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Abstract We characterize validity of the weighted inequality

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u(s)∫
∞

s
g(x)dx]

q
w(t)dt

⎞
⎠

1
q

≤ C (∫
∞

0
g
p(t)v(t)dt)

1
p

for all nonnegative functions g on (0,∞), with exponents in the range 1 ≤ p <∞ and 0 < q <∞.
Moreover, we give an integral characterization of the inequality

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u(s)f(s)]
q
w(t)dt

⎞
⎠

1
q

≤ C (∫
∞

0
f
p(t)v(t)dt)

1
p

being satisfied for all nonnegative nonincreasing functions f on (0,∞) in the case 0 < q < p <∞, for
which an integral condition was previously unknown.

1 Introduction

In this paper we study the supremal Hardy-type operators Ru and Su defined, for a nonnegative
measurable function f on (0,∞), by

Ruf(t) ∶= sup
s∈[t,∞)

u(s)f(s), t > 0,

and

Suf(t) ∶= sup
s∈[t,∞)

u(s)∫
∞

s
f(x)dx, t > 0,

where u is a fixed continuous weight on (0,∞). The first goal is to characterize boundedness of the
operator Su between weighted Lebesgue spaces Lp(v) and Lq(w) (see Section 2 for the definitions).
That is, to provide necessary and sufficient conditions for the inequality

∥Sug∥Lq(w) ≤ C∥g∥Lp(v) (1)
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to hold for all nonnegative measurable functions g on (0,∞). We do this for the range of exponents
p ∈ [1,∞) and q ∈ (0,∞).

Our second goal is to determine when an analogous inequality holds for the operator Ru restricted
to nonincreasing functions. Precisely, we characterize the validity of

∥Ruf∥Lq(w) ≤ C∥f∥Lp(v) (2)

for all nonnegative and nonincreasing functions f on (0,∞), in the range p, q ∈ (0,∞).
The second question was studied in [6, Theorem 3.2], and a characterization was found. However,

the authors succeeded to find a simple supremal/integral condition only for the case 0 < p ≤ q <∞.
(This result is listed here as Theorem 8(i).)

In the case 1 ≤ p <∞, 0 < q < p, [6] provides only a discrete condition involving a supremum of all
“covering sequences” of points partitioning the half-axis (0,∞). Such condition is unfortunately only
hardly verifiable and therefore of little practical use in further applications. In such situations there
is always a strong interest in finding a simpler and more explicit condition. We solve this particular
problem here in Theorem 8(ii) and provide a condition having a standard integral form.

There is actually more than one way how to solve this problem. In a recent and not yet published
paper [5] the authors present a certain reduction method, applying which an integral condition
for validity of (2) on nonnegative nonincreasing functions may be derived as well. The resulting
characterization is, however, more complicated than the one we derive in here and, in a certain
sense, it does not match the condition for 0 < p ≤ q < ∞ proved in [6]. More details on this issue
are mentioned in Section 4. Reduction methods for weighted inequalities were investigated in more
papers, as e.g. [9–11].

Besides the treatment of Ru, the paper [6] offered a complete characterization of the Lq(w)–Lp(v)
boundedness of another supremal operator

Tuf(t) ∶= sup
s∈[t,∞)

u(s)∫
s

0
f(x)dx, t > 0,

where u is a fixed continuous weight and the operator Tu is defined for nonnegative functions f . The
interest in studying of this operator stems, among other things, from its relation to the fractional
maximal operator. For details, see [6] and the references given therein.

The operator Su, which we are focusing on in this paper, appears often when iterated Hardy-type

inequalities and iterated Hardy-type operators are studied. It is in fact itself an example of an iterated
Hardy-type operator, as it is composed of the dual Hardy operator H ′f(t) ∶= ∫

∞
t f and the supre-

mal Hardy-type operator Ru. In a recent work [3], finding a characterization of the Lq(w)–Lp(v)
boundedness of Su turns out to be necessary for proving certain embeddings between generalized
Lorentz-type spaces with norms based on weighted integral means. This application is the main
motivation of this paper.

Another one is, as mentioned before, the goal of finding the missing integral condition for the
operator Ru acting on nonincreasing functions in the case q < p. It is reached easily once the results
regarding Su are established, since the inequality (2) can be reformulated as a particular case of the
inequality (1). It may be worth noting that the process can be also reversed, allowing to characterize
(1) for nonnegative functions when knowing the conditions for validity of (2) for nonincreasing
functions. In this way, however, some additional assumptions on the weights might be required and
they do not seem to be easily removable. Hence, treating Su first is the preferred choice of action.

The proof technique used here is based on the dyadic discretization of weights, also called the
blocking technique, which is a common tool for handling weighted inequalities. A comprehensive
introduction into this technique is found for example in [13].

To fit the problems investigated in this article, the method needed to be modified and improved
in a certain way. Roughly speaking, the key feature is the simultaneous control of both the weights
w and u. It seems likely that the same method may be applied to obtain integral conditions in other
problems where only discrete conditions or none at all have been known so far.
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Let us also briefly describe the structure of the paper. In Section 2 below, we present the def-
initions and summarize auxiliary results. The main results together with their proofs are included
in Section 3. Finally, in the last part, Section 4, we briefly compare the obtained conditions to the
alternative characterizations which can be reached by the reduction methods of [5].

2 Definitions and preliminaries

The standard notation A ≲ B means that there exists a constant C “independent of relevant quantities
in A and B” such that A ≤ CB. In this paper, the exact translation of this folklore phrase is that the
constant C may depend only on exponents p and q. We write A ≈ B if both A ≲ B and B ≲ A.

The symbol M+ denotes the cone of all nonnegative Lebesgue-measurable functions on (0,∞).
By M ↓

+ we denote the cone of all nonincreasing functions from M+.
A weight is a function w ∈M+ such that for all t ∈ (0,∞) it holds 0 <W(t) <∞, where

W(t) ∶= ∫
t

0
w(s)ds.

The symbol V has an analogous relation to the weight v.
Let v be a weight and p ∈ (0,∞). The weighted Lebesgue space Lp(v) = Lp(v)(0,∞) consists of all

real-valued Lebesgue-measurable functions f on (0,∞) such that

∥f∥Lp(v) ∶= (∫
∞

0
∣f(t)∣pv(t)dt)

1
p

<∞.

We say that I ⊆ Z∪{±∞} is an index set if there exist kmin, kmax ∈ Z∪{±∞} such that kmin < kmax

and
I = {k ∈ Z, kmin ≤ k ≤ kmax},

where the respective inequality is replaced by a sharp one if kmin =∞ or kmax =∞.
Let I be an index set. A positive sequence {bk}k∈I is called strongly increasing, denoted bk ⇈, if

σ ∶= inf {
b(k+1)

bk
, k ∈ I ∖ {kmax}} > 1. (3)

Finally, let n, k ∈ N, z ∈ N ∪ {0}, 0 ≤ k < n. We write z modn = k if there exists j ∈ N ∪ {0} such
that z = jn + k. In other words, k is the remainder after division of the number z by the number n.

The proposition below was proved in [12, Proposition 2.1] (although there is a minor error in
the estimate of the constant in the original article). It is in fact a key element in the discretization
method.

Proposition 1 Let I be an index set and let 0 < α < ∞. Let {ak}k∈I and {bk}k∈I be two nonnegative

sequences such that bk ⇈. Then there exists C ∈ (1,∞) such that

⎛
⎝

kmax

∑
k=kmin

⎛
⎝

kmax

∑
m=k

am
⎞
⎠

α

b
α
k

⎞
⎠

1
α

≤ C
⎛
⎝

kmax

∑
k=kmin

a
α
k b

α
k

⎞
⎠

1
α

.

The constant C satisfies

C ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + 1
σ
α − 1 if α ≤ 1,

(1 + 1

σ
1

α−1
)
α−1
(1 + 1

σ
α−1 − 1

) if α > 1,
(4)

where σ is defined by (3).

Observe that the value of the estimates in (4) decreases with increasing σ. Hence, it suffices to
know a lower bound for σ to get a usable constant C. This leads to the following corollary.
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Corollary 2 Let 0 < α < ∞ and 1 < D < ∞. Then there exists a constant Cα,D ∈ (0,∞) such that for

any index set I and any two nonnegative sequences {ak}k∈I and {bk}k∈I, satisfying b(k+1) ≥ Dbk for all

k ∈ I ∖ {kmax}, it holds

⎛
⎝

kmax

∑
k=kmin

⎛
⎝

kmax

∑
m=k

am
⎞
⎠

α

b
α
k

⎞
⎠

1
α

≤ Cα,D
⎛
⎝

kmax

∑
k=kmin

a
α
k b

α
k

⎞
⎠

1
α

.

