
Two remarks on remotality

Michal Kraus∗

Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75
Praha 8, Czech Republic

Abstract

We prove that there exists a weakly closed and bounded subset E of c0 which is not remotal from
0, and such that co (E) is remotal from 0. This answers a question of M. Martı́n and T.S.S.R.K.
Rao. We also present a simple proof of the fact that in every non-reflexive Banach space there
exists a closed convex bounded set which is not remotal.
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Let X be a Banach space (all spaces throughout the paper are considered to be real) and
E ⊂ X be a bounded set. If x ∈ X, we define D(x, E) := sup{‖x − z‖ : z ∈ E}. We say that the set
E is remotal from a point x ∈ X if there exists a point e ∈ E such that ‖x − e‖ = D(x, E). The set
E is said to be remotal if it is remotal from all x ∈ X.

Consider the following problem: characterize those Banach spaces in which every closed
convex bounded set is remotal. Clearly in finite-dimensional spaces every closed bounded
set is remotal. M. Sababheh and R. Khalil claimed in [4, Theorem A] that among reflexive
spaces, those spaces in which every closed convex bounded set is remotal are precisely the finite-
dimensional ones. However, their proof was not entirely correct. Later, T.S.S.R.K. Rao in [3,
Theorem 2.3] proved the assertion of [4, Theorem A] by showing that even in every Banach
space which fails the Schur property, there exists a closed convex bounded set which is not re-
motal. M. Martı́n and T.S.S.R.K. Rao in [2, Theorem 7] then solved the problem completely by
showing that in every infinite-dimensional Banach space there exists a closed convex bounded
set which is not remotal. Their method was (as well as the method of the previous works [3] and
[4]), roughly speaking, the following. First, they proved that if E is a bounded subset of a Ba-
nach space, then, under some additional assumptions on the set E, the remotality of co (E) from
a point x ∈ X implies the remotality of E from x. Then they constructed an appropriate bounded
set E (considering separately the spaces which fail the Schur property, reproving [3, Theorem
2.3], and the others) which is not remotal from 0, and therefore also co (E) is not remotal from 0.

In this connection, they asked in [2, Remark 6] whether the remotality of co (E) from a
point x ∈ X, where E is a weakly closed and bounded subset of a Banach space X, implies the
remotality of E from x. Example 1 below answers this question in the negative.

The second purpose of this note is to present an alternative proof of [2, Theorem 7]. To prove
that in every non-reflexive Banach space there exists a closed convex bounded set which is not
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remotal, we use a simple construction using James’ characterization of reflexivity. The case of
reflexive spaces is covered by [3, Theorem 2.3] or by [2, Remark 3].

It should be noted that the statement of [2, Theorem 7] has also been proved by L. Veselý in
[5, Remark 2.10].

Let us first summarize some notation. Let X be a Banach space. The topological dual of
X is denoted by X∗. The weak closure of a subset E of X is denoted by E

w
, and the weak

convergence in X is denoted by
w
−→. The convex hull and the closed convex hull of a subset E of

X are denoted by co (E) and co (E) respectively. The symbol c0 stands for the space of all real
sequences vanishing at infinity, equipped with the supremum norm. If x ∈ c0, we write xk for the
k-th coordinate of x.

Example 1. There exists a weakly closed and bounded subset E of c0 which is not remotal from
0, and such that co (E) is remotal from 0.

Construction. Define vectors xn ∈ c0, n ∈ N, as

xn :=
(
2 − 1

n , (−1)n, (−1)n, . . . , (−1)n, 0, 0, . . .
)
,

where the number of nonzero coordinates of xn is n + 1. Now, define E := {xn : n ∈ N}. Then E
is a weakly closed and bounded subset of c0 which is not remotal from 0, while co (E) is remotal
from 0.

Clearly the set E is bounded and not remotal from 0. Let us show that E is weakly closed.
Assume for the contradiction that there exists x ∈ E

w
\ E. Let k ∈ N, k ≥ 2. We claim that

xk ∈ {−1, 1}. It is clear from the definition of the vectors xn that there exists m ∈ N such that
xk

n ∈ {−1, 1} for each n > m. And it is easy to see that x ∈ E \ {x1, . . . , xm}
w

. Then there exists
a net {yα} from E \ {x1, . . . , xm} such that yα

w
−→ x. Applying a functional ϕ ∈ (c0)∗ such that

ϕ(z) = zk, z ∈ c0, we see that yk
α → xk. Since yk

α ∈ {−1, 1} for all α, it follows that xk ∈ {−1, 1}.
But this is a contradiction with the fact that x ∈ c0. Hence E is weakly closed.

