ON THE WEAK CONTINUITY OF THE MOSER FUNCTIONAL IN
LORENTZ-SOBOLEV SPACES

ROBERT CERNY

ABSTRACT. Let B(R) C R", n € N, n > 2, be an open ball. By a result from [1], the Moser func-
tional with the borderline exponent from the Moser-Trudinger inequality fails to be sequentially
weakly continuous on the set of radial functions from the unit ball in W(}‘"(B(R)) only in the
exceptional case of sequences acting like a concentrating Moser sequence.

We extend this result into Lorentz-Sobolev space Wi L™9(B(R)), where q € (1,n], equipped
with the norm L

[1Vulln,qg == [[t™ ¢ |Vul*(®)l|La(0, B(R)|))-

We also consider the case of a nontrivial weak limit and the corresponding Moser functional with
the borderline exponent from the Concentration-Compactness Alternative.

1. INTRODUCTION

Throughout the paper, 2 is a bounded domain in R™, n > 2, w,, denotes the volume of the unit
ball in R™, £, is the n-dimensional Lebesgue measure and || stands for £,,(2). By Vu we denote
the generalized gradient of a function u and u* is its non-increasing rearrangement. The space
Wy (Q) or WaL™(Q), q € (1,00), stands for the closure of C§°(2) in Wh() or W'L™9(R),
respectively. We use the standard notation ¢" = %3 (with the convention that 0o’ =1 and 1" = c0).

For functions from W™ (Q) the famous Moser-Trudinger inequality [11] concerning a classical
embedding theorem by Trudinger [13] states that

<C(n, K, |Q|) when K < nwﬁ

1
=00 when K > nw.; .

(1.1) sip [ expl(Klu(o)") do {

[IVullLn o) <1

The proof in the case of K > TMT% easily follows from the properties of the Moser functions m, €
W™ (B(R)), s € (0,1), defined by
1

(12) () = {n_“”;" log?" (}) for [o] € 0,5

1
n

“(4)log(&) for |z| € [sR, R].

. 1
n-nwp " log Tal

From (1.1) and the Vitali Convergence Theorem (see e.g. [7, page 187]), it follows that if p < 1,
then the functional

1 ’
Tow) = [ exp(nwiplu(@))") do
is sequentially weakly continuous on the unit ball in VVO1 " (Q). That is,
up —u and ||[Vug||pno) <1 = Ip(ur) — Jp(u).

If p > 1, then it is well-known and easy to check that the above implication is not true. Indeed,
if p > 1 and € contains the origin, we fix R > 0 such that B(R) C  and we obtain J,(m;) — oo
as s — 0, while for every sequence s; C (0,1), such that s, — 0, we have m,, — 0 and J,(0) =
L, () < oo (in the case of 0 ¢ Q, we use translated Moser functions). If p = 1, we fix R > 0, we set
Q = B(R) and it is easy to check that there are Cy > L, (B(R)) = J1(0) and ¢y € (0,1) such that
J1(ms) > Cy for every s € (0,to).
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In recent paper [1] the following characterization of the sequential weak continuity of the functional
J, concerning the case of p = 1 and uy — 0, where uy, are radial functions from W, " (B(R)), is
given.

Theorem 1.1. Letn € N, n > 2 and R > 0. Suppose that {u} € Wy " (B(R)) are radial functions
such that |[Vug||L»(sry) <1 and up — 0 in W, "(B(R)). If

lim sup J1 (ug) > J1(0),

k—o0

then there are {uy,, } C {ux} and {sm} C (0,1), sy, — 0, such that

ug, —ms, — 0 in Wy (B(R)).

m m

In fact, Theorem 1.1 gives some information only in the case of u = 0 a.e. Otherwise (i.e. when u is
nontrivial), Theorem 1.2 below and the Vitali Convergence Theorem imply limy o J1(ug) = J1(u).

Let us note that, in paper [1], a more difficult version of Theorem 1.1 concerning the case of
non-radial functions on an open set 2 C R? is given. In that case, one has to consider a translated
Moser sequence. It is an open problem whether some analogue of the result as Theorem 1.1 for
non-radial functions in the general dimension n > 2 holds.

If p > 1 and up — u (we do not mind whether w is trivial or not), then there are many sequences
distant from {ms,} such that Jp(ux) — oo while we always have J,(u) < oo by the Trudinger
embedding (for example, fix any o € [1,p) and consider uy = Q’$msk, with s — 0, then one can
observe that ug — 0 in Wy ™ (B(R))).

A natural question to ask is what happens if the limit function w in Theorem 1.1 is nontrivial.
This question was answered in paper [3]. The result is the following. If 0 < |[Vu||z~(p(r)) < 1, then
there is P > 1 depending on ||Vul||p(p(r)) such that the functional Jp behaves in a similar way
as the one in Theorem 1.1, while for every p < P we have J,(u) — Jp(u) and for every p > P we
generally do not have that {J,(ux)} is a bounded sequence. On the other hand, if ||Vul[z»(p(r)) = 1,
it is easy to see that uy — u (in norm) and Jp(ux) — Jp(u) for every p € R.

The above mentioned constant P is the borderline exponent corresponding to the following result
from [5] and [9, Theorem 1.6 and Remark I.18] which concerns one of the cases in the Concentration-
Compactness Alternative for the Moser-Trudinger inequality.

Theorem 1.2. Let n € N, n > 2 and let @ C R™ be a bounded domain. Let {u} C Wy ™ (Q) be
a sequence satisfying

[[Vug||r o) <1, up —u in Wy () and up = u  a.e in
for some non-trivial function u € W&"(Q) Let us set
(1.3) 0=|Vull}ng €01 and P=(1-6)7

(where we read P = 0o if 0 = 1). Then for every p < P there is C > 0 such that

/ expl((nwi p [ug(2))™) dee < C.
Q

Moreover, such an upper bound for p is sharp.

