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Abstract. We prove that every Asplund lush space is generalized-lush using the method of sepa-
rable reduction. This gives a partial positive answer to a question by Jan-David Hardtke.

Introduction

Let us fix first some notations. X denotes a Banach space, X∗ its dual, BX its closed unit ball
and SX its unit sphere. All linear spaces are over the field R. For x∗ ∈ SX∗ and ε > 0 we put
S(x∗, ε) := {x ∈ BX : x∗(x) > 1 − ε}. If A is a subset of X, we write acoA for the absolutely
convex hull of A. Finally, we say that a Banach space X is lush, if for every x, y ∈ SX and every
ε > 0 there exists a functional x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and dist(y, acoS(x∗, ε)) < ε.

The concept of lushness, introduced by K. Boyko, V. Kadets, M. Mart́ın and D. Werner in [3],
is a Banach space property, which ensures that the space has numerical index 1. It was used in
[3] to solve a problem concerning the numerical index of a Banach space. Lushness was further
investigated e.g. in [2] as a property of a Banach space. Later, D. Tan, X. Hunag and R. Liu
in [7] proved that every lush space has “Mazur-Ulam property”; i.e., every isometry from a unit
sphere of a lush space E onto a unit sphere of a Banach space F extends to a linear isometry
of E and F . Up to our knowledge, it is still an open problem whether every Banach space has
Mazur-Ulam property. In order to prove that lush spaces have Mazur-Ulam property, the authors
of [7] introduced the notion of generalized-lushness.

A Banach space X is called generalized lush (GL) if for every x ∈ SX and every ε > 0 there is
x∗ ∈ SX∗ such that x ∈ S(x∗, ε) and, for every y ∈ SX ,

dist(y, S(x∗, ε)) + dist(y,−S(x∗, ε)) < 2 + ε.

It is proved in [7] that every separable lush space is (GL) and that every (GL) space has Mazur-
Ulam property. Hence, every separable lush space has Mazur-Ulam property. Using certain refine-
ments of this result and a kind of reduction to the separable case, it is deduced in [7] that every
lush space has Mazur-Ulam property.

The concept of (GL) Banach spaces was further investigated as a property of a Banach space
by J.-D. Hardtke in [6]. At the 43rd Winter School of Abstract Analysis, he presented his results
and asked whether every nonseparable lush Banach space is (GL). In this note we give a partial
positive answer to this question (recall that a Banach space is called Asplund if every separable
subspace of it has separable dual).

Theorem 1. Let X be an Asplund lush space. Then X is (GL).

We prove Theorem 1 using the method of separable reduction. By a separable reduction we
mean the possibility to extend the validity of a statement from separable spaces to the nonsep-
arable setting without knowing the proof of the statement in the separable case. The proof of
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separable reduction theorems depends on a “separable determination”: a statement φ concerning
a nonseparable Banach space X is here considered to be separably determined if

The statement φ holds in X ⇐⇒ ∀V ∈ R : The statement φ holds in V,

where R is a sufficiently large family of separable subspaces of X; typically, for any separable
subspace of X there is a bigger subspace from R. Although in applications one makes the final
deduction using just one separable subspace, it is convenient to know that the family R is large in
order to join finitely many arguments together. There are several approaches to this. One of them
is the concept of rich families introduced in [1] by J. Borwein, W. Moors.

Definition 2. Let X be a Banach space. By S(X) we denote the family of all separable closed
subspaces of X. Let us have R ⊂ S(X) and consider the following two conditions.

(i) Each separable subspace of X is contained in an element of R.

(ii) For every increasing sequence Vi in R,
⋃∞

i=1 Vi belongs to R.

If (i) holds, we say that R is cofinal. If (ii) holds, we say that R is σ-closed. If both (i) and (ii)
hold, we say that R is rich.

The crucial property, which enables us to combine several results together, is the following fact.

Proposition 3 ([1, Proposition 1.1]). The intersection of two (even of countably many) rich fam-
ilies of a given Banach space is (not only non-empty but again even) rich.

The main step towards the proof of Theorem 1 is contained in the following two results.

