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Abstract. A step-by-step algorithm is given to approximate the least concave majorant of a
function of one real variable. When the function is a piecewise cubic polynomial the result is exact,
up to the error in finding roots of a degree six polynomial. Otherwise, the function may be initially
approximated by a clamped cubic spline. In this case, an estimate of the error in the least concave
majorant is obtained.
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1. Introduction. Fix a real interval I = [A,B] and suppose F is an absolutely
continuous function on I. Denote by F̂ the least concave majorant of F , namely,

F̂ (x) := inf{G(x) : G ≥ F,G concave},
which can be shown to be given by,

F̂ (x) = sup

{
β − x
β − α

F (α) +
x− α
β − α

F (β) : A ≤ α ≤ x ≤ β ≤ B
}
, x ∈ I.

This concave function has application in such diverse areas as Mathematical Eco-
nomics, Statistics, and Abstract Interpolation Theory. See, for example, [3], [2], [6],
[11], [1], [10] and [7].

Our aim in this paper is to give a new algorithm to approximate F̂ , together
with an estimate of the error entailed. If F is given as a continuous, piecewise cubic
polynomial, then the algorithm gives a presentation of the least concave majorant
of F as another continuous, piecewise cubic polynomial. If not, then F may be
approximated by a cubic spline and the least concave majorant of the approximating
function is seen to be a good approximation to F̂ . To estimate the error we use a
known result for the approximation error for cubic splines, from [4], together with a
new result on the level function with respect to Lebesgue measure. See Theorem 5.2
below.

Suppose f is almost everywhere equal to the derivative of an absolutely continuous
function F . The level function fo is defined to be the derivative of F̂ . Note that since
F̂ is concave, it is differentiable almost everywhere and, moreover, fo is non-increasing.
The level function has a simple structure that is the basis for our algorithm: Since F
and F̂ are continuous, the zero set, ZF , of F̂−F is closed. The connected components
of the complement of ZF are intervals open in the relative topology of I, which are
essentially the maximal level intervals (MLIs) of f . (See Section 3 for the precise
definition of an MLI of f .) Then,

fo(x) :=

{
f(x), x ∈ ZF

1
b−a

∫ b

a
f, x ∈ (a, b), an MLI of f .
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2 MARTIN FRANCŮ, RON KERMAN, AND GORD SINNAMON

This function fo plays a key role in the duality theory of Banach function spaces. See
[5], [9], [12], and [8]. The algorithm presented here may also be used to approximate
the level function of a given function f .

We find the least concave majorant of F by finding all the MLIs for f = F ′.
This enables us to compute fo and then, by integration, F̂ . The approach is to use
necessary conditions on MLIs to identify a small set of intervals that includes every
MLI. These intervals are tested and non-MLIs are discarded. The algorithm to do
this is given in the next section and justified in the one following that. It is followed
by a section devoted to proving three lemmas. In Section 5 the error estimates are
established.

2. The Algorithm. Suppose F is a continuous piecewise cubic polynomial on
the interval I = [A,B]. Our object is to compute F̂ , the least concave majorant of
F , and to present it in a similar fashion.

Although we only require it for continuous, piecewise cubic polynomials, the al-
gorithm will work for continuous piecewise polynomials of higher order or even more
general functions. It is sufficient that F be continuous, and that the formulas for each
piece of F permit evaluation of F (x), F ′(x−), F ′(x+), F ′′(x−), and F ′′(x+) at any
point in the interior of I. Note that F ′(x−) = F ′(x+) and F ′′(x−) = F ′′(x+) except
at the partition points.

To avoid having to treat the endpoints of I ≡ [A,B] differently than the other
partition points it is convenient to assign F ′(A−) =∞ and F ′(B+) = −∞.
Step 1. Solve F ′′(x) = 0 to determine all points of inflection of each piece of F and

insert them into the partition. Now F is either convex or concave on each
partition subinterval.

