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Abstract

We provide an internal characterization of the sets C(X) of continuous real-
valued functions on topological spaces X as real l-groups.
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1. Introduction

In spite of the numerous contributions to characterizing the set of real con-
tinuous functions on a certain topological space, and while this theory has un-
dergone a considerable development in the framework of linear spaces, a very
little effort has been made to extend these results at less restrictive levels.

Birkhoff [3, problem 81] and Kaplansky [13] proposed independently in 1948
the problem of characterizing the lattice C(K) for K a compact Hausdorff space,
which is popularly known as the problem 81 of Birkhoff since it belongs to a
list of open problems proposed in his fundamental text Lattice Theory. That
problem was solved (see [1], [8], [18]).

The problem for noncompact spaces is still open, if we do not consider the
result by Jennsen [10] – her characterization is not an inner one since bigger
sets of maps are involved. There are some solutions for vector lattices or lattice-
ordered algebras (see [16] and [17]) inspired in the seminal works of Kakutani
[12], Kreins [14], and Henriksen and Johnson [9] for compact spaces.

For uniform spaces a kind of approximation results for lattices U(X) were
proved, e.g., by Fenstad [6] and Mokhova [15]. Császár and Czipszer [4] gen-
eralized in 1963 the Kakutani-Stone theorem for those sublattices of C(X), X
compact, that contain the constant functions and are closed under subtraction.
If a subset of some C(X) contains the constant functions and is closed under
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subtractions, it is a subgroup of C(X). So, the mentioned result by Császár and
Czipszer deals with lattice-ordered groups containing the reals numbers, shortly
real l-groups.

In this paper we provide an internal characterization of C(X) for a com-
pletely regular Hausdorff space X as a real l-group.

Such a task has two steps. The first one consists of finding a convenient
space X for a given real l-group L and conditions under which L embeds into
C(X). In the second step we must find conditions under which L = C(X). We
shall use a kind of ideals and their systems that allow us to describe separation
of closed sets in X.

In the second step one must approximate every continuous function on a
given space by functions from L and to ensure that L is closed under some
limits. We cannot use known l-group versions of Stone-Weierstrass theorem
for lattices since they use conditions that would be difficult to transform into
inner conditions (see Fenstad [6] and Mokhova [15]). We found other (inner)
conditions for lattices of functions (a kind of completeness) that allow separation
of disjoint zero-sets and existence of special suprema sufficient for generating all
continuous functions on the given set.

2. Real l-groups and semisimplicity

Although the concept of l-group is defined for general groups, we shall use it
for Abelian groups only (so we use addition + for the group operation). Readers
may find some details of the next explanation in various books on l-groups, e.g.
in [2] or [7].

Definition 2.1. A lattice L that is also a commutative group is called l-group
if f + g ≤ f + h whenever f, g, h ∈ L and g ≤ h.

In l-groups, one can define positive and negative parts of their elements
(f+ = f ∨ 0, f− = (−f) ∨ 0) and the absolute value |f | = f+ + f− = f+ ∨ f−.
There is a real l-subgroup L∗ of L consisting of bounded elements f ∈ L defined
by |f | ≤ r for some r ∈ R.

Clearly, C(X) (for any topological space X) is an l-group under its opera-
tions +,−, sup, inf defined pointwise. It has one more important feature, namely
it contains an l-subgroup of constant functions that is isomorphic to R (as an
l-group). Most of theorems asserting that C(X) is approximated by its sub-
set S assumes that S contains all (or many) of those constant functions. For
simplicity we shall assume that our l-group contains all of them:

Definition 2.2. An l-group L is said to be a real l-group provided there is
an injective l-group morphism i : R → L.

