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Abstract. Let n ∈ N, n ≥ 2, q ∈ (1,∞] and let Ω ⊂ Rn be an open bounded set. We obtain
sharp constants concerning the Moser-type inequalities corresponding to the Lorentz-Sobolev space

W 1
0 Ln,q(Ω) equipped with the norm

||∇u||(n,q) :=

{
||t

1
n
− 1

q |∇u|∗∗(t)||Lq((0,∞)) for q ∈ (1,∞)

supt∈(0,∞) t
1
n |∇u|∗∗(t) for q =∞ .

We also derive the Concentration-Compactness Principle in the case q ∈ (1,∞) with respect to

the above norm.

1. Introduction

Throughout the paper Ω ⊂ Rn, n ≥ 2, is an open bounded set, ωn denotes the volume of the
unit ball in Rn, Ln is the n-dimensional Lebesgue measure and |Ω| stands for Ln(Ω). We use the
standard notation q′ = q

q−1 (with the convention ∞′ = 1 and 1′ =∞).
The Moser-Trudinger inequality is a crucial tool when proving the existence and the regularity

of nontrivial weak solutions to elliptic partial differential equations with critical growth (see for
example the pioneering works [3] and [4] by Adimurthi).

Its original statement obtained in [14] for the space W 1,n
0 (Ω) is the following

(1.1) sup
||∇u||Ln(Ω)≤1

∫
Ω

exp((K|u(x)|)n
′
) dx

{
≤ C(n,K, |Ω|) when K ≤ nω

1
n
n

=∞ when K > nω
1
n
n .

Further applications required several versions and generalizations of the Moser-Trudinger inequality
such as a version for unbounded domains (see [1]), a version without boundary conditions (see [9]),
a version for higher order Sobolev spaces (see [2]), the Concentration-Compactness Alternative
(see [12] and [7]) and others. The most important part of the Concentration-Compactness Alterna-
tive is the following improvement of the Moser-Trudinger inequality. This result is used to prove the
existence and the multiplicity of weak solutions to elliptic PDEs in the limiting situations when the
Moser-Trudinger inequality is not powerful enough.

Theorem 1.1. Let n ∈ N, n ≥ 2 and let Ω ⊂ Rn be an open bounded set. Let u ∈ W 1,n
0 (Ω) be

a non-trivial function and let {uk} ⊂W 1,n
0 (Ω) be a sequence satisfying∫

Ω

|∇uk(x)|n dx ≤ 1 for every k ∈ N , uk ⇀ u in W 1,n
0 (Ω) and uk → u a.e. in Ω .

Let us set

P =

{
(1−

∫
Ω
|∇u(x)|n dx)−

1
n when

∫
Ω
|∇u(x)|n dx < 1

∞ when
∫

Ω
|∇u(x)|n dx = 1 .

Then for every p < P there is C > 0 such that∫
Ω

exp
((
nω

1
n
n p |uk(x)|

)n′)
dx ≤ C .

Moreover, such an upper bound for p is sharp.
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The standard proof of Moser-type inequalities uses the symmetrization (based on the Pólya-
Szegö Principle). This approach is also suitable for generalizations concerning the Orlicz-Sobolev
spaces embedded into exponential and multiple exponential Orlicz spaces (see [10] and [8]). For the
Lorentz-Sobolev spaces, the proof of the corresponding Moser-type inequalities (see for example [5])
uses a suitable relation between u∗ (the non-increasing rearrangement of u) and |∇u|∗. In particular,
one has for every u ∈W 1,1

0 (Ω)

(1.2) u∗(t) ≤ 1

nω
1
n
n

(
t−

1
n′

∫ t

0

|∇u|∗(s) ds+
∫ |Ω|
t

|∇u|∗(s)s− 1
n′ ds

)
for every t ∈ (0, |Ω|)

(see for example [16] or [5]). With such estimates, it is natural to have a statement of the Moser-type
inequality with respect to the quantity

(1.3) ||f ||n,q :=

{
||t

1
n−

1
q f∗(t)||Lq((0,|Ω|)) for q <∞

supt∈(0,|Ω|) t
1
n f∗(t) for q =∞ .

This quantity is generally not a norm (it is a norm for q ≤ n, while for q > n it is a quasi-norm,
see [13, Theorem 1]). Let us also recall that even though the above quasi-norm is not a norm in
general, it is equivalent to an actual norm

(1.4) ||f ||(n,q) :=

{
||t

1
n−

1
q f∗∗(t)||Lq((0,∞)) for q <∞

supt∈(0,∞) t
1
n f∗∗(t) for q =∞ .

Here f∗∗(t) := 1
t

∫ t
0
f∗(s) ds for every t > 0 and the equivalence follows from the estimates

(1.5) ||f ||n,q ≤ ||f ||(n,q) ≤
n

n− 1
||f ||n,q .

See [11, Section 2] for the proof in the case 1 ≤ q <∞, the proof for q =∞ is an easy exercise.
The Moser-type inequality for Lorentz-Sobolev spaces W0L

n,q(Ω) was obtained in [5] (the paper
also contains an application to the proof of the regularity of the weak solutions to some PDEs) and
it has the following form. If q ∈ (1,∞), then

(1.6) sup
||∇u||n,q≤1

∫
Ω

exp((K|u(x)|)q
′
) dx

{
≤ C(n,K, q, |Ω|) when K ≤ nω

1
n
n

=∞ when K > nω
1
n
n

and if q =∞, then

(1.7) sup
||∇u||n,∞≤1

∫
Ω

exp(K|u(x)|) dx

{
≤ C(n,K, |Ω|) when K < nω

1
n
n

=∞ when K ≥ nω
1
n
n .

Notice that, since ∞′ = 1, the main difference between cases q ∈ (1,∞) and q = ∞ is the uniform

boundedness of the integrals in the case K = nω
1
n
n for q ∈ (1,∞).

There is no Moser-type inequality for q = 1, since W0L
n,1(Ω) is embedded into L∞(Ω) (to see

this, it is enough to combine the definition of the quasi-norm (1.3) with estimate (1.2)). Let us also
recall that there is also the Trudinger-type embedding for q ∈ (1,∞) which states that for every
K ≥ 0 and every u ∈W0L

n,q(Ω) we have

(1.8)
∫

Ω

exp((K|u(x)|)q
′
) dx <∞ .

The improvement of (1.6) of the same type as Theorem 1.1 was obtained in [6].

Theorem 1.2. Let n ∈ N, n ≥ 2, q ∈ (1,∞) and let Ω ⊂ Rn be an open bounded set. Let
u ∈W0L

n,q(Ω) be a non-trivial function and let {uk} ⊂W0L
n,q(Ω) be a sequence such that

||∇uk||n,q ≤ 1 , uk ⇀ u in W0L
n,q(Ω) and uk → u a.e. in Ω .

Let us set

P :=


(

1− ||∇u||qn,q
)− 1

q

when ||∇u||n,q < 1

∞ when ||∇u||n,q = 1 .
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If q ∈ (1, n], then for every p < P there is C > 0 such that

(1.9)
∫

Ω

exp
((
nω

1
n
n p|uk(x)|

)q′)
dx ≤ C for every k ∈ N .

Moreover, the assumption p < P is sharp.
If q ∈ (n,∞), then there is P̃ ∈ (1, P ] such that (1.9) holds for every p < P̃ , but we do not have

P̃ = P in general.

Notice that in the case q ∈ (1, n] (in this case the quantity (1.3) is a norm) the result is of the
same type as Theorem 1.1. On the other hand, when q ∈ (n,∞), the fact that the quantity we work
with is not weakly lower semicontinuous entails some loss of integrability.

There is no version of Theorem 1.2 for q = ∞, as can be seen considering the function u(x) =

ω
− 1

n
n log( R|x| ), 0 < |x| < R, with some R > 0 (if we set uk := u, then we have uk → u in the norm,

the norm is equal to 1 and the Moser functional corresponding to the number nω
1
n
n is infinite).