Theorem 4. Let X be a Banach space. Then there exists a rich family A ⊂ S(X) such that for
every V ∈ A we have

X is lush ⇐⇒ V is lush.

Theorem 5. Let X be an Asplund space. Then there exists a rich family A ⊂ S(X) such that for
every V ∈ A we have

V is (GL) =⇒ X is (GL).

We obtain Theorem 1 as an immediate corollary to Theorem 4 and Theorem 5.

Proof of Theorem 1. Let X be an Asplund lush space. By Theorem 4, Theorem 5 and Proposition 3
(we intersect rich families from Theorem 4 and Theorem 5 and pick one space from the intersection),
there is a closed separable subspace V ⊂ X such that

X is lush ⇐⇒ V is lush and V is (GL) =⇒ X is (GL).

Since X is lush, V is separable and lush; hence, by [7, Example 2.5], V is (GL). Thus, X is (GL). �

In the remainder of this note we prove Theorem 4, Theorem 5 and we discuss the possibility of
obtaining the reverse implication in Theorem 5. It is not known to the author whether Theorem 5
holds without the assumption that X is Asplund. Note that if it were so, it would easily follow
that every lush space is (GL).

We recall the most relevant notions, definitions, notations and results: We denote by Q+ the
set (0,∞) ∩ Q. Let X be a Banach space. If A ⊂ X, the symbols spA and spQA mean the
closed linear span of A and the set consisting of all finite linear combinations of elements in A
with rational coefficients, respectively. For A ⊂ X and B ⊂ X∗ we put B|A :=

{
x∗|A : x∗ ∈ B

}
;

hence, if A is a subspace of X, then B|A is a subset of the dual space A∗. Let [X]N and [X∗]N

denote the families of all countable subsets of X and X∗ respectively. By S(X) we denote the
family of all separable closed subspaces of X. By S@A(X ×X∗) we denote the set {V × Y : V ∈
S(X), Y ∈ S(X∗)}. We say that R ⊂ S@A(X × X∗) is rich if every member of S@A(X × X∗) is
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contained in some V ×Y ∈ R and whenever we have an increasing sequence (Vi×Yi)i∈N in R, then⋃
i∈N Vi × Yi =

⋃
i∈N Vi ×

⋃
i∈N Yi ∈ R.

Finally, we recall the concept introduced in [4] which serves as a link between X and X∗ (and,
by [4, Theorem 2.3], exists right if and only if X is Asplund).

Definition 6. By an Asplund generator in a Banach space X we understand any correspondence
G : [X]N −→ [X∗]N such that

(a)
(
spC

)∗ ⊂ G(C)|spC for every C ∈ [X]N;

(b) if C1, C2, . . . is an increasing sequence in [X]N, then G(C1 ∪C2 ∪ · · · ) = G(C1)∪G(C2)∪ · · · ;
(c)

⋃
{G(C) : C ∈ [X]N} is a dense subset in X∗; and

(d) if C1, C2 ∈ [X]N are such that spC1 = spC2, then spG(C1) = spG(C2).

1. Separable determination of (generalized-)lushness

The fact that “lushness is separably determined property” was in some sense proved in [2,
Theorem 4.2]. However, we need to prove this result in the language of rich families in order to
further combine it; see Theorem 4. Similarly as in [2], we will use the following result.

Theorem 7 ([2, Theorem 4.1]). Let X be a real Banach space and D ⊂ X a dense subspace. Then
the following conditions are equivalent.

(i) X is lush
(ii) For every x, y ∈ SX and ε > 0, there are λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and x1, x2 ∈ BX such

that ‖x+ x1 + x2‖ > 3− ε and ‖y − (λ1x1 − λ2x2)‖ < ε.
(iii) For every x, y ∈ SX ∩D and ε > 0, there are λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and x1, x2 ∈ BX

such that ‖x+ x1 + x2‖ > 3− ε and ‖y − (λ1x1 − λ2x2)‖ < ε.

Proof. (i)⇔(ii) is proved in [2, Theorem 4.1]. The equivalence (ii)⇔(iii) is evident. �

Proof of Theorem 4. First, we will find a rich family R1 ⊂ S(X) such that for every V ∈ R1 we
have

X is lush =⇒ V is lush.