In the sequel, L will be a fixed real l-group; we shall not make distinction
between R and i(R). Morphisms between our objects of real l-groups are l-group
homomorphisms that are fixed on reals. The set Hom(L, R) of all morphisms will
be denoted by XL. Every f ∈ L is a mapping XL → R by the rule f(x) = x(f).
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That assignment defines a morphism eL : L → F (XL) of L into the real l-group
F (X) of all real-valued functions on XL. If we take the weak topology on XL

generated by eL(L), then the image eL(L) is a part of the real l-group C(XL) of
all real-valued continuous functions on XL. This assignment eL : L → C(XL) is
known as a spectral representation and XL is called spectrum of L. Our task is
to find conditions on L so that eL becomes a bijection. In this section we shall
find conditions under which eL is an injection.

Morphisms on L are in 1-1 correspondence with certain ideals in L. So, to
find convenient conditions for morphisms L → R (to ensure injectivity of eL),
we can try to find conditions on ideals in L. Recall that an l-subgroup M of L
is said to be an l-ideal if it is convex (f ∈ M provided |f | ≤ |g| for some g ∈ M).
The l-ideals are precisely kernels of homomorphisms.

An example of l-ideal is L∗ containing R. The corresponding homomorphism
is not real. To exclude such a situation we must assume ideals to meet R in
0 only. Moreover, the factor group must be linearly ordered, so the ideals M
should be prime (i.e., if f ∧ g = 0 then either f ∈ M or g ∈ M). Together
with the previous condition we may assume that M is a maximal l-ideal not
containing 1 (which is, for maximal l-ideals, equivalent to M ∩ R = {0}). Such
l-ideals are called values of 1, or regular ideals, and are prime.

For prime l-ideals meeting R in 0, the corresponding homomorphic images
are linearly ordered l-groups but need not be isomorphic to R. To ensure the
image to be R, one must add, e.g., that the image is archimedean (thus for every
positive f, g ∈ L there is n ∈ N and f ∈ M such that g ≤ nh + f). We shall use
a simpler condition.

Definition 2.3. An l-ideal M in L will be called real ideal if

(i) M ∩ R = {0};
(ii) for every f ∈ L there exists r ∈ R such that f + r ∈ M .

The condition (i) follows from a modified condition (ii) if we suppose there
that the number r is unique (for given f).

Observe that every real ideal is a maximal l-ideal not containing 1. Indeed,
let M be a real ideal and N ⊃ M be an l-ideal not containing 1. By (ii) there
exists r ∈ R such that f +rM ⊂ N . Since −f ∈ N , we have r = (−f)+(f +r) ∈
N , which means r = 0 and thus f ∈ M .

Since the kernel of a morphism L → R is, clearly, a real ideal, we have the
following result.

Proposition 2.4. M ⊂ L is a real ideal iff it is the kernel of a morphism of L
onto R.

Another bad situation occurs, e.g., in the real l-group R2 with the real part
R = {(x, 0); x ∈ R}, where the only nontrivial real ideal is {0}×R, which is not
enough. To solve this situation we must add a condition ensuring that there is
enough ideals.
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Definition 2.5. L is called semisimple if the intersection of all the real ideals
of L is 0.

Semisimplicity means that morphisms into R distinguish elements of L. Be-
cause of previous Proposition, we have the following result.

Theorem 2.6. The map eL : L → C(XL) is an injection iff L is semisimple.

We shall now look closer at the topology of XL. By the definition of the weak
topology (the coarsest topology on XL making every f ∈ L continuous), a set
U ⊂ XL is a neighborhood of its point x iff there are f1, ..., fn ∈ L and intervals
Gi = (fi(x)−r, fi(x)+r) in R such that

⋂
f−1

i (Gi) ⊂ U . By shifting each fi by
−fi(x) we may assume that fi(x) = 0 for each i. Taking sufficiently large n ∈ N
and defining f =

∑
n|fi| we get f ∈ L such that f ≥ 0, f(x) = 0, f(y) ≥ s for

every y ∈ XL \ U , where s is any given positive real number. Using g = f ∧ s
we can get the values on XL \ U to be exactly s. If one takes h = s − g then
the set coz(h) (where coz(f) = {x ∈ XL; x(h) 6= 0}) is an open set containing
x and contained in U . Consequently, the sets {coz(f) : f ∈ L} form an open
base for the topology of XL, and their complements (zero-sets zero(f)) form a
closed base.