The aim of this paper is to obtain versions of results (1.6), (1.7) and Theorem 1.2 with respect
to the norm (1.4). Our results are the following. If q ∈ (1,∞), then

(1.10) sup
||∇u||(n,q)≤1

∫
Ω

exp((K|u(x)|)q
′
) dx

{
≤ C(n,K, q, |Ω|) when K ≤ n2

n−1ω
1
n
n

=∞ when K > n2

n−1ω
1
n
n ,

if q =∞, then

(1.11) sup
||∇u||(n,∞)≤1

∫
Ω

exp(K|u(x)|) dx

{
≤ C(n,K, |Ω|) when K < n2

n−1ω
1
n
n

=∞ when K ≥ n2

n−1ω
1
n
n

and we obtain a version of Theorem 1.2 containing a sharp result without the restriction q ∈ (1, n].

Theorem 1.3. Let n ∈ N, n ≥ 2, q ∈ (1,∞) and let Ω ⊂ Rn be an open bounded set. Let
u ∈W0L

n,q(Ω) be a non-trivial function and let {uk} ⊂W0L
n,q(Ω) be a sequence such that

||∇uk||(n,q) ≤ 1 , uk ⇀ u in W0L
n,q(Ω) and uk → u a.e. in Ω .

Let us set

(1.12) P :=


(

1− ||∇u||q(n,q)
)− 1

q

when ||∇u||(n,q) < 1

∞ when ||∇u||(n,q) = 1 .

Then for every p < P there is C > 0 such that∫
Ω

exp
(( n2

n− 1
ω

1
n
n p|uk(x)|

)q′)
dx ≤ C for every k ∈ N .

Moreover the constant P is sharp.

Finally, let us also give the full statement of the Concentration-Compactness Principle with respect
to the norm (1.4).

Theorem 1.4. Let n ∈ N, n ≥ 2, q ∈ (1,∞) and let Ω ⊂ Rn be an open bounded set. Let
u ∈W0L

n,q(Ω) and {uk} ⊂W0L
n,q(Ω) be a sequence such that

||∇uk||(n,q) ≤ 1 , uk ⇀ u in W0L
n,q(Ω) and uk → u a.e. in Ω .

Let us set

A = sup
x∈Ω̄

lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x,r))∗∗(t)

)q
dt
) 1

q ∈ [0, 1] .

(i) If u = 0 and A = 1, then there is x0 ∈ Ω̄ such that

(1.13) 1 = A = lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x0,r))

∗∗(t)
)q
dt
) 1

q

.

The point x0 is not unique in general. If x0 is unique and

(1.14)
∫

Ω

exp
(( n2

n− 1
ω

1
n
n |uk(x)|

)q′)
dx→ c+ Ln(Ω)
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for some c ∈ [0,∞), then

(1.15) exp
(( n2

n− 1
ω

1
n
n |uk(x)|

)q′) ∗
⇀ cδx0 + Ln|Ω in M(Ω̄) .

(ii) If u = 0 and A < 1, then for every p < A−1, there is a constant C > 0 such that

(1.16)
∫

Ω

exp
(( n2

n− 1
ω

1
n
n p|uk(x)|

)q′)
dx ≤ C for every k ∈ N .

Moreover, the assumption p < A−1 is sharp.
(iii) If u 6= 0 and P is defined by (1.12), then for every p < P there is C > 0 such that (1.16) holds.
Moreover the constant P is sharp.

Furthermore, in both cases (ii) and (iii) we have

exp
(( n2

n− 1
ω

1
n
n |uk(x)|

)q′)
→ exp

(( n2

n− 1
ω

1
n
n |u(x)|

)q′)
in L1(Ω) .

The paper is organized as follows. After Preliminaries we recall some properties of Moser functions
corresponding to inequality (1.6). In the fourth section we derive (1.10) and (1.11) from (1.6)
and (1.7), respectively.

Section 5 is devoted to the proof of Theorem 1.4(i). In Section 6 we prove Theorem 1.4(ii).
The proof is divided into two parts. First, we prove the boundedness for p < A−1, then we show
that (1.16) does not hold even for p = A−1 in general. Let us note that in Sections 5 and 6 we use
the techniques from [6] (the paper dealing with the quasi-norm (1.3)) with minor changes only.

The proof of Theorem 1.4(iii) is given in Section 7 and it has two parts. First, we derive the
boundedness for p < P , then we prove the optimality of P . At the end of Section 7, we prove the
remaining statements of Theorem 1.4. Finally, Theorem 1.3 follows from Theorem 1.4(iii). The
proofs in Section 7 again use the approach from [6], however we had to overcome several technical
difficulties. In particular, in paper [6], the set Ω is decomposed into suitable subsets and on each
such a set the contribution of |∇uk| to ||∇uk||n,q is studied separately. This is not possible in this
paper because of the maximal function involved in the norm (1.4).

Section 8 contains some remarks concerning a version of the norm (1.4) in which we integrate
over (0, |Ω|) only.

2. Preliminaries

Notation. The n-dimensional Lebesgue measure is denoted by Ln and |Ω| stands for Ln(Ω). Fur-
ther, Ln|Ω is the restriction of Ln to Ω, i.e. Ln|Ω(A) = Ln(A∩Ω) for every measurable set A ⊂ Rn.
The characteristic function of A is denoted by χA. If u is a measurable function on Ω, then by u = 0
(or u 6= 0) we mean that u is equal (or not equal) to the zero function a.e. on Ω.

Next, Ω̄ denotes the closure of Ω. By M(Ω̄) we denote the set of all Radon measures on Ω̄. We
write that µj

∗
⇀ µ inM(Ω̄) if

∫
Ω̄
ψ dµj →

∫
Ω̄
ψ dµ for every test-function ψ ∈ C(Ω̄). It is well known

that each sequence bounded in L1(Ω) contains a subsequence converging weakly* in M(Ω̄).
By B(x,R) we denote an open Euclidean ball in Rn centered at x ∈ Rn with the radius R > 0.

If x = 0, we simply write B(R).
By the symbol W0L

n,q(Ω) we denote the closure of C∞0 (Ω) with respect to the (quasi-)norm
||∇u||n,q (or the equivalent norm ||∇u||(n,q)). We write that uk ⇀ u in W0L

n,q(Ω), q ∈ (1,∞), if∫
Ω

∂uk
∂xi

v dx→
∫

Ω

∂u

∂xi
v dx for every v ∈ Ln

′,q′(Ω) and i = 1, . . . , n .

By C we denote a generic positive constant which may depend on n, q, |Ω|, p and K. This
constant may vary from expression to expression as usual. Sometimes we say that for every ε > 0
something is true. Then the constants C in such a case may depend also on fixed ε > 0.
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Non-increasing rearrangement. The non-increasing rearrangement f∗ of a measurable function
f on Ω is

f∗(t) = sup
{
s ≥ 0 :

∣∣{x ∈ Ω : |f(x)| > s}
∣∣ > t

}
for t ∈ (0,∞) .

Notice that for t > |Ω| we have f∗(t) = 0. Therefore it is not important whether we integrate over
(0, |Ω|) or (0,∞) in the definition (1.3). Further, we define the maximal function of f∗ by

f∗∗(t) =
1
t

∫ t

0

f∗(s) ds for t ∈ (0,∞) .

This quantity does not vanish for t > |Ω|. In the literature, the norm (1.4) is sometimes defined
with the integration over (0,∞), sometimes over (0, |Ω|). The proof of inequality (1.5) given in [11]
concerns the case of integration over (0,∞). It is obvious that it also holds in the case of integration
over (0, |Ω|), since we obtain smaller integrals on one hand, on the other hand we always have
f∗∗(t) ≥ f∗(t).

We are going to use the Hardy-Littlewood inequality for measurable functions∫
Ω

|f(x)g(x)| dx ≤
∫ |Ω|

0

f∗(t)g∗(t) dt .

