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Abstract

We provide an internal characterization of the sets C(X) of continuous real-
valued functions on topological spaces X as real [-groups.
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1. Introduction

In spite of the numerous contributions to characterizing the set of real con-
tinuous functions on a certain topological space, and while this theory has un-
dergone a considerable development in the framework of linear spaces, a very
little effort has been made to extend these results at less restrictive levels.

Birkhoff [3, problem 81] and Kaplansky [13] proposed independently in 1948
the problem of characterizing the lattice C(K) for K a compact Hausdorff space,
which is popularly known as the problem 81 of Birkhoff since it belongs to a
list of open problems proposed in his fundamental text Lattice Theory. That
problem was solved (see [1], [8], [18]).

The problem for noncompact spaces is still open, if we do not consider the
result by Jennsen [10] — her characterization is not an inner one since bigger
sets of maps are involved. There are some solutions for vector lattices or lattice-
ordered algebras (see [16] and [17]) inspired in the seminal works of Kakutani
[12], Kreins [14], and Henriksen and Johnson [9] for compact spaces.

For uniform spaces a kind of approximation results for lattices U(X) were
proved, e.g., by Fenstad [6] and Mokhova [15]. Csészar and Czipszer [4] gen-
eralized in 1963 the Kakutani-Stone theorem for those sublattices of C'(X), X
compact, that contain the constant functions and are closed under subtraction.
If a subset of some C'(X) contains the constant functions and is closed under
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subtractions, it is a subgroup of C'(X). So, the mentioned result by Csdszar and
Czipszer deals with lattice-ordered groups containing the reals numbers, shortly
real [-groups.

In this paper we provide an internal characterization of C(X) for a com-
pletely regular Hausdorff space X as a real [-group.

Such a task has two steps. The first one consists of finding a convenient
space X for a given real [-group L and conditions under which L embeds into
C(X). In the second step we must find conditions under which L = C'(X). We
shall use a kind of ideals and their systems that allow us to describe separation
of closed sets in X.

In the second step one must approximate every continuous function on a
given space by functions from L and to ensure that L is closed under some
limits. We cannot use known [-group versions of Stone-Weierstrass theorem
for lattices since they use conditions that would be difficult to transform into
inner conditions (see Fenstad [6] and Mokhova [15]). We found other (inner)
conditions for lattices of functions (a kind of completeness) that allow separation
of disjoint zero-sets and existence of special suprema sufficient for generating all
continuous functions on the given set.

2. Real l-groups and semisimplicity

Although the concept of I-group is defined for general groups, we shall use it
for Abelian groups only (so we use addition + for the group operation). Readers
may find some details of the next explanation in various books on I-groups, e.g.
in [2] or [7].

Definition 2.1. A lattice L that is also a commutative group is called -group
if f4+g<f+h whenever f,g,h € L and g < h.

In [-groups, one can define positive and negative parts of their elements
(ff=fVvO0,f~ =(—f)VO0) and the absolute value |f| = fT+ f~ = fT Vv f.
There is a real [-subgroup L* of L consisting of bounded elements f € L defined
by |f| < r for some r € R.

Clearly, C(X) (for any topological space X) is an l-group under its opera-
tions +, —, sup, inf defined pointwise. It has one more important feature, namely
it contains an [-subgroup of constant functions that is isomorphic to R (as an
l-group). Most of theorems asserting that C'(X) is approximated by its sub-
set S assumes that S contains all (or many) of those constant functions. For
simplicity we shall assume that our /-group contains all of them:

Definition 2.2. An [-group L is said to be a real l-group provided there is
an injective l-group morphism i : R — L.

In the sequel, L will be a fixed real [-group; we shall not make distinction
between R and ¢(R). Morphisms between our objects of real l-groups are I-group
homomorphisms that are fixed on reals. The set Hom(L, R) of all morphisms will
be denoted by Xj. Every f € L is a mapping X — R by the rule f(x) = z(f).



That assignment defines a morphism ey, : L — F(Xp,) of L into the real I-group
F(X) of all real-valued functions on Xp. If we take the weak topology on X,
generated by ey, (L), then the image ey, (L) is a part of the real I-group C (X)) of
all real-valued continuous functions on X. This assignment ey, : L — C(X) is
known as a spectral representation and Xy, is called spectrum of L. Our task is
to find conditions on L so that e; becomes a bijection. In this section we shall
find conditions under which ey, is an injection.

