Lattice-ordered groups of real continuous functions

M. Hušek^{a,1}, A. Pulgarín^{b,2}

^a Charles Univ., Sokolovská 83, 18675 Prague, and Univ. J.E.Purkyně, České mládeže 8, 40096 Ústí nad Labem, (both Czech Republic)
^b Dept. of Math., Univ. of Extremadura, Avda. Univ. s/n, 10071 Cáceres (Spain)

Abstract

We provide an internal characterization of the sets C(X) of continuous realvalued functions on topological spaces X as real *l*-groups.

Key words: l-group, representation, set of continuous functions 2000 MSC: 54C40, 06F20

1. Introduction

In spite of the numerous contributions to characterizing the set of real continuous functions on a certain topological space, and while this theory has undergone a considerable development in the framework of linear spaces, a very little effort has been made to extend these results at less restrictive levels.

Birkhoff [3, problem 81] and Kaplansky [13] proposed independently in 1948 the problem of characterizing the lattice C(K) for K a compact Hausdorff space, which is popularly known as the problem 81 of Birkhoff since it belongs to a list of open problems proposed in his fundamental text *Lattice Theory*. That problem was solved (see [1], [8], [18]).

The problem for noncompact spaces is still open, if we do not consider the result by Jennsen [10] – her characterization is not an inner one since bigger sets of maps are involved. There are some solutions for vector lattices or lattice-ordered algebras (see [16] and [17]) inspired in the seminal works of Kakutani [12], Kreins [14], and Henriksen and Johnson [9] for compact spaces.

For uniform spaces a kind of approximation results for lattices U(X) were proved, e.g., by Fenstad [6] and Mokhova [15]. Császár and Czipszer [4] generalized in 1963 the Kakutani-Stone theorem for those sublattices of C(X), Xcompact, that contain the constant functions and are closed under subtraction. If a subset of some C(X) contains the constant functions and is closed under

Preprint submitted to Elsevier

 $[\]label{eq:mail_addresses: mhusek@karlin.mff.cuni.cz (M. Hušek), aapulgar@unex.es (A. Pulgarín)$

 $^{^1{\}rm The}$ first author acknowledges the support of the grants MSM 0021620839 and GAČR 201/06/0018 of Czech Republic

 $^{^2 {\}rm The}$ second author has been partially supported by Ministerio de Ciencia e Innovación (Project no. TIN2008-06796-C04-03/TSI)

subtractions, it is a subgroup of C(X). So, the mentioned result by Császár and Czipszer deals with lattice-ordered groups containing the reals numbers, shortly real *l*-groups.

In this paper we provide an internal characterization of C(X) for a completely regular Hausdorff space X as a real *l*-group.

Such a task has two steps. The first one consists of finding a convenient space X for a given real *l*-group L and conditions under which L embeds into C(X). In the second step we must find conditions under which L = C(X). We shall use a kind of ideals and their systems that allow us to describe separation of closed sets in X.

In the second step one must approximate every continuous function on a given space by functions from L and to ensure that L is closed under some limits. We cannot use known *l*-group versions of Stone-Weierstrass theorem for lattices since they use conditions that would be difficult to transform into inner conditions (see Fenstad [6] and Mokhova [15]). We found other (inner) conditions for lattices of functions (a kind of completeness) that allow separation of disjoint zero-sets and existence of special suprema sufficient for generating all continuous functions on the given set.

2. Real *l*-groups and semisimplicity

Although the concept of l-group is defined for general groups, we shall use it for Abelian groups only (so we use addition + for the group operation). Readers may find some details of the next explanation in various books on l-groups, e.g. in [2] or [7].

Definition 2.1. A lattice L that is also a commutative group is called *l*-group if $f + g \leq f + h$ whenever $f, g, h \in L$ and $g \leq h$.

In *l*-groups, one can define positive and negative parts of their elements $(f^+ = f \lor 0, f^- = (-f) \lor 0)$ and the absolute value $|f| = f^+ + f^- = f^+ \lor f^-$. There is a real *l*-subgroup L^* of *L* consisting of bounded elements $f \in L$ defined by $|f| \le r$ for some $r \in \mathbb{R}$.

Clearly, C(X) (for any topological space X) is an *l*-group under its operations +, -, sup, inf defined pointwise. It has one more important feature, namely it contains an *l*-subgroup of constant functions that is isomorphic to \mathbb{R} (as an *l*-group). Most of theorems asserting that C(X) is approximated by its subset S assumes that S contains all (or many) of those constant functions. For simplicity we shall assume that our *l*-group contains all of them:

Definition 2.2. An *l*-group L is said to be a real *l*-group provided there is an injective *l*-group morphism $i : \mathbb{R} \to L$.