If one regards X as the set of real ideals, then a closed base is formed by the
sets corresponding to zero(f), which are all the real ideals containing f . That
topology is often called a hull-kernel topology.

Proposition 2.7. The space XL is a realcompact space. Conversely, if X is a
realcompact space, then XC(X) = X.

Proof. Since XL has a weak topology generated by maps in R, it is completely
regular. Since L separates the points of XL, the space XL is Hausdorff. Let
ξ ∈ υ(XL). Every f ∈ L has a continuous extension f̃ : υ(XL) → R. Then the
map ξ̃ : L → R, defined by ξ̃(f) = f̃(ξ) is a homomorphism and so, it belongs
to XL.

Conversely, supposing that X is a realcompact space it remains the question
whether, every h ∈ XC(X) is determined by a point of X. Define Y = X ∪ h
endowed with the weak topology with respect to C(X) (considering f(h) = h(f)
for every f ∈ C(X)). Then X is a subspace of Y and every f ∈ C(X) can
be continuously extended to Y . Supposing h /∈ X, there exists f ∈ C(X),
0 ≤ f ≤ 1 such that h(f) = 1 and f(X) = 0. But h ∈ XC(X) which implies
h(0) = 0. Since X is realcompact, there does not exist Y containing X as a
proper dense C-embedded subset, which is a contradiction

As well, XC(X) = υX, the Hewitt-Nachbin realcompactification of X. Fur-
thermore, the spectral representation C(X) → C(υX) becomes an isomorphism
of real l-groups. Thus C(X) is semisimple.

3. Complete separation

In this section we shall assume that L is a semisimple real l-group.
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We shall need to separate disjoint zero subsets of XL by elements of L. It is
a difficult task that needs a description of such pair of zero-sets by means of L.
Then we must find a convenient condition for L to allow such a separation.

Definition 3.1. A subset J of L is said to be a vanished ideal if it is an
intersection of real ideals. We shall denote V(L) = {vanished ideals of L}.

There is a one-to-one correspondence between V(L) and the set consisting
of nonempty closed subsets of XL by identifying any nonempty closed subset F
of XL with the vanished ideal IF =

⋂
x∈F Mx, and any vanished ideal J ∈ V(L)

with the nonempty closed subset FJ =
⋂

f∈J zero(f). We may agree that L is
a vanished ideal for which FL = ∅ and I∅ = L. So, V(L) is a lattice having the
smallest and the largest element, similarly as the lattice of closed subsets of XL

(under inclusion). The correspondence between them reverses the inclusion.
Given I, J ∈ V(L) we set

I ≺ J in case there exists H ∈ V(L) such that I ∧H = 0 and H ∨ J = L.

It is easy to see that I ∧H = 0 if and only if FH ∪ FI = XL, and H ∨ J = L if
and only if FJ ∩ FH = ∅. Hence, the motivation for this new order on V(L) is
the fact that

I ≺ J if and only if FJ ⊆
◦

FI .

Given J ∈ V(L) we set

J⊥ = {f ∈ L : |f | ∧ |g| = 0 for all g ∈ J}.

Since |f | ∧ |g| = 0 if and only if x(f) = 0 for every x /∈ zero(g), it is clear that
f ∈ J⊥ if and only if x(f) = 0 for every x /∈ FJ , and therefore FJ⊥ = XL \ FJ .

Definitions 3.2. A separating chain in L is a countable chain S in V(L) which
satisfies

(i)
∧

S = 0 and
∨

S = L;
(ii) if I, J ∈ S and I ⊂ J , then there exists H ∈ S such that I ≺ H ≺ J .

L is said to be completely separating in case for each two members I, J
belonging to a separating chain in L, the inclusion I ⊂ J implies that for any
h ∈ L, there exists f ∈ J and g ∈ I⊥ such that f + g = h.

