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PREFACE

These notes are based on the series of lectures which I delivered at the summer
school ”Differential Equations” held in Mala Moravka (Moravia), May 22-27, 2006.
Since the problem of an appropriate control of a system appears in technology, eco-
nomics, natural sciences and, of course, in mathematical setting, the subject of control
theory is enormously vast. This means that only few probes could be done in my
lectures. I decided to concentrate mainly on linear systems. In spite of the clarity of
the mathematical notion of linearity it is not simple to cover all systems appearing in
practise. For this reason the first section is included though it can seem to be super-
fluous. One of its main message is a link between two different description of a linear
system. Namely in the state space setting which is actually a part of the theory of
ordinary partial differential equations on one side and in the frequency domain that has
its origin in electroengineering on the other side. The frequency domain approach to
stability is briefly describe in Section 1,5. With exceptions of Section 1,3, 1,4, we study
finite dimensional systems to avoid undue technicalities joined with partial differential
equations which could coincide with control theory procedures. But I assume that the
reader is acquinted with basic facts on C0 -semigroups. To this purpose the text [M] is
highly sufficient. Control problems can be formulated in many occasions in language
of operator theory, so I also suppose certain proficiency in linear functional analysis.
The preliminary chapters in [D-M] cover almost all needed facts. Since the frequency
analysis of signals comes from their integral transforms, mainly the knowledge of the
Laplace transform is probably the last prerequisity.

As it has been mentioned the main bulk of these notes (Chapter 1) concerts with
linear theory. The smaller Chapter 2 is devoted to nonlinear theory. The exposition
uses mainly various aspects of linearization. The bang-bang principle is introduced in
Section 2,1 and a necessary condition for optimal control known as the (Pontryagin)
maximum principle and a sufficient condition for optimal control due to R. Bellman
are described in a simplified version in Section 2,2 and 2,3. These conditions have their
origin in classical mechanics in the Lagrange and the Hamilton formulation.

I wish to thank professor Pavel Drabek, the organizer of the summer school, for
inviting me to delivered the lectures and for permanemt encouraging me to write these
notes. I appreciate the support of the grant MSM 0021620839 of the Ministery of
Education, Youth and Sports of the Czech republic.

Praha, February 2007
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INTRODUCTION

The first example of a control device is the well-known Watt regulator which acting
is decribed in various books on ordinary differential equation. The requirements of
affectioning of operations of machines, e.g. aircrafts, electronical equipments, etc. is
easily realized. In spite that the following example is oversimplified, its solution is not
easy.

Example (The moon landing problem)
We wish to manage a spacecraft to make a soft landing on the moon surface using the
minimum amount of fuel. Let M denote the mass of the spacecraft without fuel, m
denote the mass fuel. Assume that at the moment t = 0 the spacecraft is at the height
x0 from the moon and has the velocity v0. Let g denote the gravitational acceleration
(assuming that it is constant) given by the moon. The Newton second law yields the
equations

(M + m)v̇ =(M + m)g − F

ẋ =v,

where F is the retarding thrust of the spacecraft’s engines. We add the equation for
consumption of fuel for the slowing down of spacecraft:

ṁ = −kF.

For construction reasons there is apriori limitations of F , namely F ∈ [0, F0]. The
initial conditions are

m(0) =m0

x(0) =x0

v(0) =v0.

The problem is to find time T > 0 such that the end conditions

x(T ) =0

v(T ) =0

are satisfied and m(T ) is maximized. For a solution see e.g. [F-R],Chapter II,6.

Since many control tasks lead to minimization of some functional one can get an
opinion that the control theory is actually a part of calculus of variations. But it is far
from being true as the previous example partly shows - one of its typical feature is that
the end time T is unknown in advance. If the end point is fixed, a typical constraint
in the control theory is given by a system of differential equations.

Example (The Ramsey model in microeconomy)
Let c denote the amount of utilizing capital, let f , g be a production and a consumption
function, respectively. Assume that the capital evolves according to the differential
equation

ċ(t) =f(c(t))− u(t)g(c(t))

c(t0) =c0,
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where u : [t0, t1] → [0, 1] is a control function. We wish to maximize the performance
index (or cost functional)

J(u) =

∫ t1

t0

h(u(t))g(c(t))dt, (1)

where h is a given increasing function on [0, 1].

Many natural systems like ecosystems have their own self regulation. A typical
example is the famous Voltera predator-prey model. The self regulation means that
a system can return to its normal mode after small disturbaces. In technology we
have to implement such regulations. It is convenient if such control equipment uses
informations on the current state of system. Such controls are called the feedback
controls and they can be designed to perform various tasks not only to stabilize a
system. Here is one important point: Even if one has a quite good model for a real
system there are still various variations during production. A good control has to
eliminate all these aberrations, e.g. it has to stabilize all members of a given set of
systems (the robust stability problem).
A system which should be regulated is very often very complicated (e.g. an aircraft)
and it is practically impossible to write all equations describing its behaviour. Instead
of solving these equations we can tested the bahaviour by analyzing the dependence of
several outputs on incoming inputs (e.g. testing a profile of wing). In another words,
we look at a system as a ’black box” without interests what actually happened inside
it and try to get desirable information by investigation responses to inputs. Since this
idea comes from electroengineering, it often uses harmonic (more generally, spectral)
analysis of inputs and outputs. We will say more about this in Sections 1,1, and 1,5.
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Chapter 1

LINEAR THEORY

1.1 WHAT IS A LINEAR SYSTEM

We have said in Introduction that a (linear) system is like ”a black box” which sends
an input u to an output y. We will suppose that u(t) ∈ U ⊂ Rm and y(t) ∈ Rp. These
assumptions on finite dimensions of a control space (Rm) and on an observation space
(Rp) are mainly from practical point of view, since it is hardly to design a system with
infinitely many outputs or inputs. We can have a model describing processes inside the
black box (e.g. a ca r) but it is only a model which more or less differs from the real
situation. Because of that we are interested in the operator F : u → y. We assume
that F is linear (since the system is linear), time-invariant, i.e. F commutes with all
right shifts τt, where

τtf(s) = f(t− s) t ≤ s

= 0 0 ≤ s < t

for a function f defined on R+. We consider functions on R+ since we assume that
the system is in rest until time s = 0. Supposing certain continuity, F is an operator
of convolution type (its kernel need not be a function). In view of this result, such
operator F is often called an integral representation of a linear system.

A simple model for such situation is based on an idea that the state of a black
box is described by an internal variable x ∈ Rn which is ruled by an input u with
help of a system of linear autonomous differential equations (for continuous time) or
difference equations (for discrete time). Since differential equations are simpler for an
investigation than difference ones, we suppose that

ẋ = Ax + Bu

x(0) = 0 (1,1,1)

y = Cx + Du,

where A,B,C, D are matrices of appropriate orders. Denoting etA the fundamental
matrix we have

x(t) =

∫ t

0

e(t−s)ABu(s)ds

and

y(t) = C

∫ t

0

e(t−s)ABu(s) + Du(t) := Fu(t) (1,1,2)

If D 6= 0 then F is a convolution operator with kernel Ce·AB + δD, where δ is
the Dirac measure (distribution). It is possible to avoid the use of distributions by
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considering the Laplace transform (for functions on R+) or the Fourier transform (for
R).

In our case we get

ŷ(z) :=

∫ +∞

0

e−zty(t)dt = [C(z − A)−1B + D]û(z) (1,1,3)

for z ∈ C+
ω := {z ∈ C; Rez > ω} where ω is the growth rate of etA,

i.e. ‖etA‖ ≤ Ceωt. More generally, the following theorem holds.

Theorem 1.1. Let F ∈ L(L2(R+,Cm), L2(R+,Cp)) be time-invariant. Then there
exists a matrix-valued function

H : C+ = {z ∈ C; Rez > 0} → L(Cm,Cp)

which is holomorphic and bounded on C+ (i.e. H ∈ H∞(C,L(Cm,Cp))) such that

F̂u(z) = H(z)û(z) for z ∈ C+. (1,1,4)

Conversely, if F is defined by (1,1,4) then F ∈ L(L2(R+,Cm), L2(R+,Cp)) and is
time-invariant.

Proof. For a proof and more details see e.g.[W2].The converse statement is based on
the fact that the Laplace transform is an isomorphism of L2(R+) onto H2(C+) (the
Hardy space) - the Paley - Wiener theorem.

The function H from (1,1,4) is called the transfer function of a system with
an input-output function F . The Laplace transform is an injective linear continuous

mapping of L1(R+) into H∞(C+) but unfortunately it is not surjective, (e.g.δ̂(z) = 1).
This means that F need not be the convolution with L1-kernel (cf.(1,1,2)).

For the special system (1,1,2) its transfer function (see (1,1,3)) is a rational matrix-
valued function with no poles in certain right half -plane (C+

ω ) and which is proper (i.e.
bounded on a neighborhood of infinity). Conversely, we can ask whether any such
rational function R is a transfer function of some system (1,1,1). In terms of control
theory, the question is: Has R a realization of the form (1,1,2)? The case R : C → C
(the so-called SISO system) is solvable by the decomposition into elementary fractions.

The reader can get a better imagination considering a simpler case of F ∈ L(L2(T ))
(T is the unit circle) which commutes with the right shifts. Using Fourier series one
gets

F̂u(n) = fnû(n), n ∈ Z, (1,1,5)

with (fn) ∈ l∞(Z). Here û(n) denotes the n-th Fourier coefficient of u. Since (û(n))n∈Z
and, more generally, û(z) are ”frequencies” of u, the representation of F by its transfer
function H is called the frequency domain representation of F .

Remark 1.2. If one has to use another Lp spaces (i.e. p 6= 2) then he/she encounters
with difficulties occuring in the converse problem: Which sequences (fn)n∈Z yield con-
tinuous operators F : Lp(T ) → Lq(T ) via (1,1,5)? This is the problem of multipliers
(see any more advanced book on harmonic analysis).
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Theorem 1.3. Let H : C → Cp×m be a rational matrix-valued function with real
entries which is bounded on a neighborhood of ∞. Then there exist n ∈ N and matrices
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rm×p such that

H(z) = C(z − A)−1B + D

for sufficiently large Re z.

Proof. See e.g.[Z],Part I, Chapter 3.

Remark 1.4. There is no uniqueness theorem for realization of F in the form (1,1,1)
as it can by easily seen for a SISO system. If such a realization exists then there is a
realization with minimal n (the dimension of a state space).

Example 1.5.
1) The delay line, i.e.

Fu(t) = u(t− 1), t ≥ 1

0, 0 ≤ t ≤ 1

has transfer function H(z) = e−z, which belongs to H∞(C+). But F is not a convolu-
tion with a kernel given by some function. Indeed, Fu(t) = δ1 ∗ u(t), where δ1 is the
Dirac measure concentrated at the point 1.
2) A differential equation with delay, e.g. ẋ = x(t− 1) + u(t), x(t) = 0 for −1 ≤ t ≤ 0
and y(t) = x(t). The Laplace transform yields

zx̂(z) = e−zx̂(z) + û(z),

i.e. the corresponding transfer function of this system is H(z) = 1
z−e−z . Again, it is not

difficult to see that the input-output map is a convolution with a distributive kernel.

Hint. If

H1(t) = 0 t < 1

= 1 t > 1

then H1(z) = e−Z

z
If

Fu(t) =

∫ t

0

k(t− s)u(s)ds (1,1,6)

where k is a function, it is possible to find a realization of the form (1,1,1) provided
that Rn is replaced by the infinite-dimensional Hilbert space and A,B,C are generally
unbounded operators. More precisely, the following simple result holds.

Proposition 1.6. Let (1,1,6) hold with k ∈ L1(R+). Then F is an input-output map
for the system

∂w

∂t
=

∂w

∂x
+ k(x),

w(0, x) =0, x ∈ (0,∞) (1,1,7)

y(t) =w(t, 0)

in the space L2(0,∞).
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Proof. If u ∈ W 1,2(R+) and k ∈ L1(R+) ∩ C(R+) then

w(t, x) =

∫ t+x

x

k(ξ)u(t + x− ξ)dξ (1,1,8)

solves the partial differential equation on (0,∞) × (0,∞) and satisfies the boundary

condition. For u ∈ L2(R+), k ∈ L1(R+), the integral in (1,1,8) is equal to
∫ t

0
k(t + x−

s)u(s)ds and can be considered as a generalized solution to (1,1,7). Further w(t, .) ∈
C(R+) and y(t) = w(t, 0) ∈ L2(R+).