In the version of Theorem 1.1 with a nontrivial weak limit, it is natural to work with the functional
Jp where p = P. Indeed, if p < P, we can again use the Vitali Convergence Theorem. Furthermore,
it is shown in [5], that if we take a suitable function u € Wy (B(3R)) and if we set

ukzu—l—(l—e)%m%,

then we have ||[Vug||n(Bi3r)) = 1, ur — v and Jp(ux) — oo for every p > P. Hence for p > P, we
can again construct many sequences such that v, — u and J,(u) — oo, while J,(u) < oo.
Now, let us recall the full statement of the main result of [3].
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Theorem 1.3. Letn € N, n>2 and R > 0. Let {ur} € Wy ™ (B(R)) be radial functions such that
[[Vur||Ln(B(r)) <1 and up — u in Wy ™(B(R)). Let 6 € [0,1] and P € [1,00] be defined by (1.3).
If0 <1 and

limsup Jp(ug) > Jp(u),

k—oo
then there are {ug, } C {ur} and {sm} C (0,1), $m — 0, such that
up, —u—(1—8)7m, "0 in WE(B(R)).
Lorentz-Sobolev case. The aim of this paper is to extend Theorem 1.3 into Lorentz-Sobolev
spaces W L™4(Q), where ¢ € (1,n], equipped with the norm
(1.4) 1Vl g 2= 116773Vl @] Lagoa-

Let us recall that the above quantity is not a norm for ¢ > n (it is a quasi-norm).
The Moser-type inequality for Lorentz-Sobolev spaces W L™9(Q) was obtained in [2] and it has
the following form. If ¢ € (1, 00), then

<C(n,K,q,|Q]) Wheannwﬁ%

1
=00 when K > nwp

sup / exp((Ku(x))?) da {

[1Vulln,g<1

and if ¢ = oo, then

1
<C K, |Q h < 7?

sup /exp(K|u(33)\)dx <C(n,K,[Q)  when K nwit
[1Vulln,oo<1 /8 =0 when K > nwy .

Notice that, since oo’ = 1, the main difference between cases ¢ € (1,00) and ¢ = oo is the uniform

1
boundedness of the integrals in the case K = nw,; for ¢ € (1,00). There is no Moser-type inequality
for ¢ = 1, since W L™'(Q) is embedded into L> ().

We define the following Moser functionals

(1.5) Jp(u) = / exp((nwi plu(z)|)) dz

and for R > 0 fixed and every s € (0, 1), we define the Moser function ms € Wl L™9(B(R)) by

q—1

() = n_%w;? log™s (1) for 0 < |2| < sR
s n_%w,:? logié(%)log(ﬂ) for sR < |£C‘ < R.

||

(1.6)

Now, let us recall the result from [4] concerning the improvement of the Moser-Trudinger inequal-
ity in the case of a nontrivial weak limit.

Theorem 1.4. Let n € N, n > 2, ¢ € (1,00) and let @ C R™ be an open bounded set. Let
u € Wi L™(Q) be a non-trivial function and let {uy} C W3 L™4(Q2) be a sequence such that

[|Vugl||n,g <1, up — u in Wy L™4(Q) and ug — u a.e. in .
Let us set
_1
(1=1vallg,) * for IVullng <1

00 for [|Vul|n,q = 1.

P .=

If g € (1,n], then for every p < P there is C > 0 such that

(1.7) / exp((nw,%p|uk(x)|)q/) dx < C for every k € N.
Q

Moreover, the assumption p < P is sharp. .
Ifqe (n,00), then there is P € (1, P| such that (1.7) holds for every p < P, but we do not have
P = P in general.
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Notice that in the case ¢ € (1,n] (in this case the quantity (1.4) is a norm) the result is of the
same type as Theorem 1.2. On the other hand, when ¢ € (n,00), the fact that the quantity (1.4) is
not weakly lower semicontinuous (see [4, Lemma 3.1]) entails some loss of integrability.

Now, let us state our new result concerning the sequential weak continuity of the functional Jp.

Theorem 1.5. Letn € N, n > 2, g € (1,n] and let R > 0. Let {uy} C WgL™9(B(R)) be a sequence
of radial functions satisfying

[|Vug||n,g <1 and  up —u in Wy L™ (B(R))
for some u € WEL™9(B(R)). Let us set
(1.8) 0:=||Vulle,€[0,1] and P=(1-6)"7€[l,o00].

If0 <1 and
lim sup Jp (ug) > Jp(u),

k—oo
then there are {ug, } C {ur} and {sm} C (0,1), $m — 0, such that
ug,, —u—(1— 9)5m5m =20 in Wy L™ (B(R)).

Again, it can be easily seen (with the aid of the Vitali Convergence Theorem) that if § = 1, then
JIp(ur) — Jp(u) for every p € R.

We do not study the case ¢ > n for two reasons. On one hand, we do not know the value of the
borderline parameter P from Theorem 1.4. On the other hand, for ¢ > n the quantity (1.4) is not
a norm and we lose such tools as the uniform convexity.

The paper is organized as follows. After Preliminaries we show that if ¢ < n, then the norm (1.4)
is uniformly convex. Such a result was already proved by Halperin [8], however his definition of the
uniform convexity slightly differs from the classical one by Clarkson [6] which is the definition which
is useful for our purposes. In Section 4 we derive some properties of the Moser functions from (1.6).

