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Abstract. We give sharp conformal conditions for the differentiability in the
Sobolev space W 1,n−1

loc (Ω, Rn). Furthermore, we show that the space W 1,n−1
loc (Ω, Rn)

can be considered as the borderline space for some capacitary inequalities.

1. introduction

Let Ω ⊂ Rn, n ≥ 2, be a domain and suppose that f ∈ W 1,n−1
loc (Ω,Rn) is a

homeomorphism. If n = 2, then the theorem of Gehring and Lehto [2] implies that
f is differentiable almost everywhere. Moreover, if we proceed to the case n ≥ 3
then the Sobolev embedding theorem on spheres implies that every homeomorphism
in W 1,p

loc (Ω,Rn), p > n− 1, is differentiable almost everywhere, see [13, Theorem 1.2].
On the other hand, Sobolev embedding theorem on spheres does not apply when
f ∈ W 1,n−1

loc (Ω,Rn), n ≥ 3, which may cause the failure of the differentiability in a set
of positive measure. Indeed, in [1, Example 5.2] Csörnyei, Hencl and Malý constructed
a nowhere differentiable homeomorphism f ∈ W 1,n−1

loc ((−1, 1)n,Rn), n ≥ 3, of finite
distortion with nowhere differentiable inverse.

Differentiability of mappings in the Sobolev space W 1,n−1
loc (Ω,Rn), n ≥ 3, can be

recovered by requiring some integrability of the distortion functions (see Preliminaries
for the definition of mappings of finite distortion). Indeed, it follows from [11, Theo-
rem 1.1] together with [12, Lemma 2.1] that every homeomorphism in W 1,n−1

loc (Ω,Rn)
with locally integrable inner distortion function is differentiable almost everywhere.
The topological assumptions above can be further relaxed by assuming f to be only
continuous, discrete (the set f−1(y) is a discrete set in Ω for every y ∈ Rn) and open
(f(A) is an open set in Rn for every open set A in Ω), see [17]. It was asked in [17]
whether the local integrability assumption of the inner distortion function above is
sharp. We will now give a positive answer to this question by a novel construction:

Theorem 1.1. Let 0 < δ < 1 and n ≥ 3. Then there is a homeomorphism
f ∈ W 1,n−1((−1, 1)n,Rn) with KI ∈ Lδ((−1, 1)n) such that f is not classically differ-
entiable on a set of positive measure.

When we are studying analytical properties, such as differentiability almost every-
where and continuity, of mappings of finite distortion we are commonly lead to study
the geometry of these mappings via weighted capacitary inequalities. One of the
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most well-known weighted capacitary inequalities in the study of mappings of finite
distortion is the KI-inequality, also known as the Poletsky-type capacity inequality:

Definition 1.2. Let f ∈ W 1,1
loc (Ω,Rn) be a continuous and open mapping of finite

distortion with locally integrable inner distortion function. We say that f satisfies
the KI-inequality if for every condenser (G,E) in Ω we have

cap(f(G), f(E)) ≤ CI(G) capKI (G,E) ,(1.1)

where the constant CI ≥ 0 depends only on the dimension n and on the maximum
multiplicity N(f,G) := supy∈Rn card f−1(y) ∩G. For the terminology used above we
refer the reader to the Preliminaries.

We remark that inequality (1.1) is enough to guarantee differentiability almost
everywhere for a continuous, discrete and open mapping, and especially for a homeo-
morphism, of finite distortion, see [15, 16]. It is also important to notice that the best
possible constant CI(G) plays an important role in several applications. Moreover, in-
equalities similar to (1.1) has been applied widely to study properties of quasiregular
mappings, see e.g. [9, 8, 10].

In the case of quasiregular mappings KI-inequality with the constant CI(G) ≡ 1
was first proved by Martio, Rickman and Väisälä [10]. Later Martio improved this
result by improving the constant CI(G), see [9]. In [7] Koskela and Onninen gener-
alized this inequality for continuous, discrete and open mappings of finite distortion
in W 1,n

loc (Ω,Rn) with a locally integrable inner distortion function. It was further

shown that the regularity assumption f ∈ W 1,n
loc (Ω,Rn) can be slightly relaxed, say to

|Df |n log−1(e+|Df |) ∈ L1
loc(Ω). These results by Koskela and Onninen were based on

a duality argument, relying on integration by parts against the Jacobian determinant.
This method does not work if we assume f ∈ W 1,p

loc (Ω,Rn) for some p ∈ [1, n).
In [17, Lemma 4.4] it was shown by applying Ziemer’s duality equation [20, 21]

that for spherical condensers the KI-inequality is true even for continuous, open and
discrete mappings of finite distortion in W 1,n−1

loc (Ω,Rn) with locally integrable inner

distortion function. We will show that the space W 1,n−1
loc (Ω,Rn) can be considered as

the borderline space for the KI-inequality:

Theorem 1.3. Let n ≥ 3 and ε > 0. Then there is a homeomorphism f ∈
W 1,n−1−ε((−1, 1)n,Rn) with KI ∈ L1((−1, 1)n) for which the KI-inequality (1.1) fails.

The main idea for the proof of Theorem 1.3 is to construct a homeomorphism in
W 1,n−1−ε((−1, 1)n,Rn) with the given conformality conditions which does not sat-
isfy the Lusin’s condition (N) on almost every hyperplane with respect to (n − 1)-
dimensional Hausdorff measure. In our construction we will actually destroy the
Lusin’s condition on every hyperplane. The reason for this comes from the proof of
[17, Lemma 4.4] where the Sobolev regularity of a mapping was only used to show
that mapping satisfy the condition (N) on almost every hyperplane.

In the proof of Theorem 1.3 we will apply probability-based techniques to calculate
Lp-norms of distortion functions and differential matrices. More precisely, we will ap-
ply the notion of expected value and the famous Khintchine inequality [6] to calculate
integrals in Theorem 1.3. As far as we know this is the first time that Khintchine
inequality is used to study mappings of finite distortion.
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2. Preliminaries

2.1. Notation. We will denote by C := C(p1, . . . , pk) a positive constant which
depends only on the given parameters p1, . . . pk. The constant C might change from
line to line. Furthermore, for given functions f and g we denote f . g if there exists
a positive constant C > 0 such that f(x) ≤ Cg(x) for all points x. If both conditions
f . g and g . f are satisfied we denote f ∼ g.

2.2. Mappings of finite distortion. Let Ω ⊂ Rn, n ≥ 2 be a domain. We recall
that a mapping f ∈ W 1,1

loc (Ω,Rn) is having finite distortion if

(1) Jf ∈ L1
loc(Ω),

(2) Jf (x) ≥ 0 for almost every x ∈ Ω, and
(3) Df(x) vanishes almost everywhere in the zero set of Jf (x) = detDf(x).

With such a mapping f we may associate the distortion function KI : Ω→ [1,∞] as
follows:

KI(x) =

{
|D]f(x)|n
Jf (x)n−1 , if Jf (x) > 0

1, otherwise.

We call the function KI as the inner distortion functions of f . Above, D]f stands
for the adjugate matrix of the differential matrix Df and |A| stands for the operator
norm of a matrix A. When KI ∈ L∞(Ω) we call mapping f quasiregular.

