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Abstract. Let X be a Banach space. Using derivatives in the sense of vector
distributions, we show that the space DC([0, 1], X) of all d.c. mappings from
[0, 1] into X, in a natural norm, is isomorphic to the space Mbv([0, 1], X) of
all vector measures with bounded variation. The same is proved for the space
BDCb((0,∞), X) of all bounded d.c. mappings with a bounded control function.
The result for the space DC([0, 1],R) of all continuous d.c. functions was (es-
sentially) proved by M. Zippin (2000) by a quite different method. The space
BDCb((0,∞),R) consists of all differences of two bounded convex functions. In-
ternal characterizations of its members were given by O. Böhme (1985), but our
characterization of its Banach structure is new.

1. Introduction

If C is a convex subset of a (real) normed linear space, then f : C → R is called
a d.c. function (DC function, or a delta-convex function) if it can be represented as
a difference of two continuous convex functions on C. In [19], the notion of a d.c.
function was extended to the notion of a d.c. mapping between arbitrary Banach
spaces (see Definition 2.1 below) and a theory of such mappings was developed (see
Introduction in [10] for a brief review).

For functions of several variables no satisfactory internal characterization of d.c.
functions is known. However, internal characterizations of (special) d.c. functions
on intervals in R were given in [14], [3] and [21]. Our main results partly generalize
the results of [3] and [21] to the case of d.c. mappings; some of them are new also
in the case of d.c. functions.

Functions which are differences of two Lipschitz convex functions on [a, b] are
characterized in [14] (as functions with bounded convexity). A generalization of
this result to the case of d.c. mappings is given in [20]. Internal characterizations of
d.c. mappings F defined on open intervals are also well-known (see [20, Theorem B]).
Here we present a new characterization (Theorem 3.1 below) which deals with the
second distributional derivative D2F and provides a generalization of the classical
characterization of d.c. functions on open intervals (see [15, p. 54]).
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In [3], several internal characterizations of functions which are differences of two
bounded convex functions on (0,∞) are given. We consider the corresponding set
BDCb((0,∞), X) of bounded d.c. mappings from (0,∞) to X having a bounded
control function, and give internal characterizations of these mappings.

The space K[0, 1] of differences of (possibly discontinuous) convex functions on
[0, 1] was considered in [21]. Using the theory of L1(µ) preduals it is proved that
K[0, 1] equipped with a specific norm (which is equivalent to a natural norm on
K[0, 1]) is isometric to the dual space C(F )∗, where F = {−1} ∪ [0, 1] ∪ {2}. We
give an analogue of Zippin’s result for d.c. mappings. Namely, we prove (see The-
orem 5.11) that if X is a Banach space, then the space DC([0, 1], X) of all d.c.
mappings from [0, 1] to X, equipped with a certain norm (which is equivalent to a
natural norm on DC([0, 1], X)), is isometric to the space Mbv([0, 1], X) of all vec-
tor measures with bounded variation. Consequently, the space DC([0, 1], X∗) is
isomorphic to the dual space C([0, 1], X)∗.

Moreover, we prove (see Theorem 5.14) that the space BDCb((0,∞), X) (in a
natural norm) is also isomorphic to the space Mbv([0, 1], X). This result is new also
in the case X = R.

Note that our main idea leading to results on the structure of the Banach spaces
DC([0, 1], X) and BDCb((0,∞), X) is based on considering the second distributional
derivative of mappings belonging to these spaces and is quite different from the main
idea of [21]. Our method is relatively easy in the case of d.c. functions (X = R),
but in the general case it needs a number of results on vector measures and vectors
distributions, which are collected in Preliminaries.

2. Preliminaries

2.1. Basic notation.
Throughout the paper, all normed linear and Banach spaces will be real spaces.

By an integral of a real (resp. vector) function we mean the Lebesgue (resp. Bochner)
integral. If it is not specified otherwise, the integral is taken with respect to the one-

dimensional Lebesgue measure. We use the standard convention that
∫ b
a f := −

∫ a
b f

if b < a.
If M ⊂ A ⊂ R and f : A→ X are given, then we define the variation of f on M

as

V (f,M) := sup
{∑n

i=1 ‖f(xi−1)− f(xi)‖
}
,

where the supremum is taken over all (xi)
n
i=0 ⊂ M such that x0 < x1 < · · · < xn.

(We set V (f,M) := 0, if M is empty or a singleton.) We say that f has bounded
variation on M , provided V (f,M) <∞.

For a, b ∈ R, we denote V b
a f := V (f, [a, b]) if a < b, V b

a f := −V a
b f if b < a,

and V b
a f := 0 if a = b. Further, for a ∈ R, set V∞a f := V (f, [a,∞)). Obviously,

V∞a f = limx→∞ V
x
a f .

For basic well-known properties of the variation of a vector function, see, e.g.,
[12] and [6]. In particular, we will use consequences of the additivity of variation
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(see [6, (P3) on p. 263]):

(1) V (f,M) = V (f,M ∩ (−∞, t]) + V (f,M ∩ [t,∞)), if t ∈M.

As usual, for f as above we denote ‖f‖∞ = supx∈A ‖f(x)‖.
In the present article, we use the definition of d.c. mappings from [19] also for

mappings defined on a non-open convex set:

Definition 2.1. Let X,Y be normed linear spaces, C ⊂ X a convex set, and
F : C → Y a continuous mapping. We say that F is d.c. (or “delta-convex”, or
DC) if there exists a continuous (necessarily convex) function f : C → R such that
y∗ ◦ F + f is convex on C whenever y∗ ∈ Y ∗, ‖y∗‖ ≤ 1. In this case we say that f
controls F , or that f is a control function for (of) F .

Remark 2.2. Similarly as in [19], we have the following facts.

(a) A real function F on C is a d.c. function iff it is d.c. in the sense of
Definition 2.1. Indeed, if F = g − h where g, h are continuous and con-
vex then f := g + h is a control function of F ; and if f controls F then
F = 1

2(F + f)− 1
2(f − F ) is a d.c. function.

(b) If Y = Rn, and F = (F1, . . . , Fn), then F is d.c. iff all functions Fi are d.c.

Let us make the following agreement: in the rest of this section, I ⊂ R will be an
open interval, and X a Banach space.

2.2. Vector measures.
There are two possibilities for defining X-valued measures on I: measures as

σ-additive set functions ([7], [9]), and measures as continuous linear operators on
Cc(I), the space of continuous functions with compact support ([2], [5], [11]). We
are going to follow the first possibility.

Let B(I) be the Borel σ-algebra on I, and Bc(I) the field of those B ∈ B(I)
whose closure B is a compact subset of I. We shall need the following two classes
of X-valued measures on I.

By Mbv(I,X) we mean the class of all X-valued vector measures on B(I) with
bounded variation. So µ ∈Mbv(I,X) means that µ : B(I)→ X is σ-aditive and

|µ|(B) := sup
{∑n

i=1 ‖µ(Bi)‖
}
<∞ (B ∈ B(I)),

where the supremum is taken over all finite Borel decompositions {B1, . . . , Bn} of
B.

The definition of Mlbv(I,X), the class of X-valued vector measures on Bc(I) with
“locally bounded variation”, is obtained in the same way by everywhere writing
Bc(I) instead of B(I).

Recall that, for µ ∈Mbv(I,X) or µ ∈Mlbv(I,X), the variation |µ| is a nonnegative
finite measure on B(I) or Bc(I), respectively.