If X is not lush, we put R1 := S(X). Otherwise, define R1 ⊂ S(X) as the family consisting of
all V ∈ S(X) such that V is lush. We shall show that R1 is a rich family. This is obvious if X
is not lush; hence, let us assume that X is lush. By [2, Theorem 4.2], R1 is cofinal. For checking
the σ-completeness of R1, consider any increasing sequence (Vi)i∈N of elements in R1. We need to

prove that V :=
⋃∞

i=1 Vi is lush. Since (Vi)i∈N is increasing, by Theorem 7 (i) =⇒ (ii), condition
(iii) in Theorem 7 is satisfied with D =

⋃∞
i=1 Vi and X = V . Hence, V is lush.

Now, we will find a rich family R2 ⊂ S(X) such that for every V ∈ R2 we have

X is not lush =⇒ V is not lush.

If X is lush, we put R2 := S(X). Otherwise, by Theorem 7 (ii) =⇒ (i), there are x, y ∈ SX and
ε > 0 such that for every λ1, λ2 ≥ 0 with λ1 +λ2 = 1 and x1, x2 ∈ BX we have ‖x+x1 +x2‖ ≤ 3−ε
or ‖y − (λ1x1 − λ2x2)‖ ≥ ε. Hence, the family R2 := {V ∈ S(X) : x, y ∈ V } is a rich family such
that each member of the family is not lush.

Finally, it remains to put A := R1 ∩ R2. This is a rich family because, by the construction
above, we have A = R1 or A = R2 depending on the “lushness” of X. It is obvious that for every
V ∈ A, V is lush if and only if X is lush. �

Before proving Theorem 5, let us note that in the definition of (GL) spaces we may work only with
a dense subset of X∗. This is the content of the following Lemma. Since the proof is straightforward
and easy, we omit it.
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Lemma 8. Let X be a Banach space and let G ⊂ X∗ be a dense subset of X∗. Let us assume that

there are x ∈ SX and ε > 0 such that for every x∗ ∈ G with x ∈ S
(

x∗

‖x∗‖ , ε
)

there exists y ∈ SX
such that

dist

(
y, S

(
x∗

‖x∗‖ , ε
))

+ dist

(
y,−S

(
x∗

‖x∗‖ , ε
))
≥ 2 + ε.

Then X is not (GL).

Proof of Theorem 5. If X is (GL), it suffices to put A := S(X). Therefore, we may assume that X
is not (GL). Let G : [X]N → [X∗]N be an Asplund generator in X. Since X is not (GL), there are
x0 ∈ SX and ε0 > 0 such that

(1) ∀x∗ ∈ SX∗ : x0 ∈ S(x∗, ε0) ∃y ∈ SX : dist(y, S(x∗, ε0)) + dist(y,−S(x∗, ε0)) ≥ 2 + ε0.

By Lemma 8 and the definition of an Asplund generator, it suffices to find a rich family A ⊂ S(X)
such that for every V ∈ A we have x0 ∈ V and there exists C ⊂ V with spC = V satisfying the
following property.

∀x∗ ∈ G(C) : x0 ∈ S
(

x∗|V
‖x∗|V ‖ , ε0

)
∃y ∈ SV

dist

(
y, S

(
x∗|V
‖x∗|V ‖ , ε0

))
+ dist

(
y,−S

(
x∗|V
‖x∗|V ‖ , ε0

))
≥ 2 + ε0.

(2)

Define R′ ⊂ S@A(X×X∗) as the family consisting of all rectangles spC×spG(C), with C ∈ [X]N,
such that the assignment

spG(C) 3 x∗ 7−→ x∗| spC ∈ (spC)∗

is a surjective isometry. It is proved in [4, proof of Theorem 2.3 (ii) =⇒ (iii)] that R′ is a rich
family and whenever we have V1×Y1, V2×Y2 in R′ such that V1 ⊂ V2, then Y1 ⊂ Y2. Consequently,
the family R1 := {V : ∃Y : V × Y ∈ R′} ⊂ S(X) is rich.