The realization of (1,1,7) we can write in an abstract form

ẇ = Aw + Bu

w(0) = 0 (1,1,9)

y = Cw

where A is a generator of the left-shift semigroup S(.) on X = L2(R+), i.e. D(A) =
W 1,2(0,∞) and Aw = ∂w

∂ξ
. Further, Bu = k.u and B ∈ L(R, X) provided k ∈ L2(R+)

and C = δ0, D(C) = C(R+) ∩X, C : D(C) ⊂ X → R.
From (1,1,8) we get

w(t) =

∫ t

0

S(t− s)Bu(s)ds := [Bu](t) (1,1,10)

where B ∈ L(L2(R+, U), X) and y(t) = CS(t)x =: [Cx](t),
where C ∈ L(X,L2(R+, U), X), (U = Y = R). Operators S,B, C,F form a more
determining representation of a linear system.

Theorem 1.7. (realization theory - D.Salamon, G. Weiss,1987). Let U, Y be Banach
spaces and let F be a linear continuous operator such that

F : L2
ω(R+, U) → L2

ω(R+, Y )

for some exponential weight function ω(t) = e−ωt . If F is time-invariant and causal
(i.e. u(t) = 0 on (0, T ) ⇒ Fu(t) = 0 on(0, T )) then there exists a Banach space X
and C0-semigroup S(·) on X and two continuous operators C,B (as above) such that
S(t)B = Bτt, CS(t) = τtC, CB = F .

Proof. For the proof one can consult either papers of [Sa1],[W1], or the recent mono-
graph [St2].

Remark 1.8. The existence of B,C such that (1,1,9) - (1,1,11) hold is another problem.
To get B one has to extend the semigroup S into the extrapolation space X−1 (in
concrete cases X−1 is a space of distribution). Then B ∈ L(U,X−1) exists such that
(1,1,10) holds at least for sufficiently smooth u. Similarly, C ∈ L(X1, Y ) (X1 is the
domain of generator of S(.) equipped with the graph norm) and (1,1,11) holds for
x ∈ X1. For details see e. g. the book [St2]. The role of interpolation spaces in control
theory is briefly described in Section 1,6.
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1.2 BASIC CONTROL PROBLEMS -
FINITE DIMENSIONAL CASE

In this section we will suppose that a linear system is represented by a system of
ODEs (1,1,1), where A,B, C, D are matrices. The corresponding spaces will be denoted
by X (= Rn, state space), U (= Rm, control space) and Y (= Rp, observation space).
The following control problems are basic:

(P1) For given points x0, x1 ∈ X find time T > 0 and a control
u ∈ L2(0, T ; U) such that a solution x to

ẋ = Ax + Bu (1,2,1)

x(0) = x0,

hits the value x1 at time T . In practise, it is often sufficient that x(T ) belongs to a
prescribed neighborhood of x1. This is the so-called controllability problem.

(P2) Consider a system

ẋ = Ax

x(0) = x0 (1,2,2)

y = Cx.

The observability problem demands the existence of time T such that the operator
C : x0 → u ∈ C([0, T ]; Y ) is injective. In more informal way: can we recognized the
state of a system by observation during some time?

(P3) A matrix A can have an eigenvalue with positive real part, i.e. the system
ẋ = Ax is not stable. Since we want to manage a system in such way that is takes its
values near to certain equilibrium (here 0), we can ask whether it is possible to find
u ∈ C(R+, U) (or in L2(R+, U)) such that a solution of (1,2,1) tends to 0 if t → ∞.
Again from the practical point of view it would be desirable to design u working in
various situations. In other words, we wish to find a feedback F ∈ Rm×n so that the
equation

ẋ = (A + BF )x (1,2,3)

is stable. This is the stabilization problem.

(P4) As we mentioned in (P1) it is often sufficient to send x0 into a neighborhood
of 0 in the prescribed time T > 0. But the closer x(T ) to 0 is the ”price” for such
control u can be higher. In these situations the optimality problem occurs:
Find u ∈ L2(0, T ; U) such that the cost

J(u) =

∫ T

0

f(t, x(t), u(t))dt + g(x(T )), (1,2,4)

where x is a solution to (1,2,1), is minimal. Here a function g represents a ”penaliza-
tion” for x(T ) not being 0. Of course, this problem is not a linear one.
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In case that f describes a quantity like energy, i.e.

f(t, x, u) =< x, x > + < Ru, u >

(R is a positive definite matrix) and

g(ξ) =< Mξ, ξ >

with a non-negative matrix M , we will show in section 1,6 that an optimal u depends
linearly on x0 and is of feedback type. For a general f the problem of minimization of
(1,2,4) has many common features with calculus of variations as can by seen considering

ẋ = u

x(0) = x0

x(T ) = x1.

Now we turn to the controllability problem. Variation of constants formula gives
a solution of (1,2,1) in the form

x(T ) = eTAx0 +

∫ T

0

e(T−s)ABu(s)ds.

Denoting the convolution term by BT u (BT ∈ L(L2(0, T ); U), X)) we see that the
controllability problem has a solution at time T for any x0, x1 if and only ifR(BT ) = X.
The matrix

QT = BTB∗T
B∗T is the adjoin to BT i.e. < B∗T x, u >L2=< x,BT u >X

is a controllability matrix.

Proposition 1.9. The controllability matrix QT is regular if and only if R(BT ) = X.
Moreover

û = B∗T Q−1
T (x1 − eTAx0)

is a control which sends x0 into x1 and has the minimal L2-norm.

Proof. Since < QT x, x >X= |B∗T x|2L2(0,T )

QT is regular

m
B∗T is injective

m
R(BT )(= R(BT )) = X.

The control û has the desired property BT û = x1 − eTAx0 and û is perpendicular to
the kernel of BT , i.e.

|û| = min |û + KerBT |.
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A deeper and more comfortable result is the following one.

Theorem 1.10. (Kalman)
R(B) = X if and only if the rank of matrix

(B, AB, ..., An−1B)

is equal to n (=dim X).

Proof.
1) Rank (B,AB, ..., An−1B) = dimR(L), where L : Un → X is defined as

L(u0, ..., un−1) =
n−1∑

k=0

AkBui.

2) We have (finite dimensions)

R(L) = R(BT ) ⇔ R(L)⊥ = R(B⊥T )

and
x ∈ R(L)⊥ ⇔ B∗(A∗)kx = 0, k = 0, ..., n− 1.

On the other hand

< x,BT u >=

∫ T

0

< B∗etA∗x, u(T − t) > dt.

By the Hamilton-Calley theorem An =
∑n−1

i=0 αiA
i and, therefore, if x ∈ R(L)⊥ then

B∗etA∗x = 0 for all t ≥ 0, i.e. x ∈ R(BT )⊥.
If x ∈ R(BT )⊥ then B∗etA∗x = 0 for all t ≥ 0,and taking derivatives at t = 0 we obtain
B∗(A∗)kX = 0, i.e. x ∈ R(L)⊥.

Corollary 1.11. Solvability of the controllability problem does not depend on T .

From the proof of Theorem 1,10 we can deduce that R(B) ⊂ R(BT ) and also that
R(BT ) is A-invariant (again by the Hamilton-Calley theorem). This means that (1,2,1)
has the form

ẏ = Amy + A12z + Bu (1,2,5)

ż = A22z

with respect to the decomposition X = R(BT ) ⊕ X1 (x = y + z, y ∈ R(BT ), z ∈ X1.
The system (A11, B) is controllable in R(BT ). We will use the Kalman decomposition
(1,2,5) for solving the stabilizability problem.

Theorem 1.12. (Wonham)
A system (1,2,1) is controllable if and only if for any ω ∈ R there is F ∈ L(X, U) such
that Reσ(A + BF ) < ω. In particular, a controllable system is stabilizable by feedback.

Proof. Proof of the necessity part is done in two steps.
(1)First we prove the statement for dimU = 1, i.e. if there is b ∈ X such that Bu = ub.
By the rank condition from Theorem 1,10, the elements

bk = An−kb, k = 1, ..., n
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form a basis of X. Having a cyclic vector B the system (1,2,1) can be rewriten as a
differential equation of the n-th order:
If x =

∑n
k=1 ykbk, then

ẋ =
∑

ẏkbk = A(
∑

ykbk) + ubn =
n∑

k=2

ykbk−1 + y1(−
n∑

j=1

αjA
n−jb) + ubn,

where An +
∑n

j=1 αjA
n−j = 0 (Hamilton-Calley). This means that y = y1 satisfies the

equation

y(n) +
n∑

k=1

αky
(n−k) = u.

Let us choose a polynomial

P (λ) = λn + a1λ
n−1 + ... + an

and put u =
∑n−1

k=0(ak + αk)y
(k) =: F(y1, ..., yn) =: Fx. Then the matrix A + BF has

P as its characteristic polynomial.
2) The reduction of general case to an one-dimensional case is based on the following
lemma.

Lemma 1.13. Let a system (A,B) is controllable. Then there exists L ∈ L(X,U),
w ∈ U such that the system

ẏ = (A + BL)y + uBw (1,2,6)

is controllable.

Proof. Let w ∈ U be such that Bw = b1 6= 0. By induction, we can find u1, ..., un−1 ∈ U
such that bk+1 = Abk + Buk is linearly independent on b1, ..., bk, k = 1, ..., n − 1. It is
sufficient to put Lbk = uk, k = 1, ..., n− 1, Lbn = 0 and use Theorem 1,10 to show that
the system (1,2,6) is controllable.

The sufficiency of the condition of theorem can be easily shown by contradiction using
the decomposition (1,2,5).

Remark 1.14. It follows from the first part of the proof that a linear equation of the
n-th order

x(n) +
n−1∑

k=0

αkx
(k) = u, α0, ..., αn−1 ∈ R,

is always controllable.

Example 1.15. The system

ẋ = x + y + u

ẏ = −y

is not controllable and it is stabilizable , e.g. by u = −2x − y. This example shows
how convenient is the decomposition (1,2,5) for the problem of stabilizability.
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Remark 1.16. If an equation ẋ = Ax is not exponentially stable then

σ+ := {λ ∈ σ(A); Reλ ≥ 0} 6= ∅.
Put σ− = σ(A) \ σ+. Then there is a direct decomposition Rn = X− ⊕ X+ with
corresponding projections P−, P+ where both X− and X+ are A-invariant and the
restriction A+ := A |X+ has spectrum σ(A+) = σ+ and, similarly, σ(A−) = σ−. Assume
that the partial system (A+, P+B) is controllable. Then there exists F+ ∈ L(X+, U)
such that the matrix A+ + P+BF+ is exponentially stable. Defining Fx = F+P+x we
get that A+BF is also exponentially stable. By Theorem 1,10, the system (A+, P+B)
is controllable provided X+ = R(L+), where

L+(u1, ..., uk) =
k∑

j=1

(A+)j−1P+Buj, k = dimX+.

If
X = R(λ− A) +R(B) for all λ ∈ σ+, (1,2,7)

then, by transforming A into its Jordan canonical form, it can be shown that all
generalized eigenvectors of A+ belongs to R(L+). Since these vectors generate X+,
the condition (1,2,7) (the so-called Hautus condition) is sufficient for exponential
stabilization of (1,2,1). If (1,2,1) is exponentially stabilizable by a feedback F then
(λ− A−BF )−1 exists for λ ∈ σ+ and (1,2,7) follows.

Remark 1.17. From the point of view of applications the stabilization problem by
feedback should by strengthened as follows: Does there exists a matrix K ∈ Rm×p such
that the equation

ẋ = (A + BKC)x

is stable? For more information see e.g. [B].

Now we turn to the observability problem and show that there is a duality between
observability and controllability. For a solution of (1,2,2) we have

y(t) = CetAx0 =: [CT x0](t), t ∈ [0, T ]

Further, KerCT = 0 if and only if R(C∗T ) = X, where

C∗T y =

∫ T

0

etA∗C∗y(t)dt.

This means that we have

Proposition 1.18. A system(1,2,2) is observable at time T > 0 if and only if the
system (A∗, C∗) is controllable at time T > 0, i.e. the rank of

(C∗, A∗C∗, ..., (A∗)n−1C∗)

is equal to n (=dimX).
Similarly as observability is in duality with controllability, the dual notion to sta-

bilizability is detectability. A system (1,2,2) is detectable if there is L ∈ L(Y,X) such
that the system ẋ = (A + LC)x is stable. Obviously, (1,2,2) is detectable if and only if
(A∗, C∗) is stabilizable.
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1.3 BASIC CONTROL PROBLEMS - INFINITE
DIMENSIONAL CASE

First we will consider the so-called distributed parameter system which abstract
formulation is given by an evolution equation

ẋ = Ax + Bu

x(0) = x0 (1,3,1)

with an observation
y = Cx. (1,3,2)

Here A is a generator of a C0-semigroup S(t) on a Hilbert (not always necessarily)
space X, B ∈ L(U,X), C ∈ L(X,Y ), where U, Y are also Hilbert spaces which have
often finite dimensions. A solution (the so-called mild) of (1,3,1) for u ∈ L2(0, T ; U) is
x ∈ C([0, T ]; X) given by a generalization of variation of parameters formula

x(t) = S(t)x0 +

∫ t

0

S(t− s)Bu(s)ds, (1,3,3)

where the integral is Bochner’s. Since x is continuous, (1,3,2) holds pointwise.