Observation 2.3. Given µ ∈ Mlbv(I,X), then its variation |µ| admits a natural
extension to a measure |µ| : B(I)→ [0,∞], given by

|µ|(B) := sup
{
|µ|(B̃) : B̃ ∈ Bc(I), B̃ ⊂ B

}
.
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If, in addition, |µ|(I) <∞, then µ has a unique extension to a measure µ : B(I)→
X, and this extension belongs to Mbv(I,X); see [7, p. 62, Theorem 1] (in which K,
C, µ, m are our B(I), Bc(I), |µ|, µ, respectively). So, any measure µ ∈ Mlbv(I,X)
such that |µ|(I) <∞ can be considered as an element of Mbv(I,X).

2.3. Multiplication of a vector measure by a function.
Let µ ∈ Mlbv(I,X). If θ : I → R is a locally bounded and Borel measurable

function, then it is possible to define the integrals
∫
B θ dµ ∈ X, B ∈ Bc(I), as in [9,

pp. 5-6]. Moreover, it is easy and well-known that

(2)
∥∥∫

B θ dµ
∥∥ ≤ ∫B |θ| d|µ| (B ∈ Bc(I))

(e.g., this can be seen as a special case of [7, p. 142, 12] for E = R, F = X).
Now, we can define θµ : Bc(I)→ X by

(3) (θµ)(B) =
∫
B θ dµ .

Remark 2.4. Let µ, θ be as above, B ∈ Bc(I), x∗ ∈ X∗. By [9, p. 6],

(4) x∗
(∫

B
θ dµ

)
=

∫
B
θ d(x∗ ◦ µ).

Consequently, x∗ ◦ θµ = θ(x∗ ◦ µ). This fact and the well-known scalar case easily
imply that:

(a) θµ is σ-additive on Bc(I);
(b) the mapping θ 7→ θµ is linear;
(c) θ1(θ2µ) = (θ1θ2)µ if θ1, θ2 are locally bounded and Borel measurable on I.

We need also the following easy (probably known) fact for which we have not
found any reference.

Lemma 2.5. Let µ and θ be as above. Then θµ ∈Mlbv(I,X) and

(5) |θµ|(B) =

∫
B
|θ| d|µ| (B ∈ Bc(I)).

Proof. By Remark 2.4, θµ is σ-additive. Let {B1, . . . , Bn} be a Borel decomposi-
tion of B ∈ Bc(I). By (2),

∑n
1 ‖(θµ)(Bj)‖ =

∑n
1 ‖
∫
Bj
θ dµ‖ ≤

∑n
1

∫
Bj
|θ| d|µ| =∫

B |θ| d|µ|. This shows that θµ ∈Mlbv(I,X) and the inequality “≤” in (5) holds.
Now, fix B ∈ Bc(I) and ε > 0. Let {Jn} be a countable disjoint covering of R

by intervals of length ε. Let {Bn} ⊂ B(I) be a countable disjoint covering of B,
such that Bn ⊂ θ−1(Jn) (n ∈ N). For each n, fix cn ∈ Jn \ {0}; moreover, let
{Bn,1, . . . , Bn,mn} be a Borel decomposition of Bn such that

|µ|(Bn) ≤
∑mn

j=1 ‖µ(Bn,j)‖+ ε|cn|−1|µ|(Bn) .
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Then∫
B |θ| d|µ| =

∑
n

∫
Bn
|θ| d|µ| ≤

∑
n

(∫
Bn
|cn| d|µ|+ ε|µ|(Bn)

)
=
∑

n |cn||µ|(Bn) + ε|µ|(B) ≤
∑

n

∑mn
j=1 |cn|‖µ(Bn,j)‖ + 2ε|µ|(B)

=
∑

n

∑mn
j=1 ‖

∫
Bn,j

cn dµ‖ + 2ε|µ|(B)

≤
∑

n

∑mn
j=1 ‖

∫
Bn,j

θ dµ‖ + 3ε|µ|(B)

=
∑

n

∑mn
j=1 ‖(θµ)(Bn,j)‖ + 3ε|µ|(B)

≤
∑

n

∑mn
j=1 |θµ|(Bn,j) + 3ε|µ|(B) = |θµ|(B) + 3ε|µ|(B).

Since ε > 0 was arbitrary, the inequality “≥” in (5) follows, and we are done. �

Now, in view of Observation 2.3, the above lemma immediately implies the fol-
lowing

Corollary 2.6. Let µ and θ be as above. Then |θµ|(I) =
∫
I |θ| d|µ|. In particular,

θµ ∈Mbv(I,X) if and only if
∫
I |θ| d|µ| <∞.

2.4. Banach spaces of vector measures with bounded variation.
Let X be a Banach space, B ⊂ R a nonempty Borel set. By Mbv(B,X) we mean

the vector space of all Borel X-valued vector measures with bounded variation on B.
Thus a mapping µ : B(B) → X belongs to Mbv(B,X) if and only if µ is σ-additive
and ‖µ‖Mbv

:= |µ|(B) < ∞. It is well known that ‖ · ‖Mbv
is a complete norm on

Mbv(B,X). Throughout the paper, the space Mbv(B,X) will be always considered
in this norm.

In the last section, we shall use the following fact.

Lemma 2.7. Let X be a Banach space, I ⊂ R an open interval, and A = {a1, . . . , an}
⊂ R \ I a finite set of cardinality n ≥ 0. Then the Banach space Mbv([0, 1], X) is
isometric to any of the spaces

(6) Mbv(I ∪A,X) and Mbv(I,X)⊕1

(
n⊕
i=1

X

)
1

,

where the last space is the `1-direct sum of Mbv(I,X) and n copies of X.

Proof. It is clear that the formula

Φ(µ) :=
(
µ|B(I) , µ({a1}) , . . . , µ({an})

)
, µ ∈Mbv(I ∪A,X),

defines a linear isometry between the two spaces from (6).
Since I is homeomorphic to (0, 1), the spaces Mbv(I,X) and Mbv

(
(0, 1), X

)
are

isometric. So we can suppose I = (0, 1).
Let ψ : (0, 1) ∪ A → [0, 1] be a bijection such that both ψ and ψ−1 are Borel

measurable. To construct such a ψ, it suffices to fix an infinite countable set N ⊂
(0, 1) and define ψ piecewise as: the identity on (0, 1) \N , and a bijection of N ∪A
onto N ∪ {0, 1}. Now, the mapping Ψ, defined by

Ψ(µ)(B) := µ(ψ−1(B)), B ∈ B([0, 1]), for µ ∈Mbv ((0, 1) ∪A,X) ,

is clearly a linear isometry of Mbv ((0, 1) ∪A,X) onto Mbv([0, 1], X). �
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We shall need also the following theorem which follows from a result by I. Singer
[17] (see also [7, Corollary 2, p. 387]) and the observation that each µ ∈Mbv([0, 1], X∗)
is regular since the real nonnegative measure |µ| on [0, 1] is regular. As usual,
C([0, 1], X) denotes the Banach space of all continuous X-valued functions on [0, 1],
in the supremum norm.

Theorem 2.8 (Singer [17]). Let X be a Banach space. Then the Banach space
Mbv([0, 1], X∗) is isometric to the dual space C([0, 1], X)∗.

