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Abstract

We study questions of partial regularity up to the boundary for solu-
tions of quasilinear parabolic systems of the form

∂u
∂t
− div

`
A(z, u)Du

´
= 0 in (−T, 0)× Ω,

u = 0 on (−T, 0)× ∂Ω,

in Hilbert space setting. Our approach is based on A-caloric approxima-
tion lemma.

Introduction

Despite the fact that the heat equation has a smoothing property, the solutions
of quasilinear parabolic systems are not smooth in general. Using standard ellip-
tic counterexamples, it is easy to construct a quasilinear parabolic system with
smooth coefficients with bounded weak solution which is not Hölder continu-
ous. Namely, one can consider a discontinuous solution u = u(x) of the elliptic
system as a stationary solution of a corresponding parabolic system. Moreover,
it is possible to construct a quasilinear parabolic system which has a solution
which starts as a smooth one at t = 0 and develops a discontinuity in some
moment t > 0, see [8].

In general, it is possible to prove partial regularity results only. By the
notion “partial regularity” we indicate that the solution need not to be Hölder
continuous on the whole domain but it is Hölder continuous on an open subset,
whose complement is small.

In this paper we are concerned with the study of regularity properties of
parabolic systems of the type

ut − div
(
A(z, u)Du

)
= 0 in (−T, 0)× Ω,

u = 0 on (−T, 0)× Γ,
(1)

in Hilbert space setting.
The partial regularity theory of such systems is based on a linearisation

argument: one compares a given weak solution locally to the solution of a linear
parabolic system with constant coefficients.
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There are several ways to construct suitable linearisations. One possibility
leads to the blow-up technique see e.g. Giaquinta and Giusti [12]. Another
approach has been introduced in Campanato [13]. Therein, the solution u is
compared on a small cylinder with a solution h of initial-Dirichlet problem with
“frozen coefficients” where h = u on the parabolic boundary of the cylinder.
In this case, the nonlinear parabolic system solved by u must be exploited to
obtain further information about u: to be precise, higher integrability of Du is
needed. This requires usage of the (parabolic) Gehring type lemma and reverse
Hölder inequality for u. See also e.g. [14].

In this paper we apply still another way of linearisation. Our approach is
based on the so called A-caloric approximation lemma (lemma 8 below). For
harmonic functions, this lemma was originally introduced by De Giorgi [10].
Its elliptic variant, A-harmonic approximation lemma, was used by Duzaar and
Grotowski [1] to prove interior partial regularity for nonlinear elliptic systems.
The questions of regularity up to the boundary for nonlinear elliptic systems
were examined by Grotowski in [3]. Optimal interior partial regularity result
for nonlinear parabolic systems was obtained by Duzaar and Mingione [2].

The advantage of the approach based on A-caloric approximation lemma
consists in the fact, that we can avoid the necessity of getting higher integrability
of Du and using Gehring-type lemma.

The main result in this paper is an alternate proof of the following theorem,
which was originally proved in more general framework by Arkhipova [15], cf.,
theorem 2 therein. The result is not new, but it is proved by different technique,
based on A-caloric lemma.

Theorem 1 Let us suppose structure conditions (H0) — (H4) which are stated
below and let u be a weak solution of (1). Furthermore, let the condition

lim inf
ρ→0+

−
∫

Aρ(y0)

|u|2 dz = 0

be satisfied at the point y0 = (t0, x0) ∈ (−T, 0) × Γ where Aρ(y0) denotes the
intersection of (−T, 0) × Ω with Qρ(y0) = {(t, x) ∈ Rn+1; |x − x0| < ρ, t ∈
(t0 − ρ2, t0)}.

Then there exists a neighborhood U(y0) of the point y0 such that u is Hölder
continuous on the closure of U(y0) ∩ (−T, 0)× Ω.

Formulation of the problem. Notations.

Let n ≥ 2, Ω be a bounded domain in Rn. Let Γ be a nonempty open subset
of ∂Ω and let T ∈ R, 0 < T < +∞, N ∈ N. We denote U = (−T, 0) × Ω,
z = (t, x) ∈ U where x = (x1, . . . , xn). Let N ∈ N. For the quasilinear
parabolic system with the homogeneous boundary conditions

∂ui(z)
∂t

−Dα

(
Aαβ

ij (z, u(z))Dβu
j(z)

)
= 0 in U, i = 1, . . . , N,

ui(z) = 0 on (−T, 0)× Γ, i = 1, . . . , N
(2)
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we shall use the abbreviation (1). For the function u = (u1, . . . , uN ) : U → RN ,
Du(z) ≡ {Dαu

i(z)} ∈ RN×n denotes the spatial gradient of u and A(z, u) ≡
Aαβ

ij (z, u) stands for the coefficient matrix. In what follows, we use summation
convention both over the Latin indices i, j = 1, . . . , N and the Greek ones α, β =
1, . . . , n.

The domain Ω is supposed to be sufficiently smooth, the operator is supposed
to be uniformly elliptic. More precisely, it is required

(H0) The boundary ∂Ω of Ω belongs to the class C2.

(H1) The mapping (z, ξ) 7→ A(z, ξ) is uniformly continuous on U .

(H2) There exists some λ > 0 such that for each z ∈ U, ξ ∈ RN and v ∈ RN×n

A(z, ξ) v v ≡ Aαβ
ij (z, ξ)vi

αv
j
β ≥ λ|v|2. (3)

(H3) There exists L > 0 such that for any z ∈ U, ξ ∈ RN , and u, v ∈ RN×n

A(z, ξ)u v ≡ Aαβ
ij (z, ξ)ui

αv
j
β ≤ L|u||v|. (4)

(H4) For each z ∈ U and ξ ∈ RN Aαβ
ij (z, ξ) = Aβα

ji (z, ξ).

The assumptions (H1) and (H3) imply existence of a continuous function
ω : [0,+∞) → [0,+∞) which is bounded, concave, nondecreasing, ω(0) = 0
and

∀x, x̄ ∈ Ω ∀t, t̄ ∈ (−T, 0) ∀u, ū ∈ RN

|A(t, x, u)−A(t̄, x̄, ū)| ≤ ω(|x− x̄|2 + |t− t̄|+ |u− ū|2). (5)

We note that (H3) implies that Aαβ
ij (·, u(·)) belongs to L∞(U) for any integrable

u.

