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Abstract

A characterization of validity of the weighted bilinear Hardy inequality

⎛
⎜
⎝

b

∫
a

⎛
⎝

t

∫
a

f

t

∫
a

g
⎞
⎠

q

w(t)dt
⎞
⎟
⎠

1
q

≤ C
⎛
⎜
⎝

b

∫
a

fp1v1
⎞
⎟
⎠

1
p1 ⎛
⎜
⎝

b

∫
a

fp2v2
⎞
⎟
⎠

1
p2

for all nonnegative f, g on (a, b) is proved, for 1 < p1, p2, q <∞. The proof technique is significantly
simpler than in the existing proofs of these results and is based on iterating the inequalities, so
that they reduce into ordinary linear weighted Hardy inequalities. More equivalent conditions are
presented, in most cases simplifying the existing ones.

Furthermore, it is shown how this iteration technique is applied to other problems involving
various multilinear operators.
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1. Introduction

Let −∞ ≤ a < b ≤ ∞. Let the symbol M+ denote the cone of nonnegative Lebesgue-measurable
functions on (a, b). The Hardy operator H1 and the “dual Hardy” operator H ′1 are operators
acting on M+, defined by

H1f(t) ∶=
t

∫
a

f(s)ds, H ′1f(t) ∶=
b

∫
t

f(s)ds, t ∈ (a, b).

Recall that the weighted Lebesgue space Lα(u) consists of all real-valued Lebesgue-measurable
functions f on (a, b) such that
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Here 1 ≤ α <∞ and u is a weight, i.e. simply a fixed function u ∈M+.
It is well known under which conditions the operator H1 is bounded from Lα(u) to Lβ(z), or,

in other words, when the weighted Hardy inequality
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holds for all f ∈M+. Namely, the following theorems hold (see [15, 2, 14, 13]):
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Theorem 1.1. Let u, z be weights. For α,β ∈ (1,∞) set

C(2) ∶= sup
f∈M+
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Then

(i) If 1 < α ≤ β <∞, then
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(ii) If 1 < β < α <∞ and γ ∶= αβ
α−β , then
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Theorem 1.2. Let u, z be weights. For α,β ∈ (1,∞) set

C(3) ∶= sup
f∈M+
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Then

(i) If 1 < α ≤ β <∞, then

C(3) ≃ sup
a<x<b
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(ii) If 1 < β < α <∞ and γ ∶= αβ
α−β , then
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In both these cases, as well as further on, we will use the conventions “1
0
∶= ∞”, “ 1

∞ ∶= 0”,
“0.∞ ∶= 0”. Observe that then the two preceding theorems are indeed true even for weights with
zero value on a set of nonzero measure. In particular, we may use them for a weight w such that
w = wχ(c,b) for some c ∈ (a, b). This is only a formal detail but it will be used at a certain point.

Notice also the two equivalent conditions in each of the (ii)-cases. Existence of such alternative
conditions is a common feature in weighted Hardy-type inequalities. Often it proves to be useful
to find such equivalent expressions since each of them may be applicable in different particular
situations.

Let us now proceed to the main content. Consider the bilinear Hardy operator H2, acting on
M+ ×M+ and defined by

H2(f, g)(t) ∶=
t

∫
a

f(s)ds
t

∫
a

g(s)ds, t ∈ (a, b).
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Recently, Aguilar, Ortega and Ramı́rez [1] characterized the boundedness H2 ∶ Lp1(v1)×Lp2(v2)→
Lq(w), or, equivalently, the validity of the bilinear weighted Hardy inequality
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for all f, g ∈M+. The range of exponents was 1 < p, q < ∞. To prove these results, the authors
used a discretization technique, a powerful yet often long and technical method.

In this article, we present a much easier proof of the characterization of (4). In most cases we
even manage to reduce the number of conditions and provide more equivalent variants of these.
Our proof technique will be refered to as to the “iteration method”. The idea is simply to proceed
in two steps, each time treating the problem as the ordinary Hardy inequality (1). Especially in
the “easy case” p1, p2 ≤ q the solution becomes extremely simple. Let us note that the same idea
was also used in [12] to characterize the bilinear Hardy inequality for decreasing functions.