2.5. Vector distributions.
Let D(I) be the space of real-valued C∞-functions on I with compact support

and, given a compact set K ⊂ I, let DK(I) = {ϕ ∈ D(I) : supp(ϕ) ⊂ K}.
An X-valued distribution on I can be defined (see [15, p. 30, and Théorème

III, p. 66], cf. also [16]) as a linear mapping T : D(I) → X such that each of its
restrictions

T |DK(I) : DK(I)→ X (K ⊂ I compact)

is a continuous linear operator if DK(I) is equipped with the locally convex topology

induced by the pseudonorms Np(ϕ) := ‖ϕ(p)‖∞ (p = 0, 1, 2, . . .).
Any locally Bochner integrable vector function G : I → X induces the distribu-

tion TG(ϕ) =
∫
I ϕGdx, since for each ϕ ∈ DK(I) clearly ‖

∫
I ϕGdx‖ ≤ ‖ϕ‖∞ ·∫

K ‖G(x)‖dx. As usual, we say (slightly incorrectly) that TG is a function.
More generally, let µ ∈Mlbv(I,X) and ϕ ∈ D(I). Fix a, b ∈ I so that supp(ϕ) ⊂

(a, b), and denote by µ̃ the restriction of µ to B((a, b)). Since µ̃ ∈Mbv((a, b), X), we
can define the integral T (ϕ) :=

∫
I ϕdµ̃ as in [9, pp. 5-6]. Since clearly the integral

T (ϕ) does not depend on the choice of (a, b), we can denote it by
∫
I ϕdµ or Tµ(ϕ).

Then Tµ is an X-valued distribution, since ‖
∫
I ϕdµ‖ ≤ ‖ϕ‖∞ · |µ|((a, b)) (see [9,

p. 6]). Moreover, if µ1, µ2 ∈ Mlbv(I,X) are distinct then Tµ1 6= Tµ2 ; indeed, this
follows from the well-known real case (see [15]) by observing that

(7) Tx∗◦µ = x∗ ◦ Tµ for each x∗ ∈ X∗ and µ ∈Mlbv(I,X),

which follows immediately from [9, p. 6]. So, as usual in the classical case, we can
identify µ and Tµ, and we shall simply say that Tµ is a measure (from Mlbv(I,X)).

2.6. Distributional derivatives.
Let T be an X-valued distribution on I. The distributional derivative of T is the

X-valued distribution DT on I, defined by DT (ϕ) = −T (ϕ′), ϕ ∈ D(I). The second
distributional derivative of T is D2T := D(DT ). The following fact is well-known
(for scalar distributions see [15, p. 51]).

Fact 2.9. Let T be an X-valued distribution on I, such that DT = 0. Then T is
(given by) a constant vector function.

Proof. For each x∗ ∈ X∗, we have D(x∗ ◦T ) = x∗ ◦DT = 0, and hence x∗ ◦T = Tgx∗
where gx∗(x) ≡ cx∗ ∈ R. Thus

(8) x∗(T (ϕ)) = cx∗

∫
I
ϕ (ϕ ∈ D(I)).
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Fix some ϕ0 ∈ D(I) such that
∫
I ϕ0 = 1. Then (8) implies that cx∗ = x∗(T (ϕ0)),

x∗ ∈ X∗, and hence, by (8) again, T (ϕ) = T (ϕ0)
∫
I ϕ , ϕ ∈ D(I). This means that

T = TG for G(x) ≡ T (ϕ0). �

Observation 2.10. Let G : I → X be a locally Bochner integrable function, z ∈ I,
and F (x) =

∫ x
z G (x ∈ I). Then DF = G.

Proof. The assertion follows easily by the well-known case X = R. Indeed, for each
x∗ ∈ X∗, we have x∗ ◦DF = D(x∗ ◦ F ) = x∗ ◦G. �

The following proposition, which generalizes the well-known real case, comes es-
sentially from [7].

Proposition 2.11.

(a) If G : I → X is a right-continuous vector function with locally bounded
variation, then there exists a unique µ = µG ∈Mlbv(I,X) such that

µ((x, y]) = G(y)−G(x) , x, y ∈ I, x < y.

Moreover, each µ ∈ Mlbv(I,X) is of the form µG for some G, and µG1 =
µG2 if and only if G1 −G2 is constant.

(b) If µ = µG, then

|µ|((x, y]) = V y
x G , x, y,∈ I, x < y.

(c) µG = DG, that is, µG is the distributional derivative of G.

Proof. The proof of (a),(b) for left-continuous (instead of right-continuous) vector
functions follows from [7] (see Chap. III, §17, 2 and 3). Part (c) is well-known for
X = R (see, e.g., [15, p. 53]). The general case reduces to the scalar case by using
(7) and the definition of the distributional derivative; see also [2, p. 46]. �

3. Second distributional derivatives of d.c. mappings on open
intervals

Theorem 3.1. Let I ⊂ R be an open interval, X a Banach space, and F : I → X
a continuous mapping. The following assertions are equivalent.

(i) F is a d.c. mapping.
(ii) The distributional derivative DF is (given by) a vector function of locally

bounded variation.
(iii) The second distributional derivative D2F is a measure from Mlbv(I,X).

Moreover, the mapping D2 : DC(I,X) → Mlbv(I,X) is linear and onto, and its
kernel Ker(D2) coincides with the set of all affine mappings of I into X.

Proof. Assume (i). By [19] or [20], F ′+ is a well-defined X-valued function on I. By
[20, Theorem 3.1] and [20, Proposition 3.4, p. 329], F ′+ is right-continuous and has
locally bounded variation. By [20, Theorem 3.1] we have F (x) = F (z) +

∫ x
z F

′
+, x ∈
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I, and so DF = F ′+ by Observation 2.10. Hence we can apply Proposition 2.11 to
conclude that D2F = D(F ′+) is a measure from Mlbv(I,X), that is, (iii) holds.

Assume (iii), i.e., D2F = µ ∈ Mlbv(I,X). By Proposition 2.11, there exists a
right-continuous vector function G of locally bounded variation such that DG = µ.
Since D(G − DF ) = 0, Fact 2.9 implies that G − DF is a constant function, and
hence (ii) holds.

Assume (ii). Fix some z ∈ I and define F̃ (x) =
∫ x
z (DF ) . These Bochner integrals

exist; indeed, the integrand is bounded, and continuous outside an at most countable

set (see, e.g., [6, Theorem 4.1(b)]). Now, F̃ is locally d.c. by [20, Theorem 3.1], and

hence d.c. on I by [19, Theorem 1.20]. Since D(F − F̃ ) = 0 by Observation 2.10,

we obtain that F − F̃ is a constant function, and hence (i) holds.
Now it is easy to see that D2 is onto. Indeed, given µ ∈Mlbv(I,X), then µ = DG

for some right-continuous vector function G of locally bounded variation (Proposi-

tion 2.11). Then, as above, the corresponding vector function F̃ (x) :=
∫ x
z G is d.c.,

and D2F̃ = DG = µ.
Finally, if F ∈ DC(I,X) is such that D2F = 0 then, by Fact 2.9, DF is a constant

function, equal to some c ∈ X. Define H(x) := xc, x ∈ I, and notice that DH is the
constant function c by Observation 2.10. Since D(F −H) = 0, another application
of Fact 2.9 gives existence of b ∈ X such that F (x) = b + xc almost everywhere in
I, and hence everywhere in I by continuity. This completes the proof. �

Notice that the above proof gives the following

Corollary 3.2. Let I,X, F be as in Theorem 3.1 and satisfy the conditions (i)–(iii)
therein. Then F ′+ is a right-continuous vector function on I with locally bounded
variation, and DF = F ′+.

Corollary 3.3. Let I,X be as in Theorem 3.1, and z ∈ I. Then the mapping
Φ: DC(I,X) → X × X ×Mlbv(I,X), given by Φ(F ) =

(
F (z), F ′+(z), D2F

)
, is a

linear bijection.