Finally, let us derive a version of (1.2) for the quantity |∇u|∗∗. By the Fubini theorem we have∫ ∞
t

s−
n−1

n |∇u|∗∗(s) ds =
∫ ∞
t

s−2+ 1
n

(∫ s

0

|∇u|∗(r) dr
)
ds

=
∫ ∞
t

∫ s

0

s−2+ 1
n |∇u|∗(r) dr ds

=
∫ t

0

∫ ∞
t

s−2+ 1
n |∇u|∗(r) ds dr +

∫ ∞
t

∫ ∞
r

s−2+ 1
n |∇u|∗(r) ds dr

= − n

n− 1

([
s−

n−1
n

]∞
t

∫ t

0

|∇u|∗(r) dr +
∫ ∞
t

[
s−

n−1
n

]∞
r
|∇u|∗(r) dr

)

=
n

n− 1

(
t−

n−1
n

∫ t

0

|∇u|∗(r) dr +
∫ ∞
t

r−
n−1

n |∇u|∗(r) dr

)
.

Thus (1.2) reads

(2.1) u∗(t) ≤ n− 1

n2ω
1
n
n

∫ |Ω|
t

|∇u|∗∗(s)s− 1
n′ ds for every t ∈ (0, |Ω|) .

3. Moser functions

The sharpness of our results is proved using sequences of suitably modified Moser functions. These
are the functions that are often used to prove the second parts of (1.1), (1.6) and (1.7).

Fix R > 0 . For every s ∈ (0, 1), we define the function ms ∈W0L
n,q(B(R)) by

(3.1) ms(x) =

{
n−

1
q ω
− 1

n
n log

q−1
q ( 1

s ) 0 ≤ |x| ≤ sR
n−

1
q ω
− 1

n
n log−

1
q ( 1
s ) log( R|x| ) sR ≤ |x| ≤ R .

These functions satisfy

(3.2) |∇ms|(x) =

{
0 0 ≤ |x| < sR

n−
1
q ω
− 1

n
n log−

1
q ( 1
s ) 1
|x| sR < |x| < R

and thus

(3.3) |∇ms|∗(t) =

n
− 1

q ω
− 1

n
n log−

1
q ( 1
s ) 1

( t
ωn

+snRn)
1
n

0 < t < ωnR
n − ωnsnRn

0 ωnR
n − ωnsnRn < t < ωnR

n
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(indeed, the value of |∇ms|∗(t) corresponds to the value of |∇ms| on the sphere ∂B(%), where % > 0
satisfies t = |B(%)| − |B(sR)| = ωn(%n − snRn)). It can be shown that (see [5] or [6, Section 4])

(3.4) ‖∇ms‖n,q
s→0+→ 1 .

If we define the functions normalized with respect to the quasi-norm (1.3)

vs =
1

||∇ms||n,q
ms , s ∈ (0, 1) ,

then by [6, Lemma 4.1] we have for every L > 0

(3.5)
∫
B(R)

exp
((
L+ nω

1
n
n |vs|

)q′)
dx

s→0+→ ∞ .

Since we are going to work with the norm (1.4) it is convenient for us to define

(3.6) ws =
1

||∇ms||(n,q)
ms, s ∈ (0, 1) .

Now, (1.5) and (3.5) imply that for every L > 0 we have

(3.7)
∫
B(R)

exp
((
L+

n2

n− 1
ω

1
n
n |ws|

)q′)
dx

s→0+→ ∞ .

In the proofs concerning the sharpness of our results, we use the sequence {w 1
k
}k∈N (we use 1

k in
the place of the parameter s in the definition of ms). It can be seen from (3.1), (3.6), (3.2), (3.4)
and (1.5) that the sequence concentrates at the origin in the following way

(3.8) η > 0 =⇒ sup
η<|x|<R

|∇w 1
k

(x)| k→∞→ 0 and sup
η<|x|<R

|w 1
k

(x)| k→∞→ 0 .

We also have

w 1
k
→ 0 on B(R) \ {0} and w 1

k
⇀ 0 in W0L

n,q(B(R)) .

4. Moser-type inequality

In this section we discuss the proofs of (1.10) and (1.11). For the reader familiar with Moser-type
inequalities, the validity of (1.10) and (1.11) obviously follows from (1.6) and (1.7) via (1.5), (1.2)
and (2.1).

Let us give some details. First, if {uk} is a Moser sequence for (1.6) (that is ‖∇uk‖n,q ≤ 1 for

every k ∈ N and the integrals tend to infinity as k → ∞ whenever K > nω
1
n
n ), then {n−1

n uk} is
a Moser sequence for (1.10). Indeed, we have ‖n−1

n ∇uk‖(n,q) ≤ 1 for every k ∈ N by (1.5) and the

borderline exponent is now n2

n−1ω
1
n
n instead of nω

1
n
n .

Concerning the boundedness, at the beginning of the standard proof of (1.6) in the case K ≤ nω
1
n
n

one applies (1.2) to obtain∫
Ω

exp
((
K|u(x)|

)q′)
dx =

∫ |Ω|
0

exp
((
Ku∗(t)

)q′)
dt

≤
∫

Ω

exp

((
K

1

nω
1
n
n

(
t−

1
n′

∫ t

0

|∇u|∗(s) ds+
∫ |Ω|
t

|∇u|∗(s)s− 1
n′ ds

))q′)
dx .

Then some standard procedures follow. These procedures use Hölder’s inequality, assumption
‖∇u‖n,q ≤ 1, Young inequality and several changes of variables. In our case, we use (2.1) to
obtain ∫

Ω

exp
((
K|u(x)|

)q′)
dx =

∫ |Ω|
0

exp
((
Ku∗(t)

)q′)
dt

≤
∫

Ω

exp

((
K
n− 1

n2ω
1
n
n

∫ |Ω|
t

|∇u|∗∗(s)s− 1
n′ ds

)q′)
dx .
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It is almost obvious that the procedures recalled above work again, since the difference between the
borderline exponent in (1.6) and (1.10) is properly compensated by the the difference between the
multiplicative constants in (1.2) and (2.1). Besides, one of the integrals in the exponent is missing
now, this makes the proof a bit simpler.

5. Proof of Theorem 1.4(i)

Proof of Theorem 1.4(i). The proof is divided into several steps.
STEP 1. (proof of (1.13) and of the non-uniqueness of x0)

By the definition of the number A, there are points xj ∈ Ω̄, j ∈ N, such that

(5.1) lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(xj ,r))

∗∗(t)
)q
dt
) 1

q j→∞→ 1 .

Since Ω̄ is compact, passing to a subsequence we can suppose that {xj} is a convergent sequence
in Ω̄. Let x0 be its limit. We claim that

(5.2) lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x0,r))

∗∗(t)
)q
dt
) 1

q

= 1 .

Let us prove (5.2) by contradiction. If there is δ > 0 such that

lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x0,r))

∗∗(t)
)q
dt
) 1

q

= 1− 2δ ,

then there is r0 > 0 such that

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x0,2r0))∗∗(t)

)q
dt
) 1

q ≤ 1− δ .

Next, as xj → x0 as j → ∞, we can find j0 ∈ N so large that xj ∈ B(x0, r0) for every j > j0.
Therefore we also have

B(xj , r) ⊂ B(x0, 2r0) for every r ∈ (0, r0) and every j > j0 .

We infer

lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(xj ,r))

∗∗(t)
)q
dt
) 1

q j→∞
≤ 1− δ for every j > j0 .

This contradicts (5.1) and thus (1.13) is proved.
The point x0 is not unique in general, as can be seen considering a sequence u1, v1, u2, v2, . . . ,

where {uk} and {vk} are two Moser sequences centered at two different points.
STEP 2. (concentration of the modulars)

Suppose that x0 ∈ Ω̄ is a unique point satisfying (1.13) and assumption (1.14) is satisfied. Our aim
is to prove that for every fixed η > 0 we have

(5.3)
∫

Ω\B(x0,η)

(
exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx→ 0

and

(5.4)
∫
B(x0,η)

(
exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx→ c .