After proving the aforementioned characterizations of (4) in the first section of this paper, we
proceed by showing alternative equivalent conditions and comparing the results to those of [1].
Fairly obviously, the iteration method is not limited just to the bilinear case and the case of Hardy
operator. Hence, in the final part we present more applications of this method to a variety of
problems involving other operators.

As a final remark in this introduction, let us just recall the following duality property of the
Lp(v)-spaces. Namely, if p ∈ (1,∞) and v is a weight, then for any f ∈M+ it holds
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2. Bilinear weighted Hardy inequality

Using the iteration method, in this part we characterize the quantity
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which is the optimal constant C in the inequality (4). The following notation we be used from now
on: F ≲ G means that there exists a constant C ∈ (0,∞) such that F ≤ CG and C is “independent
of relevant quantities in F and G”. More precisely, in this paper this constant C depends always
only on the exponents p, p1, p2, q. If F ≲ G and G ≲ F , we write F ≃ G.

We will provide such conditions A that C(6) ≃ A, without explicit estimates on the constants
D1, D2 such that D1A ≤ C(6) ≤ D2A. An exact calculation of these constants is left to the
interested reader.

Theorem 2.1. Let v1, v2,w be weights, 1 < p1, p2, q <∞, p1 ≤ q, p2 ≤ q. Then C(6) ≃ A(7), where
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Proof. It holds
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Step (9) follows from the same theorem with the setting α ∶= p2, β ∶= q, u ∶= v2, z ∶= χ(x,b)w.
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2 (x) we get B1 ≃ A(11).

Similarly, Theorem 1.2(i) with α ∶= p1
q
, β ∶= r2

q
, u(y) ∶= (∫

b
x w)

− p1
q (∫

y
a v

1−p1′
1 )

− p1
q′
v

p1
′

r1

1 (y), z(x) ∶=
5



(∫
x
a v

1−p2′
2 )

r2
q′
v1−p2

′

2 (x) yields B2 ≃ A(12).

Theorem 2.4. Let v1, v2,w be weights, 1 < q < pi <∞, ri ∶= piq
pi−q for i ∈ {1,2} and let 1

q
≤ 1
p1
+ 1
p2
.

Let 1
s
= 1
q
− 1
p1
− 1
p2
. Then C(6) ≃ A(17) +A(18), where

A(17) ∶=
⎛
⎜⎜⎜
⎝

b

∫
a

⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r2
q

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟⎟
⎠

s
r2

⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
r2
′

v1−p1
′

1 (x)dx
⎞
⎟⎟⎟
⎠

1
s

, (17)

A(18) ∶=
⎛
⎜⎜⎜
⎝

b

∫
a

⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r1
q

⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

r1
q′

v1−p1
′

1 (y)dy
⎞
⎟⎟
⎠

s
r1

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx
⎞
⎟⎟⎟
⎠

1
s

. (18)

Proof. As in the proof of Theorem 2.3, one has C(6) ≃ B1 + B2, where B1 and B2 are defined

as in there. Next, Theorem 1.1(ii) with α ∶= p1
q
, β ∶= r2

q
, u(y) ∶= (∫

y
a v

1−p1′
1 )

− p1
q′
v

p1
′

r1

1 (y), z(x) ∶=

(∫
b
x w)

r2
q (∫

x
a v

1−p2′
2 )

r2
q′
v1−p2

′

2 (x) gives B1 ≃ A(17), and Theorem 1.2(ii) with α ∶= p1
q
, β ∶= r2

q
,

u(y) ∶= (∫
b
x w)

− p1
q (∫

y
a v

1−p1′
1 )

− p1
q′
v

p1
′

r1

1 (y), z(x) ∶= (∫
x
a v

1−p2′
2 )

r2
q′
v1−p2

′

2 (x) gives B2 ≃ A(18).

3. Equivalent conditions

The “A-conditions” from the previous section have more equivalent forms. This can be observed
simply by comparing the conditions we obtained with those from [1]. We are going to make this
comparison and even to prove the equivalences of the conditions directly.

Proposition 3.1. In the setting from Theorem 2.2, it holds A(10) ≃ A(7) +A(12).

