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Abstract. Various necessary and/or sufficient conditions assuring the existence of
various additive homomorphisms of commutative semigroups into real numbers are
studied.

The aim of the present pseudo-expository note is to collect and order many
scattered results concerning additive homomorphisms of commutative semigroups
into real numbers. Similar topics were investigated e.g. in [1] – [20]. A kind reader
should keep in mind that all the formulated results are fairly basic, and henceforth
not attributed to any particular source.

1. Introduction

First, by a preordering (or quasiordering) we mean any reflexive and transitive
relation defined on a set S. Thus idS = { (a, a) | a ∈ S } is the smallest and S × S
the largest preordering on S. An equivalence is a symmetric preordering and if % is
a preordering then the symmetric core (or kernel) ker(%) of % (we have (a, b) ∈ ker(%)
iff (a, b) ∈ % and (b, a) ∈ %) is an equivalence. It is the largest equivalence contained
in %. If ker(%) = idS then the preordering % is antisymmetric and it is called
ordering.

Let % be a preordering defined on a set S. A subset T of S is said to be right
(left, resp.) cofinal in S if for every a ∈ S there is at least one v ∈ T such that
(a, v) ∈ % ((v, a) ∈ %, resp.).

1.1 Remark. Let % be a preordering defined on a set S. Then σ = (%\ker(%))∪ idS

is an ordering and σ ⊆ % (of course, σ = % iff % is an ordering). Notice that σ = idS

iff % is an equivalence.

In the remaining part of this section, let A = A(+) be a commutative semigroup
and % be a preordering defined on A. Further, 0A ∈ A means that the semigroup
A has the neutral element 0A.
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1.2 Lemma. The following conditions are equivalent:
(i) (a + c, b + c) ∈ % for all (a, b) ∈ % and c ∈ A (i.e., % is stable).
(ii) (a + c, b + d) ∈ % for all (a, b) ∈ % and (b, d) ∈ % (i.e., % is it compatible).

Proof. It is easy. ¤
The preordering % is called cancellative if (a, b) ∈ % whenever a, b, c ∈ A and

(a + c, b + c) ∈ %. Thus % is both stable and cancellative if and only if (a, b) ∈ % ⇔
(a + c, b + c) ∈ %.

1.3 Lemma. (i) If % is stable then ker(%) is a congruence of the semigroup A.
(ii) If % is stable and cancellative then ker(%) is a cancellative congruence of A.

Proof. It is easy. ¤
1.4 Lemma. Assume that % is cancellative. If a, b, c ∈ A are such that a+c = b+c
then (a, b) ∈ ker(%).

Proof. It is easy. ¤
1.5 Lemma. If % is a cancellative ordering then the semigroup A is cancellative.

Proof. Use 1.4 ¤
1.6 Remark. Assume that % is stable and cancellative. Then σ = (%\ker(%))∪ idA

(see 1.1) is a stable ordering on the semigroup A. If A is cancellative (cf. 1.5) then
σ is cancellative as well.

An element a ∈ A will be called almost (%)-positive (negative, resp.) if (x, x+a) ∈
% ((x + a, x) ∈ %, resp.) for every x ∈ A.

1.7 Lemma. (i) The set of almost positive (negative, resp.) elements is either
empty or a subsemigroup of A.
(ii) If 0A ∈ A then 0A is both almost positive and almost negative.
(iii) If a ∈ A is both almost positive and almost negative then (x + a, x) ∈ ker(%)
for every x ∈ A. If, moreover % is an ordering then a = 0A.
(iv) If % is cancellative, u ∈ A is almost negative and v ∈ A is almost positive then
(u, v) ∈ %.

Proof. It is easy. ¤
An element a ∈ A will be called right (left, resp.) (%-)archimedean if the one-

generated (or cyclic) subsemigroup Na of A generated by the element a (here, N
denotes the semiring of positive integers) is right (left, resp.) cofinal in A. This
means that for every b ∈ A there is m ∈ N such that (b,ma) ∈ % ((ma, b) ∈ %,
resp.).