Since (5.3) and assumption (1.14) obviously imply (5.4), it is enough to prove (5.3). Furthermore,
as Ω̄ \ B(x0, η) is compact, it is enough to prove that for every x 6= x0 we can find the radius rx
such that

(5.5)
∫
B(x,rx)

(
exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx→ 0 .

Let us fix x 6= x0 and let us prove (5.5). Since x 6= x0 and x0 is a unique point satisfying (1.13), we
can find ε > 0, r0 > 0 and k0 ∈ N such that

(5.6) |||∇uk|χB(x,r0)||(n,q) ≤ 1− 2ε for every k > k0 .
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Let ψ be a smooth function such that 0 ≤ ψ ≤ 1, ψ ≡ 0 on Rn \ B(x, r0) and ψ ≡ 1 on B(x, r02 ).
Let us set vk = ψuk. Hence vk are W0L

n,q-functions vanishing outside B(x, r0). Our aim is to show
that there is k1 > k0 such that

(5.7) ||∇vk||(n,q) ≤ 1− ε for every k > k1 .

We have ∇vk = ψ∇uk + uk∇ψ. Next, since uk ⇀ 0 in W0L
n,q(Ω), we also have uk → 0 in Ln,q(Ω).

We infer that uk∇ψ → 0 in Ln,q(Ω), since maxx∈Rn |∇ψ(x)| is finite. Now, (5.6) and the triangle
inequality yield that we can find k1 > k0 such that for every k > k1 we have

||∇vk||(n,q) = ||ψ∇uk + uk∇ψ||(n,q) ≤ ||ψ∇uk||(n,q) + ||uk∇ψ||(n,q)
≤ (1− 2ε) + ε = 1− ε

and (5.7) is proved. Hence for every k > k1 we have by (1.10)∫
B(x,

r0
2 )

exp
(( n2

n− 1
ω

1
n
n

1
1− ε

|uk|
)q′)

dx =
∫
B(x,

r0
2 )

exp
(( n2

n− 1
ω

1
n
n

1
1− ε

|vk|
)q′)

dx

≤
∫
B(x,r0)

exp
(( n2

n− 1
ω

1
n
n

1
1− ε

|vk|
)q′)

dx

≤
∫
B(x,r0)

exp
(( n2

n− 1
ω

1
n
n

|vk|
||∇vk||(n,q)

)q′)
dx ≤ C .

Therefore we can use uk → 0 a.e. and the Vitali convergence theorem for equiintegrable sequences
of functions to obtain (5.5) with rx = r0

2 . Thus, we also have (5.3) and (5.4).
STEP 3. (convergence in measures)

Fix an arbitrary test function ψ ∈ C(Ω̄) and let ε > 0. There exists η > 0 such that

(5.8) |ψ(x)− ψ(x0)| < ε

2 max(c, 1)
whenever x ∈ Ω̄ and |x− x0| < η .

We have that∣∣∣∫
Ω̄

ψ d(cδx0)−
∫

Ω

ψ
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx
∣∣∣

=
∣∣∣cψ(x0)−

∫
Ω

ψ
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx
∣∣∣

≤
∫

Ω\B(x0,η)

|ψ|
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx

+
∫
B(x0,η)

|ψ − ψ(x0)|
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx+

+ |ψ(x0)| ·
∣∣∣c− ∫

B(x0,η)

(
exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx
∣∣∣

= I1 + I2 + I3 .

By (5.3) and the fact that supΩ |ψ| < ∞, there exists k1 ∈ N such that I1 < ε for k > k1.
Furthermore, on making use of (5.4) and (5.8), we obtain

I2 =
∫
B(x0,η)

|ψ − ψ(x0)|
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx

≤ ε

2 max(c, 1)

∫
B(x0,η)

(
exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx→ ε

2
c

max(c, 1)
.

Therefore we can find k2 > k1 such that I2 < ε for k > k2. Finally, owing to (5.4), there exists
k3 > k2 such that I3 < ε for k > k3. Thus,

lim
k→∞

∫
Ω̄

ψ d(cδx0)−
∫

Ω

ψ
(

exp
(( n2

n− 1
ω

1
n
n |uk|

)q′)
− 1
)
dx = 0,

and (1.15) follows. �



MOSER-TYPE INEQUALITIES IN LORENTZ-SOBOLEV SPACES 9

6. Proof of Theorem 1.4(ii)

Proof of Theorem 1.4(ii): boundedness. Fix p < A−1. Since Ω̄ is compact and we consider functions
vanishing outside Ω, it is enough to show that for every x ∈ Ω̄, there is a radius rx > 0 such that

(6.1)
∫
B(x,rx)

exp
(( n2

n− 1
ω

1
n
n p|uk|

)q′)
dx ≤ C for every k ∈ N .

Let us prove this property. Fix x ∈ Ω̄. Let ε > 0 be so small that

(6.2) (1 + ε)p < (1− ε)A−1 .

First, we observe from the definition of the number A that there are k0 ∈ N and r0 > 0 such that

(6.3) |||∇uk|χB(x,r0)||(n,q) ≤ (1 + ε)A for every k > k0 .

Let ψ be a smooth function such that 0 ≤ ψ ≤ 1, ψ ≡ 0 on Rn \B(x, r0) and ψ ≡ 1 on B(x, r02 ). Let
us set vk = pψuk. Hence vk are W0L

n,q-functions vanishing outside B(x, r0). Our aim is to show
that there is k1 > k0 such that

(6.4) ||∇vk||(n,q) ≤ 1 for every k > k1 .

We have ∇vk = pψ∇uk+puk∇ψ. Next, since uk ⇀ 0 in W0L
n,q(Ω), we also have uk → 0 in Ln,q(Ω).

We infer that puk∇ψ → 0 in Ln,q(Ω), since maxx∈Rn |∇ψ(x)| is finite. Now, (6.2), (6.3) and the
triangle inequality yield that we can find k1 > k0 such that for every k > k1 we have

||∇vk||(n,q) = ||pψ∇uk + puk∇ψ||(n,q) ≤ ||pψ∇uk||(n,q) + ||puk∇ψ||(n,q)
≤ pA(1 + ε) + ε ≤ (1− ε) + ε = 1

and (6.4) is proved. Hence for every k > k1 we have by (1.10)∫
B(x,

r0
2 )

exp
(( n2

n− 1
ω

1
n
n p|uk|

)q′)
dx =

∫
B(x,

r0
2 )

exp
(( n2

n− 1
ω

1
n
n |vk|

)q′)
dx

≤
∫
B(x,r0)

exp
(( n2

n− 1
ω

1
n
n |vk|

)q′)
dx ≤ C .

For the remaining finite number of indexes we use the Trudinger-type embedding (1.8). Thus, we
see that we can set rx = r0

2 to obtain (6.1) and we are done. �

Proof of Theorem 1.4(ii): sharpness. Let us define a function u ∈W0L
n,q(B(3R)) by

u(x) =

{
L for 0 ≤ |x| ≤ 2R
L(3− |x|) for 2R ≤ |x| ≤ 3R ,

where L > 0 is a small number specified below. Next, for every k ∈ N we set

uk = u+Aw 1
k
∈W0L

n,q(B(3R)) ,

where the functions w 1
k

come from (3.6). We plainly have uk → u a.e. in B(3R) and thus it is easy
to prove that uk ⇀ u in W0L

n,q(B(3R)).
Next, since ||∇Aw 1

k
||(n,q) = A < 1, the constant L could have been chosen so small that

||∇uk||(n,q) ≤ ||∇Aw 1
k
||(n,q) + ||∇u||(n,q) ≤ A+ CL ≤ 1 .

Furthermore, by (3.6) and (3.8), we obtain

sup
x∈B̄(3R)

lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(x,r))∗∗(t)

)q
dt
) 1

q

= lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇uk|χB(r))∗∗(t)

)q
dt
) 1

q

= A lim
r→0+

lim sup
k→∞

(∫ ∞
0

(
t

1
n−

1
q (|∇w 1

k
|χB(r))∗∗(t)

)q
dt
) 1

q

= A .
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Finally, by (3.7), we have for every p ≥ A−1∫
B(3R)

exp
(( n2

n− 1
ω

1
n
n p|uk|

)q′)
dx ≥

∫
B(R)

exp
(( n2

n− 1
ω

1
n
n A
−1|uk|

)q′)
dx

=
∫
B(R)

exp
(( n2

n− 1
ω

1
n
n A
−1L+

n2

n− 1
ω

1
n
n |w 1

k
|
)q′) k→∞→ ∞ .