Moreover, since supk≤m≤kmax
am ≤ ∑kmax

m=k am, we obtain another corollary.

Corollary 3 Let 0 < α < ∞ and 1 < D < ∞. Then there exists a constant Cα,D ∈ (0,∞) such that for

any index set I and any two nonnegative sequences {ak}k∈I and {bk}k∈I, satisfying b(k+1) ≥ Dbk for all

k ∈ I ∖ {kmax}, it holds

⎛
⎝

kmax

∑
k=kmin

( sup
k≤m≤kmax

am)
α

b
α
k

⎞
⎠

1
α

≤ Cα,D
⎛
⎝

kmax

∑
k=kmin

a
α
k b

α
k

⎞
⎠

1
α

.

Now we recall a useful property of Lp(v)-spaces. If v is a weight, p ∈ (1,∞) and 0 ≤ x < y ≤ ∞,
Hölder inequality yields

∫
y

x
h(s)ds ≤ (∫

y

x
h
p(s)v(s)ds)

1
p

(∫
y

x
v
1−p′(s)ds)

1
p′

for any nonnegative measurable function h on (x, y). Moreover, the well-known description of the
dual space to an Lp-space gives the following saturation property

(∫
y

x
v
1−p′(s)ds)

1
p′

= sup
h∈Lp(v)
∥h∥Lp(v)≠0

∫
y

x
∣h(s)∣ds

(∫
y

x
∣h(s)∣pv(s)ds)

1
p

.

In particular, if ∫
y
x v1−p

′
(s)ds <∞, there exists a nonnegative function g ∈ Lp(v) ∩ L1 such that

2
∫

y

x
g(s)ds

(∫
y

x
g
p(s)v(s)ds)

1
p

≥ sup
h∈Lp(v)
∥h∥Lp(v)≠0

∫
y

x
∣h(s)∣ds

(∫
y

x
∣h(s)∣pv(s)ds)

1
p

= (∫
y

x
v
1−p′(s)ds)

1
p′

.

Moreover, the function g may be taken such that ∥g∥Lp(v) = 1, in which case we get

(∫
y

x
v
1−p′(s)ds)

1
p′

≤ 2∫
y

x
g(s)ds <∞.

This property is used throughout the text and referred to as the duality of Lp-spaces. Similar results, of
course, exist for lp-spaces consisting of sequences. We summarize them in the next two propositions.

Proposition 4 Let I be an index set and let {ak}k∈I and {bk}k∈I be two nonnegative sequences.

(i) Let 0 < p ≤ q <∞. Then

(∑
k∈I

a
q
kbk)

1
q

≤ (∑
k∈I

a
p
k)

1
p

sup
j∈I

b
1
q

j .

(ii) Let 0 < q < p <∞. Then

(∑
k∈I

a
q
kbk)

1
q

≤ (∑
k∈I

a
p
k)

1
p

(∑
k∈I

b
p

p−q
k )

p−q
pq

.

Proof Case (i) is proved using convexity of the q
p -th power (with p ≤ q) and the Jensen inequality.

Case (ii) follows from the Hölder inequality with the pair of exponents p
q and p

p−q .
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Proposition 5 Let I be an index set and {bk}k∈I be a nonnegative sequence. Let 0 < q < p <∞. Then

(∑
k∈I

b
p

p−q
k )

p−q
pq

= sup
{ak}k∈I

(∑k∈I a
q
kbk)

1
q

(∑k∈I a
p
k
)

1
p

,

where the supremum is taken over all positive sequences {ak}k∈I. In particular, if ∑k∈I b
p

p−q
k < ∞, then

there exists a nonnegative sequence {ak}k∈I such that ∑k∈I a
p
k = 1 and

(∑
k∈I

b
p

p−q
k )

p−q
pq

≤ 2(∑
k∈I

a
q
kbk)

1
q

<∞.

Obviously, in accordance with the other terminology of ours, Proposition 5 could be called “du-
ality of lp-spaces”.

3 Main results

Theorem 6 Let v, w be weights and let u be a continuous weight. Consider the inequality

⎛
⎝∫

∞

0
[ sup
x∈[t,∞)

u(x)∫
∞

x
g(s)ds]

q
w(t)dt

⎞
⎠

1
q

≤ C(5) (∫
∞

0
g
p(t)v(t)dt)

1
p

. (5)

(i) Let 1 < p ≤ q <∞. Then the inequality (5) holds for all g ∈M+ if and only if

A(6) ∶= sup
t∈(0,∞)

⎛
⎝∫

t

0
w(x) sup

z∈[x,t]
u
q(z)dx

⎞
⎠

1
q

(∫
∞

t
v
1−p′(s)ds)

1
p′

<∞. (6)

Moreover, the least constant C(5) such that (5) holds for all g ∈M+ satisfies C(5) ≈ A(6).

(ii) Let 1 < p < ∞ and 0 < q < p < ∞. Set r ∶= pq
p−q . Then the inequality (5) holds for all g ∈ M+ if and

only if

A(7) =
⎛
⎝∫

∞

0
W

r
p (t)w(t) sup

z∈[t,∞)
u
r(z) (∫

∞

z
v
1−p′(s)ds)

r
p′

dt
⎞
⎠

1
r

<∞ (7)

and

A(8) =
⎛
⎜
⎝
∫
∞

0

⎛
⎝∫

t

0
w(x) sup

y∈[x,t]
u
q(y)dx

⎞
⎠

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′(s)ds)

r
p′

dt
⎞
⎟
⎠

1
r

<∞. (8)

Moreover, the least constant C(5) such that (5) holds for all g ∈M+ satisfies C(5) ≈ A(7) +A(8).

Proof For the start, let us assume that there exists a finite K ∈ Z such that ∫
∞
0 w = 2K . It is possible

to find a sequence of points {tk}Kk=−∞ such that for every k ∈ Z, k < K it holds tk ∈ (0,∞), tk > tk−1
and ∫

tk
0 w = 2k. We also define tK ∶=∞. For every k ∈ Z such that k ≤ K − 1 define the k-th segment

∆k ∶= [tk, tk+1).

Then it holds

2k = ∫
tk

0
w(s)ds = ∫

∆k

w(s)ds = 2∫
∆(k−1)

w(s)ds. (9)

Throughout the proof, we use the notation

U(x, y) ∶= sup
z∈[x,y)

u(z)
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for any 0 ≤ x < y ≤∞. If the interval [x, y) is the k-th segment, we write shortly

U(∆k) ∶= U(tk, t(k+1)).

Observe that it holds

U(x, z) ≤ U(x, y) + U(y, z) whenever 0 ≤ x ≤ y ≤ z ≤∞. (10)

Choose a fixed µ ∈ Z such that µ ≤ K − 2. Define the finite set Zµ ∶= {k ∈ Z, µ ≤ k ≤ K − 1}. Now
we construct a subset of indices in the following way: At first, set k0 ∶= µ and k1 ∶= µ+1. We continue
inductively.
(S) Let k0, . . . , kn be already defined. Then:

(a) If kn = K, define N ∶= n − 1 and stop the procedure.
(b) If kn < K, proceed as follows. If there exists any index j ∈ Z such that kn < j ≤ K and

j−1
∑

k=kn

2kUq(∆k) ≥ 2
kn−1
∑

k=k(n−1)
2kUq(∆k),

then define k(n+1) as the smallest such index j and proceed again with step (S). If no such j

exists, set N ∶= n, define k(N+1) ∶= K and so finish the construction.

In this way, we obtain a set of indices {k0, . . . , kN} ⊆ Zµ and k(N+1) = K.
To continue, we may call the interval [tkn

, tkn+1) the n-th block. For every n ∈ N such that n ≤ N ,
it holds either

k(n+1) = kn + 1,

which means that the n-th block consists only of one segment (the kn-th one), or

k(n+1) > kn + 1,

which means that the n-th block consists of more than one segment. If the latter is the case, we will
say that n ∈ A. Precisely, we put

A ∶= {n ∈ N, n ≤ N, k(n+1) > kn + 1}.

Notice that this set may be empty but it is always satisfied

Zµ = {k(n+1) − 1}
N
n=0 ∪ {k ∈ Z, kn ≤ k ≤ k(n+1) − 2}n∈A . (11)

In plain words, each segment is either the last segment (i.e. the one with the highest index k) in
a block, or it lies in a block which contains multiple segments but this particular segment is not the
last one of them.