Proof. The assertion easily follows from the following reasoning, based on Theo-

rem 3.1. Given (p, q, µ) ∈ X×X×Mlbv(I,X), there exists F̃ ∈ DC(I,X) such that

D2F̃ = µ. Adding to F̃ a suitable X-valued affine function, we easily obtain the
(clearly) unique F ∈ DC(I,X) such that Φ(F ) = (p, q, µ). �

4. Characterizations of d.c. mappings via one-sided derivatives

4.1. D.c. mappings on arbitrary intervals.

Lemma 4.1. Let I ⊂ R be an open interval and f : I → R a continuous function
such that the unilateral derivatives f ′±(x) exist at each x ∈ I. If f+(x) ≤ f ′−(y)
whenever x < y belong to I, then f is convex.

Proof. Suppose that f is not convex. There exist three points a < b < c in I such
that

f(c)− f(a)

c− a
<
f(b)− f(a)

b− a
.
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Consider the function g(x) := f(x)− f(c)−f(a)
c−a (x−a). An easy calculation shows that

g(a) = g(c) < g(b). Applying Proposition 2 in [4, Chapter 1, §2] to the intervals [a, b]
and [b, c], we obtain two points x ∈ (a, b) and y ∈ (b, c) such that g′+(x) > 0 > g′−(y).
But this implies that f ′+(x) > f ′−(y), which contradicts the assumptions. �

Theorem 4.2. Let X be a Banach space, I ⊂ X an arbitrary interval, F : I → X
a continuous mapping, and z ∈ int I. Then the following assertions are equivalent.

(i) F is a d.c. mapping.
(ii) F ′+(t) exists for each t ∈ int I, and fz(x) :=

∫ x
z (V t

zF
′
+) dt is finite for each

x ∈ I.

Moreover, if (i),(ii) are satisfied, then

(9) F (x) = F (z) +

∫ x

z
F ′+

for each x ∈ I, and given a function f : I → R, we have the equivalence

(10) f controls F ⇔ f − fz is continuous and convex on I.

Proof. Let (i) hold. By [19] or [20], F ′+(t) exists throughout int I. For each interval
[c, d] ⊂ int I containing z, F has clearly a Lipschitz control function on [c, d]. By
[20, Theorem 3.1(c)], fz controls F on [c, d]. Since every locally convex function on
an open interval is convex, we easily get that fz controls F on int I.

Now suppose that s := sup I ∈ I. Let ϕ be a control function for F on I. By
adding an affine function, we can suppose that ϕ(z) = 0 (= fz(z)) and ϕ′+(z) =
(fz)

′
+(z). For each t ∈ (z, s), we can apply [20, Theorem 3.1(b,d)] on [z, t] to get

(fz)
′
−(t)− (fz)

′
+(z) ≤ ϕ′−(t)−ϕ′+(z), which implies (fz)

′
−(t) ≤ ϕ′−(t). Therefore, for

each x ∈ (z, s), we have

fz(x) =

∫ x

z
(fz)

′
− ≤

∫ x

z
ϕ′− = ϕ(x).

Since fz is nondecreasing on [z, s], we obtain

fz(s) = lim
x→s−

fz(x) ≤ lim
x→s−

ϕ(x) = ϕ(s) <∞,

and hence fz(s) is finite.
If i := inf I ∈ I, we proceed in a quite similar way. In this case, we consider

a control function ψ for F such that ψ(z) = 0 and ψ′−(z) = (fz)
′
−(z). For any

t ∈ (i, z), we get −(fz)
′
+(t) ≤ −ψ′+(t). Integration gives fz(x) ≤ ψ(x) whenever

x ∈ (i, z). Since fz is nonincreasing on [i, z], we obtain that fz(i) is finite, which
completes the proof of (ii).

Now suppose that (ii) holds. Then V t
zF
′
+ is clearly finite for each t ∈ int I, that

is, F ′+ has locally bounded variation on int I. Using the obvious fact that fz − fc is
an affine function on I, we obtain by [20, Theorem 3.1] that fz controls F on any
compact interval [c, d] ⊂ int I, and therefore on int I. Since F and fz are continuous
on I, it follows easily that fz controls F on I, and hence (i) holds.

The implication “⇐” in (10) is obvious. To prove “⇒” , suppose that f controls
F and consider two arbitrary interior points x < y of I. Since fz − fx is affine on I,
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[20, Theorem 3.1(b,d)] gives (fz)
′
−(y)− (fz)

′
+(x) ≤ f ′−(y)− f ′+(x). Consequently,

(f − fz)′+(x) ≤ (f − fz)′−(y).

By Lemma 4.1, the function f − fz is convex on int I and hence, by continuity of f
and fz, also on I.

Finally, the formula F (x) = F (z)+
∫ x
z F

′
+ holds on int I by [20, Theorem 3.1]. Our

aim is to show that it holds on I. Assume that s = sup I ∈ I. Consider an increasing
sequence {xn} in (z, s) such that xn → s. Then the functions Gn := F ′+ · χ[z,xn]

converge to F ′+ pointwise on [z, s) and are Bochner integrable on [z, s]. Moreover,
since ‖Gn(t)‖ ≤ ‖F ′+(z)‖ + V t

zF
′
+ for t ∈ [z, s], the Vector Dominated Convergence

Theorem (see [1, Theorem 11.45]) implies that so is also F ′+. If i = inf I ∈ I, an
analogous reasoning leads to the conclusion that F ′+ is Bochner integrable on [i, z]
as well. Now, the desired formula holds on the whole I by continuity. �

Remark 4.3. Condition (10) shows that fz is in a sense a “minimal” (up to an
affine function) control function of F . More precisely, (10) easily implies that a real
function g on I has the property that, for each real function f on I,

f controls F ⇔ f − g is continuous and convex

if and only if g − fz is an affine function on I.

4.2. D.C. mappings with a bounded control function.

Theorem 4.4 (Case I = (a, b)). Let a < z < b be real numbers, X a Banach space,
and F : (a, b) → X a continuous mapping. Let fz be defined as in Theorem 4.2.
Then the following are equivalent.

(i) F is d.c. with a bounded control function.
(ii) F ′+ exists on (a, b), and fz is continuously extendable to [a, b].

(iii) F ′+ exists on (a, b), and the integral
∫ b
a (V x

z F
′
+) dx converges.

Moreover, if the above conditions are satisfied, then F is continuously extendable to
[a, b].

Proof. To prove (i)⇒ (ii), suppose that f is a bounded control function for F . By
(10), there exists a convex function g on (a, b) such that f = fz + g. Since g is
bounded from below, we have that fz is bounded from above. So, since fz is clearly
nondecreasing on (z, b) and nonincreasing on (a, z), we obtain (ii). Since fz controls
F , (ii) implies (i). Finally, since the function v(x) := V x

z F
′
+ is nonnegative on [z, b),

nonpositive on [a, z), and fz(x) =
∫ x
z v, it is easy to see that (ii) is equivalent to

(iii).
Now suppose that (i)-(iii) hold. The vector function F ′+, being the pointwise limit

of the functions Hn(x) := n
(
F (x+ 1

n)− F (x)
)

(where we set F (x) := 0 for x ≥ b),
is (strongly) measurable on (a, b); see [1, §11]. Since clearly

‖F ′+(y)− F ′+(x)‖ ≤ v(y)− v(x) for a < x < y < b,

we obtain ‖F ′+(x)‖ ≤ ‖F ′+(z)‖+ |v(z)|+ |v(x)| for x ∈ (a, b). So the integrals
∫ a
z F

′
+

and
∫ b
z F
′
+ converge. Now, (9) easily implies that F is continuously extendable to

[a, b]. This completes the proof. �
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Theorem 4.5 (Case I = (a,∞)). Let a < z be real numbers, X a Banach space,
and F : (a,∞)→ X a continuous mapping. Then the following are equivalent.