Step 2. Replace each convex part of F by the straight line connecting the endpoints of
its graph. The new F has the same least concave majorant as the original one.
Now F is either strictly concave or else of constant slope on each partition
subinterval.
Designate each partition subinterval on which F is strictly concave as a Type
I1 interval and each of the others as Type I2. Also, designate each partition
point x at which F ′(x+) ≤ F ′(x−) as a Type P1 point and each of the others
as Type P2. Note that the endpoints of I are both Type P1 points.

Step 3. Enumerate all pairs (P,Q), where each of P and Q is either a Type I1 interval
or a Type P1 point, and P is to the left of Q. For each such pair do the
following:

a) If

{
P = [u, v]

Q = [U, V ]

}
, set

{
c = max{F ′(v), F ′(V )}
d = min{F ′(u), F ′(U)}

}
.

If

{
P = [u, v]

Q = b

}
, set

{
c = max{F ′(v), F ′(b+)

d = min{F ′(u), F ′(b−)}

}
.

If

{
P = a

Q = [U, V ]

}
, set

{
c = max{F ′(a+), F ′(V )}
d = min{F ′(a−), F ′(U)}

}
.

If

{
P = a

Q = b

}
, set

{
c = max{F ′(a+), F ′(b+)}
d = min{F ′(a−), F ′(b−)}

}
.

b) If P = [u, v] set a(y) = (F ′P )−1(y), where FP denotes the restriction of F
to P . If P = a set a(y) = a.

c) If Q = [U, V ] set b(y) = (F ′Q)−1(y), where FQ denotes the restriction of F
to Q. If Q = b set b(y) = b.

d) Set ϕ(y) = F (b(y))− F (a(y))− y(b(y)− a(y)).
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e) If c > d, ϕ(c) < 0 or ϕ(d) > 0, then skip 3f and 3g for the current pair
and continue with the next pair at Step 3.

f) Solve ϕ(y) = 0 for c ≤ y ≤ d.
g) Save the triple (a(y), b(y), y) for the y found in 3f and continue with the

next pair at Step 3.
Step 4. For each saved triple (a, b, y) check that F (x) ≤ y(x − a) + F (a), as x runs

through all partition points and all solutions to F ′(x) = y. Discard those
triples that fail.

Step 5. Discard any triple (a, b, y) such that [a, b] ⊆ [ā, b̄] for some other triple (ā, b̄, ȳ).
Step 6. Modify the partition of I: For each (remaining) triple (a, b, y), insert a and

b into the partition and delete any partition points that lie in (a, b). On the
interval [a, b], set F̂ (x) = y(x − a) + F (a). On every other interval in the
modified partition, set F̂ (x) = F (x).

3. Justification. Here we explain and expand on each of the steps of the algo-
rithm, and prove that the algorithm does indeed generate the least concave majorant.

About Step 1: Inserting all solutions of F ′′(x) = 0 as new partition points will
ensure that F does not change concavity on any partition subinterval. If F is piecewise
cubic there will be at most one new point in each of the original partition subintervals.

About Step 2: If F is convex on an interval [u, v] then F lies below the line
segment joining the points (u, F (u)) and (v, F (v)). Since F̂ is concave and passes
above the points (u, F (u)) and (v, F (v)), it lies above the line segment joining them.
Thus, replacing F by this line segment has no effect on its least concave majorant
F̂ . Note that the new F is still continuous and if F was piecewise cubic then it is
still piecewise cubic. (However, if F was a spline, it may lose smoothness at partition
points.)

Before we continue with Step 3, we state three lemmas that are needed to justify
the step. They will be proved in Section 4.

Lemma 3.1. If F is a continuous function on a finite interval I then F̂ is
continuous, it agrees with F on the endpoints of I, and it has constant slope on each
component of the open subset {x ∈ I : F (x) 6= F̂ (x)}.