2.3. Condensers and the capacity. Suppose that Ω ⊂ Rn, n ≥ 2, is a domain. A
pair (G,E) of sets is called as a condenser in Ω if

(1) G ⊂⊂ Ω is a domain, and
(2) E ⊂ G is a non-empty, compact subset of G.

Condenser (G,E) is called spherical if both G and E are balls centered at the same
point.

We define the ω-weighted capacity of a condenser (G,E) for a non-negative weight
function ω ∈ L1(G) as

capω(G,E) := inf

{ ∫
G

|∇u(x)|nω(x) dx : u ∈ C∞0 (G), u ≥ 0 and u ≥ 1 on E

}
.

In the case ω ≡ 1 we write cap(G,E) instead of cap1(G,E).

2.4. Algorithm for constructing Cantor sets. Suppose that [−1, 1]m ⊂ Rm, and
denote by V the set of 2m vertices of the cube [−1, 1]m. The sets

Vk = V× · · · × V, k ∈ N ,

will serve as the set of indices for our construction.
Next, suppose that {ak}∞k=0 is a decreasing sequence such that 1 = a0 ≥ a1 ≥ · · · >

0, and define

rk = 2−kak .

Set z0 = 0. Then it follows that Q(z0, r0) = (−1, 1)m and further we proceed by
induction. For v(k) = [v1, . . . , vk] ∈ Vk we denote w(k) = [v1, . . . , vk−1] and we
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define

zv(k) = zw(k) +
1

2
rk−1vk = z0 +

1

2

k∑
j=1

rj−1vj,

Q′v(k) = Q(zv(k), 2
−kak−1) and Qv(k) = Q(zv(k), 2

−kak) .

Then for the measure of the kth frame Q′v(k)\Qv(k) we have

Lm(Q′v(k)\Qv(k)) = 2−km(amk−1 − amk ) .(2.1)

Formally we should write w(v(k)) instead of w(k) but for the simplification of the
notation we will avoid this.

Fig. 1. Cubes Qv(k) and Q′v(k) for k = 1, 2.

It is not difficult to find out that the resulting Cantor set
∞⋂
k=1

⋃
v(k)∈Vk

Qv(k) =: C[{ak}∞k=0] = Ca × · · · × Ca

is a product of m Cantor sets Ca in R, and the number of the cubes {Qv(k) : v(k) ∈
Vk} is 2mk. Therefore, the measure of the Cantor set CA := C[{ak}k] can be calculated
as

Lm(CA) = lim
k→∞

2mk(2ak2
−k)m = lim

k→∞
2mamk .(2.2)

2.5. Canonical parametrizations. To prove Theorem 1.3 we need to find a way
to map Cantor set onto another Cantor set by a homeomorphism. We will do this by
using so-called canonical parametrizations and canonical transformations which were
first introduced by Hencl, Koskela and Malý in [5].

For a given z ∈ Rm and r > 0 we denote

Qr(z) := [z1 − r, z1 + r]× · · · × [zm − r, zm + r] .

We define an affine map ϕQr(z) : Q1(0)→ Qr(z) as

ϕQr(z)(x) = rx+ z .

Mapping ϕQr(z) is called the canonical parametrization of the cube Qr(z).
Furthermore, if A = Qr′(z)\Qr(z) is a cubical annuli, we define

ϕA(t, x) = (1− t)ϕQr(z)(x) + tϕQr′ (z)(x) , (t, x) ∈ [0, 1]× ∂Q1(0) .

Mapping ϕA is called as the canonical parametrization of a cubical annuli A.
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To calculate DϕA we may distinguish 2m different cases depending on which side
of the annuli we are. However, by symmetry it suffices to deal with the case (t, x) ∈
{(t, x) ∈ [0, 1]× ∂Q1(0) : x1 = 1}. In this case, if we denote d := (1− t)r + tr′, then
we may write

DϕA(t, x) =



r′ − r 0 0 · · · 0 0

(r′ − r)x2 d 0 · · · ...
...

(r′ − r)x3 0 d · · · 0 0
...

...
...

. . .
...

...
(r′ − r)xm−1 0 0 · · · d 0
(r′ − r)xm 0 0 · · · 0 d


,

and

(DϕA(t, x))−1 =



1
r′−r 0 0 · · · 0 0

−x2

d
1
d

0 · · · ...
...

−x3

d
0 1

d
· · · 0 0

...
...

...
. . .

...
...

−xm−1

d
0 0 · · · 1

d
0

−xm
d

0 0 · · · 0 1
d


.

2.6. Canonical transformation. Suppose that

A := Qr′(z)\ int(Qr(z)) and B := Qr̃′(z̃)\ int(Qr̃′(z̃))

are two cubical annuli. We define the canonical transformation of A onto B as

ϕA,B = ϕB ◦ ϕ−1
A .

-

�
�

@
@

�
�

@
@

�
�

@
@

�
�

@
@

ϕA,B

A
B

Qr Qr̃Qr′ Qr̃′

Fig. 2. The canonical transformation of A onto B for m = 2.

Then

DϕA,B(ϕA(t, x)) = DϕB(x, t) (DϕA(x, t))−1.

As in the Section 2.5 when we are calculating the matrix DϕA,B(ϕA(t, x)) we may
distinguish 2m different cases depending on which side of the cubical annuli A we are.
However, because of the symmetry we will again write the matrix formally only in
the first case of these 2m different cases. Then we have
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DϕA,B(ϕA(t, x)) =



r̃′−r̃
r′−r 0 0 · · · 0 0(

r̃′−r̃
r′−r −

d̃
d

)
(x2 − z2)

d̃
d

0 · · · ...
...(

r̃′−r̃
r′−r −

d̃
d

)
(x3 − z3) 0 d̃

d
· · · 0 0

...
...

...
. . .

...
...(

r̃′−r̃
r′−r −

d̃
d

)
(xm−1 − zm−1) 0 0 · · · d̃

d
0(

r̃′−r̃
r′−r −

d̃
d

)
(xm − zm) 0 0 · · · 0 d̃

d


,

where

d = (1− t)r + tr′ and d̃ = (1− t)r̃ + tr̃′ .

2.7. Mapping a Cantor set onto another. Consider two Cantor sets

CA := C[{ak}∞k=0] and CB := C[{bk}∞k=0]

given by the algorithm introduced in the Section 2.4. Then we may define two se-
quences of cubical annuli

Av(k) := Q′v(k)\ int(Qv(k)) and Bv(k) := Q̃′v(k)\ int(Q̃v(k)) ,

where the cubes above are referring to the corresponding ones in the constructions of
the Cantor sets CA and CB.

We define the homeomorphism Φ : (−1, 1)m → (−1, 1)m which takes CA onto CB
as the pointwise limit of mappings

ΦN(x) =

{ ∑N
k=0

∑
v(k)∈Vk ϕAv(k),Bv(k)

(x)χAv(k)
(x), if x ∈ ∪Nk=0 ∪v(k)∈Vk Av(k)

Φ̃N(x), otherwise,

where χE denotes the characteristic function of a set E, and Φ̃N is a linear mapping
which takes each cube Qv(N) linearly onto corresponding cube Q̃v(N). To see that Φ
defines a homeomorphism we refer the reader to [4, Section 4.3].