Proof. For all x ∈ (a, b) integration by parts (cf. [17, Lemma, p. 176]) yields

⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r2
p2 ⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
p2
′

w(y)dy
⎞
⎟⎟
⎠

1
r2

≃
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

1
p2
′

+
⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r2
q

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟⎟
⎠

1
r2

.

Multiplying both sides by (∫
x
a v

1−p1′
1 )

1
p1
′
we show that A(10) ≃ A(7) +A(12) holds even pointwise,

i.e. without the supremum over x.

Proposition 3.2. In the setting from Theorem 2.3, it holds

A(11) +A(12) ≃ A(7) +A(11) +A(12) ≃ A(10) +A∗(12), (19)

where

A∗(12) ∶= sup
a<x<b

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

1
p2
′ ⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r1
p1 ⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

r1
p1
′

w(y)dy
⎞
⎟⎟
⎠

1
r1

.
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Proof. The second equivalence in (19) holds pointwise for x ∈ (a, b) by partial integration. The
fact that we proved C(6) ≃ A(11) + A(12), while in [1, Theorem 3] it was proved that C(6) ≃
A(7) +A(11) +A(12) gives an indirect proof of the first equivalence in (19).

A simple direct proof of the inequality A(7) ≲ A(11) +A(12) can be obtained by employing the
idea from [6, Lemma 2.2]. It goes as follows. For each x ∈ (a, b) exists y(x) ∈ (a, x) such that

y(x)

∫
a

v1−p1
′

1 =
x

∫
y(x)

v1−p1
′

1 = 1

2

x

∫
a

v1−p1
′

1 .

Now we get

⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q

⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

1
p1
′ ⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

1
p2
′

≃
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜
⎝

y(x)

∫
a

v1−p1
′

1

⎞
⎟
⎠

1
p1
′

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

1
p2
′

=
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜
⎝

y(x)

∫
a

v1−p1
′

1

⎞
⎟
⎠

1
p1
′
⎛
⎜
⎝

y(x)

∫
a

v1−p2
′

2 +
x

∫
y(x)

v1−p2
′

2

⎞
⎟
⎠

1
p2
′

≃
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜
⎝

x

∫
y(x)

v1−p1
′

1

⎞
⎟
⎠

1
p1
′ ⎛
⎜
⎝

y(x)

∫
a

v1−p2
′

2

⎞
⎟
⎠

1
p2
′

+
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜
⎝

y(x)

∫
a

v1−p1
′

1

⎞
⎟
⎠

1
p1
′
⎛
⎜
⎝

x

∫
y(x)

v1−p2
′

2

⎞
⎟
⎠

1
p2
′

≃
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜⎜
⎝

x

∫
y(x)

⎛
⎜
⎝

t

∫
y(x)

v1−p1
′

1

⎞
⎟
⎠

r1
q′

v1−p1
′

1 (t)dt
⎞
⎟⎟
⎠

1
r1

⎛
⎜
⎝

y(x)

∫
a

v1−p2
′

2

⎞
⎟
⎠

1
p2
′

+
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

1
q ⎛
⎜
⎝

y(x)

∫
a

v1−p1
′

1

⎞
⎟
⎠

1
p1
′ ⎛
⎜⎜
⎝

x

∫
y(x)

⎛
⎜
⎝

t

∫
y(x)

v1−p2
′

2

⎞
⎟
⎠

r2
q′

v1−p2
′

2 (t)dt
⎞
⎟⎟
⎠

1
r2

≤
⎛
⎜
⎝

y(x)

∫
a

v1−p2
′

2

⎞
⎟
⎠

1
p2
′ ⎛
⎜⎜
⎝

x

∫
y(x)

⎛
⎜
⎝

b

∫
t

w
⎞
⎟
⎠

r1
q

⎛
⎝

t

∫
a

v1−p1
′

1

⎞
⎠

r1
q′

v1−p1
′

1 (t)dt
⎞
⎟⎟
⎠

1
r1

≤
⎛
⎜
⎝

y(x)

∫
a

v1−p1
′

1

⎞
⎟
⎠

1
p1
′ ⎛
⎜⎜
⎝

x

∫
y(x)

⎛
⎜
⎝

b

∫
t

w
⎞
⎟
⎠

r2
q

⎛
⎝

t

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (t)dt
⎞
⎟⎟
⎠

1
r2

≤ A(12) +A(11).