In view of Lemma 3.1, to describe F̂ completely it is enough to determine all
maximal intervals (of positive length) on which F̂ coincides with some straight line.
We call such intervals maximal level intervals (MLIs). It is clear that each of the
components from Lemma 1 is contained in an MLI. Continuity ensures that each
MLI is a closed interval. Moreover, no two MLIs can intersect in more than a single
point; otherwise F̂ would coincide with a straight line on their union, contradicting
maximality. The next lemma gives some additional properties of MLIs. Recall that
F ′ = f .

Lemma 3.2. If [a, b] is an MLI, then F (a) = F̂ (a), F (b) = F̂ (b),

f(a+) ≤ F (b)− F (a)

b− a
≤ f(a−) and f(b+) ≤ F (b)− F (a)

b− a
≤ f(b−).

The final lemma shows that the search for (endpoints of) MLIs can be restricted
to Type P1 points and Type I1 intervals.

Lemma 3.3. Each endpoint of an MLI is either equal to a Type P1 point or
interior to a Type I1 interval.

About Step 3. According to Lemma 3.3, each MLI must have its left endpoint
on some P and its right endpoint on some Q. Lemma 3.2 provides strong conditions
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on these endpoints. Specifically, if [a, b] is an MLI there must be a y (the slope of the
line `) satisfying,

(3.1) y =
F (b)− F (a)

b− a
, f(a+) ≤ y ≤ f(a−), f(b+) ≤ y ≤ f(b−).

3a) These definitions restrict the range of possible slopes to y ∈ [c, d]. If P =
[u, v], then [u, v] is a Type I1 interval, so F ′ is strictly decreasing on (u, v). Since
a ∈ (u, v), (3.1) implies that y = f(a) and hence f(v) ≤ y ≤ f(u). If P = a we have
f(a+) ≤ y ≤ f(a−), from (3.1). Similar comments applied to Q show that either
f(V ) ≤ y ≤ f(U) or f(b+) ≤ y ≤ f(b−). In all four cases, [c, d] represents the range
of possible y values.

3b) If P is a Type I1 interval let FP denote the piece of F on P . The equation
y = F ′P (a) and the monotonicity of F ′P implies that a(y) = (F ′P )−1(y) is well-defined
on [c, d]. If P = a, then a is independent of y so a(y) = a.

If F is piecewise cubic, then F ′P is a decreasing quadratic and one can easily give
a formula for a(y): If y = F ′P (a) = r1a + r0 then a = (r0 − y)/r1. If y = F ′P (a) =

r2a
2 + r1a+ r0 then a = (−r1 −

√
r21 − 4r2(r0 − y))/(2r2). This choice of solution in

the quadratic formula always gives the root that is on the decreasing portion of the
quadratic.

In the absence of a formula for a(y), the function a(y) may be evaluated by solving
the equation F ′P (a) = y. Since F ′P is strictly decreasing the solution will be unique
for any y ∈ [c, d].

3c) Similar comments to those in 3b apply to Q and the function b(y).
3d) Observe that if y is a root of ϕ, then it will satisfy the first condition of (3.1).
If F is piecewise cubic, then the formulas for a(y) and b(y) from 3b ensure an

algebraic formula for ϕ(y). However, it is not necessary to obtain an algebraic formula
for ϕ(y) in order to carry out the algorithm.

Observe that for y ∈ [c, d], f(b(y)) = f(a(y)) = y, so the derivative of ϕ satisfies

ϕ′(y) =f(b(y))b′(y)− f(a(y))a′(y)− (b(y)− b(a))− y(b′(y)− a′(y))

=a(y)− b(y) < 0.

Thus, ϕ is continuous and strictly decreasing on [c, d].
3e) If c > d there is no possible y value and if the interval [ϕ(d), ϕ(c)] does not

contain zero there is no solution to ϕ(y) = 0. Thus there is no MLI with its left
endpoint in P and its right endpoint in Q.