From the way it was constructed it follows that the system has the following properties. At first,
for every n ∈ N such that n < N it holds

k(n+1)−1

∑
k=kn

2kUq(∆k) ≥ 2
kn−1
∑

k=k(n−1)
2kUq(∆k). (12)

This is not necessarily true for the last, N-th bloc, but it will not be an issue. Next, for all n ∈ A we
have

k(n+1)−2

∑
k=kn

2kUq(∆k) < 2
kn−1
∑

k=k(n−1)
2kUq(∆k). (13)

Furthermore, by iterating (12) it is shown that, for every n ∈ N, n ≤ N ,

kn−1
∑
k=µ

2kUq(∆k) =
n−1
∑
i=0

k(i+1)−1

∑
k=ki

2kUq(∆k) ≤
n−1
∑
i=0

2i−n+1
kn−1
∑

k=k(n−1)
2kUq(∆k) ≤ 2

kn−1
∑

k=k(n−1)
2kUq(∆k),
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hence
kn−1
∑
k=µ

2kUq(∆k) ≤ 2
kn−1
∑

k=k(n−1)
2kUq(∆k). (14)

Now suppose that n ∈ N, n ≤ N , k ∈ Z is such that k < k(n+1) and t ∈ ∆k. Then we have

∫
t

tµ
w(x)Uq(x, t)dx = ∫

tk

tµ
w(x)Uq(x, t)dx + ∫

t

tk
w(x)Uq(x, t)dx

≲ ∫
tk

tµ
w(x)Uq(x, tk)dx + ∫

tk

tµ
w(x)dx U

q(tk, t) + ∫
t

tk
w(x)Uq(x, t)dx (15)

≤
k−1
∑
j=µ
∫
∆j

w(x)dx U
q(tj , tk) + ∫

t(k+1)

tµ
w(x)dx U

q(tk, t)

≲
k−1
∑
j=µ

2jUq(tj , tk) + 2kUq(tk, t) (16)

=
k−1
∑
j=µ

2j
⎛
⎝

k−1
∑
i=j

U(∆i)
⎞
⎠

q

+ 2kUq(tk, t)

≲
k−1
∑
j=µ

2jUq(∆j) + 2kUq(tk, t). (17)

Step (15) follows by (10), step (16) is due to (9) and (17) holds by Corollary 2. Next, if k ≤ kn, then

k−1
∑
j=µ

2jUq(∆j) ≤
kn−1
∑
j=µ

2jUq(∆j) ≲
kn−1
∑

j=k(n−1)
2jUq(∆j),

where the second inequality follows by (14). If k > kn, then n ∈ A, kn + 1 ≤ k ≤ k(n+1) − 1 and we get

k−1
∑
j=µ

2jUq(∆j) ≤
k(n+1)−2

∑
j=µ

2jUq(∆j) =
kn−1
∑
j=µ

2jUq(∆j) +
k(n+1)−2

∑
j=kn

2jUq(∆j) ≲
kn−1
∑

j=k(n−1)
2jUq(∆j).

The last inequality is granted by (13) and (14). We have proved that

k−1
∑
j=µ

2jUq(∆j) ≲
kn−1
∑

j=k(n−1)
2jUq(∆j).

Inserting this into the inequality obtained at (17), we finally receive

∫
t

tµ
w(x)Uq(x, t)dx ≲

kn−1
∑

j=k(n−1)
2jUq(∆j) + 2kUq(tk, t) (18)

for any n ∈ N, n ≤ N , k ∈ Z, k < k(n+1) and t ∈ ∆k.
Yet another useful inequality reads

kn−1
∑

j=k(n−1)
2jUq(∆j) ≲ ∫

tkn

tk(n−1)−1
w(t)Uq(t, tkn

)dt (19)

for any n ∈ N such that n ≤ N . Indeed, this follows from the following observation:

kn−1
∑

j=k(n−1)
2jUq(∆j) ≲

kn−1
∑

j=k(n−1)
∫
∆j−1

w(t)dt Uq(∆j) ≤
kn−1
∑

j=k(n−1)
∫
∆j−1

w(t)Uq(t, tkn
)dt

= ∫
t(kn−1)

tk(n−1)−1
w(t)Uq(t, tkn

)dt ≤ ∫
tkn

tk(n−1)−1
w(t)Uq(t, tkn

)dt,
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in which we also used (9) to establish the first inequality.
We have prepared the core of the proof method now and may begin with the main part, which

is split into proving sufficiency of the respective A-conditions for validity of (5), and their necessity.

Sufficiency. Choose a function g ∈ Lp(v). We start by estimating

⎡⎢⎢⎢⎢⎣
∫
∞

tµ

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

=
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

∫
∆k

w(t)
⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎦

1
q

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

∫
∆k

w(t)dt
⎛
⎝

sup
x∈[tk,∞)

u(x)∫
∞

x
g
⎞
⎠

q⎤⎥⎥⎥⎥⎦

1
q

=
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k
⎛
⎝

sup
x∈[tk,∞)

u(x)∫
∞

x
g
⎞
⎠

q⎤⎥⎥⎥⎥⎦

1
q

(20)

≈
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k ( sup
x∈∆k

u(x)∫
∞

x
g)

q⎤⎥⎥⎥⎥⎦

1
q

(21)

≈
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k ( sup
x∈∆k

u(x)∫
t(k+1)

x
g)

q⎤⎥⎥⎥⎥⎦

1
q

+
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2kUq(∆k)(∫
∞

t(k+1)
g)

q⎤⎥⎥⎥⎥⎦

1
q

=∶ B1 +B2.

Step (20) follows from (9), and step (21) from Corollary 3. Moreover, B2 can be further estimated
as follows.

B2 ≈ [
N

∑
n=1

2kn−1U
q(∆kn−1)(∫

∞

tkn

g)
q

]
1
q

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

2kUq(∆k)(∫
∞

t(k+1)
g)

q⎤⎥⎥⎥⎥⎦

1
q

(22)

≤ [
N

∑
n=1

2kn−1U
q(∆kn−1)(∫

∞

tkn

g)
q

]
1
q

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

2kUq(∆k)(∫
∞

t(kn+1)

g)
q⎤⎥⎥⎥⎥⎦

1
q

≲ [
N

∑
n=1

2kn−1U
q(∆kn−1)(∫

∞

tkn

g)
q

]
1
q

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

∞

t(kn+1)

g)
q⎤⎥⎥⎥⎥⎦

1
q

(23)

≤ [
N

∑
n=1

2kn−1U
q(∆kn−1)(∫

∞

tkn

g)
q

]
1
q

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

∞

tkn

g)
q⎤⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

∞

tkn

g)
q⎤⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

g)
q⎤⎥⎥⎥⎥⎦

1
q

(24)

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

v
1−p′)

q
p′

(∫
tk(n+1)

tkn

g
p
v)

q
p
⎤⎥⎥⎥⎥⎦

1
q

(25)

=∶ B3.
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In here, step (22) follows from (11), and step (23) from (13). In (24) we used Corollary 2, considering
also (12). Step (25) follows by Hölder inequality.

The above estimates resulting in B1 and B3 are valid independently of the relation between p

and q. The rest will be split into the cases (i) and (ii).
(i) Let 1 < p ≤ q <∞. Suppose that A(6) <∞. The goal is to show that C(5) ≲ A(6). First, we get

B1 ≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k sup
x∈∆k

u
q(x) (∫

t(k+1)

x
v
1−p′)

q
p′

(∫
t(k+1)

x
g
p
v)

q
p
⎤⎥⎥⎥⎥⎦

1
q

(26)

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k sup
x∈∆k

u
q(x) (∫

t(k+1)

x
v
1−p′)

q
p′

(∫
∆k

g
p
v)

q
p
⎤⎥⎥⎥⎥⎦

1
q

≤ sup
k∈Zµ

2
k
q sup
x∈∆k

u(x) (∫
t(k+1)

x
v
1−p′)

1
p′ ⎛
⎝ ∑k∈Zµ

∫
∆k

g
p
v
⎞
⎠

1
p

(27)

≤ sup
k∈Zµ

2
k
q sup
x∈∆k

u(x) (∫
t(k+1)

x
v
1−p′)

1
p′

∥g∥Lp(v)

= sup
k∈Zµ

(∫
tk

0
w(t)dt)

1
q

sup
x∈∆k

u(x) (∫
t(k+1)

x
v
1−p′)

1
p′

∥g∥Lp(v) (28)

≤ sup
k∈Zµ

sup
x∈∆k

(∫
x

0
w(t)Uq(t, x)dt)

1
q

(∫
∞

x
v
1−p′)

1
p′

∥g∥Lp(v)

= A(6)∥g∥Lp(v).

Step (26) follows from Hölder inequality, step (27) from Proposition 4(i). In (28) we used (9).
We proceed with B3.