Definition 1 (Weak solution) Under the weak solution to (2) we understand
function u ∈ L2(−T, 0;W1,2(Ω,RN )) such that u(·, t) = 0 on Γ in the sense of
traces for almost every t ∈ (−T, 0) and

∀ϕ ∈ C∞c (U,RN )
∫

U

[uϕt −A(z, u)DuDϕ] dz = 0. (6)

In the conclusion of this section we introduce some notation that will be used
throughout the paper. Euclidean norm in Rk will be denoted by | · |, whereas
the parabolic metric in R×RN will be denoted by δ, i.e., for z1 = (t1, x1), z2 =
(t2, x2) we have

δ(z1, z2) := max(|x1 − x2|, |t1 − t2| 12 ).

For x0 = (x01, x02, . . . , x0n−1, 0), we write B+
ρ (x0) = {x ∈ Rn; |x−x0| < ρ, xn >

0} and Q+
ρ (t0, x0) = (t0 − ρ2, t0)×B+

ρ (x0) and further Q+
ρ = Q+

ρ (t0, x0), Q+ =
Q+

1 . Dρ(x0) denotes the set {x ∈ Rn; |x− x0| < ρ, xn = 0}.
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For a set X ⊂ R × Rn with positive finite Lebesgue measure, we denote
the average of a given f ∈ L1(X) by (f)X ≡ −

∫
X
f dz := 1

meas X

∫
X
f dz, where

measX denotes the Lebesgue measure of the set X. We also abbreviate fz0,ρ :=
(f)Q+

ρ (z0)
.

We will often make use of the following elementary observation: ifX has pos-
itive finite Lebesgue measure and the function f lies in L2(X), then infν∈R

∫
X
|f−

ν|2 dz is achieved for ν =−
∫

X
f dz.

By Vρ(z0) we denote the Bochner space L2
(
t0 − ρ2, t0;W1,2(B+

ρ (x0),RN )
)

equipped with the norm

‖f‖2
Vρ(z0)

:=
∫

Q+
ρ (z0)

( 1
ρ2
|f |2 + |Df |2

)
dz.

We abbreviate Vρ := Vρ(t0, x0), V := V1. We also make use of the space

Z := {f ∈ W1,2(B+,RN ); trace f = 0 on D}.

The space of α−Hölder continuous functions with respect to the parabolic
metric δ on a set Q̄+

ρ (z0), is denoted by C0,α(Q̄+
ρ (z0), δ). It is equipped with

the seminorm

[f ]C0,α(Q̄+
ρ (z0),δ)

:= sup
{ |f(z1)− f(z2)|

δα(z1, z2)
; z1, z2 ∈ Q̄+

ρ (z0), z1 6= z2
}
.

By Lp,λ(Q+
ρ (z0), δ) we will denote the appropriate Campanato space with the

seminorm

[f ]pLp,λ(Q+
ρ (z0),δ)

:= sup
{
ρ−λ

∫
U(z,ρ)

|f(t, x)−fU(z,ρ)|p dxdt; z ∈ Q̄+
ρ (z0), ρ > 0

}
,

where U(z, ρ) := {y ∈ Q+
ρ ; δ(y, z) < ρ}. The spaces Lp,λ(Q+

ρ (z0), δ) and
C0,α(Q̄+

ρ (z0), δ) are isomorphic for α = λ−(n+2)
p , for proof see [4].

By c we denote a generic constant which depends only on the data of the
problem (1).

Statement of the result

The main result of this paper is the following local boundary partial regularity
theorem:

Theorem 2 Let u ∈ L2(−T, 0;W1,2(Ω,RN )) be a weak solution of (2) under
the assumptions (H0), (H1), (H2), (H3) and (H4). Let α ∈ (0, 1) and y0 ∈
(−T, 0)× Γ be a point where the condition

lim inf
ρ→0+

−
∫

Qρ(y0)∩U

|u|2 dz = 0 (7)

is satisfied.
Then there exists some neighborhood U(y0) of the point y0 such that u ∈

C0,α(U(y0) ∩ U,RN , δ).
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We illustrate the main step in the proof of the boundary regularity in a
model situation — on a half cylinder. The general result then follows by a
transformation argument.

Theorem 3 Let u ∈ L2(−1, 0;W1,2(B+,RN )) be a weak solution of (2) on
U = Q+ with Γ = D. We assume the structure conditions (H1), (H2), (H3)
and (H4) with Ω = B+, T = 1. Let α ∈ (0, 1) and y0 ∈ (−1, 0) ×D be a point
where the condition

lim inf
ρ→0+

−
∫

Q+
ρ (y0)

|u|2 dz = 0 (8)

is satisfied.
Then there exists some neighborhood U(y0) of the point y0 such that u ∈

C0,α(U(y0) ∩Q+,RN , δ).

Preliminary results

In this section, we summarize auxiliary lemmas that will be used in the main
section. These include a-priory estimates for parabolic systems, Campanato
lemma and A-caloric lemma.

In the whole section we put z0 = (t0, x0) where x0 = (x01, . . . , x0n−1, 0).

Lemma 4 (Caccioppoli lemma) Let ρ > 0 and Q+
ρ (z0) ⊂⊂ Q+. Let u ∈ V

be a weak solution of (2) on U = Q+ with Γ = D under the conditions (H2)
and (H3). Then there holds∫

Q+
ρ
2
(z0)

|Du|2 dz ≤ c

ρ2

∫
Q+

ρ (z0)

|u|2 dz,

where c does not depend on u, ρ and z0.

=ODKAZ=
Now, we formulate properties of solutions to the parabolic systems with

constant coefficients which we call A-caloric functions:

Definition 2 Let h ∈ Vρ(z0), λ > 0 and A be a bilinear form defined on RN×n

(i.e. A ≡ Aαβ
ij is constant) which satisfies

A v v ≥ λ|v|2 for all v ∈ RN×n. (9)

We say that the function h is A-caloric on Q+
ρ (z0) if∫

Q+
ρ

(
hϕt −ADhDϕ

)
dz = 0 (10)

holds for all ϕ ∈ C∞c (Q+
ρ (z0),RN ).

We will often use homogeneous Dirichlet boundary conditions on the “flat
boundary” (t0 − ρ2, t0)×Dρ(x0) which are interpreted in the sense of traces on
almost all time levels.
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Lemma 5 (Infinite differentiability) Let A be a symmetric (Aαβ
ij = Aβα

ji )
bilinear form on RN×n which satisfies (9). Let h ∈ L2(t0−ρ2, t0;W1,2(B+

ρ (x0),RN ))
be an A-harmonic function with h = 0 on (t0 − ρ2, t0)×Dρ(x0).