Taking the supremum over x ∈ (a, b), we obtain A(7) ≲ A(11) +A(12). Observe that this inequality
does not hold pointwise in x, rather only with the supremum.

Proposition 3.3. In the setting from Theorem 2.4, it holds

A(17) +A(18) ≃ A∗ +A(17) +A(18), (20)

where

A∗ ∶=
⎛
⎜⎜
⎝

b

∫
a

⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

s
p1
+ s

p2

w(x)
⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′ ⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
p2
′

dx

⎞
⎟⎟
⎠

1
s

.
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Moreover, it holds A(18) ≃ A∗(18), where

A∗(17) ∶=
⎛
⎜⎜⎜
⎝

b

∫
a

⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r2
q

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟⎟
⎠

s
p1

×
⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′ ⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

r2
q

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)dx
⎞
⎟⎟
⎠

1
s

,

and A(18) ≃ A∗(18), where A
∗
(18) is an analogy to A∗(17) with the indices 1 and 2 switched.

Proof. The equivalence A(17) ≃ A∗(17) follows directly by integration by parts. Theorem 2.4 yields

C(6) ≃ A(17) +A(18), while [1, Theorem 4] gives C(6) ≃ A∗ +A(17) +A(18), hence (20) is true.
However, we will as well provide a direct proof of (20). Obviously, we need just to prove that

A∗ ≲ A(17) +A(18). At first, integrating by parts we get

(A∗)s ≃
b

∫
a

⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

s
q

⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′ ⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx

+
b

∫
a

⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

s
q

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
p2
′ ⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
r2
′

v1−p1
′

1 (x)dx

=∶ B3 +B4.

Now we prove B3 ≲ A(17)+A∗(18). The idea resembles the one of [7, Theorem 3.1]. We may suppose

that for all ε ∈ (0, b − a) it holds ∫
a+ε
a v1−p2

′

2 <∞, otherwise all the terms B3, A(17), A
∗
(18) become

infinite. We also assume that ∫
b
a v

1−p2′
2 =∞ (if this is not satisfied, then the following part of the

proof needs only minor changes). Now, for k ∈ Z let xk ∈ (a, b) be such that ∫
xk

a v1−p2
′

2 = 2k, and
let yk ∈ [xk, xk+1] be such that

sup
y∈[xk,xk+1]

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

s
q

⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

=
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q

⎛
⎝

yk

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

.

Now we can write

B3 = ∑
k∈Z

xk+1

∫
xk

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)
⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

s
q

⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

dx

≤ ∑
k∈Z

xk+1

∫
xk

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx sup
y∈[xk,xk+1]

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

s
q

⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

≲ ∑
k∈Z

2
ks
p2
′
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q

⎛
⎝

yk

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

≃ ∑
k∈Z

2
ks
p2
′
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q ⎛
⎜
⎝

yk

∫
yk−4

v1−p1
′

1

⎞
⎟
⎠

s
p1
′

+∑
k∈Z

2
ks
p2
′
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q

⎛
⎝

yk−4

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

=∶ B5 +B6.
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Observe that for all k ∈ Z it holds

2k ≤
yk

∫
a

v1−p2
′

2 ≤ 2k+1, 2k−1 ≤
yk

∫
yk−2

v1−p2
′

2 ≤ 2k+1.

Hence,

B5 ≲ ∑
k∈Z

xk−4

∫
xk−6

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q ⎛
⎜
⎝

yk

∫
yk−4

v1−p1
′

1

⎞
⎟
⎠

s
p1
′

≃ ∑
k∈Z

xk−4

∫
xk−6

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q ⎛
⎜⎜
⎝

yk

∫
yk−4

⎛
⎜
⎝

y

∫
yk−4

v1−p1
′

1

⎞
⎟
⎠

r1
q′

v1−p1
′

1 (y)dy
⎞
⎟⎟
⎠

s
r1

≤ ∑
k∈Z

xk−4

∫
xk−6

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)dx
⎛
⎜⎜
⎝

yk

∫
yk−4

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r1
q

⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

r1
q′

v1−p1
′

1 (y)dy
⎞
⎟⎟
⎠

s
r1

≤ ∑
k∈Z

xk−4

∫
xk−6

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

s
r1
′

v1−p2
′

2 (x)
⎛
⎜⎜
⎝

yk

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r1
q

⎛
⎝

y

∫
a

v1−p1
′

1

⎞
⎠

r1
q′

v1−p1
′

1 (y)dy
⎞
⎟⎟
⎠

s
r1

dx

≤ 2(A(18))s.