Section 5 contains construction and properties of a collection of auxiliary linear functionals that
are used to estimate the distance from Moser functions. Let us recall that in paper [1] (the Sobolev
case) a suitable functionals were

Ly(u) = /( ) |Vmg|""2Vm, - Vudz, s¢€(0,1)
B(R

(for n = 2 it is just a scalar product of the gradients) satisfying in addition an important property

La(u) = h(Rs) ’

gs(Rs)
where h,gs: (0,R) — R are the one-dimensional representatives of radial functions u and mg,
respectively (the above identity is easily obtained using the definition of the Moser functions (1.2) and
the Newton formula). In the case of the Lorentz-Sobolev spaces we had to modify these functionals
so that they are corresponding to the norm (1.4). The resulting functionals are given in (5.1) (we also
had to overcome the fact that the weight ¢ — ¢7 ~! has a bit wild behavior near the origin). Notice
that our functionals do not use the non-increasing rearrangement (surprisingly, since it is involved in
the norm (1.4)), but this defect is repaired by the fact that —g, is positive and decreasing on (sR, R)
and the Hardy-Littlewood inequality ensures that Lg(u) is large only if —h’ behaves in a similar way.

In the last section we conclude the proof of Theorem 1.5. The basic strategy of the proof is inspired
by [1], the problems arising when dealing with nontrivial limit functions are solved in the same way
as in [3]. However, there also occurred some problems related to the non-increasing rearrangement
involved in the norm (1.4) and the solution to these problems required some new ideas.

2. PRELIMINARIES

Notation. If u is a measurable function on €, then by v = 0 (or v # 0) we mean that u is equal
(or not equal) to the zero function a.e. on .

By B(z, R) we denote an open Euclidean ball in R™ centered at € R™ with the radius R > 0.
If x = 0, we simply write B(R).
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We write that ux, — u in W§L™9(Q), ¢ € (1, 00), if

0 0 '
ukvdm—>/ Y vdz for every v € L™ 7 (Q) and i = 1,...,n.

By C we denote a generic positive constant which may depend on n, ¢, R and p. This constant
may vary from expression to expression as usual. Sometimes we say that for every ¢ > 0 something
is true. Then the constants C in such a case may depend also on fixed ¢ > 0.

Non-increasing rearrangement. The non-increasing rearrangement f* of a measurable function
fon Qis

(@) zsup{s >0:|{zeQ:|f(x)]> s} > t} for ¢t € (0, 00).

We are going to use the Hardy-Littlewood inequality for measurable functions

|2
/ @) de< [ F g @) dr.

0

When dealing with a radial function v on B(R), it is often convenient for us to work with its
one-dimensional representative h : (0, R) — [0, 00) defined by

(2.1) h(|z]) == u(x) for 0 < |z| < R.

Remark 2.1. For every radial function u € W' (Q), its one-dimensional representative & from (2.1)
is locally absolutely continuous on (0, R) (and thus differentiable almost everywhere).

Proof. The proof easily follows from the fact that every function from W1t1(Q) satisfies ACL, i.e. it
is absolutely continuous on almost all lines parallel to coordinate axes (see [10, Section 1.1.3]). O

Finally, let us recall an inequality obtained in [12]. If Q is open and u € W, ' (Q), then

(22)  w'(t) <

nwy,

12
+ ( / [Vul*( )ds—l—/ [Vul* (s)s~ ds) for every ¢ € (0,]9]).

If © is bounded, combining (2.2) with Holder’s inequality, ||Vu||,,, < 1 and ((%—%)q’—i—l)% —n-l
we obtain

L (-2 L 4 \m o
o : (t_n// [Vul(s )SZTSTIdS‘F/ IVul*(s)s7 153 ds
t

nwry,

ol <t_1 </ (17l (3)s7~ ;)quy( ARG ds) '

IN

IA

(2.3)

+
\
)
<
[
Tx
O
@
3=
|
Q=
=
ISH
o0
~
Q
/N

=

<C+

1 1 /|0
T log” ('T')

nwy;
Notice that (2.3) implies that for any £ > 0 we have

t

“n P ‘Ql .
u(t) < (L4e)n~ log (51)  for t sufficiently small
¢ otherwise.
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3. UNIFORM CONVEXITY
Clarkson [6] has defined the uniform convexity in the following way.

Definition 3.1. A Banach space is uniformly convex if for every € > 0 there is § > 0 with the
following property: if ||f|| = ||g|| = 1 and ||f — g|| > €, then [|2(f +g)[| <1—4.

In this paper we also use the uniform monotonicity.

Definition 3.2. A Banach space is uniformly monotone if for every € > 0 there is 7 > 0 with the
following property: if 0 < g < f, ||f|| =1 and ||g|| > ¢, then ||f —g|]| <1 —n.

It is an easy exercise to show that the uniform convexity implies the uniform monotonicity.
Halperin [8] has proved that Lorentz spaces have the following property.

Theorem 3.3. Let 1 < ¢ < p < oo. For every ¢ > 0 and n € (0,1) there is 6 > 0 with the
following property: whenever two non-negative Lorentz functions satisfy ||ullpq = ||v||pq = 1 and
(1 —n)u(z) > v(z) in some set G with |[uxc|p,q > &, then ||5(u+v)||pqe <1—34.

Our aim is to prove that the Halperin property implies the uniform convexity.
Corollary 3.4. If1 < q < p < 00, then the Lorentz norm is uniformly convex.