Morphisms on L are in 1-1 correspondence with certain ideals in L. So, to
find convenient conditions for morphisms L — R (to ensure injectivity of ey,),
we can try to find conditions on ideals in L. Recall that an l-subgroup M of L
is said to be an [-ideal if it is convex (f € M provided |f| < |g| for some g € M).
The l-ideals are precisely kernels of homomorphisms.

An example of [-ideal is L* containing R. The corresponding homomorphism
is not real. To exclude such a situation we must assume ideals to meet R in
0 only. Moreover, the factor group must be linearly ordered, so the ideals M
should be prime (i.e., if f A g = 0 then either f € M or g € M). Together
with the previous condition we may assume that M is a maximal [-ideal not
containing 1 (which is, for maximal l-ideals, equivalent to M NR = {0}). Such
l-ideals are called values of 1, or regular ideals, and are prime.

For prime [-ideals meeting R in 0, the corresponding homomorphic images
are linearly ordered l-groups but need not be isomorphic to R. To ensure the
image to be R, one must add, e.g., that the image is archimedean (thus for every
positive f,g € L there is n € N and f € M such that g < nh+ f). We shall use
a simpler condition.

Definition 2.3. An l-ideal M in L will be called real ideal if

(i) MR = {0};
(ii) for every f € L there exists r € R such that f +1r € M.

The condition (i) follows from a modified condition (ii) if we suppose there
that the number r is unique (for given f).

Observe that every real ideal is a maximal [-ideal not containing 1. Indeed,
let M be a real ideal and N D M be an I-ideal not containing 1. By (ii) there
exists r € R such that f+rM C N. Since —f € N, we haver = (—f)+(f+r) €
N, which means r = 0 and thus f € M.

Since the kernel of a morphism L — R is, clearly, a real ideal, we have the
following result.

Proposition 2.4. M C L is a real ideal iff it is the kernel of a morphism of L
onto R.

Another bad situation occurs, e.g., in the real [-group R? with the real part
R = {(z,0); x € R}, where the only nontrivial real ideal is {0} x R, which is not
enough. To solve this situation we must add a condition ensuring that there is
enough ideals.



Definition 2.5. L is called semisimple if the intersection of all the real ideals
of L is 0.

Semisimplicity means that morphisms into R distinguish elements of L. Be-
cause of previous Proposition, we have the following result.

Theorem 2.6. The map er, : L — C(Xy) is an injection iff L is semisimple.

‘We shall now look closer at the topology of X . By the definition of the weak
topology (the coarsest topology on X making every f € L continuous), a set
U C X, is a neighborhood of its point z iff there are f1, ..., f, € L and intervals
Gi = (fi(x) —r, fi(z)+7r) in R such that () f; *(G;) C U. By shifting each f; by
— fi(x) we may assume that f;(z) = 0 for each i. Taking sufficiently large n € N
and defining f = Y n|f;| we get f € L such that f > 0, f(z) =0, f(y) > s for
every y € X \ U, where s is any given positive real number. Using g = f A s
we can get the values on X, \ U to be exactly s. If one takes h = s — g then
the set coz(h) (where coz(f) = {z € Xr;xz(h) # 0}) is an open set containing
x and contained in U. Consequently, the sets {coz(f) : f € L} form an open
base for the topology of X, and their complements (zero-sets zero(f)) form a
closed base.

If one regards X as the set of real ideals, then a closed base is formed by the
sets corresponding to zero(f), which are all the real ideals containing f. That
topology is often called a hull-kernel topology.

Proposition 2.7. The space X, is a realcompact space. Conversely, if X is a
realcompact space, then Xco(xy = X.

Proof. Since X has a weak topology generated by maps in R, it is completely
regular. Since L separates the points of X, the space X, is Hausdorff. Let
¢ € v(Xyr). Every f € L has a continuous extension f : v(Xr) — R. Then the
map E: L — R, defined by g(f) = f(g) is a homomorphism and so, it belongs
to XL.

Conversely, supposing that X is a realcompact space it remains the question
whether, every h € X¢(x) is determined by a point of X. Define Y = X Uh
endowed with the weak topology with respect to C(X) (considering f(h) = h(f)
for every f € C(X)). Then X is a subspace of Y and every f € C(X) can
be continuously extended to Y. Supposing h ¢ X, there exists f € C(X),
0 < f < 1 such that h(f) = 1 and f(X) = 0. But h € X¢(x) which implies
h(0) = 0. Since X is realcompact, there does not exist Y containing X as a
proper dense C-embedded subset, which is a contradiction O

As well, X¢(x) = vX, the Hewitt-Nachbin realcompactification of X. Fur-
thermore, the spectral representation C(X) — C(vX) becomes an isomorphism
of real I-groups. Thus C(X) is semisimple.