Next, we have to estimate B6. At first, for any k ∈ Z it holds

2
ks
p2
′ ≲

yk−2

∫
yk−4

⎛
⎜
⎝

x

∫
yk−4

v1−p2
′

2

⎞
⎟
⎠

r2
q′

v1−p2
′

2 (x)dx
⎛
⎜⎜
⎝

yk

∫
yk−2

⎛
⎜
⎝

y

∫
yk−2

v1−p2
′

2

⎞
⎟
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟⎟
⎠

s
p1

≤
yk−2

∫
yk−4

⎛
⎜
⎝

yk

∫
yk−2

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟
⎠

s
p1

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)dx

≤
yk−2

∫
yk−4

⎛
⎜
⎝

yk

∫
x

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟
⎠

s
p1

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)dx

≤
yk

∫
yk−4

⎛
⎜
⎝

b

∫
x

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟
⎠

s
p1

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)dx.

Therefore,

B6 ≲ ∑
k∈Z

yk

∫
yk−4

⎛
⎜
⎝

b

∫
x

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟
⎠

s
p1

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)dx
⎛
⎜
⎝

b

∫
yk

w
⎞
⎟
⎠

s
q

⎛
⎝

yk−4

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

≤ ∑
k∈Z

yk

∫
yk−4

⎛
⎜⎜
⎝

b

∫
x

⎛
⎜
⎝

b

∫
y

w
⎞
⎟
⎠

r2
q

⎛
⎝

y

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (y)dy
⎞
⎟⎟
⎠

s
p1

⎛
⎜
⎝

b

∫
x

w
⎞
⎟
⎠

r2
q

⎛
⎝

x

∫
a

v1−p2
′

2

⎞
⎠

r2
q′

v1−p2
′

2 (x)
⎛
⎝

x

∫
a

v1−p1
′

1

⎞
⎠

s
p1
′

dx

≤ 4(A∗(17))
s.
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At this point we have proved (B3)
1
s ≲ A(17) +A∗(18). Exactly in the same way, only switching the

indices 1 and 2, one proves (B4)
1
s ≲ A(18) + A∗(17). Using all the estimates we collected, we get

A∗ ≃ (B3)
1
s + (B4)

1
s ≲ A(17) +A(18) +A∗(17) +A

∗
(18) ≃ A(17) +A(18), which we wanted to show.

4. Further results

In this final part we show examples of various further problems, which may be successfully treated
by the iteration method.

The following notation will be used: Unless specified otherwise, M denotes the cone of all
(extended) real-valued measurable functions on a suitable measure space (R, µ). For f ∈M , the

symbol f∗ denotes the nonincreasing rearrangement of f , and f∗∗(t) ∶= 1
t ∫

t
0 f
∗ for t ∈ (0, µ(R))

(see [3] for details). If u is a weight on (0, µ(R)), then we define f∗∗u (t) ∶= (∫
t
0 u)

−1
∫
t
0 f
∗u. For

definitions of rearrangement-invariant (r.i.) spaces and r.i. lattices, see e.g. [3, 4, 9].
If 0 < p <∞ and u, v are weights on (0, µ(R)), the weighted Lorentz “spaces” Λp(v), Γp(v) and

Γpu(v) are defined as follows.

Λp(v) ∶= {f ∈M ; ∥f∥Λp(v) ∶= ∥f∗∥Lp(v) <∞} ,
Γp(v) ∶= {f ∈M ; ∥f∥Γp(v) ∶= ∥f∗∗∥Lp(v) <∞} ,
Γpu(v) ∶= {f ∈M ; ∥f∥Γp

u(v) ∶= ∥f
∗∗
u ∥Lp(v) <∞} .