3f) Continuity and monotonicity of ϕ ensure that there is a unique y ∈ [c, d]
satisfying ϕ(y) = 0. This may be found by a technique adapted to the functions
involved. In the most general case, monotonicity ensures that a binary search may be
carried out, even if an algebraic formula for ϕ is not available. This method does not
require formulas for a(y) and b(y), only the ability to evaluate them at each y ∈ [c, d].

Of course, in many cases a(y) = a and b(y) = b are both constant and then
y = (F (b)− F (a))/(b− a) is immediate. If F is a piecewise cubic, then the formulas
for a and b given in 3b,c ensure that the equation ϕ(y) = 0 may be translated to
a polynomial equation of degree at most six and solved using standard numerical
methods. To see that the solution of ϕ(y) = 0 is also the root of a polynomial of degree
at most six, let Rk = Rk[y] denote the collection of real polynomials in the variable
y, of degree at most k. Then there exist α, β ∈ R1 such that a(y) ∈ R0 + R0

√
α

and b(y) ∈ R0 + R0

√
β. Since FP and FQ are polynomials of degree at most 3,
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FP (a(y)) − ya(y) ∈ R1 + R1
√
α and FQ(b(y)) − yb(y) ∈ R1 + R1

√
β so ϕ(y) = 0

is equivalent to µ1 + µ2
√
α + µ3

√
β = 0 for some µ1, µ2, µ3 ∈ R1. Isolating µ1 and

squaring both sides gives, µ2
1 = µ2

2α + µ2
3β + 2µ2µ3

√
α
√
β. Isolating the term with

square roots and squaring both sides again gives, (µ2
1−µ2

2α−µ2
3β)2 = 4µ2

2µ
2
3αβ. Each

side of the last equation is a polynomial of degree at most 6, in the variable y.
As an example consider the most complicated case, when both P and Q are

intervals in Step 3a and F is a genuine cubic on each interval. That is, suppose that
FP (y) = ky3+ly2+my+n on P = [u, v], with k 6= 0, and FQ(y) = Ky3+Ly2+My+N
on Q = [U, V ], with K 6= 0. Then y is a root of the sextic polynomial,

(µ2
1 − µ2

2α− µ2
3β)2 − 4µ2

2µ
2
3αβ,

where α, β, µ1, µ2, and µ3 are given by,

α = 3ky + l2 − 3km, β = 3Ky + L2 − 3KM, µ2 = − 2α

27k2
, µ3 =

2β

27K2
,

and

µ1 =
1

3

(
L

K
− l

k

)
y +

(
N +

2L3

27K2
− ML

3K

)
−
(
n+

2l3

27k2
− ml

3k

)
.

Obtaining these expressions is routine: Differentiate FP and view F ′P (a) − y = 0 as
a quadratic in a. The discriminant is 2α and the solution given in 3b determines
a. In the same way, use F ′Q(b) − y = 0 to find β and b. Values for µ1, µ2, and µ3

may be read off from the expanded form of ϕ(y) = (FQ(b(y))− yb(y))− (FP (a(y))−
ya(y)) = 0. With the coefficients determined, the sextic can be solved by standard
numerical methods, aided by the knowledge that one of its roots is the unique solution
to ϕ(y) = 0 in the interval [c, d]. Recall that, in this case, c = max{F ′(v), F ′(V )} and
d = min{F ′(u), F ′(U)}. (We do not assert that the sextic itself has a unique root in
[c, d] as squaring may have introduced extraneous roots.)

3g) The interval [a, b] is the only possible candidate for an MLI with its left
endpoint in P and its right endpoint in Q. It is convenient to save the slope y as well
as the endpoints, although the y value could be recovered from a and b using (3.1).

About Step 4: If [a, b] is an MLI, then F̂ will coincide on [a, b] with the line
passing through (a, F (a)) and (b, F (b)). Since F̂ is concave, the entire line will lie
above the graph of F̂ and hence above the graph of F . If this line does not lie above
the graph of F then [a, b] may be discarded. A bit of calculus shows that it is enough
to consider only partition points and solutions to F ′(x) = y when checking that the
line lies above the graph of F .