-
Φ

CA CB

Fig. 3. Mapping the Cantor set CA onto CB by using the mapping Φ.

As in the Sections 2.5 and 2.6 we may again distinguish 2m different case when
we are calculating DΦ. Again we calculate the differential matrix only in the first of
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these 2m cases. In this case we have

DΦ(ϕAv(k)
(t, x)) =



C 0 0 · · · 0 0

(C −D) (x2 − z2) D 0 · · · ...
...

(C −D) (x3 − z3) 0 D · · · 0 0
...

...
...

. . .
...

...
(C −D) (xm−1 − zm−1) 0 0 · · · D 0

(C −D) (xm − zm) 0 0 · · · 0 D


,

where z = (z1, . . . , zm) is the center of Av(k),

C =
bk−1 − bk
ak−1 − ak

and D =
(1− t)bk + tbk−1

(1− t)ak + tak−1

.

2.8. Khintchine-type inequality. The Rademacher’s distribution is a discrete prob-
ability distribution such that

P(X = x) =

 1/2, if x = 1
1/2, if x = −1
0, otherwise.

(2.3)

Furthermore, for a given 0 ≤ 1 ≤ 1 we define Bernoulli q-distribution to be the
discrete probability distribution define by

P(X = x) =

 q, if x = 1
1− q, if x = 0
0, otherwise.

(2.4)

Next, assume that X1 and X2 are two independent random variables, X1 has from
the Rademacher’s distribution and X2 has the Bernoulli q-distribution. If we define
Y := X1X2, then the probability distribution of Y can be written as

P(Y = y) =


q
2
, if y = 1
q
2
, if y = −1

1− q, if y = 0
0, otherwise.

(2.5)

From now on we will call this distribution as RB(q)-distribution. Then we can give
a generalized version of the famous Khintchine’s inequality [6] in the RB(q)-setting.
In the case q = 1 this result will be the usual Khintchine’s inequality - see e.g. [6].

Lemma 2.1 (Khinchine-type inequality). Let 0 < q ≤ 1. Suppose that {Yk}∞k=1 is a
sequence of independent and identically distributed random variables from the RB(q)-
distribution, and let {dk}∞k=1 be a sequence of real numbers. Then for a given p > 0
we can estimate the expected value as

B̂p,q

(∑
k

d2
k

)1/2

≤
(

E
[ ∣∣ ∑

k

dkYk
∣∣p ] ) 1

p ≤ Âp,q

(∑
k

d2
k

)1/2

,(2.6)

where the constants Âp,q and B̂p,q are depending only on p and q.

Proof. For the convenience of the reader we include the proof of this estimate in the
case p > 1 which follows directly the approach of [19, Proposition 4.5]. There will be
three steps in the proof:
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(i) Let us first assume that p = 2. Recall, that we may write

Yk = Xk,1Xk,2 , k ∈ N ,

where Xk,1 are random variables from the Rademacher’s distribution, Xk,2

are random variables from the Bernoulli q-distribution, and all the random
variables Xk,j are independent. By using this fact and independence we get

E
[ ∣∣ ∑

k

dkYk
∣∣2 ] =

∑
k

d2
k E[Y 2

k ] + 2
∑
k 6=j

dkdj E[Yk] E[Yj] =
∑
k

d2
k E[Y 2

k ]

=
∑
k

d2
k E[X2

k,1] E[X2
k,2] = q

∑
k

d2
k .

(ii) For the upper bound we notice that for every t > 0 we may estimate

E
[
et

∑
k dkYk

]
=
∏
k

E
[
etdkYk

]
≤ 2

N∏
k=1

1

2

(
etdk + e−tdk

)
,

and by applying the numerical inequality 1
2

(
ex + e−x

)
≤ e

x2

2 we conclude

E
[
et

∑
k dkYk

]
≤ 2 e

t2

2

∑
k d

2
k .

By applying Chebychev’s inequality to this estimate, we get

P
(∑

k

dkYk ≥ λ
)
≤ e−tλ E

[
et

∑
k dkYk

]
≤ 2 e−tλ+ t2

2

∑
k d

2
k

for any t > 0 and λ > 0. Taking t = λ∑
k d

2
k

gives

P
(∑

k

dkYk ≥ λ
)
≤ 2e

− λ2

2
∑
k d

2
k ,

and hence

P
(∣∣ ∑

k

dkYk
∣∣ ≥ λ

)
≤ 4 e

− λ2

2
∑
k d

2
k .

By applying Cavalieri’s principle, we get

E
[ ∣∣ ∑

k

dkYk
∣∣p ] = p

∫ ∞
0

λp−1 P
(∣∣ ∑

k

dkYk
∣∣ ≥ λ

)
dλ

≤ 4p

∫ ∞
0

λp−1 e
− λ2

2
∑
k d

2
k dλ = C

(∑
k

d2
k

) p
2 ,

where the constant C > 0 is depending only on p. This gives us the upper
bound.

(iii) The lower bound follows from (i), (ii) and Hölder’s inequality:∑
k

d2
k ∼ E

[ ∣∣ ∑
k

dkYk
∣∣2 ] ≤ (E

[ ∣∣ ∑
k

dkYk
∣∣p ] ) 1

p
(

E
[ ∣∣ ∑

k

dkYk
∣∣ p
p−1
] ) p−1

p

.
(

E
[ ∣∣ ∑

k

dkYk
∣∣p ] ) 1

p
(∑

k

d2
k

) 1
2
,
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and we have (∑
k

d2
k

) 1
2
.
(

E
[ ∣∣ ∑

k

dkYk
∣∣p ] ) 1

p
.

�

2.9. Oscillating snowflake mapping on a Cantor set. Let CA := C[{ak}∞k=0] be
a Cantor set in Rm. We recall that we may write every index v ∈ Vk as

v = (v1,v2, . . . ,vk) = (v1,1, . . . ,v1,m︸ ︷︷ ︸
=v1∈V

,v2,1, . . . ,v2,m︸ ︷︷ ︸
=v2∈V

, . . . ,vk,1, . . . ,vk,m︸ ︷︷ ︸
=vm∈V

) ,

where vi,j ∈ {−1, 1}. Thus, with every v ∈ Vk we may associate a number δ(v) ∈
{−1, 1} as

δ(v) :=
m∏
j=1

vk,j,

which will play a role of a sign function in our construction.

- +

+ -

- + - +

+ - + -

- + - +

+ - + -

Fig. 4. Sign of δ(v).

Suppose that {dk}∞k=1 is a sequence of real numbers converging to zero. Then we
define a sequence {Sk}∞k=1 of mappings Sk : (−1, 1)m+1 → Rm+1 as

Sk(x1, . . . , xm, xm+1) =
(
x1, . . . , xm, xm+1 +

∑
v∈Vk

δ(v)Hdk
Qv

(x̂)
)
,

where x̂ := (x1, . . . , xm) and

Hdk
Qv

(x̂) =

{
dk infz∈∂Qv | x̂− z |, if x̂ ∈ Qv

0, otherwise.

Fig. 5. Image of a 2-dimensional hyperplane for mappings S1 and S2.