1.8 Lemma. If a ∈ A and m ∈ N are such that ma is right (left, resp.) archi-
medean then a is such.

Proof. It is obvious. ¤
1.9 Lemma. Assume that % is stable. Let a ∈ A be right (left, resp.) archimedean
and let (a, b) ∈ % ((b, a) ∈ %, resp.). Then b is right (left, resp.) archimedean.

Proof. It is easy. ¤
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1.10 Lemma. Assume that % is stable and A contains at least one almost positive
negative, resp.) element. If a ∈ A is right (left, resp.) archimedean then ma is
almost positive (negative, resp.) for at least one m ∈ N.

Proof. Let v ∈ A be almost positive. Then (x, x+ v) ∈ % for every x ∈ A and there
is m ∈ N such that (v, ma) ∈ %. Now, (x + v, x + ma) ∈ %, (x, x + ma) ∈ % and we
see that ma is almost positive. ¤

1.11 Lemma. Assume that % is stable and cancellative. Let a ∈ A be left (right,
resp.) archimedean and almost positive (negative, resp.). Then:
(i) Every element from A is almost positive (negative, resp.).
(ii) (a, x) ∈ % ((x, a) ∈ %, resp.) for every x ∈ A.
(iii) If % is an ordering then a is the smallest (largest, resp.) element in A.

Proof. Given x ∈ A, we have (x, x + a) ∈ % and there is m ∈ N that is the smallest
one with the property that (ma, x) ∈ %. Now, (ma, x + a) ∈ % and, since % is
cancellative, we get m = 1. Thus (a, x + a) ∈ % for every x ∈ A. Consequently,
(y + a, y + x + a) ∈ % and (y, z + x) ∈ % for every y ∈ A. The rest is clear. ¤

An element a ∈ A will be called right (left, resp.) (%-)regular if m,n ∈ N and
(ma, na) ∈ % implies m ≤ n (n ≤ m, resp).

1.12 Lemma. If a ∈ A and Na is finite then a is neither left nor right regular.

Proof. It is easy. ¤

1.13 Lemma. An element a ∈ A is both right and left regular if an only if Na is
infinite (equivalently, Na ∼= N) and %|Na = id.

Proof. It is easy. ¤

1.14 Lemma. Assume that every element from A is either right or left regular.
Then the semigroup A is pretorsionfree (i.e., Na ∼= N is infinite for every a ∈ A).

Proof. Use 1.12. ¤

1.15 Lemma. Let a ∈ A be right (left, resp.) regular. Then, for every m ∈ N, the
element ma is not almost negative (positive, resp.).

Proof. If ma is almost negative then ((m + 1)a, a) ∈ % and m + 1 > 1. Thus a is
not right regular. ¤

1.16 Lemma. Assume that % is stable. Let a ∈ A be right (left, resp.) archimedean
and let m ∈ N be such that ma is almost negative (positive, resp.). Then no element
from A is right (left, resp.) regular.

Proof. Given b ∈ A, we have (b, ma) ∈ % for some m ∈ N. Since ma is almost
negative, we have (ma + b, b) ∈ %. Now, (mb,mna) ∈ %, (mna + nb, nb) ∈ %,
((m + n)b,mna + nb) ∈ %, ((m + n)b, nb) ∈ % and m + n > n. ¤

1.17 Lemma. Assume that % is stable and cancellative. If a ∈ A is not right (left,
resp.) regular then ma is almost negative (positive, resp.) for some m ∈ N.

Proof. We have (ka, la) ∈ %, where k > l. Then (ka+x, la+x) ∈ % and ((k− l)a+
x, x) ∈ % for every x ∈ A and it suffices to put m = k − l. ¤
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1.18 Lemma. Assume that % is stable and cancellative. Let a ∈ A be right (left,
resp.) archimedean and not right (left, resp.) regular. Then no element from A is
right (left, resp.) regular.