B3 ≤ sup
n∈N
n≤N

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

1
q

(∫
tk(n+1)

tkn

v
1−p′)

1
p′

(
N

∑
n=1
∫

tk(n+1)

tkn

g
p
v)

1
p

(29)

≤ sup
n∈N
n≤N

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

1
q

(∫
tk(n+1)

tkn

v
1−p′)

1
p′

∥g∥Lp(v)

≲ sup
n∈N
n≤N

(∫
tkn

0
w(t)Uq(t, tkn

)dt)
1
q

(∫
∞

tkn

v
1−p′)

1
p′

∥g∥Lp(v) (30)

≤ A(6)∥g∥Lp(v).

Step (29) follows by Proposition 4(i), and (30) is due to (19).
At this point we have proved that for an arbitrary µ ∈ Z such that µ ≤ K − 2 and an arbitrarily

chosen g ∈ Lp(v) it holds

⎡⎢⎢⎢⎢⎣
∫
∞

tµ

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≲ A(6)∥g∥Lp(v),

where the constant contained the symbol “≲” is independent of g, u, v, w and µ. If needed, the reader
may verify the independence of µ by re-checking all the estimates above. Now let µ→ −∞, then tµ ↓ 0
and the monotone convergence theorem yields

⎡⎢⎢⎢⎢⎣
∫
∞

0

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≲ A(6)∥g∥Lp(v).
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Recall that until now we have assumed that ∫
∞
0 w = 2K with K ∈ Z, and therefore for all weights

w such that ∫
∞
0 w < ∞ (one may multiply w by a constant and use homogeneity). To prove the

statement for a general weight w, suppose that ∫
∞
0 w = ∞ and A(6) < ∞. Find, e.g. by truncation,

a sequence of weights {wK}∞K=1 such that ∫
∞
0 wK = 2K and wK ↑ w pointwise as K → ∞. By the

previous part of the proof, for all K ∈ N we have

⎡⎢⎢⎢⎢⎣
∫
∞

0

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

wK(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≲ sup
x>0

⎛
⎝∫

x

0
sup

x∈[t,x]
u
q(y)wK(t)dt

⎞
⎠

1
q

(∫
∞

x
v
1−p′)

1
p′

∥g∥Lp(v)

≤ sup
x>0

⎛
⎝∫

x

0
sup

x∈[t,x]
u
q(y)w(t)dt

⎞
⎠

1
q

(∫
∞

x
v
1−p′)

1
p′

∥g∥Lp(v)

= A(6)∥g∥Lp(v).

Letting K →∞, by the monotone convergence theorem it follows

⎡⎢⎢⎢⎢⎣
∫
∞

0

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≲ A(6)∥g∥Lp(v).

The function g ∈ Lp(v) is arbitrary and the constant in “≲” does not depend on g, hence (5) holds
and the optimal C(5) must satisfy C(5) ≲ A(6) in the case 1 < p ≤ q <∞.

(ii) Let 1 < p <∞ and 0 < q < p. Assume A(7) +A(8) <∞. Then for B1 we have

B1 ≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k sup
x∈∆k

u
q(x) (∫

t(k+1)

x
v
1−p′)

q
p′

(∫
t(k+1)

x
g
p
v)

q
p
⎤⎥⎥⎥⎥⎦

1
q

(31)

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2k sup
x∈∆k

u
q(x) (∫

t(k+1)

x
v
1−p′)

q
p′

(∫
∆k

g
p
v)

q
p
⎤⎥⎥⎥⎥⎦

1
q

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2
kr
q sup

x∈∆k

u
r(x) (∫

t(k+1)

x
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r ⎛
⎝ ∑k∈Zµ

∫
∆k

g
p
v
⎞
⎠

1
p

(32)

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2
kr
q sup

x∈∆k

u
r(x) (∫

t(k+1)

x
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≲
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

∫
∆k

W
r
p (t)w(t)dt sup

x∈∆k

u
r(x) (∫

t(k+1)

x
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v) (33)

≤
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

∫
∆k

W
r
p (t)w(t) sup

x∈[t,∞)
u
r(x) (∫

∞

x
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

= A(7)∥g∥Lp(v).

Here, (31) follows from the Hölder inequality, step (32) makes use of Proposition 4(ii) and in (33)
one applies the property (9).

Before we continue with B3, let us notice that for any t ∈ (0,∞) it holds

sup
y∈[t,∞)

sup
z∈[t,y]

u(z) (∫
∞

y
v
1−p′)

1
p′

= sup
z∈[t,∞]

u(z) sup
y∈[z,∞)

(∫
∞

y
v
1−p′)

1
p′

= sup
z∈[t,∞]

u(z) (∫
∞

z
v
1−p′)

1
p′

. (34)
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Define k−1 ∶= k0 − 1 = µ − 1. Now it is possible to write

B3 ≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(
N

∑
n=1
∫

tk(n+1)

tkn

g
p
v)

1
p

(35)

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝∫

tkn

tk(n−2)

w(t)Uq(t, tkn
)dt
⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v) (36)

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

⎛
⎝∫

t

tk(n−2)

w(x)Uq(x, tkn
)dx
⎞
⎠

r
p

w(t)Uq(t, tkn
)dt(∫

∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

⎛
⎝∫

t

tk(n−2)

w(x)Uq(x, t)dx
⎞
⎠

r
p

w(t)Uq(t, tkn
)dt(∫

∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

+
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

⎛
⎝∫

t

tk(n−2)

w(x)dx
⎞
⎠

r
p

w(t)Ur(t, tkn
)dt(∫

∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≤
⎡⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

(∫
t

0
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

U
q(t, z) (∫

∞

z
v
1−p′)

r
p′

dt
⎤⎥⎥⎥⎦

1
r

∥g∥Lp(v)

+
⎡⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

W
r
p (t)w(t) sup

z∈[t,∞)
U

r(t, z)dt(∫
∞

z
v
1−p′)

r
p′ ⎤⎥⎥⎥⎦

1
r

∥g∥Lp(v)

=
⎡⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

(∫
t

0
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt
⎤⎥⎥⎥⎦

1
r

∥g∥Lp(v) (37)

+
⎡⎢⎢⎢⎣

N

∑
n=1
∫

tkn

tk(n−2)

W
r
p (t)w(t) sup

z∈[t,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt
⎤⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≲
1

∑
i=0

⎡⎢⎢⎢⎢⎢⎣
∑

1≤n≤N
n mod2=i

∫
tkn

tk(n−2)

(∫
t

0
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v) (38)

+
1

∑
i=0

⎡⎢⎢⎢⎢⎢⎣
∑

1≤n≤N
n mod2=i

∫
tkn

tk(n−2)

W
r
p (t)w(t) sup

z∈[t,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎥⎦

1
r

∥g∥Lp(v)

≲ (A(8) +A(7)) ∥g∥Lp(v).

On the line (35) we applied Proposition 4(ii). Step (36) is based on (19) and the inequality tk(n−1)−1 ≥
tk(n−2) which is valid for all n ∈ {1, . . . ,N}. The identity on (37) follows by (34). On the line (38)
we split the sums into sums over even and odd numbers n so that the intervals [tk(n−2) , tkn

] become
disjoint. This manoeuver will be commonly used in the rest of the paper.

Omitting the details of it, now we perform the limit passes µ → −∞ and K → ∞ as in the final
part of the proof of sufficiency in case (i). We obtain

⎡⎢⎢⎢⎢⎣
∫
∞

0

⎛
⎝

sup
x∈[t,∞)

u(x)∫
∞

x
g
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≲ (A(7) +A(8)) ∥g∥Lp(v)
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for our arbitrarily chosen g ∈ Lp(v). Hence, (5) is valid for all g ∈M+ and the optimal C(5) satisfies
C(5) ≲ A(7) +A(8). This completes the sufficiency part.

Necessity. Suppose that (5) holds for all g ∈M+. Let 1 < p <∞ and let q ∈ (0,∞) be arbitrary. Let
x > 0. By the duality of Lp-spaces there exists a function φ ∈ Lp(v) such that φ(t) = 0 for all t < x,

∫
∞

x
φ
p
v = ∫

∞

0
φ
p
v = 1 and (∫

∞

x
v
1−p′)

1
p′

≤ 2∫
∞

x
φ.

Then

(∫
x

0
w(t)Uq(t, x)dt)

1
q

(∫
∞

x
v
1−p′)

1
p′

≲ (∫
x

0
w(t)Uq(t, x)dt)

1
q

∫
∞

x
φ

≤
⎡⎢⎢⎢⎢⎣
∫

x

0

⎛
⎝

sup
y∈[t,x]

u(y)∫
∞

y
φ
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≤
⎡⎢⎢⎢⎢⎣
∫

x

0

⎛
⎝

sup
y∈[t,∞)

u(y)∫
∞

y
φ
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

=
⎡⎢⎢⎢⎢⎣
∫

x

0

⎛
⎝

sup
y∈[t,∞)

u(y)∫
∞

y
φ
⎞
⎠

q

w(t)dt
⎤⎥⎥⎥⎥⎦

1
q

≤ C(5)∥φ∥Lp(v) = C(5).