The basic control problems (P1) - (P4) have been formulated in Section 1,2. The
following example shows that the motion of controllability as well as observability
should be modified.

Example 1.19. Let dim U = 1 and let Bu = ub for some b ∈ X. Then the (1,3,1) is
not controllable in an infinite dimensional space X. Indeed, the operator

BT u =

∫ T

0

S(t− s)bu(s)ds

is compact and thus R(BT ) 6= X. The same result holds also for any finite-dimensional
space U .

A system (1,3,1) is approximate controllable at time T > 0 if for any x0, x1 ∈ X
and a neighborhood V of x1 there is u ∈ L2(0, T ; U) such that S(T )x0 + BT u ∈ V , i.e.

R(BT ) is dense in X. Since R(BT ) = (KerT ∗)⊥ for any continuous linear operator

T ∈ L(X, Y ), R(BT ) = X if and only if B∗
T is injective. By the definition,

B∗
T x(s) = B∗S∗(T − s)x.

Since the adjoint semigroup S∗(t) is strongly continuous in a Hilbert space, we have
the following simple criterion.

Proposition 1.20. A system (1,3,1) is approximate controllable if and only if B∗S∗(t)x =
0 for all t ∈ [0, T ] implies x = 0, i.e. the system (A∗, B∗) is observable at time T .

13



Example 1.21. Assume that A is a self-adjoint operator bounded from above and
has a compact resolvent (typically: Ω is a bounded domain with Lipschitz boundary,
X = L2(Ω), Ax = 4x, D(A) = W 2,2(Ω) ∩W 1,2

0 (Ω), i.e. ẋ = Ax is the heat equation
in Ω with the Dirichlet boundary condition). Then there is an orthonormal basis (en)
of X consisting in eigenfunctions of A

Aen = λnen, λ1 ≥ λ2 ≥ ..., λn → −∞.

Suppose further that dim U = 1, i.e. there is a b ∈ X such that Bu = ub.
Let

B∗S∗(t) =< S(t)b, x >=
∞∑

n=1

eλnt < b, en >< x, en >= 0 for t ∈ [0, T ].

To obtain x = 0 it is necessary that < b, en >6= 0 and λn 6= λm for all n,m ∈ N, n 6= m.
These two conditions are also sufficient. Indeed, the function

ϕ(z) =
∑

eλnz < b, en >< x, en >

is holomorphic in C+ := {z ∈ C; Rez > 0}. Being zero on [0, T ] it vanishes everywhere
in C+. It follows that

0 = lim
t→∞

eλ1tϕ(t) =< b, e1 >< x, e1 >, i.e. < x, e1 >= 0.

Similarly, < x, en >= 0 for all n.

Besides approximate controllability, the concept of null-controllability is also used.
A system (1,3,1) is null-controllable at time T > 0 if for any x0 there is u ∈ L2(0, T ; U)
such that

0 = eTAx0 +

∫ T

0

S(T − s)Bu(s)ds. (1,3,4)

Example 1.22. Let A, b be as in the previous example. Then the condition (1,3,4)
reads as follows

< x0, en >=< b, en >

∫ T

0

e−λnsu(s)ds for all n ∈ N.

Finding such u ∈ L2(0, T ) is not easy (it is a variant of classical momentum problem).
For more information see e.g. [A-I].
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Roughly speaking the lack of controllability for parabolic equations is due to the
smoothing property of the corresponding semigroup which is analytic. Hyperbolic
equations have no such property since the corresponding semigroup is actually a group.
So we can expect some positive results on controllability. First of all we need to rewrite
an equation of the second order

ẍ = Ax + Bu

x(0) = x0 (1,3,5)

ẋ(0) = w0

in the form(1,3,1).
Since a standard example is

A = 4 with D(A) = W 2,2(Ω) ∩W 1,2
0 (Ω)

we can assume that −A is positive self-adjoint operator in X(= L2(Ω)). Then (−A)
1
2

is defined and it is a closed operator. Denote

Xα = D(−A)α

with the graph norm, α = 1
2
, 1, and put H = X

1
2 ×X. If D(A) = X1 ×X

1
2 and

A =

(
0 I
A 0

)
, (1,3,6)

then the equation (1,3,5) can be writen in the form

ż = Az + B̃u

z(0) = z0

where

z =

(
x
w

)
B̃u =

(
0

Bu

)

The operator A is skew-symmetric (A∗ = −A). If A has a compact resolvend end
(en) is an orthonormal basis in X, Aen = λnen, 0 > λ1 ≥ λ2 ≥ ... λn → −∞, then
±i
√−λn are eigenvalues of A with eigenfunctions

(
en

±i
√−λnen

)

In order to find conditions for exact conatrollability (i.e. R(BT ) = H) we need to
describe R(BT ). The following simple result is useful.

Proposition 1.23. Let S ∈ L(X,Z), T ∈ L(Y, Z), where X, Y, Z are Hilbert spaces.
Then R(S) ⊂ R(T ) if and only if there is C > 0 such that

|S∗z| ≤ C|T ∗z| for all z ∈ Z.

Proof. Sketch of the proof:
(i)

R(S) ⊂ R(T ) ⇔ ∃C > 0 {F (x); |x| ≤ 1} ⊂ {G(y); |y| ≤ C}.
Only necessity part is to prove. Denote Ĝ = G |KerG. By the closed graph theorem

Ĝ−1F is continuous and the inclusion follows.
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(ii) Since Z is reflexive and G sends weakly convergent sequences into weakly conver-
gent, the set {G(y); |y| ≤ C} is closed.

(iii)

{F (x); |x| ≤ 1} ⊂ {G(y); |y| ≤ C} ⇔ |F ∗(z)| ≤ C|G∗(z)| for all z ∈ Z.

The if part follows from (ii) by the Hahn-Bahn separation theorem. The only if part
is a consequence of the definition of norm |F ∗(z)|.

Let QT = BTB∗T . Then QT is a positive definite self-adjoint operator on X and thus

there is a positive square root Q
1
2
T .

Corollary 1.24.

R(BT ) = R(Q
1
2
T ).

Proof. For x ∈ X we have

|Q
1
2
T x|2 =< QT x, x >= |B∗T x|2.

Corollary 1.25. R(BT ) = X if and only if there is C > 0 such that

|B∗
T x|L2(0,T ;U) ≥ C|x|X for all x ∈ X.

Proof. Choose S = I, T = BT in Proposition 1,23.

Example 1.26. Let U = X and assume that A has properties as above. Then

ż =Az +

(
0
b

)

z(0) =z0

is exact controllable at any time T > 0. If Bu = ub and < b, en >6= 0 for all n ∈ N
then the equation

ż = Az +

(
0
b

)

is approximately controllable at any time T > 0. Proofs of both statements need long
calculations using the series expansions of the group S(t) generated by A. For more
details see e.g. [B-DP-D-M].
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1.4 STABILIZABILITY IN INFINITE DIMENSIONS

The asymptotic (equivalently exponential) stability for a finite system of linear ODEs

ẋ = Ax

x(0) = x0 (1,4,1)

means that a solution tends to zero at infinity. This is ultimately connected with
location of eigenvalues of A. More precisely

s(A) := sup{Reλ; λ ∈ σ(A)} < 0 ⇔ (1, 4, 1) is exponentialy stable

The quantity s(A) is called the spectral bound of A. If a state space X has infinite
dimension then there are several notions of stability. We present at least two of them.

Definition 1.27. Let S be a C0-semigroup on a Banach space X.
(i) The quantity

ω0(S) := inf{α, ∃C > 0; ‖S(t)‖ ≤ Ceαt}
is called the growth bound of S. A semigroup S is exponentially stable if ω0(S) < 0.
(ii) A semigroup S is strongly stable if

lim
t→∞

S(t)x = 0 for all x ∈ X.

Theorem 1.28. (Datko) A C0-semigroup S is exponential stable in a Banach space X
if and only if for some/all p ∈ [1,∞) one has S(t)x =∈ Lp(R+, X) for all x ∈ X.

Proof. See e.g. [E-N], Theorem V.1.8.

For a system (1,4,1) of ODES we have ω0(S) = s(A). This fact can be justified
either by solving (1,4,1) or from the so-called spectral mapping theorem which says
that

σ(s(T )) = etσ(A) for t ≥ 0.

Unfortunately. this theorem does not hold even in the generalized form

σ(S(t))\{0} = etσ(A)\{0} (1,4,2)

(the weak spectral theorem) for any semigroup. We notice that the validity of (1,4,2)
is sufficient for the equality s(A) = ω0(S). So we need either special properties of semi-
group (e.g. analycity of S, which holds for parabolic equations) or another properties
of generator to be able to conclude stability of S from a quality of A.

Theorem 1.29. (i) (Gearhart-Greiner-Prüss) A C0-semigroup S in a Hilbert space X
is exponentially stable if and only if s(A) < 0 and the resolvent

λ → (λ− A)−1 ∈ H∞(C+,L(X)).

(ii) (Arendt-Batty-Lyubic-Vu) A bounded C0-semigroup X with a generator A in a
Banach space is strongly stable provided the following two conditions are satisfied:
(a) σp(A) ∩ iR is countable
(b) σp(A

∗) ∩ iR = ∅.
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The reader can consult for proofs and more information on asymptotic behaviour
of semigroups e.g. [E-N] or [A-B-H-N].

Because of several notions of stability there are also various notions of stabilizability.

Definition 1.30. A linear systam (1,3,1) is strongly stabilizable, respectively expo-
nentially stabilizable, if there exists a feedback F ∈ L(X,U) such that the semigroup
generated by (A + BF ) is exponentially stable and strongly stable.

If s(A) > 0 then (1,4,1) is unstable and we need to construct a feedback F so that
it shifts the ”bad” part od σ(A) to the left half plane C−. If dim U < ∞ we can expect
only finite number of eigenvalues can be shifted.

We say that A satisfies the decomposition property if σ(A) = σ+ ∪ σ−, where
σ− = {λ ∈ σ(A); Reλ < 0} is closed and σ+ = {λ ∈ σ(A); Reλ > 0} is finite
and consists in eigenvalues of finite multiplicity only. In particular, σ− and σ+ are
separated and there is a projection P : X → X+, where dim X+ < ∞, APx = PAx
for all x ∈ X and the restriction A+ := A |X+ has spectrum σ(A+) = σ+ and the
restriction A− := A |X− , X− = Ker P , has spectrum σ(A−) = σ−.

Theorem 1.31. Let dimU < ∞ and let A be a generator of C0-semigroup. Then the
system (1,3,1) is exponentially stabilizable if and only if A satisfies the decomposition
property and the system(A+, PB) is controllable.

Proof. 1) Sufficiency: Let F+ ∈ L(X+, U) be a stabilizing feedback, i.e. s(A+ +
PBF+) < 0. Put Fx = F+Px. Since A+BF has in X = X−⊕X+ the decomposition

(
A− (I − P )BF+

0 A+ + PBF+

)

the growth bound of the semigroup generated by A + BF is the maximum of that of
the semigroups generated by A− and A+ + PBF+ and, therefore, strictly negative.
2) The proof of the necessity is more involved and it is based on a perturbation result
which is due to [D-S]. See also [C-Z], §5.2.

Example 1.32. Let A be as in Example 1,21 Assume that λ1 > λ2 > ... > λn ≥ 0 >
λn+1 > ... are eigenvalues of A with finite multiplicity kj, j = 1, ... (A has a compact

resolvent). Let ej
1, ..., e

j
kj

be pairwise orthogonal eigenfunctions of A corresponding

to λj. Put X+ = Lin{ej
i , i = 1, ..., kj, j = 1, ..., n}. Assume that dim U = m and

Bu =
∑m

i=1 uibi, b1, .., bm ∈ X. Since the orthogonal projectin P onto X+ and thus
also A+, PB are explicitely given, we can use Theorem 1,10 to obtain the condition for
controllability of (A+, PB). After some computations this condition reads as follows

rank




< b1, e
j
1 >, ..., < bm, ej

1 >
.
.
.