(i) F is d.c. with a bounded control function.
(ii) F ′+(x) exists for each x ∈ (a,∞), and the integral

∫∞
a (V∞t F ′+) dt converges.

(iii) F ′+(x) exists for each x ∈ (a,∞), and the function fz from Theorem 4.2 is
bounded on (a, z) and has an asymptote at ∞.

Moreover, if the above conditions are satisfied, then the following limits exist in X:

Fa := lim
x→a+

F (x) , F ′∞ := lim
x→∞

F ′+(x) , q := lim
x→∞

(
F (x)− xF ′∞

)
.

In particular, F has an asymptote at ∞.

Proof. To prove (i) ⇒ (ii), suppose that f is a bounded control function for F .
Since f is convex, it is easy to see that f is nonincreasing and has a finite limit at
∞. By (10), there there exists a convex function g on (a,∞) such that f = fz + g.
Set v(x) := V x

z F
′
+. We know that fz(x) =

∫ x
z v, and there exits a nondecreasing

function w on (a,∞) such that g(x) = g(z) +
∫ x
z w (see [14, §12, Theorem A]). We

claim that L := limx→∞ v(x) = V∞z F ′+ ∈ R. Indeed, if L = ∞, choose z̃ > z such
that v(z̃) > 1 − w(z). Then, for each x > z̃, we have fz(x) ≥ (1 − w(z))(x − z̃)
and g(x) ≥ g(z) + w(z)(x − z). This easily implies that limx→∞ f(x) = ∞, which

is a contradiction. Similarly, since fz ≥ 0 on (z,∞), we easily see that L̃ :=
limx→∞w(x) ∈ R. Since clearly

ϕ(x) :=

∫ x

z

(
L− v(t)

)
dt = o(x) , ψ(x) :=

∫ x

z

(
L̃− w(t)

)
dt = o(x) , as x→∞,

and the function

f(x) = L(x− z)− ϕ(x) + g(z) + L̃(x− z)− ψ(x)

is bounded on (a,∞), we obtain L + L̃ = 0, and hence ϕ(x) + ψ(x) = g(z) −
f(x). Since ϕ and ψ are nonnegative and nondecreasing on [z,∞), we obtain that
limx→∞ ϕ(x) ∈ R, that is, the integral

∫∞
z (L−v(x)) dx =

∫∞
z (V∞x F ′+) dx converges.

Applying Theorem 4.4 to f on (a, b), where b = z + 1, we obtain that
∫ a
z v(x) dx

converges. Consequently
∫ a
z (L − v(x)) dx =

∫ a
z (V∞x F ′+) dx converges and so (ii)

follows.
To prove (ii)⇒ (iii), suppose that (ii) holds. Then clearly L := V∞z F ′+ ∈ R and∫ a

z v =
∫ a
z (L− V∞x F ′+) dx converges, and therefore fz is bounded on (a, z]. Further,∫∞

z (L− v(x)) dx converges, i.e.,

lim
x→∞

(
L(x− z)−

∫ x

z
v

)
= lim

x→∞

(
Lx− Lz − fz(x)

)
∈ R.

Consequently, fz has an asymptote at ∞, and (iii) is proved.
If (iii) holds, then F is controlled by fz by Theorem 4.2. Moreover, if y(x) = kx+r

is an asymptote of fz at ∞, then f(x) := fz(x)− kx is a bounded control function
of F . So, the equivalence of (i)-(iii) is proved.

Now suppose that (i)-(iii) hold. Since limx→∞ v(x) = L ∈ R and clearly

(11) ‖F ′+(y)− F ′+(x)‖ ≤ v(y)− v(x) for a < x < y <∞,
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the completness of X implies that the limit F ′∞ exists in X. The vector function F ′+,

being the pointwise limit of the functions Hn(x) := n
(
F (x + 1

n) − F (x)
)

(n ∈ N),
is (strongly) measurable on (z,∞); see [1, §11]. Consequently, since (11) implies
that ‖F ′∞ − F ′+(x)‖ ≤ L − v(x) for x > z, we obtain convergence of the integral∫∞
z (F ′∞ − F ′+(x)) dx =: p ∈ X. By (9), we obtain

lim
x→∞

[
(x− z)F ′∞ −

(
F (x)− F (z)

)]
= p ,

which implies that the limit q exists in X.
Applying Theorem 4.4 to f on (a, b), where b = a + 1, we obtain that the limit

Fa exists in X, which completes the proof. �

Remark 4.6. Theorem 4.5 immediately implies that a function F : (0,∞) → R
is a difference of two bounded convex functions (F ∈ D in the notation of [3]) if
and only if F is bounded continuous and the condition (ii) of Theorem 4.5 holds.
This characterization is very similar to a characterization of O. Böhme [3, Section 2]
(D = K0 in the notation therein), which also follows from Theorem 4.5.

Corollary 4.7. Let X be a Banach space, a ∈ R, and F : (a,∞) → X a d.c.
mapping with a bounded control function. Then the function

f̂(x) :=
∫∞
x (V∞t F ′+) dt, x ∈ (a,∞)

is a bounded control function of F such that

(12) f̂ is nonincreasing, lim
x→∞

f̂(x) = 0 and f̂(a+) =

∫ ∞
a

(V∞t F ′+) dt ∈ R.

Further,

(a) a function f : (a,∞)→ R is a bounded control function of F if and only if

f − f̂ is a bounded convex function on (a,∞);
(b) moreover, if f is a bounded control function for F , then

‖f̂‖∞ = f̂(a+) ≤ 2‖f‖∞ .

Proof. f̂ is clearly nonincreasing and, by Theorem 4.5(ii), f̂(a+) ∈ R. Thus (12)
follows.

Fix some z ∈ (a,∞). Let v and L be as in the proof of Theorem 4.5, and fz as

in Theorem 4.2. Then f̂(x) =
∫∞
x (V∞z F ′+ − V t

zF
′
+) dt =

∫∞
x (L− v(t)) dt . We know

that c :=
∫∞
z (L− v) ∈ R (see the proof of Theorem 4.5). Noticing that

(13) f̂(x) = c−
∫ x
z (L− v) = c− L(x− z) + fz(x), x > a,

we have that f̂ − fz is an affine function and thus Remark 4.3 implies that f̂ is a
(bounded) control function for F and (a) holds.

Finally, if f is a bounded control function of F , then the convex function f − f̂
is bounded and hence nonincreasing. Consequently, f(a+)− f̂(a+) ≥ limx→∞(f −
f̂)(x) = limx→∞ f(x), which implies that 0 ≤ f̂(a+) ≤ f(a+) − limx→∞ f(x) ≤
2‖f‖∞. This completes the proof. �

It is easy to see that Theorem 4.5 implies the following.
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Corollary 4.8. Let F : (a,∞)→ X be d.c. with a bounded control function. Then

(i) F is bounded if and only if F ′∞ := limx→∞ F
′
+(x) = 0.

(ii) There exists a unique A = F ′∞ ∈ X such that the function G(x) = F (x) −
xA, x ∈ (a,∞) is a bounded d.c. function with a bounded control function.