3. Complete separation

In this section we shall assume that L is a semisimple real [-group.



We shall need to separate disjoint zero subsets of X, by elements of L. It is
a difficult task that needs a description of such pair of zero-sets by means of L.
Then we must find a convenient condition for L to allow such a separation.

Definition 3.1. A subset J of L is said to be a vanished ideal if it is an
intersection of real ideals. We shall denote V(L) = {vanished ideals of L}.

There is a one-to-one correspondence between V(L) and the set consisting
of nonempty closed subsets of X, by identifying any nonempty closed subset F'
of X1, with the vanished ideal I = (), My, and any vanished ideal J € V(L)
with the nonempty closed subset F; = [ ;zero(f). We may agree that L is
a vanished ideal for which F;, = @ and Iy = L. So, V(L) is a lattice having the
smallest and the largest element, similarly as the lattice of closed subsets of X,
(under inclusion). The correspondence between them reverses the inclusion.

Given I, J € V(L) we set

I < J in case there exists H € V(L) such that IAH =0and HV J = L.

It is easy to see that I A H =0 if and only if Fy U F; = Xy, and HV J = L if
and only if F; N Fy = @. Hence, the motivation for this new order on V(L) is
the fact that

I < Jif and only if Fy C Fy.
Given J € V(L) we set

Jt={feL:|f[nlgl=0forallgeJ}.

Since |f| Alg| = 0 if and only if z(f) = 0 for every x ¢ zero(g), it is clear that
f € J+ if and only if z(f) = 0 for every = ¢ Fy, and therefore F;» = X \ Fj.

Definitions 3.2. A separating chain in L is a countable chain . in V(L) which
satisfies

(i) N =0and\J S =L;
(i) if I,J €. and I C J, then there exists H € . such that I < H < J.

L is said to be completely separating in case for each two members I,.J
belonging to a separating chain in L, the inclusion I C J implies that for any
h € L, there exists f € J and g € I such that f + g = h.

To functionally separate two closed sets A and B (i.e., to find some f € C(X)
such that f(A) = 0 and f(B) = 1), Urysohn noticed that it suffices to construct
a countable chain of sets {F,} (ordered by a dense order, e.g. by rational or

dyadic rational numbers in [0,1)) such that for r < s one has F, C F, C
X\ B, Fy = A. Using that he proved his famous Urysohn lemma. The procedure
is described in the following lemma due to Johnson and Mandelker [11].

Lemma 3.3. Two subsets A and B of a topological space X are functionally
separated if and only if there exists a countable chain F of closed subsets of X
satisfying the following conditions:



(i) NF =2 and JF = X;
(i) if F,G € ¥ and F C G, then there exists W € F such that F C W C

W CG,
(iii) there exist C,D € F such that ACC C DC X\ B.

If . denotes a separating chain in C'(X) and I, J € . are such that I C J,
then Fjy C F; = vX \ (vX \ Fr). According to the previous Lemma F; and
vX \ Fr are functionally separated in vX. Taking into account the isomorphism
C(X) = C(vX), there exists f € C(X) such that f(F;) = 0and f(vX\Fy) =1.
Then f (vX \ Fy) = 1 because f is continuous. Given h € C(X) if we consider
f = hf we derive that f € [ and g = h — f € J*. Thus, C(X) is completely
separating.

Theorem 3.4. If L is completely separating, then for any pair A, B of func-
tionally separated subsets of Xp, and for any h € L, there exists f € L such that
f=0o0onAand f =h on B.

Proof. Lemma 3.3 ensures that there exists a countable chain .% of closed sub-
sets of X, satisfying: (&% =@ and |JF = X; if F,G € % and F C G, then
there exists W € % such that F C W C W C G, there exist C,D € .% such

that A C C C D C Spec,(F) \ B. By virtue of the one-to-one correspondence
between V(L) and the closed subsets of X, the family

y:{IFIFEg\}

becomes a separating chain in L. Since Ip,Ic € . and Ip C I, there exist
f € Ic and g € I3 such that f + g = h. On the one hand, ifz € A C C = Fy,
then z(f) = 0; on the other hand, if # € B C X, \ D C X\ D = Fy, then
z(g) = 0 and therefore z(h) = z(f) + z(g) = z(f). O

4. Approximation

In this section we shall assume that L is a semisimple and completely sepa-
rated real [-group. The next definition can be, however, stated for any I-group
L. Tt says that some needed topological concepts have sense in [-groups, without
changing their verbal formulation.

