m and either δ = 0 or δ = γ.
Assume now that |δ| ≥ 1 and δ < γ. It follows from Proposition 3.3 that (1.9) implies (1.24), and

hence also (1.22) for every k ∈ N. Clearly,

(4.48) ‖DδuDγ−δv‖X(Ω) ≤ ‖ |∇|δ|u| |∇|γ−δ|v| ‖X(Ω).

On the other hand, we claim that

(4.49) ‖ |∇|δ|u| |∇|γ−δ|v| ‖X(Ω) ≤ C‖u‖VmX(Ω)‖v‖VmX(Ω)

for some positive C and for every u, v ∈ VmX(Ω). Indeed, if |γ| = m, then the claim is a straightfor-
ward consequence of Theorem 1.11. If |γ| < m, then the claim follows from inequality (4.43), applied
with the choice k = m − |γ|. Combining inequalities (4.48), (4.49) and the first embedding in (1.14)
completes the proof. �

Proof of Theorem 1.3. Assume that (1.9) is satisfied. Then, by Proposition 4.6, the space WmX(Ω) is
a Banach algebra for all Ω ∈ Jα. Moreover, as we have already observed, condition (1.9) implies (1.17).
Therefore, by Remark 1.8, the spaces WmX(Ω) and VmX(Ω) coincide. Consequently, VmX(Ω) is
a Banach algebra.
The second part of the theorem is a straightforward consequence of Proposition 4.4. �

Proof of Corollary 1.6. Assume that the embedding VmX(Ω) → L∞(Ω) holds for every Ω ∈ JI . Let
ΩI be the domain defined by (4.7). Given f ∈ M+(0, 1), define u by (4.19). It follows from (4.23)
with k = 0 that u(x) = Hm

I f(M(xn)) for a.e. x ∈ ΩI and M defined by (4.10). Therefore, ‖u‖L∞(Ω) =
‖Hm

I f‖L∞(0,1). Furthermore, by (4.29), we get ‖u‖VmX(Ω) ≤ C‖f‖X(0,1) for some constant C > 0.
Hence, our assumptions imply that there exists a positive constant C such that

(4.50) ‖Hm
I f‖L∞(0,1) ≤ C‖f‖X(0,1)

for every nonnegative function f ∈ X(0, 1). Inequality (4.50) implies (1.9), as was again observed in
the course of proof of Proposition 4.4. By Theorem 1.3, this tells us that VmX(Ω) is a Banach algebra
for every Ω ∈ JI .
The converse implication follows at once from Proposition 4.4. �

Proof of Corollary 1.7. Let ‖ · ‖X(0,1) be a rearrangement-invariant function norm. Then, by the
assumption and (2.5), condition (1.9) is satisfied. Hence, owing to Theorem 1.3, the space VmX(Ω)
is a Banach algebra. �

Proof of Theorem 1.1. Assume first that VmX(Ω) is a Banach algebra. Due to (1.6), condition (1.17) is
satisfied. Hence, by Remark 1.8, the spaces VmX(Ω) and WmX(Ω) coincide. In particular, WmX(Ω)
is a Banach algebra. Furthermore, by (2.5) and trivial inclusions, we clearly have

WmX(Ω)→ X(Ω)→ L1(Ω)→ L1,∞(Ω),

hence the assumption (4.33) of Theorem 4.5 is satisfied. Thus, as a special case of Theorem 4.5
we obtain that WmX(Ω) → L∞(Ω). Therefore, WmX(Ω) → L∞(Ω). On the other hand, by [25,
Theorem 6.1], this embedding is equivalent to the inequality∫ 1

0
g(s)s

m
n
−1 ds ≤ C‖g‖X(0,1)
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for some constant C, and for every nonnegative function g ∈ X(0, 1). Hence, via the very definition
of associate function norm, we obtain (1.3).

Conversely, assume that (1.3) holds. Since Ω is a John domain, inequality (1.8) is satisfied with

I(t) = t
1
n′ , t ∈ (0, 1). Hence, it follows from Theorem 1.3 that the space VmX(Ω) is a Banach

algebra. �

Proof of Proposition 1.12. If I(t) = tα, with α ∈ [ 1
n′ ,∞), then condition (1.11) is clearly satisfied.

Hence, by Theorem 1.3, the space VmLp,q;β(Ω) is a Banach algebra for every Ω ∈ Jα if and only
if (1.9) holds. Owing to Remark 1.5, condition (1.9) entails that α < 1. Thus,

1

I(t)

(∫ t

0

ds

I(s)

)m−1

= ( 1
1−α)m−1tm(1−α)−1 for t ∈ (0, 1).

Therefore, it only remains to analyze under which conditions the power function tm(1−α)−1 belongs to
(Lp,q;β)′(0, 1). It is easily verified, via (2.9), that this is the case if and only if one of the conditions
in (1.27) is satisfied. �

Proof of Proposition 1.13. By the same argument as in the proof of Proposition 1.12 we deduce that
for VmLA(Ω) to be a Banach algebra it is necessary that α < 1. If m ≥ 1

1−α , then (1.12) holds with

I(t) = tα, t ∈ (0, 1), hence, by Corollary 1.7, VmLA(Ω) is a Banach algebra whatever A is. If m < 1
1−α ,

then assumption (1.9) of Theorem 1.3 is equivalent to

(4.51) ‖rm(1−α)−1‖
LÃ(0,1)

<∞.

The latter condition is, in turn, equivalent to

(4.52)

∫
0
Ã
(
rm(1−α)−1

)
dr <∞ ,

namely to

(4.53)

∫ ∞ Ã(t)

t
1+ 1

1−m(1−α)

dt <∞.

By [20, Lemma 2.3], equation (4.53) is equivalent to∫ ∞( t

A(t)

) (1−α)m
1−(1−α)m

dt <∞.

�

Proof of Proposition 1.14. Condition (1.11) is satisfied if I(t) = tα, with α ∈ [ 1
n′ ,∞). By Theorem 1.9,

condition (1.23) for X(Ω) = Lp,q;β(Ω) holds for every Ω ∈ Jα if and only if (1.22) is in force. In turn,
inequality (1.22) entails (1.20), whence α < 1. Now,

(4.54) ϕLp,q;β (t) ≈


t

1
p (log 2

t )
β if 1 < p <∞, 1 ≤ q ≤ ∞, β ∈ R;

t(log 2
t )
β if p = 1, q = 1, β ≥ 0;

1 if p =∞, q =∞, β = 0;

(log 2
t )
β+ 1

q if p =∞, 1 ≤ q <∞, β + 1
q < 0,

for t ∈ (0, 1) (see e.g. [52, Lemma 9.4.1, page 318]). On the other hand,

(4.55)

(∫ t

0
s−α ds

)m+k

= (1− α)−m−kt(1−α)(m+k) for t ∈ (0, 1).

Thus, inequality (1.22) holds, with X(0, 1) = Lp,q;β(0, 1), if and only if one of the conditions in (1.29)
is satisfied. �
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Proof of Proposition 1.15. As observed in the above proof, we may assume that α < 1, and, by
Theorem 1.9, reduce (1.23), with I(t) = tα, t ∈ (0, 1), and X(Ω) = LA(Ω), to the validity of (1.22).
It is easily seen that

ϕLA(t) =
1

A−1(1/t)
for t ∈ (0, 1).

Thus, the conclusion follows via (4.55). �
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