To functionally separate two closed sets A and B (i.e., to find some f ∈ C(X)
such that f(A) = 0 and f(B) = 1), Urysohn noticed that it suffices to construct
a countable chain of sets {Fr} (ordered by a dense order, e.g. by rational or

dyadic rational numbers in [0,1)) such that for r < s one has Fr ⊂
◦
Fs ⊂

X\B, F0 = A. Using that he proved his famous Urysohn lemma. The procedure
is described in the following lemma due to Johnson and Mandelker [11].

Lemma 3.3. Two subsets A and B of a topological space X are functionally
separated if and only if there exists a countable chain F of closed subsets of X
satisfying the following conditions:
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(i)
⋂

F = ∅ and
⋃

F = X;

(ii) if F,G ∈ F and F ⊂ G, then there exists W ∈ F such that F ⊆
◦

W ⊆
W ⊆

◦
G,

(iii) there exist C, D ∈ F such that A ⊆ C ⊂ D ⊆ X \B.

If S denotes a separating chain in C(X) and I, J ∈ S are such that I ⊂ J ,
then FJ ⊂ FI = υX \ (υX \ FI). According to the previous Lemma FJ and
υX \FI are functionally separated in υX. Taking into account the isomorphism
C(X) = C(υX), there exists f̃ ∈ C(X) such that f̃(FI) = 0 and f̃(υX\FJ) = 1.
Then f̃(υX \ FJ) = 1 because f̃ is continuous. Given h ∈ C(X) if we consider
f = hf̃ we derive that f ∈ I and g = h − f ∈ J⊥. Thus, C(X) is completely
separating.

Theorem 3.4. If L is completely separating, then for any pair A, B of func-
tionally separated subsets of XL and for any h ∈ L, there exists f ∈ L such that
f = 0 on A and f = h on B.

Proof. Lemma 3.3 ensures that there exists a countable chain F of closed sub-
sets of XL satisfying:

⋂
F = ∅ and

⋃
F = XL; if F,G ∈ F and F ⊂ G, then

there exists W ∈ F such that F ⊆
◦

W ⊆ W ⊆
◦
G; there exist C, D ∈ F such

that A ⊆ C ⊂ D ⊆ Spece(E) \ B. By virtue of the one-to-one correspondence
between V(L) and the closed subsets of XL, the family

S = {IF : F ∈ F}

becomes a separating chain in L. Since ID, IC ∈ S and ID ⊂ IC , there exist
f ∈ IC and g ∈ I⊥D such that f + g = h. On the one hand, if x ∈ A ⊂ C = FIC

,
then x(f) = 0; on the other hand, if x ∈ B ⊂ XL \ D ⊂ XL \D = FI⊥D

, then
x(g) = 0 and therefore x(h) = x(f) + x(g) = x(f).

4. Approximation

In this section we shall assume that L is a semisimple and completely sepa-
rated real l-group. The next definition can be, however, stated for any l-group
L. It says that some needed topological concepts have sense in l-groups, without
changing their verbal formulation.

Definitions 4.1. A sequence {fn}n in L is said to be uniformly Cauchy if for
each ε > 0 there exists N ∈ N such that |fn − fm| ≤ ε for all n, m > N . The
sequence {fn}n is uniformly convergent to some f ∈ L if for each ε > 0 there
exists N ∈ N such that |fn − f | ≤ ε for all n > N .

L is said to be uniformly complete when every uniformly Cauchy sequence
of L is uniformly convergent to some element of L.

Now comes the expected approximation theorem.

Theorem 4.2. If L is uniformly closed, then L∗ is isomorphic to C∗(XL).
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Proof. Let f ∈ C∗(XL) and ε > 0. There exists n ∈ N for which −nε < f < nε.
For any −n ≤ i ≤ n define the zero-set Zi = {x ∈ XL : f(x) ≤ iε} which is
functionally separated from XL \Zi+1. By hypothesis there exists gi ∈ L having
values 0 on Zi and iε on XL \ Zi+1. Considering hi = (−iε ∨ gi) ∧ iε ∈ L∗,
we derive that h =

∨
i hi ∈ L∗ and therefore |f − h| ≤ ε in C∗(XL). Thus

L∗ is uniformly dense in C∗(XL). Since L is semisimple, then L∗ is uniformly
complete in C∗(XL) in particular, and therefore f ∈ L∗.