Definitions 4.1. A sequence {fn}n in L is said to be uniformly Cauchy if for
each € > 0 there exists N € N such that |fn, — fm| < € for all n,m > N. The
sequence {fn}n is uniformly convergent to some f € L if for each € > 0 there
exists N € N such that |f, — f| < e for alln > N.

L is said to be uniformly complete when every uniformly Cauchy sequence
of L is uniformly convergent to some element of L.

Now comes the expected approximation theorem.

Theorem 4.2. If L is uniformly closed, then L* is isomorphic to C*(Xp).



Proof. Let f € C*(Xp) and € > 0. There exists n € N for which —ne < f < ne.
For any —n < i < n define the zero-set Z; = {x € X, : f(z) < ie} which is
functionally separated from X\ Z;;1. By hypothesis there exists g; € L having
values 0 on Z; and i€ on Xy \ Z;41. Considering h; = (—ic V g;) Aie € L*,
we derive that h = \/,h; € L* and therefore |f — h| < e in C*(X). Thus
L* is uniformly dense in C*(Xp). Since L is semisimple, then L* is uniformly
complete in C*(X},) in particular, and therefore f € L*. O

Next definition is due to Feldman and Porter [5], and it is close to the
condition (A2) of Fenstad [6].

Definitions 4.3. A collection {f,}n in a real I-group L is called 2-disjoint in
case for each n, fn A fr # 0 for at most two indices k distinct from n and for
every real ideal M of L, there is some m such that f,, ¢ M.

L is said to be 2-universally complete in case every 2-disjoint sequence
i L has a least upper bound in L.

In C(X), if the pointwise supremum of a sequence exists and belongs to
C(X) then it will be the supremum of the sequence. Indeed, given a 2-disjoint
collection {f,}n in C(X), for each x € vX there exists f, with |f,(y)| >
0 for all y in a z-neighbourhood U in vX. The pointwise supremum of the
collection {f,}n in U thus involves at most three functions; one concludes that
the pointwise supremum is continuous, and thus \/,, f, € C(X). Thus C(X) is
2-universally complete.

5. Main theorem

Theorem 5.1. A real I-group L is isomorphic to C(X) for some topological
space X if and only if

(1) L is semisimple;

(i1) L is completely separating;
(#9t) L is uniformly complete;
(iv) L is 2-universally complete.

Proof. We know from the preceding considerations that C'(X) satisfies the con-
ditions of Theorem.

We must now prove that any f € C(Xp) belongs to L, provided L satisfies
the condition in Theorem. It suffices to assume that f > 0. Indeed, f = f*—f~
and belongs to [ provided both nonnegative functions f+, f~ belong to L.

For each n > 3 we define the disjoint zero-sets

Z"={rxeXp:n—-2< f(z) <n-1/2}

Zn={xeXp: f(xr) <n-5/2}U{r e X, :n< f(x)}.

There exists a sequence {f, } in Ly such that f,, =0on Z,, f, = fA(n—1/2)
on Z" (because fA(n—1/2) € C*(X) =L* C L). If n > m+3 and f,,(z) # 0,



then & € Z,, 13 and therefore x € Z, for all n > m+3. Thus f, () = 0 whenever
n > m + 3. On the other hand, there exists k& > 3 such that z € Z*, which
implies that there exists n such that f,(x) > n. Then, {f,}, is a 2-disjoint
sequence and accordingly with 2-universal completeness \/, f, € L.

Supposing f < \/,, fn, there exist g € X, such that f(zo) # (V,, fn)(@0)-
Let f(zo) < a < B < (V,, fn)(xo). Taking the disjoint zero-sets

A={zeXy:f(x)<a}, B={ze Xy: f(z)> 5}

there exists h € L4 such that h =0 on B and h = (\/,, fn)(20) on A. Setting
the zero-set
C={zeXy:h(zx)<p}

it is clear that B C C' and ANC = @. Moreover, there exists k € Ly such that
k=0onAandk=V, f,onC. Ifx € BCC,then f(z) < (\/, fn)(x) = k(z);
if v € Xp \ B, then f(z) < 8. In both cases f < kV 3, so then if we consider
s = (kVB)AN(, fn) € Ly, then f < s </, fn. Now, since zg € A we
have that k(z9) = 0 < f(xo) < B, and therefore k(x¢) V 8 = . Henceforth,
s(xo) = BA(V,, fn)(xo) =B < (V,, fn)(z0). We obtain that

fn §f§s§\/fn, for every n,
n

contrary to the definition of the suprema \/,, f,.
Consequently, f =/, f. € L. O
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