Then, for any σ < ρ, the function h belongs to C∞(Q̄+
σ (z0),RN ) and there

holds ∫
Q+

σ (z0)

|Dα ∂
kh

∂tk
|2 dz < c(α, k, σ, ρ)

∫
Q+

ρ (z0)

|h|2 dz (11)

for any multiindex α and any k ∈ N0.

Lemma 6 (Campanato) Let A be a symmetric (Aαβ
ij = Aβα

ji ) bilinear form
on RN×n which satisfies (9). Let h ∈ L2(t0 − ρ2, t0;W1,2(B+

ρ (x0),RN )) be an
A-caloric function fulfilling h = 0 on (t0− ρ2, t0)×Dρ(x0). Then there exists a
constant Ccamp such that for any σ ∈ (0, ρ) there holds

−
∫

Qσ(z0)

|h|2 dz ≤ Ccamp

(σ
ρ

)2 −
∫

Qρ(z0)

|h|2 dz. (12)

The proof is originally due to Campanato [4].
Proof: Without loss of generality, we suppose σ ∈ (0, ρ

2 ). (For σ ∈ [ρ
2 , ρ)

we choose Ccamp = 2n+2.) Let z0 = (t0, x0). By the previous lemma, for any
k = 1, 2, . . . there holds

‖h‖2
Wk,2(Q+

ρ
2
(z0),RN )

≤ c(ρ, k)
∫

Q+
ρ (z0)

|h|2 dxdt. (13)

Thanks to Sobolev embedding theorem we have h ∈ C1(Q̄+
ρ
2
(z0),Rn), and

for sufficiently big k

sup
Q̄+

ρ
2
(z0)

(
|Dh|2 + |∂h

∂t
|2

)
≤ c(ρ, k)‖h‖2

Wk,2(Q+
ρ
2
(z0),RN )

. (14)

Let z = (t, x1, . . . , xn) ∈ Q+
σ (z0) be arbitrary. We denote the orthogonal

projection of z on (t0 − σ2, t0)×Dσ(z0) by z′, i.e. z′ = (t, x1, . . . , xn−1, 0). As
h ∈ C1(Q̄+

ρ
2
(z0),Rn) and h = 0 on (t0 − σ2, t0)×Dσ(x0), we can estimate

|h(z)− h(z′)︸ ︷︷ ︸
=0

|2 ≤ σ2 sup
Q̄+

ρ
2
(z0)

N∑
i=1

| ∂h
i

∂xn
|2.

This yields,∫
Q+

σ (z0)

|h|2 dxdt ≤ meas
(
Q+

σ (z0)
)
σ2 sup

Q̄+
ρ
2
(z0)

(
|Dh|2 + |∂h

∂t
|2

)
,

and thus, cf. (14), (13):∫
Q+

σ (z0)

|h|2 dxdt ≤ c(ρ) meas
(
Q+

σ (z0)
)
σ2

∫
Q+

ρ (z0)

|h|2 dxdt.
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It now remains to precise the dependence of the constant c(ρ) on ρ. Without
loss of generality, we suppose z0 = 0. We consider v(τ, y) := h(λ2τ, λy) with
λ > 0, which is also A-caloric on the half-cylinder Q+

ρ
λ
(0) and fulfils v = 0 on

(− ρ2

λ2 , 0)×D ρ
λ
(0). Setting λ := ρ, we thus have∫

Q+
σ
ρ

|v(τ, y)|2 dy dτ ≤ c(1)meas
(
Q+

σ
ρ

) (σ
ρ

)2
∫

Q+
1

|v(τ, y)|2 dy dτ.

Transformation of variables y = x
ρ , τ = t

ρ2 yields∫
Q+

σ

|h(t, x)|2 dxdt ≤ c(1)meas
(
Q+

σ
ρ

) (σ
ρ

)2
∫

Q+
ρ

|h(t, x)|2 dxdt,

thus c(ρ) = c(1)
ρn+4 . We have proved the inequality (12). �

We now state the A-caloric approximation lemma which is the main tool in
this paper. The interior version of this lemma can be found in [2]. The elliptic
boundary variant is presented in [3]. For simplicity, we formulate the estimates
on Q+ but they can be easily transformed on any Q+

ρ (z).
In the proof, we use the following proposition which is due to Simon, cf. [5],

theorem 3 there:

Proposition 7 Assume X and B are Banach spaces, X ⊂⊂ B, F ⊂ Lp(0, T ;B)
where 1 ≤ p ≤ ∞, F is bounded in L1

loc(0, T ;X) and

‖f(·+ h)− f(·)‖Lp(0,T−h;B) → 0 as h→ 0, uniformly for f ∈ F. (15)

Then F is relatively compact in Lp(0, T ;B).

Lemma 8 (A-caloric lemma) Consider fixed positive λ, L ∈ R and n,N ∈ N
with n ≥ 2. Then for any given ε > 0 there exists δ = δ(n,N, λ, L, ε) ∈ (0, 1]
with the following property: for any bilinear form A on RN×n which fulfils

A v v ≥ λ|v|2 for all v ∈ RN×n, (16)

|Au v| ≤ L|u||v| for all u, v ∈ RN×n, (17)

and for any u ∈ V1 satisfying

•
∫

Q+

(
|u|2 + |Du|2

)
dz ≤ 1, (18)

•
∣∣ ∫

Q+

(
uϕt −ADuDϕ

)
dz

∣∣ ≤ δ sup
Q+

|Dϕ|, for all ϕ ∈ C1
c (Q+,RN ), (19)

• u = 0 on (−1, 0)×D. (20)

there exists an A-caloric function h ∈ V1 satisfying

•
∫

Q+

(
|h|2 + |Dh|2

)
dz ≤ 1, (21)

•
∫

Q+
|h− u|2 dz ≤ ε, (22)

• h = 0 on (−1, 0)×D. (23)
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The proof follows ideas of Duzaar and Mingione [2] and we give it here for the
reader’s convenience.

Proof. We proceed by a contradiction argument. Let us suppose that the
assertion is false. We can thus find ε > 0, a sequence {Ak} of bilinear forms on
RN×n, with uniform ellipticity (16) and upper bounds (17), and a sequence of
functions {vk} with vk ∈ L2(−1, 0;W1,2(B+,RN )) such that∫

Q+

(
|vk|2 + |Dvk|2

)
dz ≤ 1, (24)

vk = 0 on (−1, 0)×D, (25)

and ∣∣ ∫
Q+

(
vkϕt −Ak Dvk Dϕ

)
dz

∣∣ ≤ 1
k

sup
Q+

|Dϕ| (26)

for all ϕ ∈ C1
c (Q+,RN ) and k ∈ N, but∫

Q+
|vk − h|2 dz > ε (27)

for all h ∈ L2(−1, 0;W1,2(B+,RN )) satisfying

• h is Ak-caloric function on Q+, (28)

•
∫

Q+

(
|h|2 + |Dh|2

)
dz ≤ 1, (29)

• h = 0 on (−1, 0)×D. (30)

Passing to a subsequence (also labeled with k) we obtain the existence of v ∈
L2(−1, 0;W1,2(B+,RN )) and A such that there holds

vk ⇀ v weakly in L2(Q+,RN ),
Dvk ⇀ Dv weakly in L2(Q+,RN×n),
Ak → A.