< b1, e
j
kj

>, ..., < bm, ej
kj

>




= kj, j = 1, ...n.
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Cf. Remark 1.16.

Theorem 1.33. Let A be a generator of a C0-semigroup S of contractions (i.e.‖S(t)‖ ≤
1) in a Hilbert space X and let A have a compact resolvent. Then the feedback f = −B∗

is strongly stabilizable for (1,3,1) if and only if

Ker(λ− A∗) ∩KerB∗ = {0} for all λ ∈ iR ∩ σp(A
∗)

Proof.
1) Let A−BB∗ is strongly stable. If x̃ ∈ Ker(λ−A∗)∩KerB∗, x̃ 6= 0, then (λ−A∗−
BB∗)x̃ = 0 and for the semigroup SF generated by A − BB∗ one has S∗F (t)x̃ = eλtx̃
(by the spectral mapping theorem for point spectrum) and, therefore,

0 = lim
t→∞

< SF (t)x, x̃ >= lim
t→∞

eλt < x, x̃ > for any x ∈ X.

This means that x̃ = 0 a contradiction.
2) Beeing a generator of a semigroup of contractions, A is a dissipative operator
(Re < Ax, x >≤ 0 for all x ∈ D(A)) and ‖(λ− A)−1‖ ≤ 1

λ
for λ > 0 (the Hille-Yosida

theorem). It follows that

(λ− A + BB∗)−1 = [I + BB∗(λ− A)−1]−1(λ− A)−1

exists for λ sufficiently large and it is a compact operator. Moreover, A − BB∗ is
dissipative and thus it generates a bounded semigroup. The assumption (a) of Theorem
1,29 (ii) is satisfied by compactness of resolvent for A−BB∗. Assume that

(A∗ −BB∗)x = iµx for µ ∈ R and some x 6= 0.

Then
< A∗x, x > −|B∗x|2 = iµ|x|2.

Taking the real part we get B∗x = 0 and A∗x = iµx. By the assumption of Theorem,
x = 0. This contradiction shows that the assumptions (b) of Theorem 1.29 (ii) is also
satisfied and, therefore, A−BB∗ generates a strongly stable semigroup.

Corollary 1.34. Let A satisfy the assumptions of Theorem 1,33 and let (1,3,2) be
approximately controllable. Then (1,3,2) is strongly stabilizable.

Proof. Let x ∈ Ker(λ0 − A∗) ∩KerB∗ for some λ0 ∈ iR. For any λ /∈ σ(A∗) we have

(λ− λ0)B
∗(λ− A∗)−1x = B∗x = 0.

Since (λ − A∗)−1 is the Laplace transform of S∗(t)x, the uniqueness theorem for this
transform yields B∗S∗(t)x = 0 for all t ≥ 0 and, by Proposition 1.20, x = 0.

Example 1.35. Theorem 1.33 and its Corollary can by used for parabolic and hyper-
bolic equations as well. If A has the form (1,3,6) and −A is a positive operator, then
σ(A) ⊂ iR. Since

(λ−A)−1 =

(
λ A
I λ

)
(λ2 − A)−1 for λ /∈ iR,

(λ−A)−1 is compact. Moreover, A is a generator of C0-group of contractions.
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1.5 STABILITY IN FREQUENCY DOMAIN

In Section 1,1 we discussed the description of a linear system by its transfer function
H. Now we will continue this study with examination of stability. Throughout this
section we restrict our attention to a finite dimensional control space U (dim U = m)
and a observation space Y (dim Y = p) so that H : C → Cp×m. If H has rational
entries then (Theorem 1,3) there exist matrices A,B,C,D such that

H(z) = C(z − A)−1B + D.

Moreover, the equation ẋ = Ax is exponentially stable if and only if

H ∈ H∞(C+
β ,Cp×m) for some β < 0 (C+

β := {z ∈ C; Rez > β}),
since the eigenvalues of A coincide with the poles of entries of matrix-valued function
H. If we want to incorporate systems like a delay line and retarded differential equa-
tions we have to extend the class of transfer functions admitting also others functions
than only rational, e.g. exponentials.

We consider following classes of matrix-valued functions:
(1) F ∈ A(β) if there are

K ∈ L1
β(R+,Cp×m) (i.e.

∫ ∞

0

e−βt‖K(t)‖dt < ∞),

(tk) ⊂ [0,∞), (Ak) ∈ Cp×m such that
∞∑

k=1

e−tkβ‖Ak‖ < ∞

and F (t) = K(t) +
∞∑

k=1

δ(t− tk)Ak

(2) A− := ∪β<0A(β)

(3) H ∈ Â(β) (Â−) if H is the Laplace transform of F ∈ A(β) (A−). In particular,

Â(β) ⊂ H∞(C+
β ;Cp×m).

(4)(Callier-Desoer ring)

B̂(β) := Â−(β)[Â∞(β)]−1 (quotient ring),

where

Â∞(β) = {H = (hij) ∈ Â−(β); ∃ρ > 0 : inf{|hij(z)|; Rez ≥ β, |z| ≥ ρ} > 0

for i = 1, ..., p, j = 1, .., m}.

Remark 1.36. In case m = p = 1 it can be shown that functions in B̂(β) are mero-
morphic in C+

β and have only finitely many singularities in C+
β which are poles. More

precisely, H ∈ B̂(β) if and only if it has the representation H = H1 + H2, where

H1 ∈ Â−(β) and H2 is a rational function with all its poles in C+
β and limz→∞ H2(z) = 0.

A similar characterization holds also for a matrix-valued B̂(β).
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Example 1.37.
1)H(z) = 1

z
is the transfer function of the integrator Fu(t) =

∫ t

0
u(s)ds. Also

H(z) = 1
z+a

( z
z+a

)−1 ∈ B̂(β) for β > −a. Notice that 1
z+a

and z
z+a

are coprime over

Â(β). Indeed, for X(z) = a, Y (z) = 1, it is

X(z)
1

z + a
+ Y (z)

z

z + a
= 1 X, Y ∈ Â(β).

Notice that the characterization mentioned in the previous remark implies immediately

that H ∈ B̂(β).

2)Consider the retarded equation

ẋ = x(t− 1) + u(t) t ≥ 0

x(s) = 0 s ∈ [−1, 0].

The Laplace transform yields

zx̂(z) = e−zx̂(z) + û(z)

and the transfer function of this system is H(z) = 1
z−e−z . Since H(z) = 1

z+a
( z−e−z

z+a
)−1,

H ∈ B̂(β) for β > −a.

Definition 1.38. A transfer function H (or a system with this transfer function) is

input-output stable (i-o stable) if H ∈ Â−.

Remark 1.39. The input-output stability implies that the corresponding input-output
operator

Fu(t) =

∫ t

0

K(t− s)u(s)ds +
∞∑

k=1

Aku(t− tk)

sends an input u ∈ L2(R+,Cm) into an output y ∈ L2(R+,Cp). In many applications
the L2-norm of u and y represents an energy of u and y. So, roughly speaking, tho i-o
stability means that the system with this i-o operator can not explode.

Theorem 1.40. Let U, Y be finite dimensional spaces and let A be a generator of C0-
semigroups S. If a system (A,B) is exponentially stabilizable or (A,C) is exponentially
detectable and its transfer function C(z − A)−1B is i-o stable, then S is exponentially
stable.

Proof. By Theorem 1,31 there is an A-invariant decomposition

X = X− ⊕X+, dim X+ < ∞
and the semigroup generated by A− is exponentially stable. It follows that

H1(z) = C(z − A)−1P−B ∈ Â−

(P− is the projection onto X−). Since σ(A+) ⊂ C+ and

H(z) = H1(z) + C(z − A+)−1P+B =: H1(z) + H2(z),

we get H2 ∈ Â− what can occur in finite dimensional case only if A+ = 0.
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We will further investigate the so-called feedback configuration (or a closed
loop) consisting in a system S (we will identify the system with its transfer function)
and a controller K which are connected as demonstrated in the following figure

The Laplace transform of output signals y1, y2 are given by the following couple of
relations

y1 = S(u1 + y2), y2 = K(u2 − y1). (1,5,1)

The sign minus means that the input y1 is compared with a (reference) input u2.
If S,K are rational-valued matrix functions then the determinant det(I + SK) is a
meromorphic function with a finite number of poles and hence (I + SK)−1(z) exists
for Rez sufficiently big. So we obtain from (1,5,1) (at least formally)

(
y1

y2

)
=

(
(I + SK)−1S (I + SK)−1SK

−(I + KS)−1KS (I + KS)−1K

)(
u1

u2

)
. (1,5,2)

We call a feedback configuration (S, K) i-o stable if all entries in (1,5,2) are i-o stable.

The following problem has obvious meaning.

Problem 1.41. Assume that S is not i-o stable. Is it possible to design a controller K
such that (S, K) is i-o stable? Can the set of all stabilizable controller K be described?
Suppose that S is a set of perturbation of given S (e.g. S = S +4W -additive pertur-
bation, W given and 4 represents a magnitude of amplitude of W , or multiplicative
perturbation: S = S(1 +4W )). Is there a controller K which stabilizes all members
of S? (The so-called robust stabilization problem).

One can formulate another problems, see e.g. [D-F-T].

Example 1.42. Let S represents an integrator, i.e. the corresponding input-output
operator is given by y(t) =

∫ t

0
u(s)ds, i.e. S(z) = 1

z
. Put K(z) = 1, i.e. K is the

Laplace transform of δ0. Then the matrix (1,5,2) has form
(

1
z+1

1
z+1

− 1
z+1

z
z+1

)
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Hence (S, K) is i-o stable. This K stabilizes also a derivator S(z) = z (y(t) =

u̇(t), u(0) = 0). Even though S(z) = z does not belong to Â(β) for any β,

z

z + 1
= (e−t + δ0)

∧(z) ∈ Â(β)

and also 1
z+1

∈ Â(β) for β > −1.

If S and K are rational functions it is not difficult to give a necessary and sufficient
condition for i-o stability. To generalize such result to matrix-valued functions an
approach (see e.g. [V].)

Definition 1.43. (i) Two matrix-valued functions

M : C → Cp×m

N : C → Cq×m

M, N ∈ Â−(β), are called right - coprime over Â−(β) if there are X, Y ∈ Â−(β)

such that XM − Y N = I on C+
β . Left-coprime functions are defined via condition

M̃X̃ − Ñ Ỹ = I.
(ii) Let H ∈ B̂(β) and let M,N be right (left)-coprime over Â−(β) such that M is a

square matrix with detM ∈ Â∞(β) and H = NM−1(M̃−1Ñ). Then this factorization
is called right(left)-coprime factorization of H.

Remark 1.44. The coprime factorization is purely algebraic notion and it can by
defined in any ring. A necessary and sufficient condition for f, g ∈ H∞(C+) to be
coprime:

inf
z∈C+

(|f(z)|+ |g(z)|)) > 0,

is rather deep and it is connected with the so-called Corona problem (L.Carlesson).

Theorem 1.45. (Vidyasagar) Any matrix-valued function H ∈ B̂(β) possesses both

left- and right- coprime factorization over Â−(β).

Proof. The proof is based on a decomposition H = H1 + H2, where H1 ∈ Â−(β), H2

is a rational function with poles in C+
β and limz→∞ H2(z) = 0. It is not too difficult to

construct a right-coprime factorization of H2 = NM−1 (first consider the scalar case).
Then H = (H1M + N)M−1 is a right-coprime factorization.

Remark 1.46. Factorizations of functions in the Hardy spaces Hp is a classical topic
in complex function theory. Their generalization to operator(matrix)-valued functions
is an important part of operator theory. See e.g. [N] or in a more easy way [Pa].

Theorem 1.47. (Youla parametrization). Let S ∈ B̂(0) and H = NM−1 be its right-

coprime factorization. Then S is i-o stabilizable and all stabilizing controllers K ∈ B̂(0)
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are parametrized by K = (Y + MQ)(X + NQ)−1 where X,Y are as in Definition 1,42

and Q ∈ Â− is such that

inf
Rez≥0

|det[X(z) + N(z)Q(z)]| > 0.

Similarly for a left-coprime factorization of S.

Proof. Proof is by a long calculation - see e.g. [C-Z],Section 9,1.

In the robust stabilization problem, e.g. for aditive or multiplicative perturbations,
one need to estimate the norm of admissible perturbations. The following theorem
shows a connection with the H∞-optimalization problem.

Theorem 1.48. Let S, K ∈ B̂(0), K 6= 0 and

lim
r→∞

sup
z∈C+, |z|≥r

|S(z)| = 0.

Then K stabilizes S + W for all W ∈ B̂(0) which are i-o stable and |W |∞ < α if and
only if K stabilizes S and

|K(I + SK)−1|∞ <
1

α
.