Taking the supremum over x > 0, we obtain

A(6) ≲ C(5). (39)

This proves that the condition A(6) is in fact necessary in both cases (i) and (ii). The proof of case
(i) is therefore complete.

In the rest of the proof we will deal with the case (ii). Thus, from now on assume that 1 < p <∞
and 0 < q < p.

Since we assumed C(5) <∞, the inequality (39) implies

∫
∞

x
v
1−p′(s)ds <∞ for all x ∈ (0,∞). (40)

It may be checked as follows. Let x > 0. By the definition of a weight, it holds ∫
s
0 w > 0 and ∫

s
0 u > 0

for any s > 0. Hence, both u and w are positive a.e. on an interval (0, ε) with ε > 0, which implies
that ∫

x
0 w(t)uq(t)dt > 0. Using (39), we now get

(∫
∞

x
v
1−p′)

1
p′

≲ C(5) (∫
x

0
w(t)Uq(t, x)dt)

− 1
q

≤ C(5) (∫
x

0
w(t)uq(t)dt)

− 1
q

<∞.
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Now assume again that ∫
∞
0 w = 2K , define the k-segments, choose µ ∈ Z such that µ ≤ K − 2 and

construct the n-blocks. Then we have

⎡⎢⎢⎢⎢⎣
∫
∞

tµ
(∫

t

tµ
w(x)dx)

r
p

w(t) sup
z∈[t,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

=
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

∫
∆k

(∫
t

tµ
w(x)dx)

r
p

w(t) sup
z∈[t,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2
kr
q sup

z∈[tk,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(41)

=
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2
kr
q sup

k≤j≤N
sup
z∈∆j

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣
∑
k∈Zµ

2
kr
q sup

z∈∆k

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(42)

≲
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2
kr
q sup

z∈∆k

u
r(z) (∫

t(k+1)

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎣

K−2
∑
k=µ

2
kr
q U

r(∆k)(∫
∞

t(k+1)
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

=∶ B4 +B5.

In (41) we applied (9) and step (42) follows from Corollary 3.
Using (9) and (39), we continue by a preliminary estimate.

B4 ≤
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2
kr
q sup

z∈∆k

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ
(∫

tk

0
w(t)dt)

r
q

sup
z∈∆k

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

sup
z∈∆k

(∫
z

0
w(t)Uq(t, z)dt)

r
q

(∫
∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤ (K − µ)
1
r A(6) ≲ (K − µ)

1
r C(5) <∞.

An attentive reader could now rightfully accuse the author of cheating. Indeed, the previous chain
of inequalities provides an estimate of B4 by C(5) and may thus seem to be what we want, but the
estimate is not uniform. The problem is the term K −µ which depends on the auxiliary sum. To get
the proper uniform bound we therefore need to do more work. However, by the previous estimate we
managed to show that B4 <∞, which was the true reason why we made it. The information about
the finiteness is needed in what follows.

For each k ∈ Zµ let zk ∈ ∆k be such number that

2ur(zk) (∫
∞

zk
v
1−p′)

r
p′

≥ sup
z∈∆k

u
r(z) (∫

∞

z
v
1−p′)

r
p′

. (43)

Both sides of the inequality are finite, which follows from the finiteness of B4.

Now, since by (40) one has ∫
t(k+1)
zk

v1−p
′
< ∞ for all k ∈ Zµ, duality of Lp-spaces yields that for

each k ∈ Zµ there exists a nonnegative function hk with support in the interval [zk, t(k+1)] and such
that

∫
∆k

h
p
kv = ∫

t(k+1)

zk
h
p
kv = 1 and (∫

t(k+1)

zk
v
1−p′)

1
p′

≤ 2∫
t(k+1)

zk
hk. (44)
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Then it holds

sup
z∈∆k

u(z) (∫
t(k+1)

z
v
1−p′)

1
p′

≲ u(zk) (∫
t(k+1)

zk
v
1−p′)

1
p′

≲ u(zk)∫
t(k+1)

zk
hk ≤ sup

z∈∆k

u(z)∫
t(k+1)

z
hk. (45)

Furthermore, since B4 <∞, by Proposition 5 there exists a nonnegative sequence {ak}k∈Zµ
such that

∑k∈Zµ
a
p
k = 1 and

⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2
kr
q sup

z∈∆k

u
r(z) (∫

t(k+1)

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤ 2
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2k sup
z∈∆k

u
q(z) (∫

t(k+1)

z
v
1−p′)

q
p′

a
q
k

⎤⎥⎥⎥⎥⎦

1
q

. (46)

Define the function h ∶= ∑K−1
k=1 akhk. Then it satisfies

∥h∥Lp(v) =
⎛
⎝ ∑k∈Zµ

∫
∆k

h
p
v
⎞
⎠

1
p

=
⎛
⎝ ∑k∈Zµ

a
p
k ∫

∆k

h
p
kv
⎞
⎠

1
p

=
⎛
⎝ ∑k∈Zµ

a
p
k

⎞
⎠

1
p

= 1.

We may finally derive the following estimate on B4.

B4 ≲
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2k sup
z∈∆k

u
q(z) (∫

t(k+1)

z
v
1−p′)

q
p′

a
q
k

⎤⎥⎥⎥⎥⎦

1
q

(47)

≲
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2k sup
z∈∆k

u
q(z) (∫

t(k+1)

z
hk)

q

a
q
k

⎤⎥⎥⎥⎥⎦

1
q

(48)

=
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ

2k sup
z∈∆k

u
q(z) (∫

t(k+1)

z
h)

q⎤⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ
∫
∆(k−1)

w(t)dt sup
z∈∆k

u
q(z) (∫

t(k+1)

z
h)

q⎤⎥⎥⎥⎥⎦

1
q

(49)

≤
⎡⎢⎢⎢⎢⎣

K−1
∑
k=µ
∫
∆(k−1)

w(t)
⎛
⎝

sup
z∈[t,∞)

u(z)∫
∞

z
h(s)ds

⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎦

1
q

≤
⎛
⎝∫

∞

0
w(t)

⎛
⎝

sup
z∈[t,∞)

u(z)∫
∞

z
h(s)ds

⎞
⎠

q

dt
⎞
⎠

1
q

≤ C(5)∥h∥Lp(v) = C(5).

Here in (47) we used (46) and in (48) we used (45). The inequality on (49) is, as usual, due to (9).
Only now we obtained the “proper” estimate

B4 ≲ C(5),

in which the constant behind the symbol “≲” really depends only on p and q.
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We proceed with B5 as follows.

B5 =
⎡⎢⎢⎢⎢⎣

N

∑
n=1

k(n+1)−2

∑
k=kn−1

2
kr
q U

r(∆k)(∫
∞

t(k+1)
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

k(n+1)−2

∑
k=kn−1

2
kr
q U

r(∆k)(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

k(n+1)−2

∑
k=kn−1

2kUq(∆k)
⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

(50)

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(51)

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(52)

=∶ B6.

Step (50) follows by Jensen inequality since r
q > 1. Step (51) follows from (13). In (52) one uses

Corollary 2, considering also (12).

Before estimating further, let us first prove finiteness of B6, as we did in case of B4. By (19) and
(39) we obtain

B6 ≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1
(∫

tkn

0
w(t)Uq(t, tkn

))
r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤ N
1
r A(6) ≲ N

1
r C(5) <∞.