Then we may define mappings SN : (−1, 1)m+1 → Rm+1 as

SN(x) := (SN ◦ SN−1 ◦ · · · ◦ S1)(x) ,
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and set S(x) := limN→∞ SN(x). This limit exists for all x ∈ (−1, 1)m+1 because∑
k

|dkrk| =
∑
k

|dk2−kak| <∞ .

Furthermore, it is not hard to see that S : (−1, 1)m+1 → S((−1, 1)m+1) is a homeo-
morphism.

2.10. Properties of DS. To calculate DS(x) we define sets

Qi
v :=

{
x ∈ Qv :

∣∣∣∣ xj − (zv)j
xi − (zv)i

∣∣∣∣ < 1 for all j 6= i

}
,

(Qi
v)− := Qi

v ∩ {xi > (zv)i} ,
(Qi

v)+ := Qi
v ∩ {xi < (zv)i} ,

and indicator functions

δiQv(x) =

 1, if x ∈ (Qi
v)+

−1, if x ∈ (Qi
v)−

0, otherwise,

for every i = 1, . . . ,m.

(Q1
v)+ (Q1

v)−

(Q2
v)−

(Q2
v)+

•
zv

Qv

Fig. 6. Sets (Qi
v)− and (Qi

v)+ in the case m = 2.

For a given point x = (x̂, xm+1) ∈ Qv(k) × (−1, 1) the differential matrix DSk(x)
can be written as

DSk(x̂, xm+1) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
dk δ

1
v dk δ

2
v · · · dk δ

m
v 1

 ,
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where δjv := δjQv
(x̂)δ(v). Furthermore, by induction we conclude

DSk(x̂, xm+1) = DSkDSk−1

=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
dk δ

1
v dk δ

2
v · · · dk δ

m
v 1




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1
k−1 D2

k−1 · · · Dm
k−1 1



=


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1
k D2

k · · · Dm
k 1

 ,

where Dj
i :=

∑i
l=1 dlδ

j
Q(v1,...,vl)

(x̂)δ(vl). We also notice that δjQv
(x̂) and δ(v) are

independent random variables, and thus it is easy to see that the probability mass
function of δjv can be defined as in (2.5) with q = 1

n−1
.

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. To capture the essential part of the
proof we will first give a detailed proof in the case n = 3 and then sketch the proof
in the case n ≥ 4. Before going to proofs we will describe a basic building block of
our construction.

Let γ > 0 be sufficiently small as described later. Let 0 < a < γ, 0 < η < 1
4

and
2aη < 1/2. Let h : [0, a]→ [0, 1] be defined as

h(t) = min
{
π − t, log

1
4 1
t
− log

1
4 1
a

}
.

Then h is continuous, strictly decreasing function, piecewise C1 with h(0) = π and
h(a) = 0. We set

g(t) = −aη

π
h(t) + aη .

Now |g′(t)| = aη

π
|h′(t)|, g(0) = 0 and g(a) = aη. We define a linear function

ρ(t) =
aη

2aη − a
t+ 2aη

aη − a
2aη − a

.

Then ρ(2aη) = 2aη and ρ(a) = aη.
Let us consider three anuloids T ⊂ S ⊂ R given by

T : = {[x, y, z] ∈ R3 : (
√
y2 + z2 − 1)2 + x2 ≤ a2}

S : = {[x, y, z] ∈ R3 : (
√
y2 + z2 − 1)2 + x2 ≤ (aη)2} and

R : = {[x, y, z] ∈ R3 : (
√
y2 + z2 − 1)2 + x2 ≤ (2aη)2} .

We will define a homeomorphism F : R → R such that F (p) = p for every p ∈ ∂R
and F (∂T ) = ∂S is given by the natural stretching. We will use the following system
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of coordinates:

r radius in the anuloid: r2 = (
√
y2 + z2 − 1)2 + x2,

α angle in the anuloid: sinα =
x

r
,

β angle around the anuloid: sin β =
y√

y2 + z2
,

and we set

(3.1)
F (r, α, β) = [ρ(r), α, β] for [r, α, β] ∈ R \ T and

F (r, α, β) = [g(r), α, h(r) + β] for [r, α, β] ∈ T .

Lemma 3.1. Let F : R→ R be as described above in (3.1), and let 0 < δ < 1. Then

(1) F (p) = p for every p ∈ ∂R,
(2) F is a homeomorphism,
(3) F (∂T ) = ∂S, and
(4) |F (p)− p| = 2 for every p ∈ {[x, y, z] : y2 + z2 = 1 and x = 0}.

Moreover, we have

(3.2)

∫
R

|DF |2 ≤ Ca2η log
1

a
+ C

1

log
1
2 1
a

and∫
R

Kδ
I ≤ Ca2η log

1

a
+ Ca−ηδ+2−2δ ,

where the constant C > 0 depends only on n and δ.

Proof. We start by verifying the conditions (1)–(4):

(1) By ρ(2aη) = 2aη we obtain F (p) = p for every p ∈ ∂R.
(2) As ρ(a) = aη = g(a) and h(a) = 0 it is easy to check that the mapping

is continuous at ∂T . By the first line in (3.1), and by applying the facts
ρ(2aη) = 2aη and ρ(a) = aη we easily see that F is a homeomorphism of R\T
onto R \ S. It is also a homeomorphism of T onto S as g is increasing with
g(0) = 0 and g(a) = aη and in the β coordinate we have a simple rotation by
the angle h(r).

(3) The property F (∂T ) = ∂S easily follows from the arguments in (2).
(4) We note that the middle circle ({y2 + z2 = 1 and x = 0}) of R is rotated by

the angle of π = h(0) and hence we conclude that |F (p)− p| = 2 there.

We still have to verify (3.2). We express the derivative in the system of coordinates
given by [r, α, β]. The radial direction (α and β fixed and r increases), angular
direction inside (r and β fixed and α increases) and angular direction around (r and
α fixed and β increases) are orthogonal and hence we can compute |DF | or JF with
respect to these directions. The derivative in the corresponding system of coordinates
is given by (see [3, Section 8] for similar computations)

DF (r, α, β) =

 ρ′(r) 0 0

0 ρ(r)
r

0
0 0 M

 for [r, α, β] ∈ R \ T
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and

DF (r, α, β) =

 g′(r) 0 h′(r)

0 g(r)
r

0
0 0 M

 for [r, α, β] ∈ T ,

where 1−2aη

1+2aη
≤ |M | ≤ 1+2aη

1−2aη
: Let us note that the middle term comes from the fact

that the circle of radius 2πr is mapped to the circle of radius 2πρ(r) (or 2πg(r) in
the second case) and hence the derivative around this circle which must be the same

as the derivative in the tangential direction to this circle equals 2πρ(r)
2πr

. The last term
with M comes from the fact that the length of any circle around our anuloid (in the
β direction) has length in [2π(1 − 2aη), 2π(1 + 2aη)] and it is mapped to the similar
circle around - as we are squeezing in the r direction this is not necessarily the same
circle. Note that as 2aη < 1

2
we have M ∼ C for some constant C > 0. Analogously

we can check that the normalization of the other terms in the matrix is done correctly.