In the sequel, L will be a fixed real l-group; we shall not make distinction between \mathbb{R} and $i(\mathbb{R})$. Morphisms between our objects of real l-groups are l-group homomorphisms that are fixed on reals. The set $\text{Hom}(L, \mathbb{R})$ of all morphisms will be denoted by X_L . Every $f \in L$ is a mapping $X_L \to \mathbb{R}$ by the rule f(x) = x(f). That assignment defines a morphism $e_L : L \to F(X_L)$ of L into the real l-group F(X) of all real-valued functions on X_L . If we take the weak topology on X_L generated by $e_L(L)$, then the image $e_L(L)$ is a part of the real l-group $C(X_L)$ of all real-valued continuous functions on X_L . This assignment $e_L : L \to C(X_L)$ is known as a *spectral representation* and X_L is called *spectrum* of L. Our task is to find conditions on L so that e_L becomes a bijection. In this section we shall find conditions under which e_L is an injection.

Morphisms on L are in 1-1 correspondence with certain ideals in L. So, to find convenient conditions for morphisms $L \to \mathbb{R}$ (to ensure injectivity of e_L), we can try to find conditions on ideals in L. Recall that an *l*-subgroup M of Lis said to be an *l*-ideal if it is convex ($f \in M$ provided $|f| \leq |g|$ for some $g \in M$). The *l*-ideals are precisely kernels of homomorphisms.

An example of *l*-ideal is L^* containing \mathbb{R} . The corresponding homomorphism is not real. To exclude such a situation we must assume ideals to meet \mathbb{R} in 0 only. Moreover, the factor group must be linearly ordered, so the ideals Mshould be prime (i.e., if $f \wedge g = 0$ then either $f \in M$ or $g \in M$). Together with the previous condition we may assume that M is a maximal *l*-ideal not containing 1 (which is, for maximal *l*-ideals, equivalent to $M \cap \mathbb{R} = \{0\}$). Such *l*-ideals are called values of 1, or regular ideals, and are prime.

For prime *l*-ideals meeting \mathbb{R} in 0, the corresponding homomorphic images are linearly ordered *l*-groups but need not be isomorphic to \mathbb{R} . To ensure the image to be \mathbb{R} , one must add, e.g., that the image is archimedean (thus for every positive $f, g \in L$ there is $n \in \mathbb{N}$ and $f \in M$ such that $g \leq nh + f$). We shall use a simpler condition.

Definition 2.3. An *l*-ideal M in L will be called real ideal if

- (i) $M \cap \mathbb{R} = \{0\};$
- (ii) for every $f \in L$ there exists $r \in \mathbb{R}$ such that $f + r \in M$.

The condition (i) follows from a modified condition (ii) if we suppose there that the number r is unique (for given f).

Observe that every real ideal is a maximal *l*-ideal not containing 1. Indeed, let M be a real ideal and $N \supset M$ be an *l*-ideal not containing 1. By (ii) there exists $r \in \mathbb{R}$ such that $f+rM \subset N$. Since $-f \in N$, we have $r = (-f)+(f+r) \in N$, which means r = 0 and thus $f \in M$.

Since the kernel of a morphism $L \to \mathbb{R}$ is, clearly, a real ideal, we have the following result.

Proposition 2.4. $M \subset L$ is a real ideal iff it is the kernel of a morphism of L onto \mathbb{R} .

Another bad situation occurs, e.g., in the real *l*-group \mathbb{R}^2 with the real part $\mathbb{R} = \{(x, 0); x \in \mathbb{R}\}$, where the only nontrivial real ideal is $\{0\} \times \mathbb{R}$, which is not enough. To solve this situation we must add a condition ensuring that there is enough ideals.

Definition 2.5. L is called *semisimple* if the intersection of all the real ideals of L is 0.

Semisimplicity means that morphisms into \mathbb{R} distinguish elements of L. Because of previous Proposition, we have the following result.

Theorem 2.6. The map $e_L : L \to C(X_L)$ is an injection iff L is semisimple.