Proof. Step 1. (uniform convexity for non-negative functions)
Fix e > 0, set n = ¢ and let § > 0 be the constant given by Theorem 3.3. Let u,v be two non-
negative Lorentz functions satisfying [|ullp.q = [|v||pq = 1 and || (u + v)||pq = 1 — 5. Hence the
set Gy, = {(1 — e)u > v} satisfies ||uxa,|lp,q < € and the set G, := {(1 — e)v > u} satisfies
loxa, llp.g < e Thus
lu = vllp.g = [I(u—v)
< luxa,llp.a + llvxe,llp.q + vl
Step 2 (uniform monotonicity)
Fix e € (0,1), let § > 0 be the number corresponding to § in the definition of the uniform convexity
(for non- negative functions) and let f, g be the same as in Definition 3.2. Let us set v = f and

f—
V= Tl
Hence

lu = vllpq = [I(1 = Hf__}mp,q)f‘k‘|f__}]Hp,qg|p,q:m”g_(l_||f_g”p7q)f|
2 g = A =Ilf = gllp.a) fllp.g = l19llp.g = (X = [If — gl

Thus, by the uniform convexity for non-negative functions

g T =uwxa,llpq + [|(u—v)
pg t1[EV]]pq < de.

> 0. We can assume that |[f — g[|,q > 1 — 5, otherwise we are done setting n = 5.

p,q

p,q)Hpr,q > € — 25 = %8.

||||f quq"'lf H”f quq""lf f— ‘JHPQ""I

1=6>||5(u+v)llpq = 7= g||pq 39l 9llp.q

_ If=gllp.at1
= 5 .

P 2 f- glpq

Therefore ||f — gl|p.q < 1 — 26 and we can set n = 24.

Step 3. (uniform convexity for general functions)
Fix ¢ > 0 and let n > 0 be the number from Step 2 corresponding to %5. Let u,v be two Lorentz
functions satisfying ||ul|p,q = ||v||p,q = 1 and ||u — v]|p,q¢ > €. We distinguish two cases.
Case 1. If || |u] — [v]|]p,q > max{§, 2}, then, by Step 1, we can use the uniform convexity for
non-negative functions |ul, |v| to obtain § > 0 such that

1=6> [[5(lul + [vDllp.g > I3 (w+v)

and we are done.
Case 2. Otherwise, we can plainly suppose that v > 0 and v = vy — v_, where vy,v_ > 0. To
simplify our notation, let us write u = u; + uz, where u; = ux{,>0y and uz = ux{y<o}-

Now, as || [u| — [v] ||p,q < §, We have

€< Hu—vllpq = [lur +uz = vy +v|lpg < lr = villpg + [fuz = v-|lp,g + 2l[v-[lp.q

6 + 6 +2||” ||p,q
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Hence |[v_||,q > ie and thus the uniform monotonicity implies |[v4[|, < 1 — 7 (see the first line
of Step 3). Therefore, as || [u| — |v]||p.q < 7,

||%(U+'U)||pq = %Hul tuz tvp —v_|lpy < %(Hul = Vlp,g + 2[[vplp,g + [|uz *U—an)
n

g%(g+2(1—n)+g)=1—

[

and we are done also in the second case. O
Remark 3.5. If 1 < p < g < oo, then the Lorentz quasi-norm is not uniformly convex.

Proof. Fix § > 0 very small. Let us define u,v : [0,1) — [0,00) by

148 fortelo, L
u(t) = [1 2)
1-6 forte[i1)

and
) 1-46 for t € [0, 3)
v =
146  fortel[i,1).
Then we plainly have % = 1. Now, let us estimate the quasi-norms.
Case ¢ € (p,0). We have
1 1
[ :/ totdt = E[t%} _P
’ 0 q 0o q

and

5, 1
\|u||g,q:|\v||g,q:/ tr1<1+5>th+/ 11— 5yt
0

1

/~

N

~——
Tl

)

L1ty = N1252l5,) = 007 (5)" + @ =a1(1-(5)7) -1

Now, since (%)%_1 <1, setting & = mf— and 0 = qf— we obtain ||| = ||9]] = 1 and ||&E2|| > 1.

2
Nevertheless, the uniform convexity requires the last number to be bounded away from 1 from below.

Case g = oo. In this case we easily see that

1452 e = sup t5 =1
te(0,1)
and, if § is small enough, we obtain
el lproo = [[0]]p.0c = max{ sup 7 (1+0), sup t¥(1— 5)} —1-4.
1€(0,3) te(4.1)

Thus, we are done. O
It is a well-known fact that if a sequence converges weakly in a uniformly convex Banach space,

that is ur — u, and ||ug|| — ||u|| (where || - || is a norm in this space), then then u; — w (strong
convergence in norm). We shall need a slight modification of this property.
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Lemma 3.6. In every uniformly convexr Banach space the following assertion holds. For every e > 0

there is 6 € (0,1) such that

ug = u, |ull =1, |Jug|| <1+ for every k —

Proof. The proof is standard.

[lug — u|| < e for every k sufficiently large.

O

4. MOSER FUNCTIONS

In this section we study properties of the Moser functions defined by (1.6). Let us start with the

estimate of the Dirichlet norm. We have

0
4.1 Vmg|(x) = _1
and thus
1 1 1
Taw, " logT e 1 L
12 (Im ) = Wt

0

for 0 < |z| < sR
for sR < |z| < R

for 0 <t < w,R" — w,s"R"

for w, R™ —w,s"R™ <t < w, R™

(indeed, the value of |Vmg|*(t) corresponds to the value of |Vmg| on the sphere dB(p), where o > 0
satisfies t = |B(p)| — |B(sR)| = wn (0" — s"R™)). Hence

dt

iy
IV, = [ e (vmal @)
0

1 1 _1(1) /UJan—wnSan tl< 1 >% dt
= — 10 — n{|{ ———Ho—0—0——1o —
& s/ Jo t+ wps"R? t