It is easy to check that on R \ T we have ρ′(r) ∼ C and ρ(r)
r
≥ C and hence

|DF | ∼ ρ(r)
r

there.
Using polar coordinates it follows that∫

R\T
|DF |2 ≤ C

∫
R\T

ρ2(r)

r2
≤ C

∫ 2aη

a

ρ2(r)

r2
r dr

≤ Ca2η

∫ 2aη

a

1

r
dr ≤ Ca2η log

1

a
.

As ρ′(r) ∼ C it is easy to see that |D#F | ∼ ρ(r)
r

and JF ∼ ρ(r)
r

on R\T , and hence∫
R\T
|KI |δ ≤ C

∫
R\T

(ρ(r)

r

)2δ

≤ C

∫ 2aη

a

ρ2(r)

r2
r dr ≤ Ca2η log

1

a
.

Now we estimate the derivative on T . In the small part around r = 0 where

h(r) = π − r we have |g′(r)| = aη

π
|h′(r)| = aη

π
and also g(r)

r
= aη

π
. It follows that on

this set we have |DF | ≤ C and

KI ≤
(D#F )3

J2
F

≤ C
a3η

(a2η)2
≤ Ca−η .

It follows that on this set we have∫
|DF |2 ≤ C|T | ≤ Ca2 and

∫
Kδ
I ≤ Ca2a−δη

and this causes no trouble for the estimate (3.2).

It remains to estimate the derivative on the main part of T where h(r) = log
1
4 1
r
−

log
1
4 1
a
. We can clearly choose γ > 0 small enough at the beginning so that for every

a < γ we have

log
1
4

1

a2
− log

1
4

1

a
=
(

log
1
4

1

a

)
(

4
√

2− 1) > π = h(0) .
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For a ≤ γ we thus consider integrals over the set where r ∈ [a2, a] as this will only
enlarge the set. On this set we have

|h′(r)| ∼ 1

r log
3
4 1
r

, |g′(r)| = aη

π
|h′(r)| ∼ aη

r log
3
4 1
r

and
g(r)

r
∼ aη

r
.

It follows that∫
|DF |2 ≤ C

∫ a

a2

1

r2 log
3
2 1
r

r dr + C

∫ a

a2

a2η

r2
r dr ≤ C

1

log
1
2 1
a

+ Ca2η .

It is not difficult to check that |D#F | ∼ |h′(r)|g(r)
r

and JF ∼ |g′(r)|g(r)r ∼ aη|h′(r)|g(r)
r

on this set and hence∫
Kδ
I ≤ C

∫ a

a2

( |h′(r)|
a2η

g(r)

r

)δ
r dr ≤ C

∫ a

a2

( 1

a2ηr log
3
4 1
r

aη

r

)δ
r dr

≤ Ca−ηδ
1

log
3
4
δ 1
a

∫ a

a2

r

r2δ
dr ≤ Ca−ηδ+2−2δ .

�

3.1. Proof of Theorem 1.1 when n = 3. First, consider a sequence {bk}∞k=1 defined
by

bk =
1

2

(
1 +

1

k + 1

)
.

By applying algorithm in Section 2.4 we construct a Cantor set

CB := C[{bk}∞k=1]

in [−1, 1]3. Then, by (2.2) we get

L3(CB) = lim
k→∞

23k(2bk2
−k)3 = 1 .

Suppose that

Q′v(k) = Q(zv(k), 2
−kbk−1) and Qv(k) = Q(zv(k), 2

−kbk) , v(k) ∈ Vk ,

are the corresponding cubes in the construction of the Cantor set CB.
We will now define our homeomorphism f . For this, set

ak =
1

4
min{2−k4

,
(1

2
(bk−1 − bk)

) 1
η , δ} .

Given δ < 1 we find η > 0 such that

−ηδ + 2− 2δ > 0 .

For every k ∈ N we consider homeomorphism as in Lemma 3.1 applied to a = ak
scaled in each direction (both in domain and in target) by a factor of 1

4
2−k. We put

a translated copy of such a homeomorphism in every

Q′v \Qv,v ∈ Vk .

As 2aηk < bk−1 − bk there is enough room there (the volume of the anuloid is roughly
2−k−2 × 2−k−2 × (2−k−22(ak)

η)). In this way we obtain 23k copies of this homeomor-
phism for each k ∈ N and the supports of these maps are clearly disjoint. These
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homeomorphisms equal to identity on the boundaries and hence we can extend them
by identity everywhere else and we obtain a homeomorphism of (−1, 1)3 onto (−1, 1)3.

We have 23k cubes in the construction and by scaling by 2−k−2 in all three directions
we get by Lemma 3.1 that∫

(−1,1)3
|Df |2 ≤ C

∞∑
k=1

8k(2−k−2)3
(
a2η
k log

1

ak
+ C

1

log
1
2 1
ak

)
<∞

as ak ≤ 1
4
2−k

4
. Analogously we use −ηδ + 2− 2δ > 0 to show that

(3.3)

∫
(−1,1)3

Kδ
I ≤ C

∞∑
k=1

8k(2−k−2)3
(
a2η
k log

1

ak
+ Ca−ηδ+2−2δ

k

)
<∞ .

It remains to show that f is not differentiable at points of CA = Ca × Ca × Ca.
For every x ∈ CA and every k we can find v ∈ Vk such that x ∈ Qv. In Q′v \Qv we
have a translated and scaled copy of a homeomorphism as in Lemma 3.1 and hence
the distance of x and its support is less than 10 · 2−k. For p on the boundary of the
corresponding anuloid we have f(p) = p and as f(x) = x we can see that if there is
a classical derivative Df(x) it must be equal to identity matrix Df(x) = I as this
happens on all scales k. On the other hand in the central circle of the anuloid our
function is rotated and |f(p) − p| = 1

2
2−k there. This happens on all scales k and it

follows that Df(x) cannot be I and hence f is not differentiable at x.

3.2. Proof of the Theorem 1.1 when n ≥ 4. The construction in the case n ≥ 4
is very similar and therefore we only briefly outline this. We work with anuloids like

R := {x ∈ Rn : (
√
x2

2 + . . .+ x2
n − 1)2 + x2

1 ≤ (2aη)2}

and again S has radius aη and T has radius a. We use spherical (n− 1)-dimensional
coordinates inside the annulus (variables r, α1, . . . , αn−2) and angle β around the
annulus as before.

We set

f = [ρ(r), α1, . . . , αn−2, β] for [r, α1, . . . , αn−2, β] ∈ R \ T and

f = [g(r), α1, . . . , αn−2, h(r) + β] for [r, α1, . . . , αn−2, β] ∈ T .

We only sketch the estimates of the most important terms. In T we have

Df =


g′(r) 0 . . . 0 h′(r)

0 g(r)
r

. . . 0 0
...

...
. . .

...
...

0 0 . . . g(r)
r

0
0 0 . . . 0 M

 for [r, α1, . . . , αn−2, β] ∈ T

and hence |D#f | ∼ |h′(r)|(g(r)
r

)n−2 and Jf ∼ |g′(r)|(g(r)r )n−2 there. The important

part of the derivative (where h(t) = log
1
4 1
t
− log

1
4 1
a
) can be estimated using (n− 1)-

dimensional spherical coordinates as∫
|Df |n−1 ≤ C

∫ a

a2

1

rn−1 log
3
4
(n−1) 1

r

rn−2 dr <∞ .
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On this part we also estimate

(3.4)

∫
Kδ
I ≤ C

∫ a

a2

( |h′(r)|
a(n−1)η

(g(r)

r

)n−2
)δ
rn−2 dr

≤ C

∫ a

a2

( 1

a(n−1)ηr log
3
4 1
r

a(n−2)η

rn−2

)δ
rn−2 dr ≤ Ca−ηδ+n−1−(n−1)δ .