We shall now look closer at the topology of X_L . By the definition of the weak topology (the coarsest topology on X_L making every $f \in L$ continuous), a set $U \subset X_L$ is a neighborhood of its point x iff there are $f_1, ..., f_n \in L$ and intervals $G_i = (f_i(x) - r, f_i(x) + r)$ in \mathbb{R} such that $\bigcap f_i^{-1}(G_i) \subset U$. By shifting each f_i by $-f_i(x)$ we may assume that $f_i(x) = 0$ for each i. Taking sufficiently large $n \in \mathbb{N}$ and defining $f = \sum n |f_i|$ we get $f \in L$ such that $f \ge 0, f(x) = 0, f(y) \ge s$ for every $y \in X_L \setminus U$, where s is any given positive real number. Using $g = f \wedge s$ we can get the values on $X_L \setminus U$ to be exactly s. If one takes h = s - g then the set $\operatorname{coz}(h)$ (where $\operatorname{coz}(f) = \{x \in X_L; x(h) \neq 0\}$) is an open set containing x and contained in U. Consequently, the sets $\{\operatorname{coz}(f) : f \in L\}$ form an open base for the topology of X_L , and their complements (zero-sets $\operatorname{zero}(f)$) form a closed base.

If one regards X as the set of real ideals, then a closed base is formed by the sets corresponding to zero(f), which are all the real ideals containing f. That topology is often called a *hull-kernel topology*.

Proposition 2.7. The space X_L is a realcompact space. Conversely, if X is a realcompact space, then $X_{C(X)} = X$.

Proof. Since X_L has a weak topology generated by maps in \mathbb{R} , it is completely regular. Since L separates the points of X_L , the space X_L is Hausdorff. Let $\xi \in v(X_L)$. Every $f \in L$ has a continuous extension $\tilde{f} : v(X_L) \to \mathbb{R}$. Then the map $\tilde{\xi} : L \to \mathbb{R}$, defined by $\tilde{\xi}(f) = \tilde{f}(\xi)$ is a homomorphism and so, it belongs to X_L .

Conversely, supposing that X is a real compact space it remains the question whether, every $h \in X_{C(X)}$ is determined by a point of X. Define $Y = X \cup h$ endowed with the weak topology with respect to C(X) (considering f(h) = h(f)for every $f \in C(X)$). Then X is a subspace of Y and every $f \in C(X)$ can be continuously extended to Y. Supposing $h \notin \overline{X}$, there exists $f \in C(X)$, $0 \leq f \leq 1$ such that h(f) = 1 and f(X) = 0. But $h \in X_{C(X)}$ which implies h(0) = 0. Since X is real compact, there does not exist Y containing X as a proper dense C-embedded subset, which is a contradiction

As well, $X_{C(X)} = vX$, the Hewitt-Nachbin realcompactification of X. Furthermore, the spectral representation $C(X) \to C(vX)$ becomes an isomorphism of real *l*-groups. Thus C(X) is semisimple.

3. Complete separation

In this section we shall assume that L is a semisimple real l-group.

We shall need to separate disjoint zero subsets of X_L by elements of L. It is a difficult task that needs a description of such pair of zero-sets by means of L. Then we must find a convenient condition for L to allow such a separation.

Definition 3.1. A subset J of L is said to be a vanished ideal if it is an intersection of real ideals. We shall denote $\mathcal{V}(L) = \{ vanished \ ideals \ of \ L \}.$

There is a one-to-one correspondence between $\mathcal{V}(L)$ and the set consisting of nonempty closed subsets of X_L by identifying any nonempty closed subset Fof X_L with the vanished ideal $I_F = \bigcap_{x \in F} M_x$, and any vanished ideal $J \in \mathcal{V}(L)$ with the nonempty closed subset $F_J = \bigcap_{f \in J} \operatorname{zero}(f)$. We may agree that L is a vanished ideal for which $F_L = \emptyset$ and $I_{\emptyset} = L$. So, $\mathcal{V}(L)$ is a lattice having the smallest and the largest element, similarly as the lattice of closed subsets of X_L (under inclusion). The correspondence between them reverses the inclusion.

Given $I, J \in \mathcal{V}(L)$ we set

 $I \prec J$ in case there exists $H \in \mathcal{V}(L)$ such that $I \wedge H = 0$ and $H \vee J = L$.

It is easy to see that $I \wedge H = 0$ if and only if $F_H \cup F_I = X_L$, and $H \vee J = L$ if and only if $F_J \cap F_H = \emptyset$. Hence, the motivation for this new order on $\mathcal{V}(L)$ is the fact that

$$I \prec J$$
 if and only if $F_J \subseteq \check{F_I}$.