Proof. Combine 1.17 and 1.16. ¤

1.19 Lemma. Assume that % is stable and cancellative. Let a ∈ A be right (left,
resp.) archimedean and not right (left, resp.) regular. Then there is m ∈ Nsuch
that mx is almost negative (positive, resp.) for every x ∈ A.

Proof. By 1.18, no element from A is right regular. By 1.17, for every x ∈ A
there is mx ∈ N such that mxx is almost negative. Put m = ma. Since a is
right archimedean, we have (x, nxa) ∈ % for some nx ∈ N. Now, (mx,mnxa) ∈ %,
(mx+mnxa,mx) ∈ %, since mnxa is almost negative, and (mx+mnxa,mnxa) ∈ %.
Then (mx + y = mnxa,mnxa + y) ∈ % and (mx + y, y) ∈ % for every y ∈ A. Thus
mx is almost negative. ¤

1.20 Lemma. Assume that % is stable and cancellative. Let a ∈ A be neither left
nor right regular. Then there is m ∈ N such that ma is both almost positive and
almost negative (i.e., (ma + x, x) ∈ ker(%) for every x ∈ A).

Proof. The result follows easily from 1.17. ¤

1.21 Lemma. Assume that % is stable and cancellative and that no element from
A is right or left regular. Then the factorsemigroup A/ker(%) is a torsion group.

Proof. By 1.20, for every a ∈ A there is ma ∈ N such that (maa + x, x) ∈ ker(%)
for every x ∈ A. It follows that 0A ∈ A and maa = 0A. Then, of course, A is a
torsion group. ¤

1.22 Proposition. Assume that % is stable and cancellative and that the fac-
torsemigroup A/ker(%) is not a torsion group. Then every right (left, resp.) archi-
medean element from A is right (left, resp.) regular, provided that at least one of
the following six conditions is satisfied:

(1) For every m ∈ N there is v ∈ A such that mv is not almost negative (posi-
tive, resp.);

(2) At least one element from A is right (left, resp.) regular;
(3) At least one element from A is not left (right, resp.) regular;
(4) There are k ∈ N and a ∈ A such that k ≥ 2 and (a, ka) ∈ % ((ka, a) ∈ %,

resp.);
(5) At least one element from A is almost positive (negative, resp.);
(6) There are l ∈ N and a ∈ A such that l ≥ 2 and la is right (left, resp.)

archimedean.

Proof. If (1) is true then the result follows from 1.19. If (2) is true then 1.18 yields
our result. f (3) is true then, by 1.21, at least one element from A is right regular
and (2) is satisfied. The condition (4) is equivalent to (3) and (5) implies (4).
Finally, (6) implies (4). ¤

1.23 Lemma. Let a ∈ A and m ∈ N be such that ma is right (left, resp.) %-regular.
Then a is right (left, resp.) %-regular.

Proof. It is easy. ¤
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2. Extensions of homomorphisms – introduction

Throughout this section, let A = A(+) be a commutative semigroup and let % be
a cancellative and stable preordering defined on A (i.e., for all a, b, c ∈ A we have
(a, b) ∈ % if and only if (a+c, b+c) ∈ %). Furthermore, let B be a subsemigroup of A
and let h : B → R be an additive homomorphism such that h(a) ≤ h(b) whenever
(a, b) ∈ %.

For every w ∈ A put

(2.1) ( p(w,A, B, h) =) p(w) = sup {h(a)−h(b)
m | a, b ∈ B, m ∈ N, (a, b + mw) ∈ % }

and

(2.2) ( q(w, A, B, h) =) q(w) = inf {h(c)−h(d)
n | c, d ∈ B, n ∈ N, (d + nw, c) ∈ % } .