Given δ < 1 we can choose η > 0 such that −ηδ + n − 1 − (n − 1)δ > 0. Other
integrals can be estimated analogously as before.

Similarly we construct a Cantor type set of positive measure in Rn and in each
of the 2kn sets Q′v \ Qv,v ∈ Vk, we put a translated and scaled (by factor 2−k in n
directions) copy of the homeomorphism as above. Analogously to the computation
in (3.3) we obtain using −ηδ + n− 1− (n− 1)δ > 0 and (3.4) our conclusion.

4. Proof of Theorem 1.3

4.1. Construction of the mapping. Let ε > 0 and suppose that n ≥ 2. We will
define a homeomorphism f : (−1, 1)n → Rn of finite distortion as follows:

(1) Define the sequences {ak}∞k=0 and {bk}∞k=0 by setting

ak =
1

(k + 1)α
and bk =

1

2

(
1 +

1

log(e+ k)

)
,

where α > 0. It is easy to see that for every k ≥ 1 we have

ak−1 − ak ∼
1

kα+1
and bk−1 − bk ∼

1

k log2(e+ k)
.(4.1)

(2) Denote by

CA := C[(ak)
∞
k=0] and CB := C[(bk)

∞
k=0]

the Cantor sets in Rn−1 given by the sequences {ak}∞k=0 and {bk}∞k=0 above.
For each index v(k) ∈ Vk, k ∈ N, we denote by

Av(k) := Q′v(k)\ int(Qv(k)) and Bv(k) := Q̃′v(k)\ int(Q̃v(k))

the corresponding (n − 1)-dimensional cubical annuli in the construction of
the Cantor sets CA and CB. Then for k ≥ 1 we have

Ln(Av(k) × (−1, 1)) = 2−k(n−1)+1(an−1
k−1 − a

n−1
k )(4.2)

= 2−k(n−1)+1

(
1

(k − 1)α(n−1)
− 1

kα(n−1)

)
∼ 2−k(n−1)

kα(n−1)+1
.

and similarly

Ln(Bv(k) × (−1, 1)) = 2−k(n−1)+1(bn−1
k−1 − b

n−1
k ) ∼ 2−k(n−1)

k log2(e+ k)
.

(3) Suppose that Φ : (−1, 1)n−1 → (−1, 1)n−1 is the transformation, introduced
in Section 2.7, taking the Cantor set CA onto CB. Define a homeomorphism
H : (−1, 1)n → (−1, 1)n by

H(x1, . . . , xn) = (Φ(x1, . . . , xn−1), xn) .
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Then, up to a permutation of (n − 1) first coordinate axes, for every point
x ∈

⋃
v∈Vk Av(k) we have

DH(x) =



C 0 0 · · · 0 0 0

(C −D) (x2 − z2) D 0 · · · ...
... 0

(C −D) (x3 − z3) 0 D · · · 0 0 0
...

...
...

. . .
...

... 0
(C −D) (xn−2 − zn−2) 0 0 · · · D 0 0
(C −D) (xn−1 − zn−1) 0 0 · · · 0 D 0

0 0 0 · · · 0 0 1


,

where

C =
bk−1 − bk
ak−1 − ak

and D =
(1− t)bk + tbk−1

(1− t)ak + tak−1

,

for some t ∈ [0, 1] and z is the corresponding center (see Section 2.7). Espe-
cially

|DH(x)| ∼ max
{ bk
ak
,
bk−1 − bk
ak−1 − ak

, 1
}
∼ kα ,(4.3)

|D]H(x)| ∼
( bk
ak

)n−2( bk−1 − bk
ak−1 − ak

)
∼ kα(n−1)

log2(e+ k)
,

JH(x) ∼
( bk
ak

)n−2( bk−1 − bk
ak−1 − ak

)
∼ kα(n−1)

log2(e+ k)
.

(4) Define a sequence {dk}∞k=1 of real numbers by

dk =
1√

k log(e+ k)
,

and suppose that S : (−1, 1)n → Rn is the oscillating snowflake mapping on
the Cantor set CB generated by the sequence {dk}∞k=1 (see Section 2.9). Then
for every point x ∈

⋃
v∈Vk Av(k) we have H(x) ∈

⋃
v∈Vk Bv(k) and thus

DS(H(x)) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
D1
k D2

k · · · Dn−1
k 1

 ,

where Dj
k :=

∑k
l=1 dlδ

j
Q(v1,...,vl)

(x̂)δ(vl) (see Section 2.9), and therefore

|DS(H(x))| = max
1≤j≤n−1

|Dj
k| , |D]S(H(x))| = max

{
1, max

1≤j≤n−1
|Dj

k|
}
,(4.4)

JS(H(x)) = 1 .

Recall that the distribution of δjQ(v1,...,vl)
(x̂)δ(vl) is given by theRB(q)-distribution

(see end of Section 2.10). By applying Khintchine’s inequality Lemma 2.1 for
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a given p > 0, we get

E
[( n−1∑

j=1

|Dj
k|
)p]
≤ C(n, p)

n−1∑
j=1

E
[
|Dj

k|
p
]
.

n−1∑
j=1

( k∑
l=1

d2
l

) p
2

(4.5)

.
n−1∑
j=1

( k∑
l=1

1

k log(e+ k)

) p
2 ∼ (log log(e+ k))

p
2 .

(5) Define f : (−1, 1)n → Rn as

f(x) = (S ◦H)(x) .

Then, for almost every point x ∈
⋃

v∈Vk Av(k) we have using (4.3) that

|Df(x)| = |DS(H(x))DH(x)| . kα
( n−1∑

j=1

|Dj
k|
)
,(4.6)

Jf (x) = JS(H(x))JH(x) ∼ kα(n−1)

log2(e+ k)
,

|D]f(x)| = |D]S(H(x))D]H(x)| . kα(n−1)

log2(e+ k)

( n−1∑
j=1

|Dj
k|
)
.