Considering (40) and the Lp-duality, for each n ∈ N such that n ≤ N we can find a function gn
supported in the interval [tkn

, tk(n+1)] and such that

∫
tk(n+1)

tkn

g
p
nv = 1 and (∫

tk(n+1)

tkn

v
1−p′)

1
p′

≤ 2∫
tk(n+1)

tkn

gn. (53)

Furthermore, since we know that B6 <∞, by Proposition 5 we find a nonnegative sequence {cn}Nn=1
such that ∑N

n=1 c
p
n = 1 and

B6 =
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

k=k(n−1)
2kUq(∆k)

⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤ 2
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

v
1−p′)

q
p′

c
q
n

⎤⎥⎥⎥⎥⎦

1
q

. (54)
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Define the function g ∶= ∑N
n=1 cngn. It is easy to verify that ∥g∥Lp(v) = 1. Moreover, it holds

B6 ≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

v
1−p′)

q
p′

c
q
n

⎤⎥⎥⎥⎥⎦

1
q

(55)

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

gn)
q

c
q
n

⎤⎥⎥⎥⎥⎦

1
q

(56)

=
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

tk(n+1)

tkn

g)
q⎤⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

kn−1
∑

k=k(n−1)
2kUq(∆k)(∫

∞

t(k+1)
g)

q⎤⎥⎥⎥⎥⎦

1
q

=
⎡⎢⎢⎢⎢⎣

kN−1
∑
k=µ

2kUq(∆k)(∫
∞

t(k+1)
g)

q⎤⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣

kN−1
∑
k=µ
∫
∆(k−1)

w(t)dt sup
z∈[tk,∞)

U
q(tk, z) (∫

∞

z
g(s)ds)

q⎤⎥⎥⎥⎥⎦

1
q

(57)

=
⎡⎢⎢⎢⎢⎣

kN−1
∑
k=µ
∫
∆(k−1)

w(t)dt sup
z∈[tk,∞)

u
q(z) (∫

∞

z
g(s)ds)

q⎤⎥⎥⎥⎥⎦

1
q

(58)

≤
⎡⎢⎢⎢⎢⎣

kN−1
∑
k=µ
∫
∆(k−1)

w(t)
⎛
⎝

sup
z∈[t,∞)

u(z)∫
∞

z
g(s)ds

⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎦

1
q

≤
⎛
⎝∫

∞

0
w(t)

⎛
⎝

sup
z∈[t,∞

u(z)∫
∞

z
g(s)ds

⎞
⎠

q⎤⎥⎥⎥⎥⎦

1
q

≤ C(5)∥g∥Lp(v) = C(5).

Here, (55) is the same as (54), inequality (56) follows from (53) and inequality (57) from (9). An ar-
gument analogous to (34) is used to establish the identity (58).

We have shown

B5 ≲ B6 ≲ C(5),

hence, combining this with the other estimates, we get

⎡⎢⎢⎢⎢⎣
∫
∞

tµ
(∫

t

tµ
w(x)dx)

r
p

w(t) sup
z∈[t,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

≲ B4 +B5 ≲ B4 +B6 ≲ C(5). (59)

Passing µ→ −∞ and then K →∞ analogously as we did before, we obtain

A(7) ≲ C(5) (60)

for a general weight w.

In the rest we will focus on the condition A(8). At first, observe that for any 0 < a < t <∞ it holds

U
rq
p (a, t) sup

z∈[t,∞)
u
q(z) (∫

∞

z
v
1−p′)

r
p′

≤ sup
z∈[t,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′

. (61)
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Indeed, one has

sup
s∈[a,t)

u
rq
p (s) sup

z∈[t,∞)
u
q(z) (∫

∞

z
v
1−p′)

r
p′

≤ sup
s∈[a,t)

u
rq
p (s) sup

z∈[t,∞)
sup

τ∈[t,z)
u
q(τ) (∫

∞

z
v
1−p′)

r
p′

= sup
z∈[t,∞)

sup
s∈[a,t)

u
rq
p (s) sup

τ∈[t,z)
u
q(τ) (∫

∞

z
v
1−p′)

r
p′

≤ sup
z∈[t,∞)

sup
s∈[a,z)

u
r(s) (∫

∞

z
v
1−p′)

r
p′

≤ sup
z∈[a,∞)

sup
s∈[a,z)

u
r(s) (∫

∞

z
v
1−p′)

r
p′

= sup
z∈[a,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′

.

The identity (34) implies the last step.

The starting point for estimating A(8) is the following decomposition.

⎡⎢⎢⎢⎢⎣
∫
∞

tµ
(∫

t

tµ
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

≈
⎡⎢⎢⎢⎢⎣
∫
∆µ

(∫
t

tµ
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

(62)

+
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫
∆k(n+1)−1

(∫
t

tµ
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

∫
∆k

(∫
t

tµ
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

=∶ B7 +B8 +B9.

For B7 one has

B7 ≤
⎡⎢⎢⎢⎢⎣
∫
∆µ

(∫
t

tµ
w(x)dx)

r
p

w(t)U
rq
p (tµ, t) sup

z∈[t,∞)
u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎢⎣
∫
∆µ

(∫
t

tµ
w(x)dx)

r
p

w(t)dt sup
z∈[tµ,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(63)

≲
⎡⎢⎢⎢⎢⎣
2

µr
q sup

z∈[tµ,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(64)

≲
⎡⎢⎢⎢⎢⎣
∫

tµ

0
W

r
p (t)w(t)dt sup

z∈[tµ,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

(65)

≤ A(7) ≲ C(5).

We used (61) to get (63), and (9) was used for (64) and (65). The very last inequality was obtained
in (60).
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Next, for B8 we get

B8 ≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

∫
∆k(n+1)−1

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎣

N

∑
n=1

2
k(n+1)

r
p ∫

∆k(n+1)−1

w(t)U
rq
p (tk(n+1)−1, t) sup

z∈[t,∞)
u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt
⎤⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
z∈[tk(n+1)−1,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

2
k(n+1)

r
q sup
z∈[tk(n+1)−1,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

=∶ B10 +B11.

The first step follows by (18). In the second step we used (9) to estimate the first summand, and
(61) and (9) to estimate the second one.

Now formally define k−1 ∶= k0 − 1 = µ − 1 and tk(N+2)−1 ∶=∞. Furthermore, observe that, by (12),
it holds

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) ≥ 2
r
p
⎛
⎝

k(n−1)−1

∑
j=k(n−2)

2jUq(∆j)
⎞
⎠

r
p

2k(n+1) ≥ 2
r
q
⎛
⎝

k(n−1)−1

∑
j=k(n−2)

2jUq(∆j)
⎞
⎠

r
p

2kn

for every n ∈ N such that 2 ≤ n ≤ N . Therefore, since it holds 2
r
q > 1, the sequence {bn}Nn=1 with

bn ∶= (∑kn−1
j=k(n−1)

2jUq(∆j))
r
p
2k(n+1) is strongly increasing.

For B10 we then obtain

B10 =
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
n+1≤i≤N+1

sup
z∈[tki−1,tk(i+1)−1)

u
q(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
z∈[tk(n+1)−1,tk(n+2)−1)

u
q(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
z∈[tk(n+1)−1,tk(n+2)−1)

u
q(z) (∫

tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1)Uq(tk(n+1)−1, tk(n+2)−1)
⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′ ⎤⎥⎥⎥⎥⎦

1
r

=∶ B12 +B13.

The second step follows from Corollary 3.
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Let us proceed with B12. We get

B12 ≤
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
z∈[tk(n+1)−1,tk(n+2)−1)

U
q(tk(n+1)−1, z) (∫

tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

∫
tk(n+1)−1

tk(n+1)−2
w(t)dt sup

z∈[tk(n+1)−1,tk(n+2)−1)
U

q(tk(n+1)−1, z) (∫
tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

(66)

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n+1)−2
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝∫

tkn

tk(n−1)−1
w(t)Uq(t, tkn

)dt
⎞
⎠

r
p

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n+1)−2
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

(67)

≤
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

⎛
⎝∫

z

tk(n−1)−1
w(t)Uq(t, z)dt

⎞
⎠

r
q

(∫
tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

=∶ B14.

In (66) one uses (9) and (67) follows from (19) and the relation tk(n+1)−1 ≥ tkn
.

Let us check finiteness of B14. It holds

B14 ≤
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

(∫
z

0
w(t)Uq(t, z)dt)

r
q

(∫
∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≤ N
1
r A(6) ≲ N

1
r C(5) <∞.

Again we made use of the already proved estimate (39).

Now, for each n ∈ N such that 2 ≤ n ≤ N + 1 find a number z′n ∈ [tkn−1, tk(n+1)−1) such that

2
⎛
⎝∫

z′n

tk(n−1)−1
w(t)Uq(t, z′n)dt

⎞
⎠

r
q

(∫
∞

z′n

v
1−p′)

r
p′

≥ sup
z∈[tkn−1,tk(n+1)−1)

⎛
⎝∫

z

tk(n−1)−1
w(t)Uq(t, z)dt

⎞
⎠

r
q

(∫
∞

z
v
1−p′)

r
p′

. (68)

This is possible since the right term is finite, which fact in turn follows from the finiteness of B14.
Following (40) and the Lp-duality, for each n ∈ N such that 2 ≤ n ≤ N + 1 there exists a nonnegative
function fn supported in [z′n, tk(n+1)−1] and such that

∫
tk(n+1)−1

tkn−1

f
p
n v = ∫

tk(n+1)−1

z′n

f
p
n v = 1 and (∫

tk(n+1)−1

tkn−1

v
1−p′)

1
p′

≤ 2∫
tk(n+1)−1

tkn−1

fn.