Proof. If we factorize S, K, W we need to show the existence of the inverse [I + (S +

W )K]−1 in Â−. In follows from an estimate of |(S +W)K|∞. For details see e.g. [C-Z],
Section 9.2.

Corollary 1.49. The best possible margin for additive perturbations is given by solving
H∞-optimization problem

inf{K(I + SK)−1|∞; K stabilizes S}.

There is a vast number of papers devoted to H∞−control. see e.g. Chapter IX in
[F-F] or [C-Z],Chapters 8,9, and [Pe] and references given there.
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1.6 OPTIMAL CONTROL - FINITE HORIZON

We formulate again problem P4 : Let A be a generator of a C0-semigroup S on a Hilbert
space X, let U be a Hilbert space and let B ∈ L(U,X). For given self-adjoints operators
Q,Q0 ∈ L(U) which are non-negative and R is positive definite (i.e.< Ru, u >≥ a|u|2
for a > 0 and every u ∈ U) and given x0 ∈ X, T > 0, find u ∈ L2(0, T ; U) such that
the functional

JT (x0, u) :=∫ T

0

[< Qx(t), x(t) >X + < Ru(t), u(t) >U ]dt+ < Q0x(T ), x(T ) >X , (1,6,1)

where x(·) is a mild solution of

ẋ =Ax + Bu (1,6,2)

x(0) =x0,

takes its minimal value.
Around 1960 this problem was solved for finite-dimensional spaces X, U.

Theorem 1.50. Let dimX and dimU be finite. Under the above assumptions there
exists a unique û ∈ L2(0, T ; U) which minimizes (1,6,1). This û is given by the feedback
formula

û = −R−1B∗P (T − t)x̂(t), (1,6,3)

where x̂ is a solution to the equation

ẋ = [A−BR−1B∗P (T − t)]x(t), x(0) = x0, (1,6,4)

and P is a solution to the so-called Riccati differential (matrix) equation

Ṗ (t) =A∗P (t) + P (t)A + Q− P (t)BR−1B∗P (t) (1,6,5)

P (0) =Q0.

Proof. The existence and uniqueness is easy since [JT (x0, u)]
1
2 is the distance of the

point (Q
1
2 S(·)x0, 0, Q

1
2
0 S(T )x0) from the closed subspace

M = {−Q
1
2Bu,−R

1
2 u,−Q

1
2
0BT ); u ∈ L2(0, T ; U)}

in the Hilbert space L2(0, T ; X) × L2(0, T ; U) × X. We notice that the closedness of

M follows from the positive definitness of R which implies that (R
1
2 )−1 ∈ L(U). The

feedback form of û and the global existence on [0, T ] of a solution of the quadratic
differential equation (1,6,5) is more involved and we will discussed those in infinite
dimensional case. The reader can consult e.g.[L-M].

If dimX = ∞ then we encounter several difficulties arising from the fact that A is
no more continuous. This means that either P should have some smoothing property
(to get P (t) ∈ D(A)) or a solution to (1,6,5) should be considered in some weaker
sense, e.g. as a week solution:
P : [0, T ] → L(X) is strongly continuous and for all x, y ∈ D(A) the function
t →< P (t)x, y > is absolutely continuous on [0, T ], P (0)x = Q0x, and

d

dt
< P (t)x, y >= (1,6,6)

< P (t)x,Ay > + < P (t)Ax, y > + < Qx, y >

− < P (t)BR−1B∗P (t)x, y >

25



holds for a.a. t ∈ [0, T ].

There are several approaches to the feedback formula (1,6,3). Two of them based
on the dynamic programming (due to R. Bellman) and on the minimum principle (due
to L.Pontryagin), respectively, will be discussed in Chapter 2. Here we present the
so-called direct approach due to G.De Prato. As the name indicates the direct way
consists in solving the Riccatti equation (1,6,5) in the weak sense (the first step) and
showing that the equation (1,6,4) possesses an evolution family ( the second step) and
the formula (1,6,3) yields a unique optimal control (the third step).

1st step

Lemma 1.51. If Q(·) : X → X is strongly continuous on an interval [0, τ ], then a
weak solution to

Ṗ =A∗P (t) + P (t)A + Q(t)

P (0) =Q0

exists and it is given by

P (t)x = S∗(t)Q0S(t)x +

∫ t

0

S∗(t− s)Q(s)S(t− s)xds,

for x ∈ X and t ∈ [0, τ ].

Proof. Straighforward.

By this lemma, we can solve the integral equation

P (t)x = S∗(t)Q0S(t)x +

∫ t

0

S∗(t− s)[Q− P (s)BR−1B∗P (s)]S(t− s)xds (1,6,7)

using the contraction principle in the Banach space

C([0, τ ];Lsa(X))

where Lsa(X) denotes the space of all continuous self-adjoint operators on X. As a
computation shows the length of the time interval depends on ‖Q0‖ = ‖P (0)‖. In order
to continue this process (notice that the Riccati equation is quadratic and the blow-up
of a solution has to be excluded) we need an estimate of the final value ‖P (τ)‖.

Lemma 1.52. Let P (·) be a strongly continuous solution of (1,6,7) on an interval [0, τ ]
and let u ∈ L2(0, τ ; U). Then

Jτ (x0, u) =< P (τ)x0, x0 >X +

∫ τ

0

|R 1
2 u(s) + R− 1

2 B∗P (τ − s)x(s)|2Uds (1,6,8)

where x(·) is a mild solution to (1,6,2) on the interval [0, τ ].

Proof. First. let ξ ∈ D(A) and u ∈ C1([0, τ ]; U). Then a mild solution of (1,6,2) is
actually a classical one,i-e. x(·) ∈ C1([0, T ]; X0 ∩ C([0, T ];D(A)). From Lemma 1,51
and (1,6,6) we have for t ∈ [0, τ ]

d

dt
< P (τ − t)x(t), x(t) >= ... =− < Qx(t), x(t) > +|R 1

2 u(t) + R− 1
2 B∗P (τ − t)x(t)|2

− < Ru(t), u(t) > .
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By integrating, we obtain (1,6,7). The general case follows now from the density
argument.

Corollary 1.53. Let P be a strongly continuous solution to (1,6,7) on an interval
[0, τ ]. Then

< P (τ)ξ, ξ >≤ Jτ (ξ, 0).

In particular,

‖P (τ)‖ ≤ [‖Q0‖+
‖Q‖
2α

]e2ατ ,

where α is the growth bound of S.

This corollary shows that there is no blow-up in the Riccati equation and hence
this has a (unique) weak solution on any finite interval [0, T ].

2nd step
Since the perturbation −BR−1B∗P (T −·) in (1,6,4) is pointwise bounded and strongly
continuous, the equation (1,6,4) posses an evolution family U(t, s), see e.g. [E-N],Chapter
VI,9.

3rd step
In follows from the formulae (1,6,8) that

JT (x0, û) =< P (T )x0, x0 >= inf
u∈L2(0,T ;U)

JT (x0, u),

i.e. û is an optimal control. If u is another optimal control and x is a corresponding
solution to (1,6,2) then, again by (1,6,8) and invertability of R,

u(s) = −R−1B∗P (T − s)x(s) for a.a. s ∈ (0, T ),

i.e. x solves (1,6,4) and u = û in L2(0, T ; U). Therefore, the following theorem has
been proved.

Theorem 1.54. Let X, U be Hilbert spaces and let Q,Q0 be self-adjoint operators on
X an let R be a positive-definite operator on U . Then for any x0 ∈ X and T < ∞ there
exists a unique û ∈ L2(0, T ; U) which minimizes (1,6,1) over L2(0, T ; U). Moreover,
this û is given by (1,6,3),(1,6,4), whereP (·) is a weak solution to (1,6,5).

For more details the reader consult [B-DP-D-M],Vol II. pp 133-193.

Example 1.55. (Boundary control)
We can look at Bu in an equation ẋ = Ax + Bu either as an external force or as
heating or cooling which effects the whole body that occupies an region Ω. But this is
sometimes impossible and a control can operate only on the (part or) boundary ∂Ω. To
be more concrete, let Am be a closed differential operator defined on a dense subset of
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a Banach space X, e.g L2(0, T ), and assume that Γ ∈ L(Xm, U) is a boundary operator
(a restriction of the trace operator, e.g. Γx = x(0)). Consider a process given by

ẋ =Amx

x(0) =x0

Γx =u. (1,6,10)

We can formulate for (1,6,10) all problems (P1)-(P4). It would be convenient to rewrite
(1,6,10) in a more convenient form (1,6,2). We can reach this goal as follows: Suppose
that A = Am |KerΓ generates a C0-semigroup S on X andR(Γ) = U . Then for λ ∈ ρ(A)
the operator Γ is injective on ker(λ − Am) and hence there is (the so-called Dirichlet
operator) D(λ) ∈ L(U,Xm). Since Xm ⊂ X = D(A−1), where A−1 is a generator of the
extrapolation semigroup S−1 which acts on the extrapolation space X−1 (see Remark
1.8), the operator

Bu := (λ− A−1)D(λ)u

is well defined (in particular, it does not depend on the choice λ ∈ ρ(A) and the
problem (1,6,10) can be rewritten in the form

ẋ =A−1x + Bu (1,6,11)

x(0) =x0

(for detail see e.g.[D-M-S]). A mild solution to (1,6,11) is given by

x(t) = S(t)x0 +

∫ t

0

S−1(t− s)Bu(s)ds

for x0 ∈ X. To get well-defined cost functional (1,6,1) we need that the convolution
term has an continuous extension on L2(0, T ; U) into X (to be defined the term <
Q0x(T ), x(T ) >) and into L2(0, T ; U). More generally, we can interpret the term

< Qx(t), x(t) >= |Q 1
2 x(t)|2 as a contribution of an observation C = Q

1
2 and it is

reasonable to assume that C is defined only on a subset of X (e.g. to include also
a point observation like Cx = x(ξ0), ξ0 ∈ Ω). In this case we need that C(S−1 ∗ B)
has a continuous extension on L2(0, T ; U). We notice that S−1 ∗ Bu ∈ C([0, T ]; X)
for u ∈ W 1,2(0, T ; U). For an exhaustive discussion the reader can consult the recent
monograph [L-T2]. See also [B-DP-D-M],Vol II, Part II, and [L-Y]. The case of an
unbounded observation is discussed in [L-T1] and in a more abstract setting in [Sa1].
See also [D-F-M-S].
If A is a self-adjoint operator bounded from above in a Hilbert space X with a compact
resolvent then there is an orthonormal basis (en) of X such that Aen = λnen, where
λ1 ≥ λ2 ≥ ... ≥ λn → −∞.
The spaces

Xα := {x ∈ X;
∑

|λn|2α| < x, en > |2 < ∞}
from an interpolation scale between X and X1 = [D(A)] and the spaces

X−β := {(ξm) ⊂ C;
∑

|λn|−2β|ξn|2 < ∞}, β ∈ [0, 1],

form an interpolation scale between X−1 and X. If C ∈ L(Xγ, X), γ < 1
2

and Γ
is such that D(λ) ∈ L(U,Xα), where α > γ (i.e. B ∈ L(U,Xα−1)), and Q0 = 0,
then the cost functional is well-defined and there is a unique optimal control. This
optimal control is of feedback type (1,6,3)provided α > γ + 1

2
. These results follow
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from computations with series and solving a minimization problem in a Hilbert space.
Notice that B∗ ∈ L(X1−α, U) and a problem where the operator B∗P (T − t) in (1,6,3)
is defined.

We notice that for the Neumann boundary operator (i.e. ΓNx = ∂x
∂n

on ∂Ω) and

elliptic operator Am (Xm = W 2,2(Ω) we get DN(λ) ∈ L(U,Xα) for α < 3
4
. For the

Dirichlet boundary operator (i.e. ΓDx = x|∂Ω) we obtain much worse result, namely
DD(λ) ∈ L(U,Xα) for α < 1

4
. This means that we cannot assure a feedback (1,6,3)

even for Q ∈ L(X) (an optimal control û still exists in this case) and approximations
of û are desirable.
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1.7 OPTIMAL CONTROL - INFINITE HORIZON

If T is infinite then we consider a cost functional in the form

J(x0, u) =

∫ ∞

0

[< Qx(t), x(t) > + < Ru(t), u(t) >]dt, (1,7,1)

where Q and R are as in Section 1,6 and x is a solution to (1,6,2). It is easy to
see that J((x0, u) need not be finite for any u ∈ L2(R+, U) when the semigroup S
generated by A is not exponentially stable. We notice that J(x0, u) < ∞ for all
x0 ∈ X and u ∈ L2(R+, U) whenever S is exponentially stable. If not we need some
stabilizability by B: we say that (A,B,Q) is open-loop stable if for any x0 ∈ X
there is u ∈ L2(R+, U) such that J(x0, u) < ∞.