Especially

KI(x) =
|D]f(x)|n

Jf (x)n−1
.

kα(n−1)

log2(e+ k)

( n−1∑
j=1

|Dj
k|
)n

.(4.7)

4.2. Properties of the mapping. Next we will show that f is a homeomorphism
for which Lusin’s condition (N) fails on hyperplanes, f ∈ W 1,n−1−ε((−1, 1)n,Rn),
KI ∈ L1((−1, 1)n) and f maps hyperplanes, perpendicular to n-th coordinate axis,
to sets of infinite (n− 1)-dimensional Hausdorff measure:

(1) It is clear that f is a homeomorphism as a composed mapping of two homeo-
morphisms. Moreover, it is easy to see that f cannot satisfy Lusin’s condition
(N) on any hyperplane Ht = {x ∈ (−1, 1)n : xn = t}, t ∈ (−1, 1), with respect
to (n − 1)-dimensional Hausdorff measure. We know that the Hn−1 measure
of the (n− 1)-dimensional sets

Ct
B = {x ∈ (−1, 1)n : (x1, . . . , xn−1) ∈ CB and xn = t}

is positive. Since S may only increase Hn−1, we have for every set

Ct
A = {x ∈ (−1, 1)n : (x1, . . . , xn−1) ∈ CA and xn = t}

that Hn−1(Ct
A) = 0 and Hn−1(f(Ct

A)) = Hn−1(S(Ct
B)) > 0.
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(2) Let us denote Uk := ∪v(k)∈VkAv(k)×(−1, 1). By applying (4.2), (4.6) and (4.5)
with exponent p = n− 1− ε we get∫

(−1,1)n
|Df |n−1−ε ∼

∞∑
k=1

Ln(Uk) E[{|Df(x)|n−1−ε : x ∈ Uk}]

.
∞∑
k=1

2−k(n−1)

kα(n−1)+1
2k(n−1) E

[
kα(n−1−ε)

( n−1∑
j=1

|Dj
k|
)n−1−ε ]

.
∞∑
k=1

E[
∑n−1

j=1 |D
j
k|n−1−ε ]

k1+αε
∼

∞∑
k=1

(log log(e+ k))
n−1−ε

2

k1+αε
<∞ ,

which implies that f ∈ W 1,n−1−ε((−1, 1)n,Rn).
(3) Similarly, by applying (4.2), (4.5) with exponent p = n and (4.7) we get∫

(−1,1)n
KI =

∞∑
k=1

Ln(Uk) E[{KI(x) : x ∈ Uk}]

.
∞∑
k=1

2−k(n−1)

kα(n−1)+1
2k(n−1) E

[
kα(n−1)

log2(e+ k)

( n−1∑
j=1

|Dj
k|
)n ]

.
∞∑
k=1

E[
∑n−1

j=1 |D
j
k|n]

k log2(e+ k)
∼

∞∑
k=1

(log log(e+ k))
n
2

k log2(e+ k)
<∞ ,

which implies that KI ∈ L1((−1, 1)n).
(4) Suppose that t ∈ (−1, 1). Then for the image of the (n − 1)-dimensional

hyperplane Ht = {(x̂, t) : x̂ ∈ (− 8
10
, 8

10
)n−1} we have that

Hn−1(f(Ht)) = Hn−1(S(Ht)) = lim
N→∞

Hn−1(SN(Ht)) & lim
N→∞

∑
v∈VN

Hn−1(SN(Qv(k)))

= lim
N→∞

Hn−1
( ⋃

v∈VN
Qv(k)

)
E
({
|DSN(y)| : y ∈

⋃
v∈VN

Qv(k) × {t}
})

∼ lim
N→∞

2N(n−1)(2bk2
−N)n−2bk2

−kE
(
|DSN |

)
∼ lim

N→∞
E
(
|DSN |

)
and it remains to show that this expected value of derivative is infinite. Using
(4.4) it is enough to show that for every j ∈ {1, n−1} we have using Khintchine
inequality Lemma 2.1 for p = 1 similarly to (4.5)

E(|Dj
N |) &

( N∑
l=1

d2
l

) 1
2 ∼

(
log log(e+N)

) 1
2 N→∞→ ∞ .

Thus Hn−1(f(Ht)) =∞.

4.3. Failure of the KI-inequality for f . In this section we will show that KI-
inequality (1.1) fails for f which will end the proof of Theorem 1.3. The proof of
failure of the KI-inequality is given in Proposition 4.3. However, before this we will
give two technical lemmata which we then apply in the proof of Proposition 4.3.
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Lemma 4.1. Let A ⊂ Rn−1 be an open and bounded set. Suppose that u0 : A→ R is
a linear affine function and for each h ≥ 0 define uh : A→ R as

uh(x) = u0(x) + h .

Suppose that GAuh = { (x, uh(x)) : x ∈ A} is the graph of uh on A, and let n be the
unit normal vector of the surface Gu0. Denote by

Sh := { z ∈ GAu0
: z + nt ∈ GAuh for some t ∈ R }

the shadow of the set GAuh on GAu0
. Then for a given ε > 0 there exist hε > 0 such that

Hn−1(Sh) ≥ (1− ε)Hn−1(GAu0
)

for all 0 ≤ h < hε.

A

GAu0

GAuh

h

z + nt

Sh

Fig. 7. The shadow Sh of the graph GAuh on GAu0
.

Lemma 4.1 follows easily from the fact Sh ↗ S0, and we leave the proof for the
reader. In the next lemma we show that if we have some linear function and a small
slab between a small shift of this function, then it actually almost minimizes some
capacity among all continuous deformations of this slab.

Lemma 4.2. Let A ⊂ Rn−1 be an open set and let D ⊂⊂ A be an open and convex
subset of A. Suppose that u : A→ R is a linear affine function, and let f : A→ R be
an arbitrary continuous function such that

f(x) = u(x) for all x ∈ A\D .

For h > 0 and for a given continuous function g : A→ R define a number

Ch(g) := inf

{∫
D×R
|∇v(x)|n dx : v = 0 on GDg and v ≥ 1 on GDg+h

}
,

Then there exists h0 > 0 such that

Ch(u) ≤ 2nCh(f) ,(4.8)

for all 0 < h < h0.
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Proof. Let 0 < ε < 1/2, and suppose that Sh is the shadow of the set GDu+h on GDu .
Due to Lemma 4.1 we may assume that there exist hε > 0 such that

Hn−1(GDu ) <
Hn−1(Sh)

1− ε
(4.9)

for all 0 < h < hε. Let us denote l := dist(GDu ,GDu+h). By applying Fubini’s theorem
and (4.9) we get

hHn−1(D) =

∫
D

(u+ h)−
∫
D

u = lHn−1(GDu ) <
lHn−1(Sh)

1− ε
(4.10)

for all 0 < h < hε.
Let n be the unit normal vector of GDu pointing in the direction of the set GDu+h.

Suppose that v : D × R→ [0, 1] is an admissible test function for Ch(u) such that

(i) v(x+ tn) = t
l

for all points x ∈ GDu and for all t ∈ (0, l),
(ii) v(x) = 0 for all points x ∈ D × R which are bellow the graph GDu , and

(iii) v(x) = 1 for all points x ∈ D × R which are above the graph GDu+h.

D

h

l

GDu

GDu+h

GDf

GDf+h

v ≡ 0

v ≡ 1

n
x

Ix

Fig. 8. Setting in the Lemma 4.2.

Then it follows from (4.9) that for 0 < ε < 1/2 we have using |∇v| = 1
l

Ch(u) ≤
∫
D×R
|∇v|n =

∫
GDu

l

ln
=
Hn−1(GDu )

ln−1
<

2Hn−1(Sh(u))

ln−1
(4.11)

for all 0 < h < hε.
Let f : A → R be a continuous function as in the statement of lemma. Then we

may define a mapping F : A× R→ Rn by setting

F (x1, . . . , xn) = (x1, . . . , xn−1, xn + f(x1, . . . , xn−1)) .