Given $J \in \mathcal{V}(L)$ we set

$$J^{\perp} = \{ f \in L : |f| \land |g| = 0 \text{ for all } g \in J \}.$$

Since $|f| \wedge |g| = 0$ if and only if x(f) = 0 for every $x \notin \operatorname{zero}(g)$, it is clear that $f \in J^{\perp}$ if and only if x(f) = 0 for every $x \notin F_J$, and therefore $F_{J^{\perp}} = \overline{X_L \setminus F_J}$.

Definitions 3.2. A separating chain in L is a countable chain \mathscr{S} in $\mathcal{V}(L)$ which satisfies

(i) $\bigwedge \mathscr{S} = 0$ and $\bigvee \mathscr{S} = L;$

(ii) if $I, J \in \mathscr{S}$ and $I \subset J$, then there exists $H \in \mathscr{S}$ such that $I \prec H \prec J$.

L is said to be completely separating in case for each two members I, J belonging to a separating chain in L, the inclusion $I \subset J$ implies that for any $h \in L$, there exists $f \in J$ and $g \in I^{\perp}$ such that f + g = h.

To functionally separate two closed sets A and B (i.e., to find some $f \in C(X)$ such that f(A) = 0 and f(B) = 1), Urysohn noticed that it suffices to construct a countable chain of sets $\{F_r\}$ (ordered by a dense order, e.g. by rational or dyadic rational numbers in [0,1)) such that for r < s one has $\overline{F_r} \subset \overset{\circ}{F_s} \subset X \setminus B, F_0 = A$. Using that he proved his famous Urysohn lemma. The procedure is described in the following lemma due to Johnson and Mandelker [11].

Lemma 3.3. Two subsets A and B of a topological space X are functionally separated if and only if there exists a countable chain \mathscr{F} of closed subsets of X satisfying the following conditions:

- (i) $\bigcap \mathscr{F} = \varnothing$ and $\bigcup \mathscr{F} = X$;
- (ii) if $F, G \in \mathscr{F}$ and $F \subset G$, then there exists $W \in \mathscr{F}$ such that $F \subseteq \overset{\circ}{W} \subseteq W \subset \overset{\circ}{G}$,
- (iii) there exist $C, D \in \mathscr{F}$ such that $A \subseteq C \subset D \subseteq X \setminus B$.

If \mathscr{S} denotes a separating chain in C(X) and $I, J \in \mathscr{S}$ are such that $I \subset J$, then $F_J \subset F_I = vX \setminus (vX \setminus F_I)$. According to the previous Lemma F_J and $vX \setminus F_I$ are functionally separated in vX. Taking into account the isomorphism $C(X) = \underline{C(vX)}$, there exists $\tilde{f} \in C(X)$ such that $\tilde{f}(F_I) = 0$ and $\tilde{f}(vX \setminus F_J) = 1$. Then $\tilde{f}(vX \setminus F_J) = 1$ because \tilde{f} is continuous. Given $h \in C(X)$ if we consider $f = h\tilde{f}$ we derive that $f \in I$ and $g = h - f \in J^{\perp}$. Thus, C(X) is completely separating.

Theorem 3.4. If L is completely separating, then for any pair A, B of functionally separated subsets of X_L and for any $h \in L$, there exists $f \in L$ such that f = 0 on A and f = h on B.

Proof. Lemma 3.3 ensures that there exists a countable chain \mathscr{F} of closed subsets of X_L satisfying: $\bigcap \mathscr{F} = \emptyset$ and $\bigcup \mathscr{F} = X_L$; if $F, G \in \mathscr{F}$ and $F \subset G$, then there exists $W \in \mathscr{F}$ such that $F \subseteq \overset{\circ}{W} \subseteq W \subseteq \overset{\circ}{G}$; there exist $C, D \in \mathscr{F}$ such that $A \subseteq C \subset D \subseteq \operatorname{Spec}_e(E) \setminus B$. By virtue of the one-to-one correspondence between $\mathcal{V}(L)$ and the closed subsets of X_L , the family

$$\mathscr{S} = \{I_F : F \in \mathscr{F}\}$$

becomes a separating chain in *L*. Since $I_D, I_C \in \mathscr{S}$ and $I_D \subset I_C$, there exist $f \in I_C$ and $g \in I_D^{\perp}$ such that f + g = h. On the one hand, if $x \in A \subset C = F_{I_C}$, then x(f) = 0; on the other hand, if $x \in B \subset X_L \setminus D \subset \overline{X_L \setminus D} = F_{I_D^{\perp}}$, then x(g) = 0 and therefore x(h) = x(f) + x(g) = x(f).