(31)

We thus have vk ⇀ v in L2(−1, 0;Z) and so v ∈ L2(−1, 0;Z). Thus, v = 0 on
(−1, 0)×D. Using the lower semicontinuity of v 7→

∫
Q+

(
|v|2 + |Dv|2

)
dz with

respect to weak convergence in L2(−1, 0;W1,2(B+,RN )) we obtain∫
Q+

(
|v|2 + |Dv|2

)
dz ≤ 1. (32)

Moreover, for ϕ ∈ C∞0 (Q+,RN ) we have∫
Q+

(
vϕt −ADvDϕ

)
dz =

∫
Q+

(
(v − vk)ϕt −A (Dv −Dvk)Dϕ

)
dz

−
∫

Q+
(A−Ak)Dvk Dϕdz

+
∫

Q+

(
vkϕt −Ak Dvk Dϕ

)
dz. (33)
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Passing to the limit k → ∞ we see that the first term of the right-hand side
converges to 0 due to (31), the same holds for the second term in view of the
uniform bound of Dvk in L2(Q+,RN×n) – see (24) and the convergence of {Ak},
the third term vanishes in the limit k →∞ via (26). This shows that the weak
limit v is an A-caloric function on Q+, i.e.,

∀ϕ ∈ C∞0 (Q+,RN )
∫

Q+

(
vϕt −ADvDϕ

)
dz = 0. (34)

We want to show that (up to a subsequence) vk → v in L2(Q+,RN ). To get
this convergence, we now check the assumptions of the proposition 7, where we
put X = W1,2(B+,RN ), B = L2(B+,RN ), F = {vk}k∈N.

For ϕ ∈ C∞0 (Q+,RN ) we have∣∣ ∫
Q+

vkϕt dz
∣∣ ≤ ∣∣ ∫

Q+
Ak Dvk Dϕdz

∣∣ +
1
k

sup
Q+

|Dϕ|

≤ |Ak|
( ∫

Q+
|Dvk|2 dz

) 1
2
( ∫

Q+
|Dϕ|2 dz

) 1
2

+
1
k

sup
Q+

|Dϕ|

≤ |Ak|
( ∫

Q+
|Dϕ|2 dz

) 1
2

+
1
k

sup
Q+

|Dϕ|. (35)

Here, we have used (24) and (26). Now, for −1 < s1 < s2 < 0 and ε > 0 small
enough we choose

ζε(t) =


0 for − 1 ≤ t ≤ s1 − ε,

1
ε (t− s1 + ε) for s1 − ε ≤ t ≤ s1,

1 for s1 ≤ t ≤ s2,
− 1

ε (t− s2 − ε) for s2 ≤ t ≤ s2 + ε,
0 for s2 + ε ≤ t ≤ 0,

(36)

and let ϕ(t, x) = ζε(t)ψ(x) for ψ ∈ C∞0 (B+,RN ). Testing (35) with (mollified)
ϕ we obtain

∣∣ ∫
B+

(1
ε

∫ s1

s1−ε

vk(t, x) dt− 1
ε

∫ s2+ε

s2

vk(t, x) dt
)
ψ(x) dx

∣∣
≤ |Ak|

( ∫ 0

−1

ζε(t)2 dt
) 1

2 ‖Dψ‖L2(B+,RN ) +
1
k

sup
B+

|Dψ| · sup
−1≤t≤0

|ζε(t)|

≤
(
|Ak|

√
s2 − s1 + 2ε+

1
k

)
sup
B+

|Dψ|. (37)

By Sobolev-embedding

sup
B+

|Dψ| ≤ c(n, l)‖ψ‖W l,2
0 (B+), l >

n+ 2
2

, (38)
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we see that∣∣ ∫
B+

(1
ε

∫ s1

s1−ε

vk(t, x) dt− 1
ε

∫ s2+ε

s2

vk(t, x) dt
)
ψ(x) dx

∣∣
≤ c(n, l)

(
|Ak|

√
s2 − s1 + 2ε+

1
k

)
‖ψ‖Wl,2

0 (B+). (39)

Passing to the limit ε→ 0 we obtain for a.e. −1 < s1 < s2 < 0∣∣ ∫
B+

(
vk(s2, ·)− vk(s1, ·)

)
ψ dx

∣∣ ≤ c(n, l)
(
|Ak|

√
s2 − s1 +

1
k

)
‖ψ‖Wl,2

0 (B+) (40)

for any ψ ∈ C∞0 (B+,RN ). By density of C∞0 (B+,RN ) in Wl,2
0 (B+,RN ) the last

inequality is also valid for any ψ ∈ Wl,2
0 (B+,RN ). Taking the supremum over

all ψ ∈ Wl,2
0 (B+,RN ) with ‖ψ‖Wl,2

0 (B+) ≤ 1 we infer

‖vk(s2, ·)− vk(s1, ·)‖W−l,2(B+,RN ) ≤ c(l, n)
(
|Ak|

√
s2 − s1 +

1
k

)
. (41)

Interpolating L2(B+,RN ) between W1,2(B+,RN ) and W−l,2(B+,RN ) it follows
for µ > 0 that∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
L2(B+) dt

≤ µ

∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
W1,2(B+) dt

+ c(µ)
∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
W−l,2(B+) dt

≤ 4µ
∫ 0

−1

‖vk(t, ·)‖2
W1,2(B+) dt+ c(µ)c2

(
|Ak|

√
h+

1
k

)2

≤ 4µ+ 2c(µ)c2
(
|Ak|2h+

1
k2

)
. (42)

Here, we have used in the first line the interpolation inequality

‖w‖2
L2(B+) ≤ µ‖w‖2

W 1,2(B+) + c(µ)‖w‖2
W−l,2(B+) (43)

which is valid for w ∈ W1,2(B+,RN ). Moreover, in the second-last line we have
used the bound (41) for ‖vk(t + h, ·) − vk(t, ·)‖W−l,2(B+) from above and the
bound (24).