If we apply (4.10), we get

Hn(F (D × (0, h))) =

∫
D

(f + h)−
∫
D

f = hHn−1(D) <
lHn−1(Sh)

1− ε
,(4.12)

for all 0 < h < hε. For each point x ∈ GDu let us define the 1-dimensional set Ix as

Ix = { z ∈ F (D × (0, h)) : z = x+ tn for some t ∈ R } .
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Then, if w is an admissible test function for Ch(f), we have∫
Ix

|∇w| ≥ 1

for every x ∈ Sh. By integrating both sides over the set Sh, using Hölder’s inequality,
Fubini’s theorem and (4.12) we have

Hn−1(Sh) ≤
∫
Sh

∫
Ix

|∇w| ≤ (Hn(F (D × (0, h))))
n−1
n

(∫
D×R
|∇w|n

) 1
n

<

(
lHn−1(Sh)

1− ε

)n−1
n
(∫

D×R
|∇w|n

) 1
n

.

Thus, by assuming 0 < ε < 1/2 we get H
n−1(Sh)

2n−1 ln−1 ≤
∫
D×R|∇w|

n, and if we take infimum
over all admissible test functions w, we conclude that

Hn−1(Sh)

2n−1 ln−1
≤ Ch(f) ,(4.13)

for all 0 < h < hε. Claim follows now from (4.11) and (4.13).
�

Proposition 4.3. Let δ := 1
10

and let f be the mapping given in Section 4.1. For a

given h > 0 define a condenser (Eh, E0) by setting

E0 := (−1 + 2δ, 1− 2δ)n−1 × (−1 + 2δ, 0) , and

Eh := (−1 + δ, 1− δ)n−1 × (−1 + δ, h) .

Then

lim
h→0

cap(f(Eh), f(E0))

capKI (Eh, E0)
=∞ .

Proof. Fix M ≥ 1. For t ∈ R denote Êt = (−1 + 2δ, 1− 2δ)n−1 × {t}, and whenever
t 6= s define

ĉap(f(Êt), f(Ês)) = inf

∫
(−1,1)n−1×R

|∇u(x)|n dx ,

where the infimum is taken over all functions u ∈ C∞((−1, 1)n−1 × R) such that
u|f(Êt)

≡ 0 and u|f(Ês)
≡ 1.

By δ = 1
10

we know that CA ⊂ (−1 + δ, 1 − δ)n−1, where CA is the given Cantor
set of zero measure in the construction of f . Then it is easy to see that it suffices to
show that there is hM > 0 such that

ĉap(f(Êh), f(Ê0))

capKI (Eh, E0)
≥M ,(4.14)

for all 0 < h < hM .
To prove (4.14) suppose that u is any test function which goes linearly from 1

to 0 along the line segments parallel to the nth coordinate axes. We know by the
construction that f = S ◦H behaves the same way on each hyperplane and hence the
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integral of KI over every (n− 1)-dimensional hyperplane (−1, 1)n−1×{t}, 0 < t < h,
is the same (see Section 4.1). By applying Fubini’s theorem we get

capKI (Eh, E0) ≤
∫

(−1,1)n−1×(0,h)

|∇u(x)|nKI(x) dx(4.15)

=

∫
(−1,1)n−1×(0,h)

KI(x)

hn−1
dx =

1

hn

∫ h

0

∫
(−1,1)n−1×{t}

KI ≤
C0

hn−1
,

where the finite constant C0 := C0(n, δ,KI) ≥ 1 is depending only on n, δ and on the
integral of KI over the level set (−1, 1)n−1 × {0}.

Next, we denote fN := SN ◦ H. Then the calculation in Section 4.2 (4) shows us
that there is N0 ≥ 1 such that

Hn−1(fN(Ê0)) = Hn−1(SN(Ê0)) > 2n+1MC0(4.16)

for all N ≥ N0. Let us fix N ≥ N0.
As the mapping in the construction of Sk are piecewise affine, we may divide the

sets Ê0 and Êh into finitely many pairwise disjoint, open, convex and maximal (n−1)-
dimensional sets {Ej

0}lj=1 and {Ej
h}lj=1 such that:

(i) Ê0 =
⋃l
j=1E

j

0 and Êh =
⋃l
j=1E

j

h, where the closure is taken in (−1, 1)n−1×R
instead of Rn.

(ii) Ej
h = Ej

0 + h for all j = 1, . . . , l.

(iii) Sets Ej
0, j = 1, . . . , l, are not depending on h.

(iv) The restriction of SN on each set Ej
0 and Ej

h can be written as

SN(x̂) = (x̂, Lj(x̂)) for all x̂ ∈ Ej
0 and

SN(x̂) = (x̂, Lj(x̂) + h) for all x̂ ∈ Ej
h,

where Lj : Ej
0 → R is a linear affine function.

Fix ε ∈ (0, 1/2). Denote by nj the unit normal vector of GE
j
0

Lj
and Sjh the shadow of

the graph GE
j
0

L+h on GE
j
0

L (see Lemma 4.1). Then by applying Lemma 4.1 and (4.16)
we may find hε > 0 such that

l∑
j=1

Hn−1(Sjh) ≥ (1− ε)
( l∑
j=1

Hn−1
(
GE

j
0

Lj

))
= (1− ε)

( l∑
j=1

Hn−1(SN0(E
j
0))
)

(4.17)

= (1− ε)Hn−1(SN0(E0)) > 2nMC0 ,

for all 0 < h < hε. Fix 0 < h < hε and for each j = 1, . . . , l define

Ihj = {Iz : Iz is a line segment parallel to nj starting at a point z ∈ Sjh
and ending to a point z + njt ∈ G

Ej0
L+h for some t ∈ R } .

Then, if u is an admissible test function for ĉap(fN(Ê0), fN(Êh)), we have∫
I

|∇u| ≥ 1 for all I ∈ ∪lj=1Ij .
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Especially, by integrating over each (n − 1)-dimensional set Sjh, applying Hölder’s
inequality and using the fact that the length of each line segment I ∈ ∪lj=1Ij is at
most h, we get

l∑
j=1

Hn−1(Sjh) ≤
l∑

j=1

∫
Sjh

∫
Iz

|∇u| =
∫
∪lj=1S

j
h

∫
Iz

|∇u|

≤
(
h

l∑
j=1

Hn−1(Sjh)
)n−1

n
(∫
|∇u|n

) 1
n
,

which implies together with (4.17) that

2nMC0

hn−1
≤
∫
|∇u(x)|n dx .

Thus, by taking infimum over all admissible test functions u we get

ĉap(fN(Êh), fN(Ê0)) ≥
2nMC0

hn−1
.(4.18)

The first n − 1 coordinate functions of f agree with first n − 1 coordinate functions
of fN and the last coordinate mapping of f agrees with that coordinate of piecewise
linear mapping fN close to ∂(−1+2δ, 1−2δ)n−1×(0, h0). Hence we can apply Lemma
4.2 (for the last coordinate mapping) and (4.18) to derive

cap(f(Êh), f(Ê0)) ≥ 2−n−1 cap(fN(Êh), fN(Ê0)) ≥
MC0

hn−1
.(4.19)

Finally, by putting together estimates in (4.15) and (4.19) we get

ĉap(f(Êh), f(Ê0))

capKI (Eh, E0)
≥M ,

and the claim follows. �
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