An argument analogous to that of (45) then yields

sup
z∈[tkn−1,tk(n+1)−1)

⎛
⎝∫

z

tk(n−1)−1
w(t)Uq(t, z)dt

⎞
⎠

1
q

(∫
∞

z
v
1−p′)

1
p′

≲ sup
z∈[tkn−1,tk(n+1)−1)

⎛
⎝∫

z

tk(n−1)−1
w(t)Uq(t, z)dt

⎞
⎠

1
q

∫
∞

z
fn (69)
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Next, since B14 < ∞, by Proposition 5 there exists a nonnegative sequence {dn}N+1n=2 such that

∑N+1
n=2 d

p
n = 1 and

B14 =
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

⎛
⎝∫

z

tk(n−1)−1
w(t)Uq(t, z)dt

⎞
⎠

r
q

(∫
tk(n+2)−1

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≤ 2
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
v
1−p′)

q
p′

d
q
n

⎤⎥⎥⎥⎥⎥⎦

1
q

. (70)

As expected, now we define the function f ∶= ∑N+1
n=2 dnfn. An easy check confirms that ∥f∥Lp(v) = 1.

Before continuing, let us make one more observation. Let n ∈ N be such that 2 ≤ n ≤ N + 1 and let
z ∈ [tk(n+1)−1, tk(n+2)−1). Then

∫
z

tk(n−1)−1
w(t)Uq(t, z) (∫

∞

z
f(s)ds)

q

dt ≤ ∫
z

tk(n−1)−1
w(t) sup

x∈[t,∞)
U

q(t, x) (∫
∞

x
f(s)ds)

q

dt

= ∫
z

tk(n−1)−1
w(t) sup

x∈[t,∞)
u
q(x) (∫

∞

x
f(s)ds)

q

dt

≤ ∫
tk(n+2)−1

tk(n−1)−1
w(t)

⎛
⎝

sup
x∈[t,∞)

u
q(x)∫

∞

x
f(s)ds

⎞
⎠

q

dt.

The second step is an analogy to (34). Taking supremum over z ∈ [tk(n+1)−1, tk(n+2)−1), we get

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z) (∫

∞

z
f)

q

dt ≤∫
tk(n+2)−1

tk(n−1)−1
w(t)

⎛
⎝

sup
x∈[t,∞)

u
q(x)∫

∞

x
f
⎞
⎠

q

dt. (71)

Now we estimate

B14 ≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
v
1−p′)

q
p′

d
q
n

⎤⎥⎥⎥⎥⎥⎦

1
q

(72)

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
fn)

q

d
q
n

⎤⎥⎥⎥⎥⎥⎦

1
q

(73)

=
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z)dt(∫

tk(n+2)−1

z
f(s)ds)

q
⎤⎥⎥⎥⎥⎥⎦

1
q

=
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

sup
z∈[tk(n+1)−1,tk(n+2)−1)

∫
z

tk(n−1)−1
w(t)Uq(t, z)dt(∫

∞

z
f(s)ds)

q
⎤⎥⎥⎥⎥⎥⎦

1
q

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫

tk(n+2)−1

tk(n−1)−1
w(t)

⎛
⎝

sup
x∈[t,∞)

u
q(x)∫

∞

x
f(s)ds

⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎦

1
q

(74)

≲
2

∑
i=0

⎡⎢⎢⎢⎢⎢⎣
∑

1≤n≤N
n mod3=i

∫
tk(n+2)−1

tk(n−1)−1
w(t)

⎛
⎝

sup
x∈[t,∞)

u
q(x)∫

∞

x
f(s)ds

⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎥⎦

1
q

≲
⎡⎢⎢⎢⎢⎣
∫
∞

0
w(t)

⎛
⎝

sup
x∈[t,∞)

u
q(x)∫

∞

x
f(s)ds

⎞
⎠

q

dt

⎤⎥⎥⎥⎥⎦

1
q

≤ C(5)∥f∥Lp(v) = C(5).
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The inequality (72) is taken from (70), and step (73) follows from (69). In (74) we used (71).

Let us now return to B13. We have

B13 ≲
⎡⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1)−1Uq(tk(n+1)−1, tk(n+2)−1)
⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′ ⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+2)−2

∑
k=k(n+1)−1

2kUq(tk, tk(n+2)−1)
⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′ ⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+2)−2

∑
k=k(n+1)−1

2kUq(∆k)
⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′ ⎤⎥⎥⎥⎥⎦

1
r

(75)

≲
⎡⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−1

∑
k=kn

2kUq(∆k)
⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′ ⎤⎥⎥⎥⎥⎦

1
r

(76)

≲
⎡⎢⎢⎢⎢⎢⎣

N−1
∑
n=1

⎛
⎝

k(n+1)−1

∑
k=kn

2kUq(∆k)
⎞
⎠

r
q ⎛
⎝∫

∞

tk(n+2)−1
v
1−p′⎞
⎠

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

(77)

≤
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

k(n+1)−1

∑
k=kn

2kUq(∆k)
⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

k(n+1)−1

∑
k=kn

2kUq(∆k)
⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎥⎦

1
r

(78)

= B6 ≲ C(5).

The estimate (75) follows from Corollary 2, step (76) is due to (13) and step (77) due to (12).
Inequality (78) is implied by Corollary 2. The final estimate B6 ≲ C(5) was obtained in an earlier
stage of the proof.

Now we have

B10 ≲ B12 +B13 ≲ B14 +B13 ≲ C(5).

Next term to proceed with is B11. It holds

B11 ≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1
∫

tk(n+1)−1

tk(n+1)−2
W

r
p (t)w(t)dt sup

z∈[tk(n+1)−1,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(79)

≤
⎡⎢⎢⎢⎣

N

∑
n=1
∫

tk(n+1)−1

tk(n+1)−2
W

r
p (t)w(t) sup

z∈[t,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′

dt
⎤⎥⎥⎥⎦

1
r

≤ A(7) ≲ C(5).

In (79) we used (9). Recall also the earlier result (60).

At this point we completed the estimate

B8 ≲ B10 +B11 ≲ C(5).
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We return even deeper to the term B9. By (18), it holds

B9 ≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

∫
∆k

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

2
kr
p ∫

∆k

w(t)U
rq
p (tk, t) sup

z∈[t,∞)
u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

=∶ B15 +B16.

Next, one has

B15 ≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

∫
∆k

w(t) sup
z∈[t,tk(n+1)−1)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

∫
∆k

w(t)dt sup
z∈[tk(n+1)−1,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

2kUq(tk, tk(n+1)−1)(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(80)

+
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p

2k(n+1) sup
z∈[tk(n+1)−1,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

2kUq(tk, tk(n+1)−1)(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+B10

≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
p k(n+1)−2

∑
k=kn

2kUq(∆k)(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+B10 (81)

≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+B10 (82)

≤
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
q

(∫
∞

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+B10

≲
⎡⎢⎢⎢⎢⎣

N

∑
n=1

⎛
⎝

kn−1
∑

j=k(n−1)
2jUq(∆j)

⎞
⎠

r
q

(∫
tk(n+1)

tkn

v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

+B10 (83)

= B6 +B10 ≲ C(5).

In step (80) we used (9) and step (81) follows from Corollary 2. Step (82) is due to (13). To get (83)
recall (12) and use Corollary 2. The estimate B6 +B10 ≲ C(5) was obtained earlier.
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The term B16 is the last remaining one. We get

B16 ≤
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

2
kr
p ∫

∆k

w(t)dt sup
z∈[tk,∞)

u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

(84)

≲
⎡⎢⎢⎢⎢⎣
∑
n∈A

k(n+1)−2

∑
k=kn

2
kr
q sup

z∈[tk,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′
⎤⎥⎥⎥⎥⎦

1
r

≤
⎡⎢⎢⎢⎣

K

∑
k=1

2
kr
q sup

z∈[tk,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′ ⎤⎥⎥⎥⎦

1
r

≲
⎡⎢⎢⎢⎣

K

∑
k=1
∫
∆k−1

W
r
p (t)w(t)dt sup

z∈[tk,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′ ⎤⎥⎥⎥⎦

1
r

(85)

≤
⎡⎢⎢⎢⎣

K

∑
k=1
∫
∆k−1

W
r
p (t)w(t)dt sup

z∈[t,∞)
u
r(z) (∫

∞

z
v
1−p′)

r
p′ ⎤⎥⎥⎥⎦

1
r

≤ A(7) ≲ C(5).

To get the inequality (84) we used (61). Step (85) follows from (9). For the final estimate see (60).

We have shown

B9 ≲ B15 +B16 ≲ C(5).