Since PT2 is an extension of PT1 for T1 < T2 (by (1,6,6)) we can define a self-adjoint
operator valued function P (t) = PT (t) for each t ≥ 0 and any T ≥ t. If Q0 = 0 we call
this P differential Riccati operator.

Proposition 1.56. Let (A,B,Q) be open-loop stable and let P (·) be a differential
Riccati operator. Then the limit

lim
t→∞

P (t)x := Px

exists for all x ∈ X and P ∈ Lsa(X) and P solves the so-called algebraic Riccati
equation

< Px, Ay >X + < Ax, Py >X + < Qx, y >X − < R−1B∗Px, B∗Py >U= 0

for x, y ∈ D(A) (1,7,2)

Proof. By (1,6,9),l we have

< P (T )x0, x0 >= inf
u∈L2(0,T ;U)

JT (x0, u) ≤ JT (x0, ũ) ≤ J(x0, ũ) < ∞

for ũ ∈ L2(R+, U) which existence is guaranted by the open-loop stability. This means
that T →< P (T )x0, x0 > is an nondecreasing bounded function for any x0 ∈ X. Denote
its limit by f(x0) and define (the polarization identity)

< Px, y >=
1

4
[f(x + y)− f(x− y)].

Then P ∈ Lsa(X) (by the uniform boudnedness principle) and Px = limt→∞ P (t)x.
The right-hand side in (1,6,6) has the finite limit for t →∞ which is equal to the left-
hand side in (1,7,2). Since t →< P (t)x, y > is a bounded function and its derivative
has a finite limit at ∞, this limit has to be zero.

The algebraic Riccati equation (1,7,2) can have many self-adjoint solutions. It
can by shown that P stated in Proposition 1,55 is a minimal non-negative one, i.e.

< Px, x >≤< P̃x, x > for any non-negative self-adjoint solution P̃ of (1,7,2) and all
x ∈ X.
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Theorem 1.57. Let Q ∈ Lsa(X), R ∈ Lsa(U) and let Q be non-negative and R be
positive-definite. Assume that (A,B,Q) is open-loop stable and J(x0, u) is given by
(1,7,1). Then for any x0 ∈ X there is û ∈ L2(R+, U) such that

J(x0, û) = inf
u∈L2(R2,U)

J(x0, U).

Moreover, this û is given by

û(t) = −R−1B∗Px̂(t), (1,7,3)

where x̂ is a solution to

ẋ =[A−BR−1B∗P ]x (1,7,4)

x(0) =x0

Here P is as in Propositon 1,56.

Proof. The operator P solves the equation (1,6,6) on any interval [0, T ] with the initial
condition P (0) = P. Theorem 1,53 shows that û given by (1,7,3), (1,7,4) minimizes the
functional

∫ T

0

[< Qx(t), x(t) > + < Ru(t), u(t) >]dt+ < Px(t), x(T ) >

that has the minimal value < Px0, x0 >. It follows that

∫ T

0

[< Qx̂(t), x̂(t) > + < Rû(t), û(t)]dt ≤< Px0, x0 >

for any T and, therefore, J(x0, û) ≤< Px0, x0 > . On the other hand, for any u ∈
L2(R+, U) and T > 0, we have (see(1,6,9))

< P (T )x0, x0 >≤
∫ T

0

[Qx(t), x(t) > + < Ru(t), u(t) >]dt ≤ J(x0, u)

and, by taking limit,
< Px0, x0 >≤ J(x0, u).

Remark 1.58. The proof of Theorem 1,57 depends essentialy on boundedness of both
operators B and C (cf. Example 1,55). The infinite horizon case for a bounded operator
C is fully discussed in [L-T2]. See also [B-DP-D-M],Vol.II.PartIII and [L-Y]. The case
of an unbounded operator C is discussed in [D-F-M]. The frequency domain approach
is used for generally unbounded operators B and C in recent papers of O.Staffans and
G.Weiss. The interested reader can consult their webb pages.
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Chapter 2

NONLINEAR THEORY

In this part we restrict our attention to systems of nonlinear ordinary differential
equations, i.e. X = Rn, U = Rm, Y = Rp. Including of nonlinear partial differential
equations would require many prerequisities. The interested reader can consult e.g.
[L-Y].

2.1 CONTROLLABILITY FOR LINEAR SYSTEMS WITH
CONSTRAINTS

Assume that we need to control an actual linear systems given by (1,2,1) from an initial
state x0 to another state x1 in given time T and these two points are distant from each
other. If there is a control satisfying this requirement then its size has to be large and
this fact can cause problems in realization. This means that there are often apriori
limitations on the size of admissible controls. We can express such restrictions by
requirement that controls take their values in a bounded set M ⊂ RM . The additional
assumption that M is also a symmetric and convex neighborhood of 0 does not seem
to be too restrictive. The case x1 = 0 is more transparent. We denote

MT =L∞(0, T ; M)

CT ={x0 ∈ Rn;∃u ∈ MT such that x0 +

∫ T

0

e−sABu(s)ds = 0}

C =
⋃
CT .

Theorem 2.1.
(i)CT is a neighborhood of origin if and only if the system (1,2,1) is controllable.
(ii)C = Rn if and only if the system (1,2,1) is controllable and Reσ(A) ≤ 0.

Proof.
(i) We will prove both implications by contradiction. Notice that the range of operator

LT u :=

∫ T

0

e−sABu(s)ds (2,1,1)

is Rn if and only if (1,2,1) is controllable at T . Assume first that CT is not a neighbor-
hood of origin. Then CT cannot contain a basis of Rn and hence there is a non-zero x̃
which is perpendicular to CT , i.e.

0 =< LT u, x̃ >=< u, L∗T x̃ >L∞×L1

for all u ∈ MT . Since MT is a neighborhood of 0 ∈ L∞(0, T ;Rm), L∗T x̃ = 0 and, by
controllability, x̃ = 0. On the other hand if there is x ∈ KerL∗T , x 6= 0 (i.e. (1,2,1) is
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not controllable) then x⊥CT what is impossible if CT is a neighborhood.
(ii) We proceed again by contradiction.
1) Assume that C = Rn and there is λ0 ∈ σ(A) such that Reλ0 > 0. Since all admissible
u are bounded then an initial value x0 has to be found such that the corresponding
solution x of (1,2,1) does not tend to 0 for t → ∞. But x0 ∈ CT for some T , i.e.
x(T ) = 0, a contradiction.
If rank (B,AB, ..., An−1B) < n then it can by seen from the proof of Theorem 1.10
that x̃ from the proof of (i) can be taken independent on T , i.e. x̃⊥C.
2) Assume that the both conditions from the statement of (ii) are satisfied and C 6= Rn.
Since C is convex, a point x0 ∈ Rn\C can by separated from C by some

ϕ ∈ X∗, ϕ 6= 0 : sup
x∈C

ϕ(x) ≤ ϕ(x0).

We have
L∗T ϕ(s) = B∗e−A∗sϕ for s ∈ [0, T ].

Put w(s) = B∗e−A∗sϕ for s ∈ [0,∞). By the statement (i), there is C > 0 such that
u ∈ L∞(0, T ;Rm) with |u(s)| ≤ C for a.a. s ∈ [0, T ] has to belong to MT . In particular,

u(s) = Csgnw(s) ∈ MT and ϕ(LT u) = (L∗T ϕ)(u) = C
∫ T

0
|w(s)|ds → ∞ for T → ∞,

since |w| /∈ L1(0,∞) as it follows from the assumption on σ(A). This means that
supx∈C ϕ(x) = ∞, a contradiction.

In order to choose an appropriate M (i.e. a ball) and a time T to send x0 to
x1 = 0 with help of u0 ∈ MT it is convenient to know an estimate of the norm |u0 +
KerLT |L∞(0,T ). The following result is a variant of the Lagrange multiplier theorem.

Theorem 2.2. Let F be a convex continuous weakly coercive functional on a Banach
space Y. Let M be a non-trivial closed subspace Y. Then for y0 ∈ Y the following
equality holds

min{F (y); y ∈ y0 +M} = max
f∈M⊥

inf
z∈Y

[F (z) + f(z)− f(y0)]. (2,1,2)

Proof. The existence of minimum in the left-hand side is a standard result (see e.g.
[D-M],Theorem 6.2.12). Denote the left-hand side by α and

β := sup
f∈M⊥

inf
z∈Y

[F (z) + f(z)− f(y0)]

Obviously, α ≤ β. To prove the opposite inequality define the epigraph of F :

W = {(t, z) ∈ R× Y ; t ≥ F (z), z ∈ Y }.
This set is convex and its interior is non-empty. Since IntW is disjoint with

V = {(α, y); y ∈ y0 +M},
the sets W and V can be separated by some ϕ ∈ (R× Y )∗, ϕ 6= 0 :

sup
V

ϕ(α, y) ≤ inf
W

ϕ(t, z). (2,1,3)

Such ϕ has a form

ϕ(t, z) = at + f̃(z), f̃ ∈ Y ∗.
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It follows from (2,1,3) that f̃ ∈ M⊥ and a > 0. So we can take a = 1 and (2,1,3) has
the form

α + f̃(y0) ≤ inf
t≥F (z)

[t + f̃(z)]

and the inequality α ≤ β follows.

The reader should notice that Theorem 2,1 is only the existence result and it does
not say anything about a construction of u ∈ CT . If M is moreover closed then MT is
w∗-compact (and convex).Therefore (the Krein-Milman theorem), MT is a w∗-closure
of the convex hull of its extremal points. We denote by C(MT ) the set of extremal
points of MT . Controls from C(MT ) are called bang-bang controls. For example, if
M = [−1, 1]m then

C(MT ) = {u = (u1, ..., um); |ui(t)| = 1 for a.a. t ∈ [0, T ] and all i = 1, ...,m}.

Theorem 2.3. (Bang-bang principle,La Salle 1960)
Let M be a bounded, convex and closed subset of Rm and let LT be defined by (2,1,1).
Then

CT = −LT (C(MT )) for any T > 0.

Proof. To avoid technical difficulties we only consider the case m = 1, i.e. Bu = ub for
some b ∈ Rn. Choose a basis e1, ..., en of Rn. Then

LT u =

∫ T

0

(
n∑

i=1

< b, ei > e−sAei)u(s)ds =:

∫ T

0

u(s)dµ(s),

with an absolutely continuous (with respect to the Lebesgue measure) vector measure
µ. This shows that LT is w∗-continuous and hence (LT )−1(x) ∩ MT is a non-empty
w∗−compact convex set for x ∈ CT . By the Krein-Milman theorem, this set has an
extremal point ũ. Now, it is sufficient to prove that ũ is also an external point of MT .
If n = 1 then it is not difficult to show, by contradiction, that ũ ∈ C(MT ). The same
result can be proved for a general n ∈ N by induction. We notice that it would be
also sufficient to prove that the set of values of the vector measure µ is a compact
convex set (a special case of the Lyapunov theorem on vector measures). There exists
a generalization to a finite system of vector measures which yields the statement for
m > 1. For another proof the reader can consult [L-M].

If x0 ∈ C then x0 ∈ CT for some time T > 0 and hence also x0 ∈ Cτ for all τ > T.
It follows from w∗−compactness of Mt and w∗−continuity of Lt that

⋂
t>t0

Ct = Ct0 .

This means that there exists a minimal time t̂ for which x0 ∈ Ct̂. A corresponding
control û which steers x0 into 0 at the minimal time t̂ can be characterized by the
following special form of the maximum principle (see Section 2,3).
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Theorem 2.4. Let M be a convex compact neighborhood of the origin. Let x0 ∈ C
and let û ∈ Mt̂ be a control steering x0 to 0 at the minimal time t̂. Then there exists a
solution ŷ to the adjoint equation

ẏ = −A∗y (2.1)

for which
< ŷ(t), Bû(t) >= max

u∈M
< ŷ(t), Bu > for a.a. t ∈ [0, t∗] (2,1,4)

Proof. Denote

Kx0(t) = {x;∃u ∈ Mt s.t. x = etAx0 +

∫ t

0

e(t−s)ABu(s)ds}.