In here, of course, the Lp(v)-space consists of functions over (0, µ(R)).
If X, Y are r.i. spaces (lattices), we say that X is embedded into Y and write X ↪ Y , if there

exists C ∈ (0,∞) such that for all f ∈X it holds ∥f∥Y ≤ C∥f∥X .

4.1. Multilinear Hardy operator

The iteration method may be obviously extended for a multilinear Hardy operator Hn defined by

Hn(f1, . . . , fn)(t) ∶=
n

∏
i=1
H1fi(t)

for fi ∈M+, i = 1, . . . , n, and t ∈ (a, b). In this case we obtain the following recursive formula for
the norm of Hn:

∥Hn∥Lp1(v1)×⋯×Lpn(vn)→Lq(w) = sup
fi∈M+
i=1,...,n

(∫
b
a (Hn−1(f1, . . . , fn−1)(t))q (H1fn(t))q w(t)dt)

1
q

∏n−1i=1 ∥fi∥Lpi(vi) ∥fn∥Lpn(vn)

= sup
fn∈M+

∥Hn−1∥Lp1(v1)×⋯×Lpn−1(vn−1)→Lq(w(H1fn)q)

∥fn∥Lpn(vn)
.

In this way one can deduce the conditions on the weights and exponents under whichHn ∶ Lp1(v1)×
⋯×Lpn(vn)→ Lq(w), using only the knowledge of the conditions for H1 ∶ Lp(v)→ Lq(w). During
the process, no harder method than switching the order of suprema, Fubini theorem and Lp-duality
needs to be used.

4.2. Other product-based operators

Clearly, the above idea applies to any operator T such that

T (f1, . . . , fn) =
n

∏
i=1
Tifi, (21)

where Ti are certain other operators. Using the iteration method, we might be able to get condi-
tions for boundedness T ∶X1 ×⋯×Xn →X from the conditions for Ti ∶ Yi → Zi, where X, Xi, Yi,
Zi are some suitable spaces (or even more general structures, e.g. r.i. lattices). Simple examples
of such operators T include products of the “dual Hardy” operators, or products of a mixture of
Hardy, “dual Hardy” operators, Hardy-type integral or supremal operators with kernels etc.
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4.3. “Multidimensional” Hardy operators involving nonincreasing rearrangement

Let K be a weight (kernel). Define the Hardy-type operator H1,K and its “dual version” H′1,K by

H1,Kf(t) ∶=
t

∫
0

f∗(s)K(s)ds, H′1,Kf(t) ∶=
∞

∫
t

f∗(s)K(s)ds

for any f ∈ M . If K ≡ 1, we write just H1 ∶= H1,K and H′1 ∶= H′1,K . Let us note that these
operators are in general not linear.

Consider the operator H2 constructed as

H2(f, g)(t) ∶=H1f(t)H1g(t) =
t

∫
0

f∗(s)ds
t

∫
0

g∗(s)ds.

This operator is obviously a special case of T from (21). In [12], the iteration method was used to
characterize boundedness H2 ∶ Λp1(v1)×Λp2(v2)→ Lq(w), i.e. to produce weighted bilinear Hardy
inequalities for nonincreasing functions.

Let us take yet another Hardy-type operator H̃2, defined by

H̃2(f, g)(t) ∶=
t

∫
0

f∗(s)g∗(s)ds,

and study its boundedness H̃2 ∶ Λp1(v1) × Λp2(v2) → Lq(w). (The same idea may be used if the
Λ-spaces are replaced by other appropriate structures.) Observe that H̃2(f, g)(t) =H1,g∗(f). We
get

∥H̃2∥Λp1(v1)×Λp2(v2)→Lq(w) = sup
g∈M

1

∥g∥Λp2(v2)
sup
f∈M

∥∫
●
0 f

∗g∗∥
Lq(w)

∥f∥Λp1(v1)
= sup
g∈M

∥id∥Λp1(v1)→Γq

g∗(ψ)

∥g∥Λp2(v2)
. (22)

Here ψ(t) ∶= w(t) (∫
t
0 g
∗)
q
. We may now use the known characterization of the embedding