About Step 5. Discard triples for which [a, b] is not maximal. The remaining
triples correspond exactly to the MLIs: Lemma 3.3 ensures that the search in Step
3 finds a triple corresponding to every MLI. On the other hand, for each remaining
triple (a, b, y), Step 4 guarantees that F̂ coincides with the line y(x − a) + F (a) on
[a, b] and this step ensures maximality.

About Step 6. Since the remaining triples correspond to the MLIs, no two inter-
vals [a, b] obtained from remaining triples can overlap. Lemma 3.1 ensures that this
piecewise presentation of F̂ gives the least concave majorant of F .

4. Proofs of Three Lemmas. Proof of Lemma 3.1. Write I = [A,B]. Since
F̂ is concave, it is continuous on (A,B). The continuity of F on I ensures that for
all ε > 0, there exists a slope m such that the graph of F lies under the line `A(x) =
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m(x − A) + F (A) + ε. But `A is a concave majorant of F , so F (x) ≤ F̂ (x) ≤ `A(x)
for all x ∈ I. Since ε > 0 was arbitrary, F̂ is continuous at A and F̂ (A) = F (A). A
similar argument shows that F̂ is continuous at B and F̂ (B) = F (B).

Since F and F̂ are continuous, {x ∈ I : F (x) 6= F̂ (x)} is an open subset of (A,B)
and its connected components are open intervals. Let (a, b) be one such component
and note that F (a) = F̂ (a) and F (b) = F̂ (b). Let ` be the line through the points
(a, F (a)) and (b, F (b)) and let y be the point at which the continuous function F − `
achieves its maximum value on [A,B]. Since F lies below the line ` + F (y) − `(y),
so does F̂ . In particular, F̂ (y) ≤ F (y) so F̂ (y) = F (y) and hence y 6∈ (a, b). But
F (a) = F̂ (a) and F (b) = F̂ (b) so, by concavity, F̂ lies above ` on [a, b] and below `
off (a, b). Thus F (y) − `(y) ≤ F̂ (y) − `(y) ≤ 0 and so F̂ ≤ ` + F (y) − `(y) ≤ `. In
particular, F̂ lies below ` on [a, b]. It follows that F̂ coincides with the line ` on [a, b]
and hence has constant slope there.

Proof of Lemma 3.2. Suppose F (a) < F̂ (a). Then a is in the interior of I and
there exists a positive ε such that a − ε is in I, a + ε < b, and both F̂ (a − ε) and
F̂ (a + ε) are larger than the maximum value of F (x) for x ∈ [a − ε, a + ε]. The line
through (a−ε, F̂ (a−ε)) and (a+ε, F̂ (a+ε)) lies above F and below F̂ on [a−ε, a+ε]
and it lies above F̂ , and hence above F , off (a − ε, a + ε). This line is therefore a
concave majorant of F and so lies above F̂ . In particular, it coincides with F̂ on
[a − ε, a + ε] This contradicts the maximality of the MLI [a, b]. Thus F (a) = F̂ (a).
The equation F (b) = F̂ (b) follows in the same way.

Let ` be the line through the points (a, F (a)) and (b, F (b)). This ` coincides with
F̂ on [a, b] and lies above F̂ on I. So it lies above F on I as well. Since the left and
right derivatives of F exist everywhere,

F ′(a+) = lim
x→a+

F (x)− F (a)

x− a
≤ lim

x→a+

`(x)− `(a)

x− a
=
F (b)− F (a)

b− a
,

F ′(a−) = lim
x→a−

F (a)− F (x)

a− x
≥ lim

x→a−

`(a)− `(x)

a− x
=
F (b)− F (a)

b− a

A similar argument proves the inequalities involving F ′(b+) and F ′(b−) and completes
the proof.