By the definition of t̂, 0 ∈ Kx0(t̂). It is clear that 0 ∈ ∂Kx0(t̂), actually. Since Kx0(t̂)
is closed and convex, there exists a supporting hyperplane to Kx0(t̂) at 0. Such a
hyperplane is given by its normal vector y0 which can be chosen such that < x, y0 >≤ 0
for all x ∈ Kx0(t̂). Put ŷ(t) := e−tA∗et̂A∗y0. Then ŷ solves the adjoint equation and

< et̂Ax0, y0 > +

∫ t̂

0

< e(t̂−s)ABu(s), y0 > ds ≤ 0

for all u ∈ MT̂ . It follows that
∫ t̂

0

< Bu(s), ŷ(s) > ds ≤
∫ t̂

0

< Bû(s), ŷ(s) > ds. (2,1,5)

Suppose that
< Bû(s), ŷ(s) > < max

u∈M
< Bu, ŷ(s) >

on a subset P ⊂ (0, t̂) of a positive measure. Since the function v defined on P by
v(s) = maxu∈M < Bu, ŷ(s) > is measurable, we can define

ũ(s) = v(s) s ∈ P

û(s) s ∈ (0, t̂)\P
to get a contradiction with (2,1,5).

Remark 2.5. In accordance with classical mechanics the function

H(y, x, u) :=< y, Ax + Bu >

is called the Hamiltonian. If x̂ is a solution to (1,2,1) for û and Ĥ(y, x, t) : H(y, x, û(t))
then x̂ and ŷ solve the Hamilton equations

ẋ =
∂Ĥ

∂y
, ẏ = −∂Ĥ

∂x
.

Example 2.6. Consider the equation ẍ − x = u with M = [−1, 1]. Solutions of the
adjoint equation have the form

y(t) = αet + βe−t.

Hence an optimal û(t) = sign(αet − βe−t) and it has at the most one switching point
(cf. with the equation ẍ + x = u). A solution x̂ corresponding to û is a solution either
to ẍ− x = 1 or to ẍ− x = −1 and it is convenient to find it by solving these equations
backwards, i.e. with the initial condition x(0) = ẋ(0) = 0.
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2.2 CONTROLLABILITY AND STABILIZABILITY
OF NONLINEAR SYSTEMS

The result of this section will be based on a method of linearization, so we restrict our
attention to behaviour of nonlinear systems in a neighborhood of a stationary point.
We assume that f : Rn × Rm → Rn is differentiable on a neighborhood of origin and
f(0, 0) = 0.

Definition 2.7. A system
ẋ = f(x, u) (2,2,1)

is said to be locally controllable at 0 ∈ Rn at time T if for any ε > 0 there is δ > 0
such that for a, b ∈ Rn, |a| < δ, |b| < δ there exist τ ∈ [0, T ] and u ∈ C([0, τ ];Rm) for
which a solution ϕ of the problem

ẋ =f(x, u(t)) (2,2,2)

x(0) =a

satisfies the conditions ϕ(τ) = b and ‖ϕ‖C[0,τ ] < ε.

Denote

A :=f ′1(0, 0)

B :=f ′2(0, 0), i.e.

ẏ =Ay + Bu (2,2,3)

is the linearization of (2,2,1) at the origin.

Theorem 2.8. Let the linear system (2,2,3) is controllable. Then the nonlinear system
(2,2,1) is locally controllable at 0 ∈ Rn at any positive time.

Proof. For the sake of simplicity we suppose that T = 1 and show how a = 0 can by
steered to any point of sufficiently small neighborhood of 0. A case of a 6= 0 will follow
by considering the reverse system

ẋ =− f(x, ũ)

x(0) =0

ũ(t) =u(1− t).

We proceed in several steps:
1) It follows from the variation of constants formula and the Gronwall inequality that
for any ε > 0 there is 4 > 0 such that for arbitrary u ∈ C[0, T ] with ‖u‖C < 4 a
solution of (2,2,1) satisfying x(0) = 0 is defined on the interval [0, 1] and ‖x‖C[0,1] < ε.
2) If (2,2,3) is controllable then, by the Banach open mapping theorem, there is δ > 0
such that the equation ξ = B1u is solvable in C([0, 1];Rm) for any |ξ| < δ.
3) As a consequence of (2) we can find u1, ..., un ∈ C([0, 1];Rm) for which solutions
x1, .., xn of (2,2,3) vanishing at 0 are such that their values x1(1), ..., xn(1) are linearly
independent.
4) Put u(t, α) =

∑n
i=1 αiui(t) for α = (α1, .., αn) such that

∑ |αi| < 4, i.e. ‖u(·, α)‖C[0,1] <
4, where 4 is as the first step. Then solutions xα of

ẋ =f(x, u(t, α))

x(0) =0
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are all defined on the interval [0, 1]. By the inverse function theorem (see e.g. [D-M],
Theorem 4.1.1), the mapping φ(α) := xα(1) is a local diffeomorphism at 0 (have in
view that the collumus of φ′(0) are xi(1)).

Example 2.9. The linear system

ẋ =− x + u

ẏ =− y

is not controllable but the nonlinear system

ẋ =− x + u

u̇ =− y + x3

is locally controllable at 0 for sufficiently large T . This can be shown similarly as in
Example 2,6 by considering u(t) = 1 and u(t) = −1.

Definition 2.10. A system (2,2,1) is called exponentially stabilizable if there exists
an feedback u = ϕ(x), ϕ(0) = 0, such that the origin is exponentially stable for the
equation

ẋ = f(x, ϕ(x)), (2,2,4)

i.e. there are positive constants α, C,4 such that

|x(t, x0)| ≤ Ce−αt|x0| for t ∈ [0,∞) (2,2,5)

provided |x0| < 4. Here x(·, x0) stands for a solution to (2,2,4) for which x(0, x0) = x0.

We recall the well-known Lyapunov-Perron theorem on the so-called linearized
stability:

Theorem 2.11. Let f : Rn → Rn be C1 in the neighborhood of 0 ∈ Rn.
(i)If Re σ(f ′(0)) < 0 then the origin is exponentially stable for the equation ẋ = f(x).
(ii) If there is λ ∈ σ(f ′(0)) with Reλ > 0 then the origin is not stable (in the sense of
Lyapunov) for the equation ẋ = f(x).

Corollary 2.12. A system (2,2,1) is exponentially stabilizable if and only if its lin-
earization (2,2,3) is exponentially stabilizable.

Proof.
1) Assume that a feedback ϕ stabilizes exponentially (2,2,1) and (2,2,5) holds. Choose
β ∈ (0, α) and put y(t) = eβtx(t), where x is a solution of (2,2,4). Then y solves the
equation

ẏ = [A + Bϕ′(0) + βI]y + h(e−βty),

where h(x) = o(|x|). It follows from Theorem 2,11 (ii) and (2,2,5) that

Reσ(A + Bϕ′(0)) ≤ −β < 0

i.e. (2,2,3) is exponentially stabilizable by Fx = ϕ′(0)x.
2) Let a feedback u = Fx exponentially stabilizes (2,2,3). Theorem 2,11(i) shows that
the equation ẋ = f(x, Fx) is exponentially stable.
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Now we turn to the problem of robust stability. Assume that (2,2,1) is exponentially
stabilizable and let u = Fx (see the second part of the proof of Corollary 2,12) stabilize
(2,2,1). Can F stabilize also an equation

ẋ = f(x, u) + g(x) (2,2,6)

provided that g is ”small”? Suppose that (2,2,5) holds for solutions to ẋ = f(x, Fx)
and g ∈ C1. If |g′(0)| < α

C
then a standard using of the Gronwall lemma shows that

the linear equation
ẋ = [A + BF + g′(0)]x

is exponentially stable. By Corollary 2,12, the equation (2,2,6) is exponentially stabi-
lizable by u = Fx. Denote the stability margion of (2,2,1) by

sf := sup{α

C
; ϕ is a stabilizing feedback with (2,2,5)}

An upper estimate of sf can be useful.

Proposition 2.13. Denote 4 = sup|x|=1 dist(Ax,R(B)). Then

sf ≤ ‖A‖2

4 (2,2,7)

Proof. We may assume that both f and ϕ are linear and 4 > 0. Choose β ∈ (0, 1) and
let z be such that |z| = 1 and

min
u∈Rm

|Az −Bu| = |Az + Bu| > β4.

Put Az + Bu = w. We have

< Ax + Bu,w >=< w,w > − < A(x− z), w > for all x ∈ Rn, u ∈ Rm,

as it follows from the characterization of minimizer. In particular,

< Ax + Bu,w >≥ |w|[|w| − ‖A‖|x− z|]. (2,2,7)

1) Let F be a stabilizing feedback for which (2,2,5) holds and let x be a solution to

ẋ =Ax + BFx−BFz

x(0) =z,

i.e. a solution to

ẋ =Ax + Bu

x(0) =z

with u(t) =F [x(t)− z].

Then

x(t)− z =

∫ t

0

e(t−s)(A+BF )Azds and

|x(t)− z| ≤ C

α
|Az| ≤ C

α
‖A‖, t ≥ 0. (2,2,9)
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2) Choose now any control u(·) and let x be a solution to (2,2,3) with x(0) = z. Then,
by (2,2,7),

< ẋ(t), w >=< Ax(t) + Bu(t), w >≥ |w|[|w| − ‖A‖|x(t)− z|].
This implies

|x(t)− z| ≥ t|w|2[|w| − r‖A‖]
whenever |x(t)− z| ≤ r < |w|

‖A‖ . It means that

sup
t≥0

|x(t)− z| ≥ |w|
‖A‖ .

This inequality together with (2,2,8) and the choice of w yields the desired inequality
(2,2,7).

Remark 2.14. An idea of linerization can be also used through transforming a non-
linear system in a neighborhood of stationary point into a linear one. This procedure
is in certain sense similar to the notion of normal forms or to processes in differential
geometry. The interested reader can consult e.g. [I].
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2.3 PONTRYAGIN MAXIMUM PRINCIPLE

This section is devoted to a necessary condition for the minimization of a cost functional
under constrains given by a system of (nonlinear) differential equations. First of all we
remind some basic results (see e.g.[D-M]).

Proposition 2.15. Let X be a linear space and M ⊂ X. Assume that J : X → R
has a minimum with respect to M at a point x0. If for y ∈ X there is δ > 0 such that
x0 + ty ∈ M for all t ∈ [0, δ) then the directional derivative

∂J(x0, y) = lim
t→0+

J(x0 + ty)− J(x0)

t
≥ 0

provided that it exists. Moreover, if x0 is an algebraic interior point of M and ∂J(x0, y)
exists then ∂J(x0, y) = 0.

Proposition 2.16. Let M be a convex set in X and let J be a convex functional on
M. Suppose that for x0 ∈ M one has ∂J(x0, y) ≥ 0 or all y ∈ X for which x0 + y ∈ M.
Then

min
x∈M

J(x) = J(x0).

Proof. From the convexity we have

J(x)− J(x0) ≥ J(x0 + t(x− x0))− J(x0)

t
≥ ∂J(x0, x− x0)

for all x ∈ M.

We want to apply these results to the optimal control problem: For given t0, t1 ∈ R,
t0 < t1, φ : Rn → R, x0 ∈ Rn, M ⊂ Rn convex, minimize φ(x(t1) with respect to
solutions

ẋ =f(t, x, u) (2,3,1)

x(t0) =x0

when u ∈ L∞(t1, t2; M).
This formulation is rather vague. We admit measurable controls since we know

that several solutions have a bang-bang features (cf. Section 2,1). If we consider
measurable controls then solutions of (2,3,1) are only absolutely continuous functions
such that the equation is satisfied almost everywhere. This means that we need to
assume that g(t, x) := f(t, x, u(t)) satisfies the Caratheodory conditions. It is still not
clear whether any solution to (2,3,1) has to be defined on the whole interval [t0, t1]. So
we restrict controls to a set K ⊂ L∞(t1, t2; M) consisting of such u for which a solution
to (2,3,1) exists on [t0, t1]. Moreover we assume some smoothness of f that assures the
unicity of a solution.

Now we need to compute directional derivatives of φ with respect to an implicit
variable u. To avoid difficulties which can be seen from the further computation, we
compute the directional derivative for a special class of directions. Moreover, we take
ũ ∈ K which is piecewise continuous and left-continuous on (t0, t1]. Let x̃ be a solution
of (2,3,1) with this ũ.Define admissible directions in the following way (Pontryagin’s
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idea of a needle variation). Let ũ ∈ K and x̃ be a solution to (2,3,1). Choose τ ∈ (t0, t1]
and v ∈ M. For sufficiently small ε > 0 a solution to

ẏ =f(t, x, v)

y(τ − ε) =x̃(τ − ε)

does exist on [τ − ε, τ ]. Denote this solution by y. By the continuous dependence on
initial conditions a solution to

ẋ = f(t, x, ũ)

x(τ) = y(τ)

exist on [τ, t1] (again for small ε). This means that the controls

uε(t) = v t ∈ [τ − ε, τ ]

= ũ(t) for other t

has the same property as ũ for all sufficiently small ε. If xε is a solution to (2,3,1)
corresponding to uε then

xε = x̃(t), t ∈ [t0, τ − ε)

= x̃(τ − ε) +

∫ t

τ−ε

f(s, xε(s), v)ds, t ∈ [τ − ε, τ ]

= xε(τ) +

∫ t

τ

f(s, xε(s), ũ(s))ds, t ∈ (τ, t1].