Applying the change of variables t = w,s"R"y we infer for s > 0 so small that log(log(%)) >0

1 571 s d
IV, =tog™ (52) [ ()"
13) ’ s"/) Jo y+1 Y
( : 1 log(log(1)) s —1 !
= log~ (7) (/ —|—/ ) =log™~ (—n) (Il + Ig).
§ 0 log(log(1)) s
Next

log(log(3)) 1
0< Iy </ yﬁ_ldy— log (log( ))
0

(%) — 0as s — 04. For the second integral we have

57" —1
“[M@?m%“ﬂﬂww@w)

og

and thus I log

and contrariwise

—n__

> ( log(log(2)) Z/
log(log(3)) + ellog(1)) ¥

:obmg+9%@~4rm@wﬁm)

Thus, Irlog” (%) — 1 as s — 0. Hence we obtain from (4.3)
(44) IVmallng =" 1.
Notice that by a minor modification of the above procedure it can be shown that
wn R —wp,s"R"
n n i dt
(4.5) n 2" (4 n
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It can be also seen from (4.1) and (1.6) that the Moser functions concentrate at the origin in the
following sense

s—0 —0
n>0 = sup  |Vmg(z)] =70 and sup  |mg(z)| " =" 0.
n<|z|<R n<|z|<R
We also have for any sequence s; € (0,1), s, — 0

ms, — 0 on B(R)\ {0} and ms, — 0 in WgL™(B(R)).

5. LINEAR FUNCTIONALS

In this section we use the following notation. The function h: (0, R) — R is the one-dimensional
representative of a radial function u € W§L™4(B(R)) and functions gs: (0,R) — R, s € (0,1),
represent mg. That is

h(|z]) =uw(z) and gs(|z]) =ms(z)  for x € B(R)\{0}.
For every s € (0, 1), we define a linear functional L, acting on a radial function u € Wi L™4(B(R))
by
(5.1)
W R —w,s"R" . t %
Lg(u) = / tn gl ((——FS”R") )

Wp 8" log”(i)Rnfwns”R” Wn

Ca((Grr) () )

Changing the variables so that z = (- + s"R™)% (hence t = w, 2" — w,s"R™ and & — nw, 2" 1)
and using (4.1) and (1.6) we infer

R
Ls(u) = / (Wnz" — wns" R™) % gl (2)]772g (2)h (2)nwn 2"t dz

log(1)R
B a_q( 1 -1 _1/1\1N\91 -1
= —/ (Wnz" — wyps"R™)n (n awp ™ log™ 4 <7) 7) R (2)nwpz" " dz
slog(%)R s/ z
(5.2) R .
11 a-1rl STR*\ w1,
= —wpnlog ¢ (7) <]_ — ) h (Z) dz
87 Jslog(L)R zn
1 R nRNN L-1
= _7/ (1 2 ) h(z)dz.
gS(SR) slog(3)R 2m
Hence we have (recall ¢ <n and h(z) - 0as z — R_)
1 R 1 gl
(5.3) h(s log<7)R) = 7/ h'(z)dz = Ls(u)gs(sR) = Ls(u)n_%wn B logT1 (7)
s slog(3)R S
On the other hand, we also have from (5.2)

(G4)  h(s 1og(§)R) > (1- %)13L8(u)gs(sR) > (1- 10gnl(l))Ls(u)gs(sR).

Let 1 be the inverse function to s — slog(1) on (0,1). From (5.3) we obtain

1 a— 1
B(sR) < Lygo(w)n” v log"™ ()

(55) D
< Lyco(u)n™ T " log ™™ () (1+ 1og%(1))'

Indeed, for s > 0 very small we have slog_z(i) <y(s) < slog_l(%) and thus

o8 7)< o8 s0gmy) = on(5) + s ()

=toa() + 2108 (is(})) = () (1 + 2B 0E ) <ws() (0 i)
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Lemma 5.1. We have Lg(u) < (14 0(5))||Vtl|n.q-

Proof. Using (5.1), Holder’s inequality, (4.4), ¢ < n, the relation between |Vmg| and |[Vmg|* (com-
pare (4.1) and (4.2)) and the Hardy-Littlewood inequality we obtain
(2 +m)")
Wn

Ly(u) < /OWHRR ph—1 h’((win +5”R")%>‘dt
- /Ow"Rn (t%’1>%(\Vmsﬁ(t))q’l(t%’l)% h((win +5”R”)%)‘dt
<twma ([ (L ) ) ar)

wan,
<Imlty ([ 7 (Valxwpen) (©)" @)

= [Vms[l8 5 Vtllng < (1+0(s) [ Vtelng-

1

1
q

Lemma 5.2. For every fized radial Lorentz-Sobolev function u we have Ls(u) — 0 as s — 0.

Proof. Fix € > 0. By the absolute continuity of the Lebesgue integral we can find 7 € (0,1) so small
that

(5.6) /OTtZ_l(Wu*(t))th <.

Next, we have from (5.1) and (4.1)

wp R" —w,s"R" -1 _%1 -1 g—1 1
|LS(’U,)| S/ t%—l(n W, Og ’11(5)) hl((i"’san) n)‘dt
wns™ log™ (1) R™ —w, s™ R™ (i +San); Wn

T e 1 . ,
< Clog™ 7 (7) / prl h’((— + s”R") )‘dt
Wn

S Wy 8™ log"(%)R"—wns"R"

g1 /1 T wn R —wy,s"R"
=Clog™ 4 <7) +
s wps™log" ()R —w, s™ R™ T

= C’log_q%1 (%) (Il + Ig).