4. Approximation

In this section we shall assume that L is a semisimple and completely separated real *l*-group. The next definition can be, however, stated for any *l*-group L. It says that some needed topological concepts have sense in *l*-groups, without changing their verbal formulation.

Definitions 4.1. A sequence $\{f_n\}_n$ in L is said to be uniformly Cauchy if for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n - f_m| \leq \varepsilon$ for all n, m > N. The sequence $\{f_n\}_n$ is uniformly convergent to some $f \in L$ if for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n - f| \leq \varepsilon$ for all n > N.

L is said to be uniformly complete when every uniformly Cauchy sequence of L is uniformly convergent to some element of L.

Now comes the expected approximation theorem.

Theorem 4.2. If L is uniformly closed, then L^* is isomorphic to $C^*(X_L)$.

Proof. Let $f \in C^*(X_L)$ and $\varepsilon > 0$. There exists $n \in \mathbb{N}$ for which $-n\varepsilon < f < n\varepsilon$. For any $-n \leq i \leq n$ define the zero-set $Z_i = \{x \in X_L : f(x) \leq i\varepsilon\}$ which is functionally separated from $X_L \setminus Z_{i+1}$. By hypothesis there exists $g_i \in L$ having values 0 on Z_i and $i\varepsilon$ on $X_L \setminus Z_{i+1}$. Considering $h_i = (-i\varepsilon \vee g_i) \land i\varepsilon \in L^*$, we derive that $h = \bigvee_i h_i \in L^*$ and therefore $|f - h| \leq \varepsilon$ in $C^*(X_L)$. Thus L^* is uniformly dense in $C^*(X_L)$. Since L is semisimple, then L^* is uniformly complete in $C^*(X_L)$ in particular, and therefore $f \in L^*$.

Next definition is due to Feldman and Porter [5], and it is close to the condition (A2) of Fenstad [6].

Definitions 4.3. A collection $\{f_n\}_n$ in a real *l*-group *L* is called 2-disjoint in case for each $n, f_n \wedge f_k \neq 0$ for at most two indices *k* distinct from *n* and for every real ideal *M* of *L*, there is some *m* such that $f_m \notin M$.

L is said to be 2-universally complete in case every 2-disjoint sequence in L has a least upper bound in L.

In C(X), if the pointwise supremum of a sequence exists and belongs to C(X) then it will be the supremum of the sequence. Indeed, given a 2-disjoint collection $\{f_n\}_n$ in C(X), for each $x \in vX$ there exists f_n with $|f_n(y)| \ge 0$ for all y in a x-neighbourhood U in vX. The pointwise supremum of the collection $\{f_n\}_n$ in U thus involves at most three functions; one concludes that the pointwise supremum is continuous, and thus $\bigvee_n f_n \in C(X)$. Thus C(X) is 2-universally complete.

5. Main theorem

Theorem 5.1. A real l-group L is isomorphic to C(X) for some topological space X if and only if

- (i) L is semisimple;
- (ii) L is completely separating;
- (*iii*) L is uniformly complete;
- (iv) L is 2-universally complete.

Proof. We know from the preceding considerations that C(X) satisfies the conditions of Theorem.

We must now prove that any $f \in C(X_L)$ belongs to L, provided L satisfies the condition in Theorem. It suffices to assume that $f \ge 0$. Indeed, $f = f^+ - f^$ and belongs to l provided both nonnegative functions f^+, f^- belong to L.

For each $n \geq 3$ we define the disjoint zero-sets

$$Z^{n} = \{ x \in X_{L} : n - 2 \le f(x) \le n - 1/2 \}$$
$$Z_{n} = \{ x \in X_{L} : f(x) \le n - 5/2 \} \cup \{ x \in X_{L} : n \le f(x) \}.$$

There exists a sequence $\{f_n\}_n$ in L_+ such that $f_n = 0$ on Z_n , $f_n = f \land (n-1/2)$ on Z^n (because $f \land (n-1/2) \in C^*(X_L) = L^* \subseteq L$). If $n \ge m+3$ and $f_m(x) \ne 0$, then $x \in Z_{m+3}$ and therefore $x \in Z_n$ for all $n \ge m+3$. Thus $f_n(x) = 0$ whenever $n \ge m+3$. On the other hand, there exists $k \ge 3$ such that $x \in Z^k$, which implies that there exists n such that $f_n(x) > n$. Then, $\{f_n\}_n$ is a 2-disjoint sequence and accordingly with 2-universal completeness $\bigvee_n f_n \in L$.