Now, collecting all our estimates and returning all the way back to the starting decomposition (62),
we check that we have proved

⎡⎢⎢⎢⎢⎣
∫
∞

tµ
(∫

t

tµ
w(x)Uq(x, t)dx)

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

∞

z
v
1−p′)

r
p′

dt

⎤⎥⎥⎥⎥⎦

1
r

≲ C(5).

The limit pass µ → −∞ followed by the second one K →∞ in the same manner as done previously
then finally yields

A(8) ≲ C(5).

Therefore, necessity of the conditions A(7) and A(8) in case (ii) is verified and the proof is finished.

The previous theorem has, not surprisingly, its analogy for p = 1. It may be proved by a similar
technique as Theorem 6. Given the length of the previous proof, the reader will hopefully excuse
omitting the proof the theorem below, which is the aforementioned version for p = 1.

Theorem 7 Let v, w be weights and let u be a continuous weight. Consider the inequality

⎛
⎝∫

∞

0
[ sup
x∈[t,∞)

u(x)∫
∞

x
g(s)ds]

q
w(t)dt

⎞
⎠

1
q

≤ C(86) ∫
∞

0
g(t)v(t)dt. (86)

(i) Let 1 ≤ q <∞. Then (86) holds for all g ∈M+ if and only if

A(87) ∶= sup
t∈(0,∞)

⎛
⎝∫

t

0
w(x) sup

z∈[x,t]
u
q(z)dx

⎞
⎠

1
q

ess sup
s∈[t,∞)

1

v(s)
<∞. (87)

Moreover, the least constant C(86) such that (86) holds for all g ∈M+ satisfies C(86) ≈ A(87).
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(ii) Let 0 < q < 1. Then (86) holds for all g ∈M+ if and only if

A(88) ∶=
⎛
⎜
⎝
∫
∞

0
W

q
1−q (t)w(t) sup

z∈[t,∞)
u

q
1−q (z)

⎛
⎝
ess sup
s∈[z,∞)

1

v(s)
⎞
⎠

q
1−q

dt
⎞
⎟
⎠

1−q
q

<∞ (88)

and

A(89) ∶=
⎛
⎜
⎝
∫
∞

0

⎛
⎝∫

t

0
w(x) sup

y∈[x,t]
u
q(y)dx

⎞
⎠

q
1−q

w(t) sup
z∈[t,∞)

u
q(z)

⎛
⎝
ess sup
s∈[z,∞)

1

v(s)
⎞
⎠

q
1−q

dt
⎞
⎟
⎠

1−q
q

<∞. (89)

Moreover, the least constant C(86) such that (86) holds for all g ∈M+ satisfies C(86) ≈ A(88) +A(89).

As it was forecast in the introduction, the results which are now at our disposal, namely those
of Theorem 7, allow us to find the missing integral condition characterizing boundedness of the
supremal operator Ru acting on M ↓

+. Case (i) in the theorem below was proved in [6, Theorem 3.2(i)]
and is listed here for the sake of completeness. Case (ii) is the new result containing the integral
condition for 0 < q < p <∞. The proof in fact covers both cases.

Theorem 8 Let v, w be weights and let u be a continuous weight.

(i) Let 0 < p ≤ q <∞. Then the inequality

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u(s)f(s)]
q
w(t)dt

⎞
⎠

1
q

≤ C(90) (∫
∞

0
f
p(t)v(t)dt)

1
p

(90)

holds for all f ∈M ↓
+ if and only if

A(91) ∶= sup
t∈(0∞)

⎛
⎝∫

t

0
w(x) sup

y∈[x,t)
u
q(y)dx

⎞
⎠

1
q

V
− 1

p (t) <∞. (91)

Moreover, the least constant C(90) such that (90) holds for all f ∈M ↓
+ satisfies

C(90) ≈ A(91).

(ii) Let 0 < q < p <∞ and r = pq
p−q . Then (90) holds for all f ∈M ↓

+ if and only if

A(92) ∶=
⎛
⎝∫

∞

0
W

r
p (t)w(t) sup

z∈[t,∞)
u
r(z) (∫

z

0
v(s)ds)

− r
p

dt
⎞
⎠

1
r

<∞ (92)

and

A(93) ∶=
⎛
⎜
⎝
∫
∞

0

⎛
⎝∫

t

0
w(x) sup

y∈[x,t]
u
q(y)dx

⎞
⎠

r
p

w(t) sup
z∈[t,∞)

u
q(z) (∫

z

0
v(s)ds)

− r
p

dt
⎞
⎟
⎠

1
r

<∞. (93)

Moreover, the least constant C(90) such that (90) holds for all f ∈M ↓
+ satisfies

C(90) ≈ A(92) +A(93).
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Proof Since p > 0, the function f ∈ M is nonincreasing if and only if the function g ∶= f
1
p is nonin-

creasing. Hence, (90) holds for all f ∈M ↓
+ if and only if

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u(s)g
1
p (s)]

q
w(t)dt

⎞
⎠

1
q

≤ C(90) (∫
∞

0
g(t)v(t)dt)

1
p

holds for all f ∈ M ↓
+. By a standard argument (see e.g. [14, Lemma 1.2]), this is equivalent to the

inequality

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u(s) (∫
∞

s
h(x)dx)

1
p

]
q
w(t)dt

⎞
⎠

1
q

≤ C(90) (∫
∞

0
∫
∞

t
h(x)dx v(t)dt)

1
p

being satisfied for all h ∈M+. By taking the p-th power and applying Fubini theorem, this is true if
and only if

⎛
⎝∫

∞

0
[ sup
s∈[t,∞)

u
p(s)∫

∞

s
h(x)dx]

q
p
w(t)dt

⎞
⎠

p
q

≤ Cp
(90) ∫

∞

0
h(t)V (t)dt

holds for all h ∈M+. The result now follows from Theorem 7.

4 Comparison of the conditions

The paper [5] lists a variety of reduction theorems for weighted inequalities. These results, in general,
allow for an equivalent reformulation of a weighted inequality in form of another weighted inequality,
often on a different cone of functions. A particular case [5, Corollary 3.5] then offers an equivalent
representation of the inequality (1), involving the operator Su, by an analogous inequality with the
operator Tũ (and with different weights). Hence, by using [5, Corollary 3.5], [6, Theorems 4.1 and
4.4] and after a careful recalculating of exponents, one can show that validity of (5) for all g ∈M+ is
characterized by the following conditions.

(i) If 1 < p ≤ q <∞, then (5) holds for all g ∈M+ if and only if

A(94) ∶= sup
t∈(0,∞)

u(t)W
1
q (t) (∫

∞

t
v
1−p′(s)ds)

1
p′

(94)

+ sup
t∈(0,∞)

⎛
⎝∫

∞

t
w(x) sup

y∈[x,∞)
u
q(y) (∫

∞

y
v
1−p′(s)ds)

2q
p′+1

dx
⎞
⎠

1
q

(∫
∞

t
v
1−p′(s)ds)

−1
p(p′+1)

<∞.

(ii) If 1 < p <∞ and 0 < q < p, then (5) holds for all g ∈M+ if and only if

A(95) ∶=
⎛
⎝∫

∞

0
W

r
p (t)w(t) sup

y∈[t,∞)
u
r(y) (∫

∞

y
v
1−p′(s)ds)

r
p′

dx
⎞
⎠

1
r

(95)

+
⎛
⎜
⎝
∫
∞

0

⎛
⎝∫

∞

t
w(x) sup

y∈[x,∞)
u
q(y) (∫

∞

y
v
1−p′(s)ds)

2q
p′+1

dx
⎞
⎠

r
q

(∫
∞

t
v
1−p′(s)ds)

r
p′ −

2r
p′+1−1

v
1−p′(t)dt

⎞
⎟
⎠

1
r

<∞.

Observe that these conditions are different from those presented in Theorem 6. In case (i), it is easily
shown that the first term in A(94) is dominated by A(6). In (ii), the first half of A(95) is in fact A(7),
but the second term in A(95) is different from the condition A(8). Notice, in particular, the “flipped”
interval of integration in the term involving w in the second part of the condition A(95) (and the same
in A(94)). This difference can be traced back to the “flip” from Su to Tũ in the reduction technique
of [5].
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It can be said that the conditions A(6), A(7) and A(8) belong to one “class” (that may be called
“classical conditions”), and A(94), A(95) belong to another one (“flipped conditions”). Existence of
such equivalent classes of conditions is a rather common phenomenon, see e.g. [4,7,8].

The “classical” conditions are simpler than their “flipped” counterparts and, moreover, are com-
patible to older results, as these mostly have the “classical” form as well. Such matching issues are
important in situations when combining of conditions is needed. That is often the case in problems
concerning the iterated inequalities and more complicated function spaces based on them.
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