For every x∗ ∈ X∗, we pick, if it exists, a point I(x∗) ∈ SX such that

(3) dist

(
I(x∗), S

(
x∗

‖x∗‖ , ε0

))
+ dist

(
I(x∗),−S

(
x∗

‖x∗‖ , ε0

))
≥ 2 + ε0.

Define R2 ⊂ S(X) as the family consisting of all V ∈ S(X) with x0 ∈ V such that there is a
countable set C ⊂ V with spC = V and

(4) ∀x∗ ∈ G(C) :
(
I(x∗) is defined =⇒ I(x∗) ∈ V

)
.

We shall show that R2 is a rich family.
As regards the cofinality of R2, fix any countable set S ⊂ X. Put C0 := S ∪ {x0}. Assume

that for some m ∈ N we already found countable sets C0 ⊂ C1 ⊂ . . . ⊂ Cm−1 ⊂ X. Then we find
Cm ⊃ Cm−1 such that, for every x∗ ∈ G(Cm−1), we have I(x∗) ∈ Cm whenever it is defined. Do
so for every m ∈ N and put finally C :=

⋃∞
i=0Ci. It remains to see that V := sp C ∈ R2, which

follows immediately from the construction because we have G(C) =
⋃∞

i=0G(Ci).
For checking the σ-completeness of R2, consider any increasing sequence (Vi)i∈N of elements in

R2. Let, for every i ∈ N, be Ci ⊂ Vi a set with spCi = Vi satisfying (4) for Ci and Vi. We
may assume that C1 ⊂ C2 ⊂ . . . (if not, we replace it by C1, C1 ∪ C2, C1 ∪ C2 ∪ C3, . . .). Then
V = V1 ∪ V2 ∪ . . . contains x0 and we put C := C1 ∪ C2 . . .. Then spC = V . Moreover, since
C1, C2, . . . is an increasing sequence, (4) is satisfied.

Finally, we put A := R1 ∩ R2. It remains to prove that our A “works”; i.e., no member of
A is (GL). So, pick any V ∈ A. We need to show that (2) holds. Fix a set C with spC = V

from the definition of the family R2. Fix x∗ ∈ G(C) with x0 ∈ S
(

x∗|V
‖x∗|V ‖ , ε0

)
. By the definiton of

R1, there is a countable set C ′ ⊂ V such that spC ′ = V and, for every y∗ ∈ spG(C ′), we have
‖y∗‖ = ‖y∗|V ‖. By the definition of an Asplund generator, spG(C) = spG(C ′); thus, we have
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‖x∗‖ = ‖x∗|V ‖. Hence, we have x0 ∈ S(x∗, ε0) and, by (1), I(x∗) is defined; hence, by (4), we have
y := I(x∗) ∈ SV . Consequently,

dist

(
y, S

(
x∗|V
‖x∗|V ‖ , ε0

))
+ dist

(
y,−S

(
x∗|V
‖x∗|V ‖ , ε0

))
= dist

(
y, S

(
x∗

‖x∗‖ , ε0

)
∩BV

)
+ dist

(
y,−S

(
x∗

‖x∗‖ , ε0

)
∩BV

)
≥ dist

(
y, S

(
x∗

‖x∗‖ , ε0

))
+ dist

(
y,−S

(
x∗

‖x∗‖ , ε0

)) (3)

≥ 2 + ε0.

Thus, (2) holds and V is not (GL). �

Finally, we will show that the reverse implication holds in some sense in an arbitrary Banach
space; see Proposition 10. Before proving it, let us notice that in the definition of (GL) spaces we
may work only with a dense subset of X. This is the content of the following Lemma. Since the
proof is straightforward and easy, we omit it.

Lemma 9. Let X be a Banach space and let D ⊂ X be a dense subsets of X. Let us assume that
for every x ∈ D and every ε ∈ Q+ there is x∗ ∈ SX∗ such that x

‖x‖ ∈ S(x∗, ε) and, for every y ∈ D,

dist
(

y
‖y‖ , S(x∗, ε)

)
+ dist

(
y
‖y‖ ,−S(x∗, ε)

)
< 2 + ε.

Then X is (GL).