We are now in the position to show that

lim
h→0

∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
L2(B+) dt = 0 uniformly in k. (44)

In order to do this we recall that Ak → A as k →∞ so that supk∈N |Ak| ≤ a <
∞. Using this in (42) we obtain∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
L2(B+) dt ≤ 4µ+ 2c(µ)c2

(
a2h+

1
k2

)
. (45)

10



For given θ > 0 we choose µ = θ
12 . This fixes µ and also c(µ) = c( θ

12 ). Next we

choose k0 ∈ N such that 2c(µ)c2

k2 < θ
3 for any k ≥ k0. Then, for k = 1, . . . , k0 − 1

we choose h1 > 0 such that

∀0 < h < h1, k = 1, . . . , k0−1
∫ −h

−1

‖vk(t+h, ·)−vk(t, ·)‖2
L2(B+) dt < θ. (46)

Finally, we choose h2 > 0 such that 2c(µ)c2a2h < θ
3 for any 0 < h < h2. Then,

for any k ∈ N and 0 < h < h0 := min(h1, h2) we have∫ −h

−1

‖vk(t+ h, ·)− vk(t, ·)‖2
L2(B+) dt < θ (47)

which proves (44).
Since the sequence {vk} is also bounded in L2(−1, 0;W1,2(B+,RN )) we are

able to apply the Simon’s theorem 7 to obtain a subsequence {vk} (again labelled
by k) such that

vk → v strongly in L2(Q+,RN ). (48)

To obtain the desired contradiction we denote by wk : Q+ → RN a solution
to the following initial-Dirichlet problem; its existence can be deduced from
standard existence arguments, cf. [6], [7] for instance. wk ∈ C([−1, 0]; L2(B+,RN )) ∩ L2(−1, 0;W1,2

0 (B+,RN )),
∂wk

∂t ∈ L2(−1, 0;W−1,2(B+,RN )),
wk(·,−1) = 0,

(49)

∀ϕ ∈ C∞0 (Q+,RN )
∫

Q+

(
wkϕt −Ak Dwk Dϕ

)
dz =

∫
Q+

(A−Ak)DvDϕdz.

(50)
A standard a-priori estimate holds for the solution wk:

1
2
‖wk(·, t)‖2

L2(B+) +
∫

(−1,t)×B+
Ak Dwk Dwk dz

=
∫

(−1,t)×B+
(Ak −A)DvDwk dz for a.e. t ∈ (−1, 0). (51)

Using the ellipticity of the bilinear forms Ak we see that the second term of
the left-hand side of (51) is bounded from below by λ

∫
(−1,t)×B+ |Dwk|2 dz.

Moreover the right-hand side of (51) is estimated easily by Cauchy-Schwarz
inequality, the bound

∫
Q+ |Dv|2 dz ≤ 1 from (32), and Young’s inequality∫

(−1,t)×B+
(Ak −A)DvDwk dz

≤ |A −Ak|
( ∫

Q+
|Dv|2 dz

) 1
2
( ∫

(−1,t)×B+
|Dwk|2 dz

) 1
2

≤ 1
2λ
|A − Ak|2 +

λ

2

∫
(−1,t)×B+

|Dwk|2 dz. (52)

11



This implies in particular

1
2

∫
B+

|wk(t, ·)|2 dx+
λ

2

∫
(−1,t)×B+

|Dwk|2 dz ≤ 1
2λ
|Ak −A|2 (53)

for a.e. t ∈ [−1, 0] and k ∈ N.
Taking the supremum over t ∈ (−1, 0) we arrive at

sup
t∈(−1,0)

1
2

∫
B+

|wk(t, ·)|2 dx+
λ

2

∫
Q+

|Dwk|2 dz → 0 as k →∞. (54)

Letting gk := v−wk ∈ L(−1, 0;W1,2(B+,RN )) we easily see that gk agrees with
v on the parabolic boundary ∂pQ

+ of Q+ and satisfies

∀ϕ ∈ C∞0 (Q+,RN )
∫

Q+

(
gkϕt −Ak Dgk Dϕ

)
dz = 0. (55)

From (54) and the definition of gk we see that∫
Q+

(
|gk − v|2 + |Dgk −Dv|2

)
dz → 0 as k →∞, (56)

which implies in particular that∫
Q+

(
|gk|2 + |Dgk|2

)
dz →

∫
Q+

(
|v|2 + |Dv|2

)
dz ≤ 1 as k →∞. (57)

Letting

bk := max
{

1,
∫

Q+

(
|gk|2 + |Dgk|2

)
dz

}
, g̃k :=

gk

bk
(58)

we see that bk → 1 and
∫

Q+(|g̃k|2 + |Dg̃k|2) dz ≤ 1 for any k ∈ N. Note that
g̃k ∈ L2(−1, 0;W1,2(B+,RN )) and

• g̃k is Ak-caloric function on Q+, (59)

•
∫

Q+

(
|g̃k|2 + |Dg̃k|2

)
dz ≤ 1, (60)

• g̃k = 0 on (−1, 0)×D. (61)

Furthermore,( ∫
Q+

|g̃k−v|2 dz
) 1

2 ≤
( ∫

Q+
|gk−v|2 dz

) 1
2
+(1− 1

bk
)
( ∫

Q+
|gk|2 dz

) 1
2 → 0 (62)

as k →∞, which yields the desired contradiction to (27). �
We now formulate another variant of the previous lemma which fits better

for our purposes, cf. [1].
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Lemma 9 Let λ > 0, L > 0, and n,N ∈ N with n ≥ 2. Then for any given
ε > 0 there exists a constant Cε = C(n,N, λ, L, ε) with the following property:
for any bilinear form A on RN×n which fulfils (16) and (17) and for any u ∈
Vρ(z0) with u = 0 on (t0 − ρ2, t0) × Dρ(x0) there exists an A-caloric function
h ∈ Vρ(z0) which satisfies:

• h = 0 on (t0 − ρ2, t0)×Dρ(x0), (63)

• 1
ρ2

∫
Q+

ρ (z0)

|h|2 dz +
∫

Q+
ρ (z0)

|Dh|2 dz ≤ 1
ρ2

∫
Q+

ρ (z0)

|u|2 dz +
∫

Q+
ρ (z0)

|Du|2 dz (64)

• there exists a function ϕ ∈ C1
c (Q+

ρ (z0),RN ) such that sup
Q+

ρ (z0)

|Dϕ| ≤ 1
ρ

and

−
∫

Q+
ρ (z0)

|u− h|2 dz ≤ Cε

(
ρ2 −

∫
Q+

ρ (z0)

(uϕt −ADuDϕ) dz
)2

+ ε −
∫

Q+
ρ (z0)

(
|u|2 + ρ2|Du|2

)
dz. (65)

Proof: It is sufficient to consider the case z0 = 0, ρ = 1. The general
result can be obtained by the transformation from Q+

ρ (z0) to Q+ and back, i.e.,
ũ(T,X) := u(t0 + ρ2T, x0 + ρX) and h(t, x) = h̃( 1

ρ2 (t− t0), 1
ρ (x− x0)).