Thus, we are done. �

7. Proof of Theorem 1.4(iii)

We start with some preliminary work. First, if v is a W0L
n,q-function with supp v ⊂ Ω, we can

use (2.1) and Hölder’s inequality to obtain for every s ∈ (0, | supp v|)

(7.1)

v∗(s) ≤ n− 1

n2ω
1
n
n

∫ | supp v|

s

|∇v|∗∗(r)r−
n−1

n dr

≤ n− 1

n2ω
1
n
n

(∫ | supp v|

s

(
r

1
n−

1
q |∇v|∗∗(r)

)q
dr

) 1
q
(∫ | supp v|

s

(
r

1
q−1
) q

q−1
dr

) 1
q′

≤ n− 1

n2ω
1
n
n

(∫ | supp v|

s

(
r

1
n−

1
q |∇v|∗∗(r)

)q
dr

) 1
q
(∫ |Ω|

s

r−1 dr

) 1
q′

=
n− 1

n2ω
1
n
n

(∫ | supp v|

s

(
r

1
n−

1
q |∇v|∗∗(r)

)q
dr

) 1
q

log
1
q′
( |Ω|
s

)
.

Second, let us introduce the truncation operators TL and TL acting on any function v : Ω 7→ R.
They are defined by

TL(v) = min{|v|, L} sign(v) and TL(v) = v − TL(v) .

Our aim is to prove the following result.

Proposition 7.1. If ε > 0 and the assumptions of Theorem 1.4(iii) are satisfied, then there is L > 0
and k0 ∈ N such that for every k > k0∫ | suppTL(uk)|

0

t
q
n−1(|∇TL(uk)|∗∗(t))q dt ≤ 1− (1− ε)

∫ ∞
0

t
q
n−1(|∇u|∗∗(t))q dt .

We decompose the proof of Proposition 7.1 into several lemmata. Fix ε ∈ (0, 1
2 ). We start with

the following constructions.
First, by the absolute continuity of the Lebesgue integral, we can find η2 ∈ (0, | supp |∇u|∗|) so

small that

(7.2)
∫ η2

0

t
q
n−1(|∇u|∗∗(t))q dt ≤ ε

∫ ∞
0

t
q
n−1(|∇u|∗∗(t))q dt .

Next, since Ln,q is continuously embedded into L1, we can also use the absolute continuity of the
Lebesgue integral to obtain η1 ∈ (0, η2) so small that

(7.3)
∫ η1

0

|∇u|∗(t) dt ≤ ε
∫ η2

0

|∇u|∗(t) dt .

Further, let τ > 0 be so small that

(7.4)
∫ |Ω|

0

τ dt ≤ ε
∫ η2

0

|∇u|∗(t) dt .

To simplify our notation, let us define σ ∈ (0, |Ω|] by

(7.5) σ = sup{t ∈ (0, |Ω|) : |∇u|∗(t) > τ} .

Next, we chose the truncation level L > 0.
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Lemma 7.2. If L > 0 is large enough, then

(7.6) |{x ∈ Ω : |uk(x)| > L}| < η1 for every k ∈ N

and

(7.7)
∫ ∞

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt ≥ (1− ε)

∫ ∞
0

t
q
n−1(|∇u|∗∗(t))q dt .

Proof. Estimate (7.6) easily follows from the assumption ‖∇uk‖(n,q) ≤ 1, k ∈ N, the continuous
embedding of W0L

n,q into Ln,q and from the Chebyshev inequality.
When proving (7.7), it is enough to realize that u = TL(u) +TL(u) and thus it is enough to show

that we can make ||∇TL(u)||(n,q) arbitrarily small via a suitable choice of very large L. But this
is easy, since we can use Ω =

⋃
m∈N(Ω ∩ {|u| < m}) and the absolute continuity of the Lebesgue

integral of (t
1
n−

1
q |∇u|∗(t))q ∈ L1((0,∞)) to show that the quasi-norm ||∇TL(u)||n,q can be made as

small as we wish. Hence, by (1.5), the norm ||∇TL(u)||(n,q) is also as small as we wish. �

Now, when the constant L is chosen, we decompose the interval [η1, σ] into finite number of
subintervals choosing m ∈ N and {aj}mj=0 such that η1 = a0 < a1 < a2 < · · · < am = σ and

(7.8) |∇TL(u)|∗ ∈ [(1− ε)|∇TL(u)|∗(aj), |∇TL(u)|∗(aj)] on [aj , aj+1)

(the non-increasing rearrangement is continuous from the right hand side, see [11, Section 1]). We
can also suppose that the points aj are chosen in such a way that for each number j = 1, . . . ,m− 1
such that a0 6= aj 6= am we have

(7.9)
∣∣∣{x ∈ Ω: |∇TL(u)|(x) = |∇TL(u)|∗(aj)

}∣∣∣ = 0 .

Let us define the sets Gj , j = 0, . . . ,m − 1, to be the sets whose points are sent to each interval
(aj , aj+1) when computing |∇TL(u)|∗. In particular, if (7.9) holds for every j = 0, . . . ,m, then we
simply set

Gj =
{
x ∈ Ω: |∇TL(u)|(x) ∈

(
|∇TL(u)|∗(aj+1), |∇TL(u)|∗(aj)

)}
, j = 0, . . . ,m− 1

and we have

(7.10) |Gj | = aj+1 − aj for every j = 0, . . . ,m− 1 .

Otherwise, it is still not difficult to see that the sets Gj can be chosen to be measurable, disjoint,
satisfying (7.10), {

|∇TL(u)| ∈
(
|∇TL(u)|∗(aj+1), |∇TL(u)|∗(aj)

)}
⊂ Gj

and {
|∇TL(u)| ∈

[
|∇TL(u)|∗(aj+1), |∇TL(u)|∗(aj)

]}
⊃ Gj .

Finally, we define the following modification of |∇TL(u)|∗∗

(7.11) |∇TL(u)|�(t) =
1
t

∫ t

0

|∇TL(u)|∗(s)χ(η1,σ)(s) ds for t > 0 .

Notice that with the above definitions the following identities hold

(7.12)

∫ ∞
0

t
q
n−1(|∇TL(u)|�(t))q dt =

∫ ∞
0

t
q
n−1−q

(∫ t

0

|∇TL(u)|∗(s)χ(η1,σ)(s) ds
)q
dt

=
∫ ∞
η1

t
q
n−1−q

(∫ t

η1

|∇TL(u)|∗(s)χ(η1,σ)(s) ds
)q
dt

=
∫ ∞
η1

t
q
n−1−q

(∫ t−η1

0

(|∇TL(u)|χ⋃m−1
j=0 Gj

)∗(s) ds
)q
dt .



12 ROBERT ČERNÝ

Lemma 7.3. We have for every k ∈ N∫ η1

0

t
q
n−1(|∇TL(uk)|∗∗(t))q dt+

∫ ∞
η1

t
q
n−1−q

(∫ t−η1

0

|∇TL(uk)|∗(s) ds
)q
dt

≤
∫ ∞

0

t
q
n−1(|∇uk|∗∗(t))q dt .

Proof. The estimate follows from the inequalities∫ t

0

|∇TL(uk)|∗(s) ds ≤
∫ t

0

|∇uk|∗(s) ds for every t ∈ (0, η1)

and ∫ t−η1

0

|∇TL(uk)|∗(s) ds ≤
∫ t

0

|∇uk|∗(s) ds for every t ∈ (η1,∞) .