5. Spaces of d.c. mappings

5.1. The space BDCb(C,X).
Spaces of d.c. functions were considered in several articles, see, e.g., [18] and [21].

If C is a convex subset of a normed linear space V , we will denote by D̃C(C) the set
of all real d.c. functions on C which can be written as difference of two continuous
convex bounded functions on C. Then the natural norm on D̃C(C) is defined as

‖F‖dc := inf
{
‖g‖∞ + ‖h‖∞ : g, h continuous convex, F = g − h

}
.

We shall see below that this norm is complete. If in the definition of ‖F‖dc we
consider only g ≥ 0, h ≥ 0, then we obtain the definition of the norm ‖F‖dc+.

Considering the functions g̃ := g + c and h̃ := h + c where c = max{‖g‖∞, ‖h‖∞},
we easily see that

‖F‖dc ≤ ‖F‖dc+ ≤ 3‖F‖dc.
Spaces of d.c. mappings (defined on an open convex sets) were studied in [8],

where the natural norm ‖F‖D (see below) was used.

Definition 5.1. Let C be a convex subset of a normed linear space V , and X a
Banach space. We shall denote:

(a) by DC(C,X) the vector space of all d.c. mappings F : C → X;
(b) by DCb(C,X) the vector space of all d.c. mappings F : C → X that admit

a bounded control function.
(c) by BDCb(C,X) the vector space of all bounded d.c. mappings F : C → X

that admit a bounded control function.

We define

|F | := inf
{
‖f‖∞ : f controls F

}
for F ∈ DCb(C,X),

‖F‖D := ‖F‖∞ + |F | for F ∈ BDCb(C,X).

It is elementary to see that ‖ · ‖D is a norm on BDCb(C,X). It is proved in [8]
that this norm is complete. Let us present a short proof of this fact.

Proposition 5.2. The space BDCb(C,X) is a Banach space in the norm ‖ · ‖D.

Proof. Consider a sequence {Fn} in BDCb(C,X) such that
∑∞

n=1 ‖Fn‖D <∞. We
have to show (see, e.g., [13, Lemma 1.22]) that the series

∑∞
n=1 Fn converges in

(BDCb(C,X), ‖ · ‖D). Since
∑∞

n=1 ‖Fn‖∞ <∞, the mapping G :=
∑∞

n=1 Fn : C →
X is well-defined, bounded and continuous. For each n ∈ N, let fn be a control
function of Fn such that ‖fn‖∞ < |Fn|+2−n. Since

∑∞
n=1 ‖fn‖∞ <∞, the function

g :=
∑∞

n=1 fn is bounded and continous. Moreover, g controls G since, for each
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x∗ ∈ SX∗ , x∗ ◦G+g =
∑∞

n=1(x∗ ◦Fn+fn) is clearly convex and continuous. Finally,
since

∑∞
n=N fn controls

∑∞
n=N Fn (N ∈ N), we have∥∥∑∞

n=N Fn
∥∥
D ≤

∑∞
n=N ‖Fn‖∞ +

∑∞
n=N ‖fn‖∞ → 0 as N →∞,

which implies that the series
∑∞

n=1 Fn converges to G in the norm ‖ · ‖D. �

Agreement 5.3. If not specified otherwise, by BDCb(C,X) we always mean the
Banach space (BDCb(C,X), ‖ · ‖D).

The argument of Remark 2.2(a) easily shows that D̃C(C) = BDCb(C,R) and

‖F‖dc ≤ ‖F‖D ≤ 2‖F‖dc for F ∈ D̃C(C).

Consequently, D̃C(C) is a Banach space in the norm ‖ · ‖dc.

Remark 5.4. If −∞ < a < b < ∞, then BDCb((a, b), X) = DCb((a, b), X) by
Theorem 4.4.

5.2. The space DC([0, 1], X).

Lemma 5.5. Let I ⊂ R be an open interval, z ∈ I, and X a Banach space. Given
F ∈ DC(I,X), let fz be as in Theorem 4.2, and let f be an arbitrary control function
of F . Then

(fz)
′
+(x) = V x

z F
′
+ , x ∈ I;(14)

fz(z) = (fz)
′
+(z) = 0 = min fz(I) ;(15)

(fz)
′
+(x) ≤

[
f ′+(x)− f ′+(z)

]
sgn(x− z) , x ∈ I;(16)

fz(x) ≤ f(x)− f(z)− f ′+(z)(x− z) , x ∈ I.(17)

Proof. Since F ′+ is right-continuous by [20, Theorem 3.1] and [20, Proposition 3.4(ii),
p. 329], the function t 7→ V t

zF
′
+ is right-continuous as well (see, e.g., [6, Lemma 5.2(b)]).

This implies (14) in a standard way. Now, (15) is easy. Recall that f − fz is con-
vex by (10). Since (f − fz)

′
+(u) ≤ (f − fz)

′
+(v) whenever u ≤ v belong to I,

we obtain (16). Finally, (17) follows from (15) and the inequality (f − fz)(x) ≥
(f − fz)(z) + (f − fz)′+(z)(x− z), x ∈ I. �

Lemma 5.6. Let I and z be as above. Let f be a bounded convex function on I.
Then

|f ′+(z)| ≤ 2
δ ‖f‖∞

whenever δ > 0 is such that (z − δ, z + δ) ⊂ I.

Proof. For any d ∈ (0, δ), we have f ′+(z) ≤ f(z+d)−f(z)
d ≤ 2‖f‖∞

d and f ′+(z) ≥
f(z)−f(z−d)

d ≥ −2‖f‖∞
d . Thus |f ′+(z)| ≤ 2‖f‖∞

d . Passing to limit as d ↗ δ concludes
the proof. �

Remark 5.7. Obviously, DC([0, 1], X) = BDCb([0, 1], X). Moreover, we can clearly
canonically identify the space DC([0, 1], X) with BDCb((0, 1), X). Indeed, the
mapping G 7→ G|(0,1), G ∈ DC([0, 1], X), is an isometry of

(
DC([0, 1], X), ‖ · ‖D

)
onto

(
BDCb((0, 1), X), ‖ · ‖D

)
. This follows immediately from the facts that each
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F ∈ BDCb((0, 1), X) is continuously extendable to [0, 1] by Theorem 4.4, and the
same clearly holds for each bounded control function of F .

Theorem 5.8 (The space DC([0, 1], X)). Let X be a Banach space, z ∈ (0, 1), and
let fz be as in Theorem 4.2. Then each of the three norms

‖F‖DC := ‖F (z)‖+ ‖F ′+(z)‖+ |F | ,
|||F |||DC := ‖F (z)‖+ ‖F ′+(z)‖+ ‖fz‖∞ ,

‖F‖• := ‖F (z)‖+ ‖F ′+(z)‖+

∫ 1

0
|V t
zF
′
+| dt

on DC([0, 1], X) is equivalent to the norm ‖ · ‖D.

Proof. It is easy to see that ‖ · ‖DC , ||| · |||DC and ‖ · ‖• are positively homogeneous
and subadditive.

Let F ∈ DC([0, 1], X), and let f be a control function of F on [0, 1]. Clearly,
‖F‖DC ≤ |||F |||DC . Using (15), (17) and Lemma 5.6 (and denoting c = 2

δ for some
δ > 0 such that (z − δ, z + δ) ⊂ (0, 1)), we obtain

‖fz‖∞ = max
{
fz(0), fz(1)

}
≤ max

{
f(0)− f(z) + f ′+(z)z , f(1)− f(z)− f ′+(z)(1− z)

}
≤ 2‖f‖∞ + |f ′+(z)| ≤ (2 + c)‖f‖∞ ,

and also

‖F ′+(z)‖ = sup
‖x∗‖=1

{
(x∗ ◦ F + f)′+(z)− f ′+(z)

}
≤ sup
‖x∗‖=1

{
c‖x∗ ◦ F + f‖∞ + c‖f‖∞

}
≤ c‖F‖∞ + 2c‖f‖∞ .