Now, let us verify that co (E) is remotal from 0. Clearly D(0, co (E)) = D(0, E) = 2 (for the
first equality see [4, Lemma 2.1]). Let us show that (2, 0, 0, . . . ) ∈ co (E), which clearly implies
the remotality of co (E) from 0. To this end, we will show that if

an :=
n∑

i=1

1
n

xi ∈ co (E),

then an → (2, 0, 0, . . . ).
First, it is easy to see that if tn, t ∈ R and tn → t, then also

n∑
i=1

1
n

ti
n→∞
−−−−→ t.

Then

a1
n =

n∑
i=1

1
n

x1
i → 2,

since x1
n = 2 − 1

n → 2.
Further, let k ∈ N, k ≥ 2. It is clear from the definition of the vectors xn that(

xk
1, x

k
2, x

k
3, . . .

)
=

(
0, . . . , 0, (−1)m+1, (−1)m, (−1)m+1, (−1)m, . . .

)
,
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where the number l ∈ N ∪ {0} of zero coordinates of the vector on the right hand side and the
number m ∈ {0, 1} depend on k (the precise values of l and m are not important for us). Then

∣∣∣ak
n

∣∣∣ = ∣∣∣∣∣∣∣
n∑

i=1

1
n

xk
i

∣∣∣∣∣∣∣ ≤ 1
n
.

Hence

‖an − (2, 0, 0, . . . )‖ ≤ max
{

2 − a1
n,

1
n

}
→ 0,

as desired. �

Let us now present the promised proof of [2, Theorem 7].

Theorem 2. Let X be an infinite-dimensional Banach space. Then there exists a closed convex
bounded subset of X which is not remotal.

Proof. If X is in addition reflexive, then it fails the Schur property, and therefore we may apply
the argument from [2, Remark 3] or follow [3, Theorem 2.3].

Suppose that X is not reflexive. By James’ theorem (see [1, p. 12]), there exists ϕ ∈ X∗ such
that ‖ϕ‖ = 1 and ϕ is not norm-attaining, i.e. there exists no x ∈ X such that ‖x‖ ≤ 1 and ϕ(x) = 1.
Define

K :=
{
x ∈ X : ‖x‖2 ≤ ϕ(x)

}
.

Then K is a closed convex bounded set which is not remotal from 0.
The set K is closed, because the functions ‖.‖2 and ϕ are continuous. To prove the convexity

of K, let x, y ∈ K and λ ∈ [0, 1]. Then (we use the fact that the function t 7→ t2, t ∈ R, is convex
and non-decreasing on [0,∞))

‖λx + (1 − λ)y‖2 ≤ (λ‖x‖ + (1 − λ)‖y‖)2 ≤ λ‖x‖2 + (1 − λ)‖y‖2

≤ λϕ(x) + (1 − λ)ϕ(y) = ϕ(λx + (1 − λ)y).

Hence K is convex.
Further, supx∈K ‖x‖ = 1. Indeed, if x ∈ K, then ‖x‖2 ≤ ϕ(x) ≤ ‖ϕ‖‖x‖ = ‖x‖, and therefore

‖x‖ ≤ 1. On the other hand, if ε > 0, then, since ‖ϕ‖ = 1, there exists y ∈ X such that ‖y‖ = 1 and
|ϕ(y)| > 1 − ε. Let x := ϕ(y)y. Then x ∈ K, since ‖x‖2 = ‖ϕ(y)y‖2 = ϕ(y)2 = ϕ(ϕ(y)y) = ϕ(x), and
‖x‖ = |ϕ(y)| > 1 − ε.

Finally, let us show that there exists no x ∈ K such that ‖x‖ = 1. Assume for the contradiction
that there exists x ∈ K such that ‖x‖ = 1. Then 1 = ‖x‖2 ≤ ϕ(x) ≤ ‖ϕ‖‖x‖ = 1. Hence ϕ(x) = 1, a
contradiction with the fact that ϕ is not norm-attaining.
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