From (5.6), Holder’s inequality and from the fact that the non-increasing rearrangement of the
function |A'((—~ + s"R™)w)| is (IVulxB(r)\B(sR))* We obtain for s sufficiently small

B
I s/ YVl (£) dt
Wi 8™ log" (%)Rn — Wy ST Rn

1 1
7

< (/ (|Vu|*(t)ti—3)qczt> (/ (té_l)q/dt>
0 Wy 8™ log”(%)R"—wns"R"

S 6([10%(7«‘)}“ sn log"(l)R"—w gan) '

< Ce logﬁ (%)

Q



WEAK CONTINUITY OF THE MOSER FUNCTIONAL 11

For the second integral, we use the finiteness of the Dirichlet norm of u and Hoélder’s inequality to
infer

wn R s R
I < / tn | Vul*(t) dt
T

wp R™ § %7% . % wn R™ %71 J
g(/o (IVul* ()t )dt> (/ G dt)

< C([log(t)} wan) Y= Clogqfl' (%)

T

m\‘H

Therefore

| Ls(u)] < CIOg_L;l (1) (11 + IQ) < Ce+ C’log_qT_1 (%) logi (%)

S

and the result follows easily. O

Lemma 5.3. If uy — u, |Vug|gne <1 and limsupy,_, o Jp(ur) > Jp(u), then there is a subse-
quence {u,, } C {ur} and a sequence {s,} C (0,1) such that s, — 0 and

liminf L, (ug, ) > (1—0)7.
m—0oQ
Proof. We proceed by contradiction. Suppose that there are 6 > 0, kg € N and ¢ > 0 such that

(5.7) Lg(uk) < (1—2¢)(1— 0)% for every s < 20 and every k > ko.

Furthermore, we can suppose that § is so small that

(5.8) (1—2€)<1+ - )gl—e,

where the constant C is a fixed number coming from (5.5).
Passing to a subsequence, we can also suppose that uy — u a.e. in B(R). By (1.5) and (1.8) we
have

Jp(ug) = /B(R) exp((nw;?ﬂuﬂ)q/) dx

’

= nw, R" /01 exp((nwé(l - 9)’%hk(Rz)>q )z"—l dz

:nwnR"</06—|-/51).

We are going to obtain a common majorant for the above integrands. First, from (5.5) and
Lemma 5.1 we obtain

’

exp((nwé(l - 9)7%hk(Rz))q )z”_l <C for z € (6,1).

Thus, we plainly have an integrable majorant on (4,1).
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Next, the following computation based on (5.5), (5.7) and (5.8) gives us an integrable majorant
on (0,9) and it also proves the integrability of the majorant. We have

< /O‘Sexp((mn(1_9)—;L¢(Z)<uk>n—;w;ék,gzl(i)(ulogf(i)))q’)zn—ldz
= [ (-0 %2 uyion( 1) (1+ o) )
< [ o2 o) (1 ) )

< [ exp(ntr o7 og(1)) e

5 ,
</ ni-n(=9)" g, < O,

0

Hence we have an integrable majorant and thus we can use the Lebesgue Dominated Convergence
Theorem to obtain Jp(ug) — Jp(u), a contradiction. O

Lemma 5.4. Let {sx} C (0,1), sx — 0 and let {ux} C W¢L™9(B(R)) be radial functions satisfying
[|Vugl|ln,g < (1 +0(1)). If Ly, (ux) — 1, then

up —mg, — 0 in Wy L™ (B(R)).
Proof. The proof easily follows from the uniform convexity of the norm || - ||, applied to the

gradients of the functions uj and ms,. Let us give the details.
First, we infer from Lemma 5.1

IV |ln,g — 1.

Now, since we have L,, (ms,) — 1 (see (5.1) and (4.5)) and ||Vmyg, ||n,q — 1 (see (4.4)), we obtain
from Ly, (ur) — 1 and ||[Vugllnq — 1

Msy Uk
1 [ Tl T ullng
Sk 2

1( Mg U
() o (o))
2 g VMg, [ln.g g Vg |n.g

Combining this result with Lemma 5.1 and the triangle inequality we obtain

Vms, YVug
Vs llng ' [Vugllng 1
5 .
n.q
Therefore the uniform convexity of the the norm || - ||, 4, implies
H Vmsk _ Vuy -0
IV, flng  [[Vtg]ln,g
Finally, since ||[Vms,||n,q — 1 and ||Vug||n,q — 1, we have
9, ~ Tl
< vaSk _ Vm, H Vmg, — Vuy H Vuy YV,
Vs llng g THIVmslng — [[Vukllng na - T Vagln,g n.g
— 0.

Thus, we are done. O
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6. PROOF OF THEOREM 1.5

Proof of Theorem 1.5. The strategy of the proof was taken from the proof of Theorem 1.3 given
in [3]. However, there are still some technical difficulties that we have to overcome. These difficulties
occur in the case when the limit function « is nontrivial and they are caused by the fact that in the
Lebesgue spaces we have for two functions with disjoint support

1

17+ glly = (115 + Nlgltz) "

while a corresponding formula does not hold in Lorentz spaces in general. However, it was observed
in [4] that if {f} is a concentrating sequence and {gx} is a sequence with a nice behavior, then we
have

1
.
e+ ullng = (15012 + Nl ) ¥ 0.

We use this principle in the proofs of inequalities (6.6) and (6.7) below. The proof is divided into
five parts. The procedure from [3] has three steps. Moreover, inequalities (6.6) and (6.7), which
belong to Step 2, are proved separately at the end of the proof of Theorem 1.5.