Both inequalities are obvious. �

Lemma 7.4. There is k0 ∈ N such that for every k > k0 and every t > 0 we have

(7.13)
∫ t

0

(|∇TL(uk)|χ⋃m−1
j=0 Gj

)∗(s) ds ≥ (1− ε)2

∫ t

0

(|∇TL(u)|χ⋃m−1
j=0 Gj

)∗(s) ds .

Proof. First, let us show that for every j = 0, . . . ,m− 1 there is k̃j ∈ N such that for every k > k̃j
we have

(7.14)
∫ t

0

(|∇TL(uk)|χGj )∗(s) ds ≥ (1− ε)2

∫ t

0

(|∇TL(u)|χGj )∗(s) ds for every t > 0 .

The assumption uk ⇀ u in W0L
n,q(Ω) can be used to obtain that TL(uk) ⇀ TL(u) in W0L

n,q(Ω)
(indeed, {TL(uk)} is a bounded sequence, hence it has a weakly convergent subsequence and the
convergence a.e. implies that the weak limit has to be TL(u)). This implies ∇TL(uk) ⇀ ∇TL(u)
in Ln,q(Ω). Hence ∇TL(uk) ⇀ ∇TL(u) in Ln,q(Gj) for each j (indeed, the dual space to Ln,q(Ω)
is Ln

′,q′(Ω) where the simple functions are dense, hence it is enough to consider only characteris-
tic functions as the test-functions and thus each such a test-function for the weak convergence in
Ln,q(Gj) is also a test-function for the weak convergence in Ln,q(Ω)). Furthermore, we also have
∇TL(uk) ⇀ ∇TL(u) in L1(Gj). Hence the weak lower semicontinuity of the L1-norm yields that
there is k̃j such that∫

Gj

|∇TL(uk)| dx ≥ (1− ε)
∫
Gj

|∇TL(u)| dx for every j and every k > k̃j .

Thus∫ |Gj |

0

(|∇TL(uk)|χGj )∗(s) ds =
∫
Gj

|∇TL(uk)| dx

≥ (1− ε)
∫
Gj

|∇TL(u)| dx = (1− ε)
∫ |Gj |

0

(|∇TL(u)|χGj )∗(s) ds .

On one hand, this proves (7.14) for every t ≥ |Gj |. On the other hand, using the definition of Gj
and (7.8) we obtain from above∫ |Gj |

0

(|∇TL(uk)|χGj
)∗(s) ds ≥ (1− ε)

∫ |Gj |

0

(|∇TL(u)|χGj
)∗(s) ds

≥ (1− ε)2

∫ |Gj |

0

|∇TL(u)|∗(aj) ds .

Now, since (|∇TL(uk)|χGj
)∗ is non-increasing on (0, |Gj |) and |∇TL(u)|∗(aj) ≥ (|∇TL(u)|χGj

)∗(s)
for every s ∈ (0, |Gj |), we easily infer that for every t ∈ (0, |Gj |)∫ t

0

(|∇TL(uk)|χGj
)∗(s) ds ≥ (1− ε)2

∫ t

0

|∇TL(u)|∗(aj) ds ≥ (1− ε)2

∫ t

0

(|∇TL(u)|χGj
)∗(s) ds .

This completes the proof of (7.14).
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Next, the proof of (7.13) follows from (7.14) by induction. Indeed, if t ∈ (0, am−a0] (it is enough
to consider this case only, since in the case t > am − a0 =

∑m−1
j=0 |Gj |, the integrals are the same as

if t = am − a0) and if ` ∈ N ∪ {0}, ` < m− 1, is such that

∑̀
j=0

|Gj | < t ≤ |
`+1∑
j=0

|Gj | ,

then we have by (7.14) for every k > k0 := max{k̃0, . . . , k̃m−1}

(1− ε)2

∫ t

0

(|∇TL(u)|χ⋃m−1
j=0 Gj

)∗(s) ds

= (1− ε)2

(∫ |G1|

0

(|∇TL(u)|χG1)∗(s) ds+
∫ |G2|

0

(|∇TL(u)|χG2)∗(s) ds

+ · · ·+
∫ t−

∑`
j=0 |Gj |

0

(|∇TL(u)|χG`+1)∗(s) ds

)

≤
∫ |G1|

0

(|∇TL(uk)|χG1)∗(s) ds+
∫ |G2|

0

(|∇TL(uk)|χG2)∗(s) ds

+ · · ·+
∫ t−

∑`
j=0 |Gj |

0

(|∇TL(uk)|χG`+1)∗(s) ds

=
∫ |G1|

0

(|∇TL(uk)|χG1)∗(s) ds+
∫ |G1|+|G2|

|G1|
(|∇TL(uk)|χG2)∗(s− |G1|) ds

+ · · ·+
∫ t

∑`
j=0 |Gj |

(|∇TL(uk)|χG`+1)∗
(
s−

∑̀
j=0

|Gj |
)
ds

≤
∫ t

0

(|∇TL(uk)|χ⋃m−1
j=0 Gj

)∗(s) ds

and thus we are done. �

Lemma 7.5. We have∫ ∞
0

t
q
n−1(|∇TL(u)|�(t))q dt ≥ (1− Cε)

∫ ∞
0

t
q
n−1(|∇TL(u)|∗∗(t))q dt ,

where C > 0 depends on q only.

Proof. We have

(7.15)
∫ ∞

0

t
q
n−1

(
(|∇TL(u)|∗∗(t))q − (|∇TL(u)|�(t))q

)
dt =

∫ η2

0

+
∫ σ

η2

+
∫ ∞
σ

= I1 + I2 + I3 .

Let us estimate each summand on the rightmost side. First, by (7.2), (7.7) and ε < 1
2 we have

(7.16)

I1 ≤
∫ η2

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt

≤
∫ η2

0

t
q
n−1(|∇u|∗∗(t))q dt

≤ ε
∫ ∞

0

t
q
n−1(|∇u|∗∗(t))q dt

≤ 2ε
∫ ∞

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt .
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Next, using (7.11) and the inequality (x+ y)q ≤ xq + q2q−1(yq + xq−1y) valid for every x, y ≥ 0 and
q ≥ 1 we arrive at

I2 =
∫ σ

η2

t
q
n−1−q

((∫ t

0

|∇TL(u)|∗(s) ds
)q
−
(∫ t

η1

|∇TL(u)|∗(s) ds
)q)

dt

≤ q2q−1

∫ σ

η2

t
q
n−1−q

(∫ η1

0

|∇TL(u)|∗(s) ds
)q
dt

+ q2q−1

∫ σ

η2

t
q
n−1−q

(∫ t

η1

|∇TL(u)|∗(s) ds
)q−1(∫ η1

0

|∇TL(u)|∗(s) ds
)
dt

= q2q−1(J1 + J2) .

Next, we use (7.3), (7.7) and ε < 1
2 to obtain

(7.17)

J1 =
∫ σ

η2

t
q
n−1−q

(∫ η1

0

|∇TL(u)|∗(s) ds
)q
dt

≤
∫ σ

η2

t
q
n−1−q

(∫ η1

0

|∇u|∗(s) ds
)q
dt

≤ εq
∫ σ

η2

t
q
n−1−q

(∫ t

0

|∇u|∗(s) ds
)q
dt

= εq
∫ σ

η2

t
q
n−1(|∇u|∗∗(t))q dt

≤ εq
∫ ∞

0

t
q
n−1(|∇u|∗∗(t))q dt

≤ 2εq
∫ ∞

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt .

Furthermore, the Young inequality yields

J2 =
∫ σ

η2

t
q
n−1−q

(
ε

1
q

∫ t

η1

|∇TL(u)|∗(s) ds
)q−1( 1

ε
q−1

q

∫ η1

0

|∇TL(u)|∗(s) ds
)
dt

≤ q − 1
q

ε

∫ σ

η2

t
q
n−1−q

(∫ t

η1

|∇TL(u)|∗(s) ds
)q
dt+

1
q

∫ σ

η2

t
q
n−1−q

( 1

ε
q−1

q

∫ η1

0

|∇TL(u)|∗(s) ds
)q
dt .