Proof of Lemma 3.3. Suppose [a, b] is an MLI. By Lemma 2, we have F ′(a+) ≤
F ′(a−) and F ′(b+) ≤ F ′(b−). It follows that if a or b is a partition point then it
is a Type P1 point. Suppose a is interior to a partition interval of Type I2. Then
F has constant slope there. By Lemma 2, its slope is F ′(a+) = F ′(a−) = (F (b) −
F (a))/(b−a), which is also the slope of the line ` that coincides with F̂ on [a, b]. Since
`(a) = F (a) the function F and the line ` coincide on the entire partition interval. But
F ≤ F̂ ≤ `, so F̂ also coincides with ` on the partition interval. This contradicts the
maximality of the MLI [a, b]. We conclude that if a is interior to a partition interval,
the interval must be of Type I1.

5. Error Estimates. Given an absolutely continuous function G on a closed
interval I of finite length, we choose F to be the clamped cubic spline interpolating G
at the points of a partition ρ of I. This permits us to take advantage of the following
special case of optimal error bounds for cubic spline interpolation obtained by Charles
A. Hall and W. Weston Meyer in [4].

Proposition 5.1. Suppose G ∈ C4(I) and let ρ := [x0, . . . , xn+1] be a partition
of I. Denote by F the clamped cubic spline interpolating G at the nodes of ρ. Then,

|G(x)− F (x)| ≤ 1

24
‖G(4)‖∞‖ρ‖3, x ∈ I,
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where ‖ · ‖∞ denotes the usual supremum norm and

‖ρ‖ := sup{|xk − xk−1| : k = 1, . . . , n}.

To estimate the error in the least concave majorant, we consider the sensitivity
of the level function to changes in the original function.

Theorem 5.2. Suppose F and G are absolutely continuous functions defined on
a finite interval I. Then F̂ and Ĝ are also absolutely continuous on I, and

‖fo − go‖∞ ≤ ‖f − g‖∞.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and
f = F ′, g = G′. fo = (F̂ )′, and go = (Ĝ)′.

Proof. Set ZF = {x ∈ I : F (x) = F̂ (x)}, ZG = {x ∈ I : G(x) = Ĝ(x)} and
observe that fo = f almost everywhere on ZF and go = g almost everywhere on
ZG. By Lemma 3.1, F̂ is continuous and is of constant slope on each component of
the complement of ZF . It follows that F̂ is absolutely continuous on I. Since Ĝ is
continuous and is of constant slope on each component of the complement of ZG, Ĝ
is absolutely continuous on I as well.

We consider several cases to establish that |fo(x)− go(x)| ≤ ‖f − g‖∞ for almost
every x ∈ I.

Case 1: x ∈ ZF and x ∈ ZG. For almost every such x,

|fo(x)− go(x)| = |f(x)− g(x)| ≤ ‖f − g‖∞.

Case 2: x ∈ ZG but x /∈ ZF . Then x is in the interior of some MLI [a, b] of f . By
Lemma 3.2, F̂ (a) = F (a) and F̂ (b) = F (b).

Since F̂ has constant slope on [a, b],∫ x

a

f = F (x)− F (a) ≤ F̂ (x)− F̂ (a) = (x− a)fo(x).

and ∫ b

x

f = F (b)− F (x) ≥ F̂ (b)− F̂ (x) = (b− x)fo(x).

Also, since Ĝ(x) = G(x) and go is non-increasing,∫ x

a

g = G(x)−G(a) ≥ Ĝ(x)− Ĝ(a) =

∫ x

a

go ≥ (x− a)go(x).

and ∫ b

x

g = G(b)−G(x) ≤ Ĝ(b)− Ĝ(x) =

∫ b

x

go ≤ (b− x)go(x).

Combining these four inequalities, we obtain,

−‖f − g‖∞ ≤
1

x− a

∫ x

a

(f − g) ≤ fo(x)− go(x)

≤ 1

b− x

∫ b

x

(f − g) ≤ ‖f − g‖∞.
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Thus, |fo(x)− go(x)| ≤ ‖f − g‖∞.