It follows easily that |||F |||DC ≤ A‖F‖D for some constant A > 0 (non depending on
F ). Further, using Theorem 4.2, for x ∈ [0, 1] we have

‖F (x)‖ =
∥∥F (z) +

∫ x
z F

′(t) dt
∥∥

≤ ‖F (z)‖+ ‖F ′+(z)‖ |x− z|+
∣∣ ∫ x
z ‖F

′
+(t)− F ′+(z)‖ dt

∣∣
≤ ‖F (z)‖+ ‖F ′+(z)‖+ |fz(x)|
≤ ‖F (z)‖+ ‖F ′+(z)‖+ (2 + c)‖f‖∞.

Hence ‖F‖∞ ≤ (2 + c)‖F‖DC , which implies that ‖F‖D ≤ (3 + c)‖F‖DC .
Recall that ‖fz‖∞ = max{fz(0), fz(1)}. Moreover,∫ 1

0 |V
t
zF
′
+| dt =

∫ z
0 |V

t
zF
′
+| dt+

∫ 1
z (V t

zF
′
+) dt = fz(0) + fz(1).

Now, the obvious inequalities max{α, β} ≤ α + β ≤ 2 max{α, β} (α, β ≥ 0) give
that ‖ · ‖• is equivalent to ||| · |||DC . �

Lemma 5.9. Let X be a Banach space, and F : (0, 1)→ X a d.c. mapping. Denote
µ := D2F and θ(x) := min{x, 1− x}, x ∈ (0, 1). Then

(18) |θµ|((0, 1)) =
∫ 1

0 θ d|µ| =
∫ 1

0 |V
t

1/2F
′
+| dt .
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Proof. For simplicity denote I = (0, 1) and z = 1
2 . First observe that µ ∈Mlbv(I,X)

by Theorem 3.1 and F ′+ has locally bounded variation on (0, 1) (see Corollary 3.2).
Using Proposition 2.11 with G := F ′+, we obtain |µ|((x, y]) = V y

x F ′+ whenever

x < y belong to I. Consider the product measure space
(
(0, 1)2, η

)
:=
(
(0, 1), |µ|

)
×(

(0, 1), λ
)

where λ is the Lebesgue measure. Using the Fubini theorem for compu-
tation of η(M), where M = {(x, t) ∈ (0, z]× (0, 1) : t < x}, we obtain∫ z

0
|V t
zF
′
+| dt =

∫ z

0
(V z
t F
′
+) dt =

∫ z

0
|µ|((t, z]) dt

= η(M) =

∫
(0,z]

x d|µ|(x) =

∫
(0,z]

θ d|µ| .

Similarly, if M∗ = {(x, t) ∈ (z, 1)× (0, 1) : t ≥ x} then we obtain∫ 1

z
|V t
zF
′
+| dt =

∫ 1

z
(V t
zF
′
+) dt =

∫ 1

z
|µ|((z, t]) dt

= η(M∗) =

∫
(z,1)

(1− x) d|µ|(x) =

∫
(z,1)

θ d|µ| .

Summing up the last two formulas and using Corollary 2.6, we obtain the equalities
(18). �

Theorem 5.10. Let X be a Banach space, and F : [0, 1]→ X a continuous mapping.
Denoting θ(x) := min{x, 1− x}, x ∈ (0, 1), the following assertions are equivalent.

(i) F is d.c.
(ii) D2(F |(0,1)) = µ ∈Mlbv((0, 1), X), and θµ ∈Mbv((0, 1), X).

Moreover, if (i),(ii) are satisfied then

(19) |θµ|((0, 1)) =
∫ 1

0 θ d|µ| =
∫ 1

0 |V
t

1/2F
′
+| dt <∞.

Proof. If (i) or (ii) holds then F |(0,1) is d.c. and so, denoting µ := D2(F |(0,1)), we
obtain by Lemma 5.9

V := |θµ|((0, 1)) =

∫ 1

0
θ d|µ| =

∫ 1

0
|V t

1/2F
′
+| dt .

If (i) holds, then V < ∞ by Theorem 4.4 and so (ii) holds. If (ii) holds then
clearly V < ∞ and so F |(0,1) ∈ DCb((0, 1), X) by Theorem 4.4 and consequently
also F |(0,1) ∈ BDCb((0, 1), X) (see Remark 5.4). Thus (i) holds by Remark 5.7. �

Theorem 5.11. Let X be a Banach space, and z = 1
2 . Then the Banach space

DC([0, 1], X) with the norm

‖F‖• = ‖F (z)‖+ ‖F ′+(z)‖+
∫ 1

0 |V
t
zF
′
+| dt

(which is equivalent to the norm ‖·‖D by Theorem 5.8) is isometric to Mbv([0, 1], X).
In particular, DC([0, 1], X∗) in the norm ‖ · ‖D is isomorphic to the dual space
C([0, 1], X)∗.
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Proof. Consider the `1-sum E := X ⊕1 X ⊕1 Mbv((0, 1), X). If F ∈ DC([0, 1], X),
then we obtain by Theorem 5.10 that D2(F |(0,1)) = µ ∈ Mlbv((0, 1), X) and that
θµ ∈ Mbv((0, 1), X), where θ(x) = min{x, 1 − x}. Thus we can consider the linear
mapping

Ψ: DC([0, 1], X)→ E , Ψ(F ) :=
(
F (z), F ′+(z), θµ

)
.

By Corollary 3.3, Ψ is one-to-one; let us show that it is also onto. So consider an
arbitrary (y0, y1, ν) ∈ E. By Lemma 2.5, µ := (1/θ)ν ∈ Mlbv((0, 1), X). So by
Corollary 3.3 there exists F ∈ DC((0, 1), X) such that F (z) = y0, F ′+(z) = y1,

D2F = µ. By Remark 2.4(c) we have θµ = ν. Since
∫ 1

0 |V
t
zF
′
+| dt = ‖θµ‖Mbv

=

‖ν‖Mbv
by Lemma 5.9, the integral

∫ 1
0 (V t

zF
′
+) dt converges. So F ∈ DCb(I,X) by

Theorem 4.4, and consequently also F ∈ BDCb(I,X) (see Remark 5.4). Thus there

exists F̃ ∈ DC([0, 1], X) with F̃ |(0,1) = F by Remark 5.7. Clearly Ψ(F̃ ) = (y0, y1, ν).

Finally, by Theorem 5.10, ‖Ψ(F̃ )‖E = ‖F (z)‖+ ‖F ′+(z)‖+ ‖θµ‖Mbv
= ‖F (z)‖+

‖F ′+(z)‖+
∫ 1

0 |V
t
zF
′
+| dt = ‖F̃‖•. This shows that Ψ is an isometry. The rest of the

proof follows from Lemma 2.7 and Theorem 2.8. �

5.3. The spaces BDCb((0,∞), X) and DCb((0,∞), X).
Recall that if X is a Banach space then also the space BDCb((0,∞), X) in the

norm ‖ · ‖D is a Banach space.

Theorem 5.12 (The space BDCb((0,∞), X)). Let X be a Banach space, J =
(0,∞), and z ∈ J . Then the formulas

‖F‖BDCb
= ‖F (z)‖+ |F | ,

|||F |||BDCb
= ‖F (z)‖+

∫∞
0 (V∞t F ′+) dt

define two norms on BDCb(J,X) that are equivalent to the norm ‖ · ‖D.