Next definition is due to Feldman and Porter [5], and it is close to the
condition (A2) of Fenstad [6].

Definitions 4.3. A collection {fn}n in a real l-group L is called 2-disjoint in
case for each n, fn ∧ fk 6= 0 for at most two indices k distinct from n and for
every real ideal M of L, there is some m such that fm /∈ M .

L is said to be 2-universally complete in case every 2-disjoint sequence
in L has a least upper bound in L.

In C(X), if the pointwise supremum of a sequence exists and belongs to
C(X) then it will be the supremum of the sequence. Indeed, given a 2-disjoint
collection {fn}n in C(X), for each x ∈ υX there exists fn with |fn(y)| ≥
0 for all y in a x-neighbourhood U in υX. The pointwise supremum of the
collection {fn}n in U thus involves at most three functions; one concludes that
the pointwise supremum is continuous, and thus

∨
n fn ∈ C(X). Thus C(X) is

2-universally complete.

5. Main theorem

Theorem 5.1. A real l-group L is isomorphic to C(X) for some topological
space X if and only if

(i) L is semisimple;
(ii) L is completely separating;

(iii) L is uniformly complete;
(iv) L is 2-universally complete.

Proof. We know from the preceding considerations that C(X) satisfies the con-
ditions of Theorem.

We must now prove that any f ∈ C(XL) belongs to L, provided L satisfies
the condition in Theorem. It suffices to assume that f ≥ 0. Indeed, f = f+−f−

and belongs to l provided both nonnegative functions f+, f− belong to L.
For each n ≥ 3 we define the disjoint zero-sets

Zn = {x ∈ XL : n− 2 ≤ f(x) ≤ n− 1/2}

Zn = {x ∈ XL : f(x) ≤ n− 5/2} ∪ {x ∈ XL : n ≤ f(x)} .

There exists a sequence {fn}n in L+ such that fn = 0 on Zn, fn = f ∧ (n−1/2)
on Zn (because f∧(n−1/2) ∈ C∗(XL) = L∗ ⊆ L). If n ≥ m+3 and fm(x) 6= 0,
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then x ∈ Zm+3 and therefore x ∈ Zn for all n ≥ m+3. Thus fn(x) = 0 whenever
n ≥ m + 3. On the other hand, there exists k ≥ 3 such that x ∈ Zk, which
implies that there exists n such that fn(x) > n. Then, {fn}n is a 2-disjoint
sequence and accordingly with 2-universal completeness

∨
n fn ∈ L.

Supposing f ©
∨

n fn, there exist x0 ∈ XL such that f(x0) 6= (
∨

n fn)(x0).
Let f(x0) < α < β < (

∨
n fn)(x0). Taking the disjoint zero-sets

A = {x ∈ XL : f(x) ≤ α}, B = {x ∈ XL : f(x) ≥ β}

there exists h ∈ L+ such that h = 0 on B and h = (
∨

n fn)(x0) on A. Setting
the zero-set

C = {x ∈ XL : h(x) ≤ β}

it is clear that B ⊆ C and A∩C = ∅. Moreover, there exists k ∈ L+ such that
k = 0 on A and k =

∨
n fn on C. If x ∈ B ⊆ C, then f(x) ≤ (

∨
n fn)(x) = k(x);

if x ∈ XL \ B, then f(x) < β. In both cases f ≤ k ∨ β, so then if we consider
s = (k ∨ β) ∧ (

∨
n fn) ∈ L+, then f ≤ s ≤

∨
n fn. Now, since x0 ∈ A we

have that k(x0) = 0 ≤ f(x0) < β, and therefore k(x0) ∨ β = β. Henceforth,
s(x0) = β ∧ (

∨
n fn)(x0) = β < (

∨
n fn)(x0). We obtain that

fn ≤ f ≤ s ©
∨
n

fn, for every n,

contrary to the definition of the suprema
∨

n fn.
Consequently, f =

∨
n fn ∈ L.
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