Λp1(v1)↪ Γqg∗(ψ) (see e.g. [5]). This embedding is also, in other words, equivalent to the Λp1(v1)→
Lq(w) boundedness of the operator H1,g∗ . Anyway, the optimal constant ∥id∥Λp1(v1)→Γq

g∗(ψ)
usu-

ally takes a form of a sum of the Lα(φ)-norms of H1,K(g), H′1,K(g) or supremal variants of these
operators. Here K, α and φ depend on the original parameters p, q, v1, v2, w. Hence, in the next
phase, (22) will dissolve into a sum of factors

sup
g∈M

∥H1,K(g)∥Lα(φ)

∥g∥Λp2(v2)
,

or similar ones. Then we again use suitable existing characterizations of boundedness of H1,K ,
H′1,K or, if needed, some supremal variants of those operators. In this way, the desired estimate on

∥H̃2∥Λp1(v1)×Λp2(v2)→Lq(w) will be obtained. The required boundedness characterizations for H′1,K
may be found in [8]. Corresponding conditions for other Hardy-type operators (e.g. the supremal
ones) may be derived using the reduction theorems presented in [8]. The boundedness conditions
for H1,K are, as we already mentioned once, listed in [5].

In a similar way, higher-order operators likeHn, H̃n, etc., constructed analogously to their n = 2
cases, may be treated. It is, however, worth noting that the complexity of the involved expressions
grows rapidly with increasing n. Proofs involving general-weight cases using the iteration method
may thus become very technical.
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4.4. General product-type operator in a Γ-space

Let, for simplicity, M denote the cone of real-valued Lebesgue-measurable functions on Rn. Mo-
tivated by [16], we now consider an arbitrary operator P mapping M ×M into M and such that
the inequality

t

∫
0

(P (f, g))∗(s)ds ≤
t

∫
0

f∗(s)g∗(s)ds (23)

holds for all f, g ∈M and t > 0. The simplest example of such operator is the ordinary product
operator P (f, g) ∶= fg (see [3, p. 88]).

Let X1, X2 be r.i. spaces (or lattices) of functions defined over Rn. It is now easy to find
conditions for the boundedness P ∶X1 ×X2 → Γq(w). By (23), one gets

C(24) ∶= sup
f, g∈M

∥P (f, g)∥Γq(w)

∥f∥X1∥g∥X2

≤ sup
f, g∈M

∥H̃2(f, g)∥Lq(t↦t−qw(t))

∥f∥X1∥g∥X2

. (24)

The problem of finding an upper bound for C(24) hence reduces into a certain boundedness question

regarding the operator H̃2, which was treated in the previous section.
The possibility of providing a lower bound for C(24) depends to a great extent on the “sharp-

ness” of (23). Let us here, for example, consider the simple operator P (f, g) ∶= fg. It may be

checked easily that if both f and g are positive and radially decreasing, then ∫
t
0 (fg)

∗ = ∫
t
0 f
∗g∗,

and therefore equality in (23) is attained for these functions. This in turn implies that the two
suprema in (24) are equal. (The substantial facts here are that X1 and X2 are r.i., and that
every f ∈Mi may be rearranged into a positive (nonnegative) radially decreasing (nonincreasing)
function h ∈Mi such that f∗ ≡ h∗.) For details of these ideas we refer to [9, 10, 11].

A general product operator may be also defined in another way, as suggested by O’Neil in [16].
See the final remark in the section below for more details.

4.5. Convolution in a Γ-space

Again, let M stand for the cone of Lebesgue-measurable real-valued functions on Rn. The convo-
lution of f ∈M and g ∈M is defined by

(f ∗ g)(x) ∶= ∫
Rn

f(y)g(x − y)dy. (25)

As shown in [16], the bilinear operator T (f, g) ∶= f ∗ g satisfies the O’Neil convolution inequality

(T (f, g))∗∗(t) ≤ 1

t

t

∫
0

f∗(s)ds
t

∫
0

g∗(s)ds +
∞

∫
t

f∗(s)g∗(s)ds (26)

for all f, g ∈ M and all t > 0. Moreover, in case of both f and g being positive and radially
decreasing, the reverse inequality holds with a constant depending only on the dimension n (see
[16, 9, 11]). Observe that the right-hand side of (26) is again composed of certain Hardy-type
operators acting on f, g.