Proposition 10. Let X be a Banach space. Then there exists a cofinal family A ⊂ S(X) such
that for every V ∈ A we have

X is (GL) =⇒ V is (GL).

Proof. If X is not (GL), we may put A = S(X). Let us assume that X is (GL). Define A ⊂ S(X)
as the family consisting of all V ∈ S(X) such that V is (GL). We shall show that A is a cofinal

family.
For every x ∈ X and ε > 0, we pick a point I1(x, ε) ∈ SX∗ such that x

‖x‖ ∈ S
(
I1(x, ε), ε

)
and,

for every y ∈ X,

dist
(

y
‖y‖ , S

(
I1(x, ε), ε

))
+ dist

(
y
‖y‖ ,−S

(
I1(x, ε), ε

))
< 2 + ε.

Now, for every x, y ∈ X and ε > 0, we pick two points I2(x, y, ε), I3(x, y, ε) ∈ S
(
I1(x, ε), ε

)
with∥∥∥ y

‖y‖ − I2(x, y, ε)
∥∥∥+

∥∥∥ y
‖y‖ + I3(x, y, ε)

∥∥∥ < 2 + ε.

Note that, since X is (GL), for every x, y ∈ X and ε > 0 the points I2(x, y, ε) and I3(x, y, ε) exist.
In order to show that A is cofinal, fix any countable set S ⊂ X. Put C0 := S. Assume

that for some m ∈ N we already found countable sets C0 ⊂ C1 ⊂ . . . ⊂ Cm−1 ⊂ X. Then we find
Cm ⊃ Cm−1 such that, for every x, y ∈ spQCm−1 and ε ∈ Q+, we have {I2(x, y, ε), I3(x, y, ε)} ⊂ Cm.
Do so for every m ∈ N and put finally C :=

⋃∞
i=0Ci. It remains to see that V := sp C is (GL). It

follows from the construction of C that we have

(5) ∀x, y ∈ spQC ∀ε ∈ Q+ : {I2(x, y, ε), I3(x, y, ε)} ⊂ V.
We will verify the assumption of Lemma 9 with D = spQC for the space V . Fix x ∈ spQC and

ε ∈ Q+ and consider x∗ := I1(x,ε)|V
‖I1(x,ε)|V ‖ . Then x

‖x‖ ∈ S
(
I1(x, ε), ε

)
∩V ⊂ S(x∗, ε). Fix any y ∈ spQC.

Then we have {I2(x, y, ε), I3(x, y, ε)} ⊂ S
(
I1(x, ε), ε

)
∩ V ⊂ S(x∗, ε) and∥∥∥ y

‖y‖ − I2(x, y, ε)
∥∥∥+

∥∥∥ y
‖y‖ + I3(x, y, ε)

∥∥∥ < 2 + ε.
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Hence,

dist
(

y
‖y‖ , S

(
x∗, ε

))
+ dist

(
y
‖y‖ ,−S

(
x∗, ε

))
< 2 + ε,

which shows that the assumption of Lemma 9 is satisfied for the space V and so V is (GL). �

Remark 11. It is known to the author that it is possible to prove Proposition 10 using the method
of suitable models (more precisely, the family R is not only cofinal, but it consists of all the spaces
of the form X ∩M where M is a suitable countable model); see [4, Section 4] and references therein
for a description of the method. Since, by [5, Theorem 2.7] and [4, Theorem 5.5], this method is
equivalent to the method of rich families in many classes of Banach spaces (e.g. in Asplund spaces),
it is possible to obtain a rich family instead of a cofinal one in Proposition 10 for many classes of
Banach spaces. In particular, in Theorem 5 we have an equivalence. However, the proof involving
suitable models would require quite a deep understanding of the method and we do not know any
application of such a result; hence, we decided to present here only a weaker statement, Proposition
10, which has the advantage that the proof does not require any knowledge of set theory or logic.

We do not know whether we can get a rich family instead of a cofinal one in Proposition 10 for
an arbitrary Banach space.
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[4] M. Cúth and M. Fabian, Separable reduction of frechet subdifferentiability in asplund spaces, (2015). preprint
avaiable at http://arxiv.org/pdf/1505.07604.pdf.
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