Case 3: x ∈ ZF but x /∈ ZG. Just reverse the roles of F and G in Case 2.

Case 4: x /∈ ZF and x /∈ ZG. Suppose without loss of generality that go(x) ≤
fo(x). Let a be the left endpoint of the MLI of g containing x, and let b be the right
endpoint of the MLI of f containing x. By Lemma 2, Ĝ(a) = G(a) and F̂ (b) = F (b).
Since go is constant on (a, x) and non-increasing on (x, b) we have

(b− a)go(x) ≥
∫ b

a

go = Ĝ(b)− Ĝ(a) ≥ G(b)−G(a) =

∫ b

a

g.

Since fo is non-increasing on (a, x) and constant on (x, b), we have

(b− a)fo(x) ≤
∫ b

a

fo = F̂ (b)− F̂ (a) ≤ F (b)− F (a) =

∫ b

a

f.

Combining these, we have

fo(x)− go(x) ≤ 1

b− a

∫ b

a

(f − g) ≤ ‖f − g‖∞.

This completes the proof.

The last result can be combined with Proposition 5.1 to give the desired error
estimates.

Theorem 5.3. Let ρ be a partition of the interval [A,B] and suppose G ∈
C4([A,B]). Let F be the clamped cubic spline interpolating G on ρ. Then

‖fo − go‖∞ ≤ ‖f − g‖∞ ≤
1

24
‖F (4)‖∞‖ρ‖3

and for each x ∈ [A,B],

|F̂ (x)− Ĝ(x)| ≤ min(x−A,B − x)

24
‖F (4)‖∞‖ρ‖3.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and
f = F ′, g = G′. fo = (F̂ )′, and go = (Ĝ)′.

Proof. The first inequality is just Theorem 5.2 and the result from [HM]. For the
second, observe that by Lemma 3.1, F̂ (A) = F (A) and Ĝ(A) = G(A), and since A
is in the partition ρ, G(A) = F (A). Thus, F̂ (A) = Ĝ(A). Since both F̂ and Ĝ are
concave and hence absolutely continuous,

|F̂ (x)− Ĝ(x)| =
∣∣∣∣∫ x

A

fo − go
∣∣∣∣ ≤ ∫ x

A

‖fo − go‖∞ ≤
x−A

24
‖F (4)‖∞‖ρ‖3.

A similar argument, using integration on [x,B], shows that

|F̂ (x)− Ĝ(x)| ≤ B − x
24
‖F (4)‖∞‖ρ‖3

and completes the proof.
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Fig. 6.1. The function f with its level intervals

Fig. 6.2. The function F with its least concave majorant

6. Example. Consider the trimodal density function,

f(x) = 0.5ϕ(x− 3) + 3ϕ(10(x− 3.8)) + 2ϕ(10(x− 4.2)),

in which ϕ(x) = (1/
√

2π)e−x
2/2. We wish to approximate the least concave majorant

of F (x) =
∫ x

0
f(y) dy on [0, 6]. Now, ‖F (4)‖∞ ≤ 700 so to ensure that the clamped

cubic spline SF , approximating F on [0, 6], satisfies |fo(x)− (S′F )o(x)| ≤ .001 on [0, 6]
we solve the equation (700/24)‖ρ‖3 = .001 to obtain ‖ρ‖ = .03248661. Dividing [0.6]
into 85 > (6/.03248661) equal subintervals, we apply the algorithm to identify the
level intervals for S′F and obtain (S′F )o. The approximation

∫ x

0
(S′f )o(y) dy to F (x) is

accurate to within .003.
A graph of f(x) ≈ S′F (x) with its level intervals is given in Figure 6.1. Figure

6.2 shows the graph of F (y) and the approximation to its least concave majorant,∫ x

0
(S′f )o(y) dy.
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