Proof. First, notice that Theorem 4.5 implies the equivalence

F ∈ BDCb(J,X) ⇔ F ∈ DCb(J,X) and F ′∞ := limx→∞ F
′
+(x) = 0 .

The function f̂ from Corollary 4.7, controls F , and |F | ≤ ‖f̂‖∞ = f̂(0+) ≤ 2|F |.
Recall that f̂(0+) =

∫∞
0 (V∞t F ′+) dt. Hence the seminorms ‖ · ‖BDCb

and ||| · |||BDCb

are equivalent, in the sense that each of them is majorized by a multiple of the other
one. We also have ‖F‖BDCb

≤ ‖F‖D.
Now, for x ∈ J and F ∈ BDCb(J,X), the equality (9) and corollaries 4.7 and 4.8

imply

‖F (x)‖ ≤ ‖F (z)‖+
∥∥∫ x

z F
′
+

∥∥ ≤ ‖F (z)‖+
∣∣∫ x
z ‖F

′
+(t)− F ′∞‖ dt

∣∣
≤ ‖F (z)‖+

∣∣∫ x
z (V∞t F ′+) dt

∣∣ = ‖F (z)‖+ |f̂(z)− f̂(x)|

≤ ‖F (z)‖+ f̂(0+) ≤ ‖F (z)‖+ 2|F | .
Consequently, ‖F‖D ≤ 3‖F‖BDCb

, and the proof is complete. �

Theorem 5.13. Let X be a Banach space, J = (0,∞), and F : J → X a continuous

mapping. Denoting θ̂(x) := x, x ∈ J , the following assertions are equivalent.

(i) F is d.c. with a bounded control function.
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(ii) µ := D2F ∈Mlbv(J,X), and θ̂µ ∈Mbv(J,X).

Moreover, if (i),(ii) are satisfied then

(20) |θ̂µ|(J) =
∫
J θ̂ d|µ| =

∫∞
0 (V∞t F ′+) dt .

Proof. Suppose that (i) or (ii) holds. Then we know that µ := D2F ∈ Mlbv(J,X)
by Theorem 3.1, and F ′+ exists on J by Theorem 3.1 and Theorem 4.2. So, to finish
the proof, by Theorem 4.5 it is sufficient to prove (20) under the assumption that
(i) or (ii) holds.

Applying Corollary 3.2 and Proposition 2.11 for G := F ′+ , we obtain V x
t F
′
+ =

|µ|((t, x]) for 0 < t < x < ∞ and so V∞t F ′+ = |µ|((t,∞)) for each t ∈ J . Consider

the product measure space
(
(0,∞)2, η

)
:=
(
(0,∞), |µ|

)
×
(
(0,∞), λ

)
, where λ is

the Lebesgue measure. Using the Fubini theorem for computation of η(M), where
M := {(x, t) ∈ (0,∞)2 : t < x}, we obtain∫ ∞

0
V∞t F ′+ dλ(t) =

∫ ∞
0
|µ|
(
(t,∞)

)
dλ(t) = η(M)

=

∫ ∞
0

x d|µ|(x) =

∫
J
θ̂ d|µ| = |θ̂µ|(J),

where the last equality comes from Corollary 2.6. �

Theorem 5.14. Let X be a Banach space, and z > 0. Then the Banach space
BDCb((0,∞), X) in the norm

|||F |||BDCb
= ‖F (z)‖+

∫ ∞
0

(V∞t F ′+) dt

(which is equivalent to the norm ‖·‖D by Theorem 5.12) is isometric to Mbv([0, 1], X).
In particular, BDCb((0,∞), X∗) in the norm ‖ · ‖D is isomorphic to the dual space
C([0, 1], X)∗.

Proof. Consider the mapping Ω(F ) := (F (z), θ̂D2F ), F ∈ BDCb((0,∞)) where

θ̂(x) := x, x ∈ (0,∞). By Theorem 5.13, Ω is a mapping into the `1-sum E :=
X⊕1Mbv((0,∞), X), and it is clearly linear. To prove that Ω is onto E, consider an

arbitrary (p, ν) ∈ E. Set µ := (1/θ̂)ν. By Lemma 2.5, µ ∈ Mlbv((0,∞), X) and so

by Corollary 3.3 there exists F̃ ∈ DC((0,∞), X) such that F̃ (z) = p and D2F̃ = µ.

Since θ̂µ = ν by Remark 2.4(c), Theorem 5.13 implies that F̃ ∈ DCb((0,∞), X). By

Theorem 4.5, (F̃ )′∞ := limx→∞(F̃ )′+(x) ∈ X. Setting F (x) := F̃ (x) − (x − z)(F̃ )′∞
for x ∈ (0,∞), we have F ′∞ := limx→∞ F

′
+(x) = 0 and so F ∈ BDCb((0,∞), X) by

Corollary 4.8. Obviously, Ω(F ) = (p, ν). Since (20) gives |||F |||BDCb
= ‖p‖+‖ν‖, the

mapping Ω is an isometry of BDCb((0,∞), X) onto E.
The rest of the proof follows from Lemma 2.7 and Theorem 2.8. �

It seems that in general there is no natural norm on the vector space DCb(C,X)
(see Definition 5.1). However, in the case C = (0,∞) such natural norm exists.
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Theorem 5.15 (The space DCb((0,∞), X)). Let X be a Banach space, J = (0,∞),
and z ∈ J . For F ∈ DCb(J,X), let F ′∞ = limx→∞ F

′
+(x) (see Theorem 4.5). Then

the formula

‖F‖DCb
= ‖F (z)‖+ ‖F ′∞‖+

∫∞
0 (V∞t F ′+) dt

defines a complete norm on DCb(J,X) which induces on BDCb(J,X) a norm equiv-
alent to ‖ · ‖D. The space DCb(J,X) equipped with the above norm is isometric to
the space Mbv([0, 1], X). In particular, DCb(J,X

∗) is isometric to the dual space
C([0, 1], X)∗.

Proof. Using Remark 4.8 we easily obtain that the mapping

Φ: (BDCb(J,X), ||| · |||BDCb
)⊕1 X → DCb(J,X)

defined by

Φ(G,A)(x) = G(x) + xA, x ∈ (0,∞)

is an algebraic isomorphism. The norm induced on DCb(J,X) by Φ is clearly just
‖ · ‖DCb

, and so it is complete. By Theorem 5.14, DCb(J,X) with this norm is
isometric to Mbv([0, 1], X)⊕1X, which is isometric to Mbv([0, 1], X) by Lemma 2.7.
The last part follows from Theorem 2.8. �

Remark 5.16. It can be shown that the norm ‖ · ‖DCb
is equivalent to the norm

|||F |||DCb
= ‖F (z)‖+ ‖F ′+(z)‖+

∫∞
0 (V∞t F ′+) dt.
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Springer-Verlag, Berlin, 2007.

[6] V.V. Chistyakov, On mappings of bounded variation, J. Dynam. Control Systems 3 (1997),
261–289.

[7] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied
Mathematics, Vol. 95, Pergamon Press, Oxford, 1967.

[8] M. Dostál, Spaces of delta-convex mappings, Thesis, Charles University Prague, 1993.
[9] J. Diestel and J.J. Uhl, Vector Measures, Mathematical Surveys, No. 15, American Mathe-

matical Society, Providence, R.I., 1977.
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