Assume that 0 € [0,1) and limsup,_,., Jp(ux) > Jp(u). Passing to a subsequence we can
suppose that the limit exists and limg_, o Jp(ug) > Jp(u). Passing to a subsequence again we can
also suppose that up — u in L™?(Q) and ur — u a.e. in Q.

We define truncation operators T and T}, acting on any function v € W L™9(B(R)) by

T (v) = min{|v|, L} sign(v) and Tr(v) =v—TE ).
Notice that the weak convergence uy — u implies T (uy,) — TF(u) and Ty (ug) — Tr(u) (indeed,
T* (uy,) is bounded, hence it has a weakly convergent subsequence and the convergence a.e. implies
that the weak limit has to be T*(u), similarly for Tp(ug)). We often use the following simple

observation. Since ¢ < n, we have that ¢ — ¢+ ! is non-increasing on (0,00) and thus
(6.1)

B(R)| B(R)| BRI,
/ (V] (6) dt < / (VT ()] ()7 dt + / (VT )] (1)) dt.
0 0 0

STEP 1.
Using Lemma 5.3 we find a sequence {s;} C (0,1), s — 0, such that (passing to a subsequence of
{ux} if necessary)

(6.2) lim inf L, (ug) > (1~ 0)s.

Next, inequality (6.2) and Lemma 5.2 imply

(6.3) lim inf Ly, (g —w) > (1~ 0)a.
STEP 2.

In this step we prove

(6.4) li]insup 1V (ur — u)||n,g < (1— 9)%

If § = 0, the proof trivially follows from the assumption ||Vug||n,q < 1, k € N. Thus, let us suppose
that 6 € (0,1) in the rest of this step (and also in the proofs of inequalities (6.6) and (6.7)).
Fix ¢ > 0. We also fix L > 0 so large that

|B(R)
(6.5) / ta (VT (w)] () dt = T,
0
where 7 € (0, 1 min{f, 1 — #}) is a small number specified below.
We have
IV (e = Wllng < [IV(TF (ur) = T (w)llng + VT2 (@)llng + VT (@)]ng

=5 +1s+ Is.
If 7 is small enough, then (6.5) implies that I3 < e.
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Next, we claim that for k£ large enough the following inequality holds

IB(R)I
(6.6) / (VT () (£)7dt < 1— 6+ 3.
0

Let us postpone the proof of (6.6). From (6.6) we observe that if 7 is small enough, we also have
Ig < (1 70)% + €.

Let us proceed to the proof that I; < e. The proof is based on Lemma 3.6 (recall that we have

TE(uy,) — T (u)). Since the norm is homogeneous, since we have (by (1.8), (6.1) and (6.5))

07 = [|Vllng > [|VTE (u)|

na 2 (I1Vulll, = IVTL@))4,,) " = (0 - 1)

and since 7 is as small as we wish, it remains to prove (so that Lemma 3.6 implies ||V (T*(uy) —
TE(w))llng <€)

(6.7) IVTE () |[ng < (6 + €)1,

where ¢ is a small number depending on €. Let us postpone the proof of (6.7).

Thus, when (6.6) and (6.7) are proved, we will have Iy + I + I3 < e+ (1 — 6)% + & + ¢, which
concludes the proof of (6.4).

STEP 3.
Our aim is to prove

(6.8) (1—0)"(up —u) —ms, "0  in WEL™(B(R)).
Combining (6.3) and (6.4) with Lemma 5.1 we obtain
Lo (1—0)7(up —w) "=°1  and  [|(1—0)" 8V (g — w)|lng "= 1.

Now, Lemma 5.4 concludes the proof of (6.8).

It remains to prove inequalities (6.6) and (6.7) to complete the proof of Theorem 1.5.

PROOF OF (6.6).
The proof is based on the method used in [4, Proof of Theorem 1.3(iii): Step 2]. We omit several
detailed computations, let us just recall the main ideas for the convenience of the reader.

First, by (6.1) and (6.5) we have |[VT"(u)||4 , > 0 — 7. Thus, we can use the absolute continuity
of the Lebesgue integral to obtain o € (0, |B(R)|) so small that

q

|B(R)|
(6.9) / tn Y (|VTE(w)|* (1) dt > 6 — 2.

Next, we decompose the interval [o, |B(R)|] into very short subintervals [a;_1,a;], j = 1,...,m, so
that the function ¢ — t= ' is very close to a constant on each subinterval. Furthermore, let Gj,
j=1,...,m, be disjoint measurable subsets of B(R) satisfying |G;| = a; — a;_1 and chosen so that
the values of [VTX(u)| at the points of G; correspond to the values of [VT%(u)|* at the points of
[aj—1,a;]. Let G be the union of these sets. Now, we use (6.9), the weak lower semicontinuity of the
L%-norm (since ¢ < n, we have that L™? is embedded into L?) on each set G, we use the fact that
t s t= ! is almost constant on each [a;_1,a;] and the Hardy-Littlewood inequality to obtain

B®I
(6.10) / EE L (V(TE (u) @) (E — o)) 2 dt > 6 — 3.

Finally, by the Chebyshev inequality we can see that if L is large enough, then |supp T (ux)| < o
for every k € N. This property, Hardy-Littlewood inequality and the fact that ¢ — t% ! is non-
increasing imply

(6.11)
IB(R)|

BRI v ;
[ Al @z [ @Oy [V ) o)

Now, (6.6) follows from (6.10), (6.11) and the assumption ||Vug||n,q < 1 for every k € N.
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PROOF OF (6.7).
We restrict ourselves to the case ¢ < n (we do not need to care about ¢ = n, since the Sobolev case
of Theorem 1.5 is contained already in Theorem 1.3).