Supposing $f \nleq \bigvee_n f_n$, there exist $x_0 \in X_L$ such that $f(x_0) \neq (\bigvee_n f_n)(x_0)$. Let $f(x_0) < \alpha < \beta < (\bigvee_n f_n)(x_0)$. Taking the disjoint zero-sets

$$A = \{ x \in X_L : f(x) \le \alpha \}, \ B = \{ x \in X_L : f(x) \ge \beta \}$$

there exists $h \in L_+$ such that h = 0 on B and $h = (\bigvee_n f_n)(x_0)$ on A. Setting the zero-set

$$C = \{x \in X_L : h(x) \le \beta\}$$

it is clear that $B \subseteq C$ and $A \cap C = \emptyset$. Moreover, there exists $k \in L_+$ such that k = 0 on A and $k = \bigvee_n f_n$ on C. If $x \in B \subseteq C$, then $f(x) \leq (\bigvee_n f_n)(x) = k(x)$; if $x \in X_L \setminus B$, then $f(x) < \beta$. In both cases $f \leq k \lor \beta$, so then if we consider $s = (k \lor \beta) \land (\bigvee_n f_n) \in L_+$, then $f \leq s \leq \bigvee_n f_n$. Now, since $x_0 \in A$ we have that $k(x_0) = 0 \leq f(x_0) < \beta$, and therefore $k(x_0) \lor \beta = \beta$. Henceforth, $s(x_0) = \beta \land (\bigvee_n f_n)(x_0) = \beta < (\bigvee_n f_n)(x_0)$. We obtain that

$$f_n \le f \le s \lneq \bigvee_n f_n$$
, for every n ,

contrary to the definition of the suprema $\bigvee_n f_n$. Consequently, $f = \bigvee_n f_n \in L$.

References

- F.W. Anderson and R.L. Blair, Characterization of certain lattices of functions. Pacific. J. Math. 9 (1959), 335–364.
- [2] A.Bigard, K. Keimel and S. Wolfenstein, *Groupes et Anneaux Rticuls*. Lecture Notes in Mathematics, Vol. 608. (Springer-Verlag, Berlin-New York, 1977).
- [3] G. Birkhoff, Lattice Theory, (AMS Coll. Publ. Vol. 25, New York, 1948).
- [4] A. Császár and A. Czipszer, Sur des criteries generaux d'approximation uniforme. Ann. Univ. Sci. Budapest., 6 (1963), 17–26.
- [5] W.A. Feldman and J.F. Porter, The order topology for function lattices and realcompactness, Internat. J. Math. and Math. Sci. 4 (2) (1981), 289–304.
- [6] J.E. Fenstad, On *l*-groups of uniformly continuous functions I. Math. Zeitschr. 82 (1963), 434–444.
- [7] A.M.W. Glass, Partially Ordered Groups, (World Sci., Singapore 1999).
- [8] L.J. Heider, A characterization of function lattices, Duke Math. J. 23 (1956),297–301.

- [9] M. Henriksen and D.J. Johnson, On the structure of archimedean latticeordered algebras, *Fund. Math.*, 50 (1961), 73-94.
- [10] G.A. Jensen, Characterization of some function lattices, Duke Math. J. 34 (1967), 437–442.
- [11] D.G. Johnson and M. Mandelker, Separating chains in topological spaces, J. London Math. Soc. 4 (2) (1971), 510–512.
- [12] S. Kakutani, Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions). Ann. of Math. 42 (1941), 994–1024.
- [13] I. Kaplansky, Lattices of continuous functions II, Amer. J. Math. 70 (1948), 626–634.
- [14] M. Krein and S. Krein, On an inner characteristic of the set of continuous functions defined on a bicompact Hausdorff space. (Russian) *Doklady AN* SSSR 27 (1940), 427–430.
- [15] L.N. Mokhova, Theorems of Stone-Weierstrass type for lattices of uniformly continuous functions. (Russian) Sibirsk. Mat. Zh. 22 (1981), 136–144.
- [16] F. Montalvo, A.A. Pulgarín and B. Requejo, Zero-separating algebras of continuous functions, *Topology Appl.* 154 (10) (2007), 2135–2141.
- [17] F. Montalvo, A. Pulgarín and B. Requejo, Riesz spaces of real continuous functions, *Preprint*, (2008).
- [18] A.G. Pinsker, A lattice characterization of function spaces, (In Russian) Uspehi Mat.Nauk (N. S.), 12 (1957), 226–229.