Now, the first integral has a suitable appearance while the second integral can be estimated in the
same way as in (7.17) and thus

J2 ≤
(q − 1

q
ε+

1
q
ε1−q2εq

)∫ ∞
0

t
q
n−1(|∇TL(u)|∗∗(t))q dt .

Hence

(7.18) I2 ≤ q2q−1(J1 + J2) ≤ q2q−1
(

2εq +
q − 1
q

ε+
2
q
ε
)∫ ∞

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt .

It remains to estimate I3. Using (7.11) and the inequality (x+ y)q ≤ xq + q2q−1(yq + xq−1y) again
we arrive at

I3 =
∫ ∞
σ

t
q
n−1−q

((∫ t

0

|∇TL(u)|∗(s) ds
)q
−
(∫ σ

η1

|∇TL(u)|∗(s) ds
)q)

dt

≤ q2q−1

∫ ∞
σ

t
q
n−1−q

(∫ η1

0

|∇TL(u)|∗(s) ds+
∫ t

σ

|∇TL(u)|∗(s) ds
)q
dt

+ q2q−1

∫ ∞
σ

t
q
n−1−q

(∫ t

η1

|∇TL(u)|∗(s) ds
)q−1(∫ η1

0

|∇TL(u)|∗(s) ds+
∫ t

σ

|∇TL(u)|∗(s) ds
)
dt .

Now, we have by (7.3) (recall t ≥ σ ≥ η2)

(7.19)
∫ η1

0

|∇TL(u)|∗(s) ds ≤
∫ η1

0

|∇u|∗(s) ds ≤ ε
∫ t

0

|∇u|∗(s) ds
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and by (7.4) and (7.5)

(7.20)
∫ t

σ

|∇TL(u)|∗(s) ds ≤
∫ t

σ

τ ds ≤ ε
∫ η2

0

|∇u|∗(s) ds ≤ ε
∫ t

0

|∇u|∗(s) ds .

Notice that in (7.19) and (7.20) we have estimated the left hand sides by the same quantity. Hence
a careful inspection of the procedure leading to the estimate of I2 shows, that we can use the same
approach to estimate I3. In particular, we obtain the following version of (7.18)

(7.21) I3 ≤ q2q−1
(

22qεq +
q − 1
q

2qε+
1
q
ε1−q22qεq

)∫ ∞
0

t
q
n−1(|∇TL(u)|∗∗(t))q dt .

Finally, the proof follows from (7.15), (7.16), (7.18) and (7.21). �

Proof of Proposition 7.1. It is enough to establish the following chain of inequalities
(7.22)∫ | suppTL(uk)|

0

t
q
n−1(|∇TL(uk)|∗∗(t))q dt

≤
∫ η1

0

t
q
n−1(|∇TL(uk)|∗∗(t))q dt

≤
∫ ∞

0

t
q
n−1(|∇uk|∗∗(t))q dt−

∫ ∞
η1

t
q
n−1−q

(∫ t−η1

0

|∇TL(uk)|∗(s) ds
)q
dt

≤ 1−
∫ ∞
η1

t
q
n−1−q

(∫ t−η1

0

(|∇TL(uk)|χ⋃m−1
j=0 Gj

)∗(s) ds
)q
dt

≤ 1− (1− ε)2

∫ ∞
η1

t
q
n−1−q

(∫ t−η1

0

(|∇TL(u)|χ⋃m−1
j=0 Gj

)∗(s) ds
)q
dt

= 1− (1− ε)2

∫ ∞
0

t
q
n−1(|∇TL(u)|�(t))q dt

≤ 1− (1− ε)2(1− Cε)
∫ ∞

0

t
q
n−1(|∇TL(u)|∗∗(t))q dt

≤ 1− (1− ε)3(1− Cε)
∫ ∞

0

t
q
n−1(|∇u|∗∗(t))q dt .

Let us prove (7.22). The first inequality follows from (7.6). The second inequality follows from
Lemma 7.3. In the third inequality we have used the assumption ||∇uk||(n,q) ≤ 1 and a trivial
estimate. The fourth inequality follows from Lemma 7.4. The fifth relation is an equality following
from (7.12). The sixth is an inequality which follows from Lemma 7.5 and the last inequality follows
from (7.7).

Hence we have proven (7.22). Since the constant C depending on q only is irrelevant, we are
done. �

Proof of Theorem 1.4(iii): boundedness. Suppose that p < P . We fix p1, p2 ∈ (p, P ) such that
p1 < p2. Next, we fix ε > 0 so small that

(7.23)
1
p2
≥
(

1− (1− ε)||∇u||q(n,q)
) 1

q

.

The existence of such ε is obvious if ||∇u||(n,q) = 1, otherwise we use the fact that

1
p2

>
1
P

=
(

1− ||∇u||q(n,q)
) 1

q

.

From the definition of TL(uk) we observe that |uk(x)| ≤ |TL(uk)(x)|+L for every x ∈ Ω and thus

u∗k(s) ≤ TL(u∗k)(s) + L = (TL(uk))∗(s) + L for every s ∈ (0, |Ω|) .
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Thus, we can use (7.1), Proposition 7.1, (7.23) and p1 < p2 to obtain s0 ∈ (0, |Ω|) such that we have
for every s ∈ (0, s0] and every k > k0

u∗k(s) ≤ L+ (TL(uk))∗(s)

≤ L+
n− 1

n2ω
1
n
n

(∫ | suppTL(uk)|

0

r
q
n−1

(
|∇TL(uk)|∗∗(r)

)q
dr

) 1
q

log
1
q′
( |Ω|
s

)
≤ L+

n− 1

n2ω
1
n
n

(
1− (1− ε)‖∇u‖q(n,q)

) 1
q

log
1
q′
( |Ω|
s

)
≤ L+

n− 1

n2ω
1
n
n

1
p2

log
1
q′
( |Ω|
s

)
≤ n− 1

n2ω
1
n
n

1
p1

log
1
q′
( |Ω|
s

)
.

Thus, we obtain for every every k > k0∫ |Ω|
0

exp
(( n2

n− 1
ω

1
n
n p|u∗k|

)q′)
ds ≤

∫ s0

0

( |Ω|
s

)( p
p1

)q′

ds+
∫ |Ω|
s0

( |Ω|
s0

)( p
p1

)q′

ds ≤ C .

For the remaining finite number of indexes we can use (1.8). Thus, we are done. �

Proof of Theorem 1.4(iii): sharpness of P . Fix arbitrary θ ∈ (0, 1). We define a function u ∈
W0L

n,q(B(3R)) by

u(x) =

{
L for 0 ≤ |x| ≤ 2R
L(3− |x|) for 2R ≤ |x| ≤ 3R ,

where L > 0 is such that

θq = ||∇u||q(n,q) =
∫ |B(3R)\B(2R)|

0

t
q
n−1Lq dt+

∫ ∞
|B(3R)\B(2R)|

t
q
n−1−qLq|B(3R) \B(2R)|q dt .

We have

(7.24) P =
(

1− ||∇u||q(n,q)
)− 1

q

= (1− θq)−
1
q .

We are going to show that for any p > P , we can construct a sequence {uk} ⊂W0L
n,q(B(3R)) such

that

(7.25) uk ⇀ u , ‖∇uk‖(n,q) ≤ 1 for every k large enough , uk → u a.e. in (B(3R))

and

(7.26)
∫
B(3R)

exp
(( n2

n− 1
ω

1
n
n p|uk|

)q′)
dx

k→∞→ ∞ .

To show this, fix p > P . We set uk = u + 1
pw 1

k
∈ W0L

n,q(B(3R)), k ∈ N, where the functions
w 1

k
∈W0L

n,q(B(R)) come from (3.6).
Let us prove (7.25) and (7.26). Concerning (7.25), the weak convergence and the convergence

a.e. are obvious. Let us prove the estimate of the norm. Since 1
pq + θq < 1 (see (7.24)), we can find

ε > 0 so small that

(7.27)
1
pq

+ (1 + ε)qθq + 2ε ≤ 1 .