With help of derivation with respect to initial conditions we get that

z(t) :=
∂xε

∂ε
|ε=0

satisfies

z(t) = 0, 0 ≤ t < τ (2,3,2)

= f(τ, x̃(τ), v)− f(τ, x̃(τ), ũ(τ)) +

∫ t

τ

f ′2(s, x̃(s), ũ(s))z(s)ds, t ∈ (τ, t1).

Assume that a cost functional φ has continuous partial derivatives and let w be a
solution of the adjoint equation

ẇ(t) =− (f ′2)
∗(t, x̃(t), ũ(t))w(t) (2,3,3)

w(t1) =− φ′(x̃(t1)).

Then
d

dt
< w(t), z(t) >= 0 for all t

and, therefore,

− d

dε
J(uε) |ε=0=− < φ′(x̃(t1)), z(t1) >=< w(t1), z(t1) >=

= < w(τ), z(τ) >=< w(τ), f(τ, x̃(τ), v)− f(τ, x̃(τ), ũ(τ) >

So we arrive to the so-called maximum principle due to Pontryagin.
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Theorem 2.17. Let f : M := [t0, t1]× G1 × G2 → Rn be continuous, G1, G2 be open
sets in Rn and Rm, respectively. Let f have continuous partial derivatives with respect
to x and u - variables in M. Assume that φ : G1 → R has continuous partial derivatives
in G1. Let ũ be piecewise continuous and left-continuous on the interval [t0, t1] in which
φ(x(t1)) takes its minimum over u ∈ L∞(t0, t1,M) (where x is a solution to (2,3,1)).
Let w be a solution to (2,3,3). Then for all v ∈ M and τ ∈ [0, t1] the following
inequality holds

< w(τ), f(τ, x̃(τ), ũ(τ) >≥< w(τ), f(τ, x̃(τ), v >, (2,3,4)

where x̃ is a solution to (2,3,1) corresponding to ũ.

The function
H(t, x, u) :=< w(t), f(t, x, u) >

is often called the Hamiltonian and the necessary condition reads as

max
v∈M

H(t, x̃(t), v) = H(t, x̃(t), ũ(t)).

It is evident that one can consider another directional derivatives to obtain further
necessary conditions. The reader can be confused by our choice of a cost functional
φ(x(t1)). But a more general functional, e.g.

J(u) =

∫ t1

t0

L(s, x(s), u(s))ds + G(x(t1)) (2,3,5)

can be reduced to the previous one by adding one more equation to (2,3,1), namely

ẋ0(t) =L(s, x1(s), ..., xn(s), u(s)) (2,3,6)

x0(t0) =0.

As an application of Theorem 2,17 we present the existence of an optimal control for
LQ-problem (cf. Section 1,5).

Theorem 2.18. Let L : M→ R be continuous and have continuous partial derivatives
with respect to x − u variable and let L be convex on the convex set G1 × G2 for all
t ∈ [t0, t1]. Let G : G1 → R has continuous partial derivatives. Let A, B : [t0, t1] →
Rn×n,Rm×m be continuous. Then a control ũ in the set of piecewise continuous and
left-continuous functions [t0, t1] → G2 minimizes

J(u) :=

∫ t1

t0

L(s, x(s), u(s))ds + G(x(t1)),

where x is a solution to

ẋ =A(t)x(t) + B(t)u(t)

x(t0) =x0,

if and only if

< w̃(t), B(t)v >≤ L′3(t, x̃(t), ũ(t), ũ(t)v

for all v ∈ G2 such that ũ(t) + v ∈ G2. Here w̃ is a solution to

˙̃w(t) =− A∗(t)w̃(t) + L′2(t, x̃(t), ũ(t))

w̃(t1) =−G′(x̃(t1)).
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Proof. It follows directly from Theorem 2,17 with adding the equation (2,3,6). The
sufficiency part follows from Proposition 2,16.

We recommend to the reader to deduce the Riccati differential equation from The-
orem 2,18.

Theorem 2,17 cannot be used for solving the moon landing problem since there are
constraints at the end point t1, namely x(t1) = v(t1) = 0. The end point is not given
and and there is no fix time interval. We will not go into details and refer the reader
to e.g. [P-B-G],[A-F],[F-R].
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2.4 HAMILTON-JACOBI-BELLMAN EQUATION

In this section we will present an approach giving a sufficient condition for min-
imization of a functional (2,3,5) in which x is a solution to (2,3,1). We denote by
K(ξ, σ, τ) the set of all u ∈ L∞(σ, τ, M), (M convex ⊂ Rm) such that a solution to

ẋ(t) =f(t, x(t), u(t))

x(σ) =ξ,

exists (in the generalized sense) on the interval [σ, τ ]. Such a (unique) solution is de-
noted by ϕ(t; σ, ξ, u). Assumptions on f are those which guarantee the local existence
and uniqueness of a solution.

Actually, there are two different problems. The firs one concerns the existence
of an optimal control. If K(x0, t1, t2) is compact in certain topology (usually in w∗−
topology) and the nonlinear functional u → J(u) is continuous in this topology (a
weaker assumption is sufficient - see [D-M], Ch.6) then there exists an optimal control.
The second problem regards the synthesis of this control.

The following procedure is due to R. Bellman and it is called the dynamic program-
ming. It is based on the study of propertied of the value function V. This function
is defined by

V (t, x) := inf
u∈K(x,t,t1)

[

∫ t1

t

L(s, ϕ(s; t, x, u)u(s))ds + G(ϕ(t1; t, x, u)], (2,3,7)

where we suppose that L : [t0, t1]×Rn×M → R is continuous. The notation L comes
from variational formulation of the Newton law in classical mechanics, where L is the
Lagrange function.

Our aim is to find a differential equation that is satisfied by a value function.

Lemma 2.19. For any t0 ≤ t ≤ τ ≤ t1 and u ∈ K(x, t, t1) the inequality

V (t, x) ≤
∫ τ

t

L(s, ϕ(s; t, x, u), u(s))dτ + V (τ, ϕ(τ ; t, x, u)) (2,3,8)

holds. Moreover, if û is optimal (i.e.V (t, x) =
∫ t1

t
L(s, ϕ(s, t, x, û), û(s))ds+G(ϕ(t1; t, x, û)

the equality in (2,3,8) is true.

Proof. Choose u1 ∈ K(ϕ(τ ; t, x, u), s, t1)) for which V in the right-hand side is almost
achieved and concatenate u |[t,s] and u1. The equality for an optimal û follows from the
observation that the restriction of û is again optimal.

Corollary 2.20. Let the greatest lower bound in (2,3,7) is achieved at a continuous
control û. Assume that L is continuous and the value function V is continuously dif-
ferentiable. Then

∂V

∂t
(t, x) = −L(t, x, û(t))− < ∇xV (t, x), f(t, x, û(t) > (2,3,9)

and
∂V

∂t
(t, x) = −min

v∈M
[L(t, x, v)+ < ∇xV (t, x), f(t, x, v >]. (2,3,10)
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Proof. By differentiating the right-hand side in (2,3,8) with respect to τ we obtain

L(τ, ϕ(τ, t, x, û(τ))+
∂V

∂t
(τ, ϕ(τ, t, x, û))+∇xV (τ, ϕ(τ, t, x, u)), f(τ, ϕ(τ, t, x, û, û(τ)) > .

Since û is optimal, the equality in (2,3,8) holds and the derivative of the left-hand
side with respect to τ is zero. Putting τ = t we obtain (2,3,9). If u is any control in
K(x, t, t1) and w(τ, x, u) denotes the right-hand side in( 2,3,8), we have

w(τ, x̂(τ), û)− w(τ, x(τ), u) ≤ 0. (2,3,11)

Here x(·), x̂(·) are solutions starting at x at time t. From that we can conclude that
the function in (2,3,11) is a non-increasing function of τ and hence

−∂V

∂t
(t, x) =L(t, x, û(t))+ < ∇xV (t, x), f(t, x, û(t) >≤

≤L(t, x, u(t))+ < ∇xV (t, x), f(t, x, u(t) >,

i.e. (2,3,10) is true.

It is a quite delicate matter to prove the differentiability of value function for a
given cost functional. The interested reader can find more details e.g. in Chapter 4 of
[F-R].

The partial differential equation (2,3,10) is called the Hamilton-Jacobi-Bellman
equation. As quite often in partial differential equations,a an appropriate notion of
solution is not obvious. The concept of viscosity solutions (see e.g. [C-I-L] or [B-CD])
seems to be a good one. It is far from the scope of these lectures to explain details.
Instead assume that W is classical solution of (2,3,10) satisfying the condition

W (t1, x) = G(x). (2,3,12)

In order to prove that W is actually the value function V we need the following result
which is often called a verification lemma.

Lemma 2.21. Let Ṽ : [t0, t1]× Rn → R have the following properties:

(i) For any t0 ≤ t < τ ≤ t1, x ∈ Rn and u ∈ K(x, t, t1) the function Ṽ satisfies (2,3,8).
(ii) For any t0 ≤ t < τ ≤ t1, x ∈ Rn, there is ũ ∈ K(x, t, t1) for which the equality in
(2,3,8) takes place.

(iii) Ṽ (t1, x) = G(x) for x ∈ Rn.

Then V = Ṽ .

Proof. It is straightforward.

The simplest situation in the Hamilton-Jacobi-Bellman equations is that there is
a unique minimizer in (2,3,10). Define the Hamiltonian

H(t, x, v, λ) = L(t, x, v)+ < λ, f(t, x, v) >

and suppose that α(t, x, λ) is unique v ∈ M which minimizes H, i.e.

H(t, x, α(t, x, λ), λ) = min
v∈M

H(t, x, v, λ) (2,3,13)

and, moreover α is continuous on [t0, t1]×Rn×Rn. Notice that the continuity is also a
strong assumption. This α generally does not belong to K(x, t0, t1). We need to assume
that α yields an admissible feedback in the following sense.
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Definition 2.22. A function F : [t0, t1]×Rn → M is an admissible feedback if for any
τ ∈ [t0, t1] and each x ∈ Rn there is a unique u ∈ K(x, τ, t1) such that a corresponding
solution ϕ(·, τ, x, u) satisfies

ϕ(τ) =x

u(t) =F (t, ϕ(t)), t ∈ [τ, t1].

Theorem 2.23. Let there be a continuous function α satisfying (2,3,11) and let V be
a classical solution to (2,3,10) which satisfies (2,3,12), such that the funcftion

F (t, x) = α(t, x,∇xV (t, x))

is an admissible feedback. Then V is the value function and F (t, x0) is an optimal
control.

Proof. is done by verification of properties in Lemma 2,21.

Perhaps, the reader has obtain an opinion that Theorem 2,23 can be scarcely
applied. She/he is mostly right but there is a standard example.

Example 2.24. Assume that f(t, x, u) = A(t)x + B(t)u, where A,B are continuous
matrices of corresponding orders, and

L(t, x, u) =< Qx, x > + < Ru, u >

with a non-negative symmetric matrix Q and a positive definite matrix R. Moreover,
suppose that G(x) =< Q0x, x > with a non-negative symmetric matrix Q0 (cf. Section
1,6). An easy computation shows that

α(t, x, λ) = −1

2
R−1B∗(t)λ (2,3,14)

is a unique minimum in (2,3,13). We will try to find a solution to (2,3,10) for which
x → ∇xV (t, x) is linear in x, say

∇xV (t, x) =< P (t)x, x >, (2,3,15)

i.e. ∇xV (t, x) = 2P (t)x. Assuming (2,3,15) we get a feedback in the form

F (t, x) = −R−1B∗(t)P (t)x.

If P is continuous on [t0, t1] then this feedback is admissible, since ϕ is a solution to

ẏ =[A(t)−B(t)B∗P (t)]y

y(τ) =x.

If we substitute ϕ for x and F for u in (2,3,8) we find that P̃ (t) := P (t1 − t) satis-
fies the Riccati differential equation (1,6,5) and the value function V is continuously
differentiable.
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Diff.Eqs., ed.P.Drábek, Univ.West Bohemia, Plzeň 2001.
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