In the papers [9, 10, 11], the following problem was studied: Given that X is one of the spaces
Λp(v), Γp(v) or the class Sp(v) (see [10]), characterize the largest r.i. space Y such that the
Young-type inequality

∥f ∗ g∥Γq(w) ≤ C∥f∥X∥g∥Y
holds for all f, g ∈M . In particular, an r.i. space Y was found such that for every positive radially
decreasing g it holds

sup
f∈M

∥f ∗ g∥Γq(w)

∥f∥X
≃ ∥g∥Y . (27)
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In all the cases X = Λp(v), Γp(v), Sp(v) it turns out that this (quasi-)norm ∥ ⋅∥Y may be expressed
as ∥ ⋅ ∥Y ≃ ∥ ⋅ ∥Y1 + ∥ ⋅ ∥Y2 with Y1 being a Γ-type space and Y2 a K-type space. The latter type was
defined in [9].

A related problem, which may be successfully approached using the iteration method and the
above results, is stated as follows. Under which conditions does the inequality ∥f ∗ g∥Γq(w) ≤
C∥f∥Λp1(v1)∥g∥Λp2(v2) hold for all f, g ∈M ? In other words, one is being asked for a characteri-
zation of

sup
f,g∈M

∥f ∗ g∥Γq(w)

∥f∥X1∥g∥X2

, (28)

where X1 = Λp1(v1) and X2 = Λp2(v2). In view of (27), we proceed as follows:

sup
g∈M

∥g∥Y
∥g∥X2

= sup
g∈M

g pos. rad. dec.

∥g∥Y
∥g∥X2

≃ sup
f,g∈M

∥f ∗ g∥Γq(w)

∥f∥X1∥g∥X2

.

(Notice that X2, Y are r.i., thus the first two terms are indeed equal.) Since we know that in this
case “∥ ⋅ ∥Y ≃ ∥ ⋅ ∥Γ + ∥ ⋅ ∥K”, the problem is reduced into finding the optimal constants for certain
embeddings Λ ↪ Γ and Λ ↪ K. Characterizations of Λ ↪ Γ are well known (see e.g. [4, 5]), the
problem of Λ↪K was studied in [12].

The same strategy may be used if we choose X1, X2 in (28) as any other combination of Λ, Γ
or S, or even as other r.i. spaces.

Moreover, in [16] O’Neil proposed a fairly general definition of a convolution operator as a bi-
linear operator T satisfying

∥T (f, g)∥1 ≤ ∥f∥1∥g∥1,
∥T (f, g)∥∞ ≤ ∥f∥∞∥g∥1, (29)

∥T (f, g)∥∞ ≤ ∥f∥1∥g∥∞.

He then attempted to prove that a bilinear operator is a convolution operator in this sense if and
only if it satisfies (26) for all f, g. However, as pointed out by Yap [18], O’Neil’s proof of this
statement contains a minor flaw and it seems that it cannot be fixed without some additional
assumptions on T . For example, assuming that

T maps pairs of positive functions into a positive function,

∀f, fn, g ≥ 0 ∶ [fn ↑ f a.e.⇒ T (fn, g) ↑ T (f, g) a.e.] ,
(30)

should overcome the problem. Despite these problems with technical details, O’Neil’s proof idea
is correct for the ordinary convolution operator (25), which indeed satisfies (26).

Anyway, our technique of estimating (28) works for any bilinear operator satisfying the inequal-
ity (26). Thus, it also applies to the class of operators satisfying the interpolation inequalities (29)
and the additional conditions (30).

Besides this, O’Neil as well suggested a definition of a general product operator P by means
of conditions analogous to (29) (see [16]). For such operators the inequality (23) plays a similar
role as (26) does for the general convolution operators. Again it seems that assuming conditions
like (30) is necessary to prove that this general product operator satisfies (23). That is why we
in the previous section defined the “product operator” by (23) and not in O’Neil’s style by some
interpolation inequalities. As in the case of convolution operators, we may still choose the latter
approach with some careful corrections.
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