We want to prove that if k ∈ N is large enough, then

I :=
∫ ∞

0

t
q
n−1(|∇uk|∗∗(t))q dt ≤ 1 .

Fix k ∈ N. We decompose the integral I setting

I = I1 + I2 + I3 =
∫ a1

0

+
∫ a2

a1

+
∫ ∞
a2

,
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where the numbers a1, a2 are chosen in the following way

a1 = sup{t > 0: |∇uk|∗(t) > L} ,
a2 = sup{t > 0: |∇uk|∗(t) ≥ L} .

Let us also define the numbers J1, J2, J3, J4 > 0 by

(7.28)

1
pq

=
∥∥∥1
p
∇w 1

k

∥∥∥q
(n,q)

=
∫ ∞

0

t
q
n−1

(1
p
|∇w 1

k
|∗∗(t)

)q
dt

=
∫ a1

0

+
∫ ∞
a1

= J1 + J2

and (it is easy to see that a2 − a1 = |B(3R) \B(2R)|)

(7.29) θq = ||∇u||q(n,q) =
∫ ∞

0

t
q
n−1(|∇u|∗∗(t))q dt =

∫ a2−a1

0

+
∫ ∞
a2−a1

= J3 + J4 .

We plainly have

(7.30) I1 = J1 .

Let us estimate I2. Notice, that by (3.3) there are 0 < C1 < C2 (independent of k) such that

(7.31) C1 log−
n
q (k) ≤ a1 ≤ C2 log−

n
q (k) .

Thus, using (3.3) again∫ a1

0

1
p
|∇w 1

k
|∗(s) ds ≤ C log−

1
q (k)

∫ a1

0

s−
1
n ds ≤ C log−

1
q (k)a1− 1

n
1

≤ C log−
1
q (k) log−

n
q (1− 1

n )(k) = C log−
n
q (k) .

Now

I2 =
∫ a2

a1

t
q
n−1

(1
p
|∇uk|∗∗(t)

)q
dt

=
∫ a2

a1

t
q
n−1−q

(∫ a1

0

1
p
|∇w 1

k
|∗(s) ds+

∫ t

a1

Lds
)q
dt

≤
∫ a2

a1

t
q
n−1−q

(
C log−

n
q (k) + Lt

)q
dt .

We apply the estimate (x+ y)q ≤ xq + q2q−1(xq−1y+ yq) valid for every x, y ≥ 0 and q ≥ 1 together
with (7.31) to obtain for k large enough
(7.32)

I2 ≤
∫ a2

a1

t
q
n−1Lq dt+ C

∫ a2

a1

t
q
n−2Lq−1 log−

n
q (k) dt+ C

∫ a2

a1

t
q
n−1−q log−n(k) dt

≤
(
J3 +

∫ a2

a1

(t
q
n−1 − (t− a1)

q
n−1)Lq dt

)
+ C log−

n
q (k)

∣∣∣[t q
n−1

]a2

a1

∣∣∣+ C log−n(k)
∣∣∣[t q

n−q
]a2

a1

∣∣∣
≤ (J3 + ε) + C

(
log−

n
q (k) + log−

n
q (k)a

q
n−1
1

)
+ C

(
log−n(k) + log−n(k)a

q
n−q
1

)
≤ J3 + ε+ C

(
log−

n
q (k) + log−

n
q (k) log−

n
q ( q

n−1)(k)
)

+ C
(

log−n(k) + log−n(k) log−
n
q ( q

n−q)(k)
)

≤ J3 + 2ε .

Now, let us estimate I3. Using (3.3) we obtain for k large enough∫ | supp∇w 1
k
|

0

1
p
|∇w 1

k
|∗(s) ds ≤ C log−

1
q (k)

∫ ωn

0

s−
1
n ds ≤ C log−

1
q (k) .
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Hence we have for k large enough

(7.33)

I3 =
∫ ∞
a2

t
q
n−1(|∇uk|∗∗(t))q dt

≤
∫ ∞
a2

t
q
n−1−q

(∫ | supp∇w 1
k
|

0

1
p
|∇w 1

k
|∗(s) ds+

∫ | supp∇u|

0

|∇u|∗(s) ds
)q
dt

≤
∫ ∞
a2

t
q
n−1−q

(
C log−

1
q (k) +

∫ |B(3R)\B(2R)|

0

|∇u|∗(s) ds
)q
dt

≤
∫ ∞
a2

t
q
n−1−q

(
(1 + ε)

∫ a2−a1

0

|∇u|∗(s) ds
)q
dt

≤ (1 + ε)qJ4 .

Here we used the fact that a1 → 0 as k → ∞. Now, from (7.30), (7.32), (7.33), (7.28), (7.29)
and (7.27) we infer

I = I1 + I2 + I3 ≤ J1 + J3 + 2ε+ (1 + ε)qJ4 ≤
1
pq

+ (1 + ε)qθq + 2ε ≤ 1 .

Finally, we use (3.7) to obtain∫
B(3R)

exp
(( n2

n− 1
ω

1
n
n p|uk|

)q′)
dx

≥
∫
B(R)

exp
(( n2

n− 1
ω

1
n
n p
(
L+

1
p
w 1

k

))q′)
dx

≥
∫
B(R)

exp
(( n2

n− 1
ω

1
n
n pL+

n2

n− 1
ω

1
n
n w 1

k

)q′)
dx

k→∞→ ∞ .

This is (7.26) and we are done. �

Proof of Theorem 1.4. The property A ∈ [0, 1] follows from the assumption ||∇uk||(n,q) ≤ 1, k ∈ N.

Statements (i), (ii) and (iii) have already been proved. The convergence of exp(( n2

n−1ω
1
n
n |uk|)q

′
)

in L1(Ω) in the cases (ii) and (iii) follows from the Vitali convergence theorem for equiintegrable

sequences of functions and the uniform boundedness of || exp(( n2

n−1ω
1
n
n p|uk|)q

′
)||L1(Ω) with p > 1. �

Proof of Theorem 1.3. This theorem is actually Theorem 1.4(iii). �

8. Concluding remarks

It is a natural question to ask what happens to our results if we replace the norm (1.4) by a bit
smaller norm

||u|| :=

{
||t

1
n−

1
q u∗∗(t)||Lq((0,|Ω|)) for q <∞

supt∈(0,|Ω|) t
1
nu∗∗(t) for q =∞ .

It can be seen that all our results have the same statements as when considering the norm (1.4) up
to integrating over (0, |Ω|) in the definition of the quantity A now. Some details are given below.

Results (1.10) and (1.11). These results have the same statement as before. Indeed, on one hand,
when proving the boundedness, in our key estimate (2.1) we always integrate over the interval (t, |Ω|)
only. On the other hand, the old Moser functions are still admissible when proving the sharpness of
the borderline exponent, since we work with a smaller norm.

Theorem 1.4(i). In the definition of the quantity A we integrate over (0, |Ω|) now. The rest of the
statement and the proof are the same as before up to using the new norm, the new version of A and
the new version of (1.10).
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Theorem 1.4(ii). Again, it is enough to use the new norm, the new version of A and the new
version of (1.10) in the proof of the boundedness. In the proof of the sharpness, the functions
from (3.6) have to be normalized with respect to the new norm. Since the new norm is smaller than
the original one, we plainly have (3.7) also for the new functions. Thus, the construction follows the
same lines as before.

Theorem 1.4(iii) (and Theorem 1.3). The statement is the same as before and the proof re-
quires minor changes only. This is not quite obvious since changing the norm influences the size
of P . Nevertheless, the reason why integrating over (|Ω|,∞) is irrelevant rests upon the fact that
the borderline exponent in Moser-type inequalities is determined by the behavior of concentrating
sequences (these sequences behave in the same way as in (3.8) and thus the integrals over (|Ω|,∞)
tend to zero).
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[7] R. Černý, A. Cianchi and S. Hencl, Concentration-compactness principle for Moser-Trudinger inequalities: new
results and proofs, Ann. Mat. Pura Appl. 192 no. 2 (2013), 225–243.
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