We may assume ‖u‖V1 6= 0. Let us put ū := u
‖u‖V1

and consider two different
cases.

First case: Let us assume

∀ϕ ∈ C1
c (Q+,RN )

∣∣ ∫
Q+

(ūϕt −ADūDϕ) dz
∣∣ ≤ δ sup

Q+
|Dϕ|, (66)

where δ corresponds to ε from lemma 8. By lemma 8 we obtain an A-caloric
function h̄ satisfying h̄ = 0 on (−1, 0)×D and∫

Q+

(
|h̄|2 + |Dh̄|2

)
dz ≤ 1,

∫
Q+

|ū− h̄|2 dz ≤ ε. (67)

We now set h := h̄‖u‖V1 . This yields∫
Q+

(
|h|2 + |Dh|2

)
dz ≤ ‖u‖2

V1

∫
Q+

(
|h̄|2 + |Dh̄|2

)
dz

≤ ‖u‖2
V1

=
∫

Q+

(
|u|2 + |Du|2

)
dz, (68)

∫
Q+

|u−h|2 dz = ‖u‖2
V1

∫
Q+

|ū−h̄|2 dz ≤ ‖u‖2
V1
ε = ε

∫
Q+

(
|u|2+|Du|2

)
dz, (69)

Thus, we have proved (63), (64) and (65) (with ρ = 1) provided (66) holds.
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Second case: If (66) does not hold then there is a function ϕ ∈ C1
c (Q+,RN )

(which is not identically zero) which satisfies∣∣ ∫
Q+

(ūϕt −ADūDϕ) dz
∣∣ > δ sup

Q+
|Dϕ|. (70)

Writing ϕ̄ := ϕ
supQ+ |Dϕ| , this implies

∣∣ ∫
Q+

(uϕ̄t −ADuDϕ̄) dz
∣∣ > δ

( ∫
Q+

(
|u|2 + |Du|2

)
dz

) 1
2
. (71)

We now set h = 0 and verify that∫
Q+

|u− h|2 dz =
∫

Q+
|u|2 dz ≤

∫
Q+

(
|u|2 + |Du|2

)
dz

<
1
δ2

( ∫
Q+

(uϕ̄t −ADu ,Dϕ̄) dz
)2
. (72)

Thus, (65) holds with Cε = 1
δ2 . �

Proof of the main theorem

We will now prove the theorem 3. Let us define

I(z0, ρ) := −
∫

Q+
ρ (z0)

|u|2 dz, I(ρ) := I(z0, ρ). (73)

The most important part of the proof including application of the A-caloric
lemma is contained in the following lemma.

Lemma 10 Let u be a weak solution of (2) where Ω = Q+,Γ = D. Then there
is a constant c > 0 with the following property: for any ε > 0 there exists Cε > 0
such that for any z0 ∈ (−1, 0) ×D and ρ > 0 which fulfil Q+

2ρ(z0) ⊂⊂ Q+ and
for any σ ∈ (0, ρ) holds

I(σ) ≤ c
[( ρ
σ

)n+2
(
Cεω

(
I(ρ) + 2ρ2

)
+ ε

)
+ (

σ

ρ
)2

]
I(2ρ). (74)

Proof. Let u ∈ L2(−1, 0;W1,2(B+,RN )) be a weak solution to the system (2)
on the domain Q+ = (−1, 0)×B+, with the homogeneous boundary condition
u = 0 on the flat part (−1, 0) × D of the boundary. Let z0 = (t0, x0) ∈
(−1, 0) × D, Q+

2ρ(z0) ⊂ Q+ and let ϕ ∈ C1
c (Q+,RN ) be a test function with

suppϕ ⊂ Q+
ρ (z0) and supQ+

ρ (z0)
|Dϕ| ≤ 1

ρ .
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Using (6) and Hölder inequality, we obtain∣∣ ∫
Q+

ρ (z0)

[
uϕt −A(z0, 0)DuDϕ

]
dz

∣∣ =
∣∣ ∫

Q+
ρ (z0)

[(
A(z, u)−A(z0, 0)

)
DuDϕ

]
dz

∣∣
≤

( ∫
Q+

ρ (z0)

|A(z, u)−A(z0, 0)|2 dz︸ ︷︷ ︸
I1

) 1
2
( ∫

Q+
ρ (z0)

|Du|2 dz︸ ︷︷ ︸
I2

) 1
2 sup

Q+
ρ (z0)

|Dϕ|.

(75)

The Caccioppoli inequality provides

I2 ≤
ccacc

4ρ2

∫
Q+

2ρ(z0)

|u|2 dz. (76)

Using the continuity of A, cf. (5) and concavity of ω we get

1
meas Q+

ρ
I1 ≤ −

∫
Q+

ρ (z0)

2L|A(z, u)−A(z0, 0)|dz

≤ 2L −
∫

Q+
ρ (z0)

ω
(
|x− x0|2 + |t− t0|+ |u(t, x)|2

)
dxdt

≤ 2Lω
(
−
∫

Q+
ρ (z0)

(
|x− x0|2 + |t− t0|︸ ︷︷ ︸

≤2ρ2

+|u(t, x)|2
)
dxdt

)

= 2Lω
(
2ρ2 + −

∫
Q+

ρ (z0)

|u|2 dz
)
. (77)

We use the estimates for I1 and I2 and recall supQ+
ρ (z0)

|Dϕ| ≤ 1
ρ to obtain

∣∣ ∫
Q+

ρ (z0)

[
uϕt−A(z0, 0)DuDϕ

]
dz

∣∣
≤ c

√
meas (Q+

ρ )ω
(
I(ρ) + 2ρ2)

) √
1
ρ2

meas (Q+
ρ ) I(2ρ)

1
ρ

≤ cmeas (Q+
ρ )

1
ρ2

√
I(2ρ)ω

(
I(ρ) + 2ρ2

)
. (78)

We now take fixed ε > 0 which we will specify later and apply lemma 9. It
ensures existence of an A := A(z0, 0)-caloric function h which approximates u.
More precisely, there holds (63), (64) and (65). We utilize (65), (78) and the
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Caccioppoli inequality to get:

−
∫

Q+
ρ (z0)

|u− h|2 dz ≤ Cε

(
ρ2 −

∫
Q+

ρ (z0)

[uϕt −A(z0, 0)DuDϕ] dz
)2

+ ε −
∫

Q+
ρ (z0)

(
|u|2 + ρ2|Du|2

)
dz

≤ Cε

(
ρ2 c

ρ2

√
I(2ρ)ω

(
I(ρ) + 2ρ2

))2

+ ε −
∫

Q+
ρ (z0)

|u|2 dz + εccacc −
∫

Q+
2ρ(z0)

|u|2 dz

≤ I(2ρ)
(
Cεω

(
I(ρ) + 2ρ2

)
+ cε

)
. (79)

Let σ be any positive number satisfying σ < ρ. We use the Campanato
inequality (12) and (63) on the second line∫

Q+
σ (z0)

|u|2 dz ≤ 2
∫

Q+
σ (z0)

|u− h|2 dz + 2
∫

Q+
σ (z0)

|h|2 dz

≤ 2
∫

Q+
ρ (z0)

|u− h|2 dz + c
(σ
ρ

)n+4
∫

Q+
ρ (z0)

|h|2 dz. (80)

The relation (64) and the Caccioppoli inequality imply∫
Q+

ρ (z0)

|h|2 dz ≤
∫

Q+
ρ (z0)

(
|h|2 + ρ2|Dh|2

)
dz

≤
∫

Q+
ρ (z0)

(
|u|2 + ρ2|Du|2

)
dz ≤ c

∫
Q+

2ρ(z0)

|u|2 dz. (81)

Using (80), (81) and (79) we obtain

I(σ) ≤ 2
( ρ
σ

)n+2 −
∫

Q+
ρ (z0)

|u− h|2 dz + 2
(σ
ρ

)2 −
∫

Q+
ρ (z0)

|h|2 dz

≤ 2
( ρ
σ

)n+2 −
∫

Q+
ρ (z0)

|u− h|2 dz + c
(σ
ρ

)2 −
∫

Q+
2ρ(z0)

|u|2 dz

≤ 2
( ρ
σ

)n+2
I(2ρ)

(
Cεω

(
I(ρ) + 2ρ2

)
+ cε

)
+ c

(σ
ρ

)2 −
∫

Q+
2ρ(z0)

|u|2 dz.

≤ c
[( ρ
σ

)n+2
(
Cεω

(
I(ρ) + 2ρ2

)
+ ε

)
+ (

σ

ρ
)2

]
I(2ρ). (82)

�
The rest of the proof of the theorem 3 consists in a standard iterative pro-

cedure for estimates on cylinders and half-cylinders. At first, we deduce the
estimate on half-cylinders.
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Lemma 11 Let R0 > 0 be arbitrarily small. Under the assumptions of theorem
3 there exist ρ0 ∈ (0, R0), c1 > 0 and a “flat neighborhood” V (y0) ⊂ (−1, 0)×D
of the point y0 such that

∀z0 ∈ V (y0) ∀ρ ∈ (0, ρ0) I(z0, ρ) ≤ c1
( ρ
ρ0

)2α
I(z0, ρ0). (83)

Proof. Let z0 ∈ (−1, 0) × D, ρ > 0, Q+
2ρ(z0) ⊂⊂ Q+, σ ∈ (0, ρ) and ε > 0.

From the previous lemma, we get the estimate (74). To simplify our reasoning,
we rewrite it using I(z0, ρ) ≤ 2n+2I(z0, 2ρ) and the fact that ω is nondecreasing
function:

I(z0, σ) ≤ c
[( ρ
σ

)n+2
(
Cεω

(
2n+2I(z0, 2ρ) + 2ρ2

)
+ ε

)
+

(σ
ρ

)2
]
I(z0, 2ρ). (84)

Let σ = 2ρτ , where τ ∈ (0, 1
2 ) is to be specified later. We get

I(z0, 2τρ) ≤ τ2α τ2−2αc
[
τ−n−4

(
Cεω

(
2n+2I(z0, 2ρ) + 2ρ2

)
+ ε

)
+ 1

]
︸ ︷︷ ︸

we want to make this smaller than 1

I(z0, 2ρ).

(85)
Since α ∈ (0, 1) we can choose τ ∈ (0, 1

2 ) so that 2cτ2−2α < 1. Now we set
ε := 1

2τ
n+4 and find ε̃ > 0 such that

Cε ω(ε̃) ≤ 1
2
τn+4.

Recalling (8), we choose ρ0 ∈ (0, R0
2 ) small enough to ensure that

2n+2I(y0, 2ρ0) + 2ρ2
0 ≤

ε̃

2
.

The continuity of I(·, 2ρ) implies that there exists some “flat neighborhood”
V (y0) ⊂ (−1, 0)×D of y0 such that

2n+2I(z0, 2ρ0) + 2ρ2
0 ≤ ε̃ holds for all z0 ∈ V (y0). (86)

Thus we get

Cε ω
(
2n+2I(z0, 2ρ0) + 2ρ2

0

)
≤ 1

2
τn+4 ∀z0 ∈ V (y0).

Our choice of V (y0) and constants τ, ε and ρ0 implies

∀z0 ∈ V (y0) cτ2−2α
[
τ−n−4

(
Cεω

(
2n+2I(z0, 2ρ0) + 2ρ2

0

)
+ ε

)
+ 1

]
< 1 (87)

and thus by (85) we get

∀z0 ∈ V (y0) I(z0, 2ρ0τ) ≤ τ2αI(z0, 2ρ0).
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Using stepwisely 2ρ0τ
k with k = 1, 2, 3, . . . instead of 2ρ0, we see that (87)

remains true in all steps and thus we obtain

∀k ∈ N0 I(z0, 2ρ0τ
k+1) ≤ τ2αI(z0, 2ρ0τ

k). (88)

This yields
∀k ∈ N I(z0, 2ρ0τ

k) ≤ τ2αkI(z0, 2ρ0). (89)

Let us now choose arbitrary ρ ∈ (0, 2ρ0) and find k ∈ N0 such that 2ρ0τ
k+1 <

ρ ≤ 2ρ0τ
k. We estimate

I(z0, ρ) ≤
1

meas Q+
ρ

∫
Q+

2ρ0τk (z0)

|u|2 dz ≤ 1
τn+2

1
meas Q+

2ρ0τk

∫
Q+

2ρ0τk (z0)

|u|2 dz

≤ by (89) ≤ 1
τn+2

τ2αk 1
measQ+

2ρ0

∫
Q+

2ρ0
(z0)

|u|2 dz

≤ 1
τn+2+2α

( ρ

2ρ0

)2α −
∫

Q+
2ρ0

(z0)

|u|2 dz (90)

(In the last inequality, we have used τk+1 < ρ
2ρ0

.) This yields

∀ρ ∈ (0, 2ρ0) I(z0, ρ) ≤ c(τ, α)
( ρ

2ρ0

)2α
I(z0, 2ρ0).