Fix ¢ > 0. By the uniform monotonicity of the Lorentz norm we can find v > 0 so small that

(\a 1
(6.12) 0<g</, Hf||n,q:1a||9”n,q> (§>q = ||f_g||n,q<(1_37)"~
We can also suppose that
¢
1 < 2.
(6.13) TSy

Next, since we have (6.2), T (ur) > uy — L and since an additive constant is irrelevant for the
behavior of Ly with s very small (observe (5.3) and (5.4)), we obtain for k large enough

Lo, (Tp(ug)) > (1—0—7)a.
Thus, by Lemma 5.1, we have for k large enough
(6.14) VT2 (w)llng = (1 =0 —27)7.

Let us recall that 7 > 0 is a very small number and this number can be made as small as we wish.
Next, let £ > 0 be so small that
IB(R)
/ talgtdt <y
0

and, for every k € N, let us set
or = [{IVTL(ur)| > &}.
From the choice of £ and (6.14) we infer

Ok
(6.15) / 7 |V Ty (ug)|* ()9 dt > 1 — 6 — 27 — .
0

Next, we claim that passing to a subsequence we obtain g — 0 as k — oo. Let us prove this claim
by contradiction. We suppose that there are gg > 0 and k¢ € N such that g, > oo for every k& > ko.
This implies for every k > kg

B o |
/ trl(|VTL(uk)\*(t))qczt2/ gt g — O

0 Q0

2 2

and thus, by (6.6),

Q0

/2 P VT (w)[* ()0 dt < 1 — 0+ 37 — C.
0

This means that if 7 is sufficiently small, then there is 5 € (0, %) such that for every k > kg

20
2 4
(6.16) [ T @) de < (1 - )1 - 26),
0
Now, we follow the computation in (2.3), where we decompose the integral over (¢,) into integral
over (t, %) and integral over (4*,[Q|), and we apply estimate (6.16) after Holder’s inequality when
estimating the integral over (¢, &). We obtain for ¢ small enough

Wi(t) < L+ (To(un)* () < L+ 0+ L= =207 f<|tg|) Lo

gq

nwy

_oy (002 g ol

q

nwy
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Therefore we have an integrable majorant of the integrand of Jp(ux). Indeed, for suitably small
to > 0 we have

Jp(ug) = /B(R) exp((nwéP\uqul) dx
_ /B(R)l exp((nw,%u - 0)_éu}§(t))q/> dt
0

- [ ew((0 0 -29hont ()"
< /Oto exp(((l - ﬂ)% log?l' (@))q/) dt + /tJB(R) exp(C) dt

to rd
:c/ DT g4 C
0
Thus Jp(ux) — Jp(u) by the Lebesgue Dominated Convergence Theorem. This is a contradiction

and thus we can pass to a subsequence to obtain g — 0 as kK — oo.
Next, let us fix D > 1 so large that

. D \=-1

6.1 (7) <1+

(6.17) p+i) =177

Now, we use (6.10), (6.15) and the Hardy-Littlewood inequality to obtain
(6.18)

o, B(R)
1> [[Vag|2, 2/ trl(|VTL(uk)\*(t))th+/ (VT  (ug)|*(t — 0))4dt > 157 — .
0

oa

Next, a trivial estimate
Dox BRI
/ trl(|VTL(uk)|*(t))th§/ tn (| Vg [*(8)2dt < 1
0 0

implies for £ large enough (notice that 2 —1 < 0 in our case ¢ < n and Dgy, is much smaller than
o for k large)

o+Doyg B
/ PV TE () (£ — 0))7 dE < 7.

Hence, if 7 < %, we obtain from the above inequality and (6.18)

ox |B(R)|
©19) 1z [ EVI@F O des [ VT )] (- o) de = 1,
0 o+Doy
Therefore we can use the uniform monotonicity (6.12) to obtain
C 1
(6.20) 95 )" X0,000)lna < ()
(we applied (6.12) to f = % and g = |VHCFVLu(:|’Ti“’q<G = \l\gzﬂlﬁq’ where the set G is chosen

so that the values of |VTL(uy)| on G correspond to the values of |VT%(u)|* on (0, Dgy). With
Vuslxsane o9 (6.19) implies |[|Vug|xprpclli, = 1—3y. The

[IVurlln,q =

this setting we have f — g =

normalization by W

n,q

We also have by the Hardy-Littlewood inequality

is harmless since 1 — 3y < [|[Vu|[g , < 1).

o (D+1) oy .
1> |[Vuilt, > / EE (9T ()| (1)t + / (VT () (¢ — 01))? dt
0

Ok

ok+|supp VT (ug)|
+/ T (VT (ug)[* (= o)) dt
(D+1) ok

IB(R)| .
+/ tn NIV Ty (ug)[* (t — | supp VT (uy,)]))? dt
o+ supp VT'L (ug)|
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and thus, by (6.15), for the third summand on the right hand side we obtain

ok+|supp VT (uk)|
(6.21) / N VTE (up) [ (t — 0x))? dt < 0+ 27 + 7.
(D+1)ok
Finally, we infer from (6.20), (6.17), (6.21), (6.13), £ —1 <0and 7 <
L bex q 1 L B L_1 L
VTl = [ T @) e+ [ T ) o) e
Doy
¢ |B(R)|+ox .
= §+/ (t —or) ™ (IVT™ (ug)[* (¢ — 0&))? di
(D+1)ox
¢ a1 IBRe ,
2+ te (VT *(t — dt
<5+ (prg) [, HTTHre - o)
< g +(1+7)(0+21+7) §g+0+27+7+7(1+2+1) §0+g+27§9+§.
This is (6.7) which completes the proof of Theorem 1.5. O
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