This inequality implies (83) where we write ρ0 instead of 2ρ0. �
Analogical estimates hold on the whole cylinder:

Proposition 12 Let u be a weak solution of (2). Let us assume the conditions
(H1), (H2), (H3) and let α ∈ (0, 1) be arbitrary. Then there exist ε > 0 and
c2 > 0 such that for any (interior point) z0 ∈ U the condition

−
∫

QR(z0)

|u− uQR(z0)|
2 dz +R2 < ε (91)

(with any R > 0 such that QR(z0) ⊂⊂ U) implies

∀r ∈ (0, R) −
∫

Qr(z0)

|u− uQr(z0)|
2 dz ≤ c2(

r

R

)2α −
∫

QR(z0)

|u− uQR(z0)|
2 dz.

(92)

The estimate (92) can be proved in a similar way as the estimates on half-
cylinders. We refer to [2] where the estimates are presented for solutions of
nonlinear parabolic systems. Cf. also [1] , theorem A.4 and [3].

For any z0 ∈ Q+, let us define

J(z0, ρ) := −
∫

Qρ(z0)∩Q+
|u− (u)Qρ(z0)∩Q+ |2 dz.

We now prove the general decay estimate for J :
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Figure 1: Estimates on two cylinders near the flat boundary. Left-hand side:
ρ > xn, right-hand side: ρ < xn.

Lemma 13 Under the assumptions of theorem 3 there exists c > 0, ρ0 > 0 and
a neighborhood of the point y0, whose intersection with Q+ we denote by U(y0),
such that

∀z0 ∈ U(y0) ∀ρ ∈ (0, ρ0) J(z0, ρ) ≤ c
( ρ
ρ0

)2α
. (93)

Proof. Let z0 = (t, x1, . . . , xn) ∈ Q+ and ρ > 0. We realize that dist (z0, (−1, 0)×
D) = xn and denote z′0 the orthogonal projection of z0 onto (−1, 0) × D, i.e.,
z′0 = (t, x1, . . . , xn−1, 0). The idea of the proof is outlined on the figure 1. If the
cylinder Qρ(z0) intersects the flat boundary (−1, 0) ×D (left-hand side of the
figure) then we initially estimate J(z0, ρ) by I(z′0, 2ρ) and then use the lemma
11 to estimate I(z′0, 2ρ) by I(z′0, ρ0). If the cylinder Qρ(z0) does not intersect
the flat boundary (−1, 0)×D (right-hand side of the figure) then we initially use
the proposition 12 to estimate J(z0, ρ) by J(z0, xn), then we estimate J(z0, xn)
by I(z′0, 2xn) and then use the lemma 11 to estimate I(z′0, 2xn) by I(z′0, ρ0).

Apparently, we have to choose U(y0) and ρ0 small enough to ensure that the
assumptions of lemma 11 and proposition 12 are fulfilled. To do this we consider
ε from the proposition 12, c1 from lemma 11 and find ρ0 > 0 and V (y0) such
that the assumptions of the lemma 11 are fulfilled and furthermore

ρ2
0 ≤

ε

2
, (94)

2n+1c1 I(y0, ρ0) <
ε

4
(using (8)). (95)

Using the continuity of I(·, ρ0), we choose Ṽ (y0) ⊂ (−1, 0) × D to be a “flat
neighborhood” of y0 such that Ṽ (y0) ⊂ V (y0) and

∀z′ ∈ Ṽ (y0) 2n+1c1I(z′, ρ0) <
ε

2
. (96)

Now we put U(y0) = Ṽ (y0)× (0, ρ0
2 ). For any z0 ∈ U(y0) we get

J(z0, xn) = −
∫

Qxn (z0)

|u|2 dz ≤ 2n+1 −
∫

Q+
2xn

(z′0)

|u|2 dz ≤ (lemma 11)

≤ 2n+1c1
(2xn

ρ0

)2α

︸ ︷︷ ︸
≤1

−
∫

Q+
ρ0 (z′0)

|u|2 dz < due to (96) <
ε

2
. (97)
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Thus, with this choice of ρ0 and U(y0), the condition (91) holds for any z0 ∈
U(y0) and R = xn. We can thus estimate J(z0, ρ) by J(z0, xn) (prop. 12) for
any zn ∈ U(y0) a ρ ∈ (0, xn).

Let us now assume z0 ∈ U(y0), ρ ∈ (0, ρ0
2 ). We distinguish two different

cases: ρ ∈ 〈xn,
ρ0
2 ) and ρ ∈ (0, xn), cf. figure 1.

First case: let ρ ∈ 〈xn,
ρ0
2 ). We see that Qρ(z0) ⊂ Q+

2ρ(z
′
0). We get

J(z0, ρ) = −
∫

Qρ(z0)∩Q+
|u|2 dz ≤ 2n+1 −

∫
Q+

2ρ(z′0)

|u|2 dz ≤ (lemma 11)

≤ 2n+1c1
(2ρ
ρ0

)2α −
∫

Q+
ρ0 (z′0)

|u|2 dz ≤ (due to (96)) ≤ ε22α
( ρ
ρ0

)2α
. (98)

Second case: let ρ ∈ (0, xn). We see that Qρ(z0) ⊂ Qxn(z0) ⊂ Q+
2xn

(z′0). We
get

J(z0, ρ) ≤ (proposition 12) ≤ c2
( ρ
xn

)2α
J(z0, xn) ≤ c22n+1

( ρ
xn

)2α
I(z′0, 2xn)

≤ (lemma 11) ≤ c22n+1
( ρ
xn

)2α
c1

(2xn

ρ0

)2α
I(z′0, ρ0)

≤ (due to (96)) ≤ c2ε22α
( ρ
ρ0

)2α
. (99)

We see that (93) holds with c = max(ε22α, c2ε22α). �
In accordance to the previous lemma, the solution u belongs to the Cam-

panato space L2,n+2+2α(U(y0), δ) on some neighborhood of the “regular point”
y0. By the isomorphism of L2,n+2+2α(U(y0), δ) and C0,α(U(y0),RN , δ) we fi-
nally obtain u ∈ C0,α(U(y0),RN , δ). We have proved the theorem 3.
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