2.1 Lemma. (i) −∞ ≤ p(w) ≤ q(w) ≤ +∞.
(ii) p(v) = h(v) = q(v) for every v ∈ B.

Proof. (i) If either p(w) = −∞ or q(w) = +∞ then there is nothing to prove. On
the other hand, if (a, b + mw) ∈ % and (d + nw, c) ∈ % for some a, b, c, d ∈ B and
m,n ∈ N then (na, nb + nmw) ∈ %, (md + mnw, mc) ∈ %, (na + md + mnw, nb +
mc + mnw) ∈ % and, since % is cancellative, we get (na + md, nb + mc) ∈ %. Then
nh(a) + mh(d) ≤ nh(b) + mh(c) and h(a)−h(b)

m ≤ h(c)−h(d)
n . The rest is clear.

(ii) We have (2v, v + 1v) = (2v, 2v) ∈ % and (v + 1v, 2v) ∈ %. Consequently, using
(i), we get h(v) = h(2v)−h(v)

1 ≤ p(v) ≤ q(v) ≤ h(v). Thus h(v) = p(v) = q(v). ¤
2.2 Lemma. (i) If B is right (left, resp.) %-cofinal in A then q(w) < +∞ (−∞ <
q(w), resp.) for every w ∈ A.
(ii) If at least one element from B is right (left, resp.) %-archimedean in A then
q(w) < +∞ (−∞ < p(w), resp.) for every w ∈ A.

Proof. (i) For every a ∈ B there is b ∈ B with (a + w, b) ∈ % ((b, a + w) ∈ %, resp.).
Now, q(w) ≤ h)b)− h(a) (h(b)− h(a) ≤ p(w), resp.).
(ii) This follows immediately from (i). ¤
2.3 Lemma. Assume that for all u, v ∈ A such that (u, v) /∈ % there are a, b ∈ B
with (u + a, v + b) ∈ %. Then −∞ < p(w) ≤ q(w) < +∞ for every w ∈ A.

Proof. Take any c ∈ B. Then there are a1, a2, b1, b2 ∈ B such that (c+a1, w+b1) ∈ %
and (w+a2, c+b2) ∈ %. Now, we have −∞ < h(c)+h(a1)−h(b1) ≤ p(w) ≤ q(w) ≤
h(c) + h(b2)− h(a2) < +∞ (use 2.1(i)). ¤
2.4 Remark. Assume that B is both left and right %-cofinal in A. Then, choosing
u, v ∈ A, we can find a, b ∈ B such that (u, b) ∈ % and (a, v) ∈ %. Thus (u+a, v+b) ∈
% and 2.3 takes place (cf. 2.2(i)).

2.5 Lemma. Let w ∈ A be right (left, resp.) %-archimedean. Then:
(i) −∞ < p(w) (q(w) < +∞, resp.).
(ii) If h(a) ≥ 0 (h(a) ≤ 0, resp.) for at least one a ∈ B then p(w) ≥ 0 (q(w) ≤ 0,
resp.).
(iii) If h(a) > 0 (h(a) < 0, resp.) for at least one a ∈ B then p(w) > 0 (q(w) < 0,
resp.).

Proof. For every a ∈ A there is m ∈ N such that (a,mw) ∈ %. Then (2a, a+mw) ∈ %

and h(a)
m ≤ p(w) due to (2.1). Thus −∞ < p(w) and, if h(a) ≥ 0 or h(a) > 0 then

p(w) ≥ 0 or p(w) > 0. The other case is dual. ¤
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2.6 Lemma. Let w ∈ A be such that kw is almost %-positive (almost %-negative,
resp.) for some k ∈ N. Then p(w) ≥ 0 (q(w) ≤ 0, resp.)

Proof. We have (a, a + kw) ∈ % for every a ∈ A, and hence 0 = h(a)−h(a)
k ≤ p(w)

by 2.1. The other case is dual. ¤
In the sequel, we put

(2.3) ( W (A, B, h) =) W = {w ∈ A | −∞ < q(w) and p(w) < +∞}
and

(2.4) ( V (A,B, h) =) V = {w ∈ A | −∞ < p(w) and q(w) < +∞} .

2.7 Lemma. w ∈ W if and only if p(w) ≤ r ≤ q(w) for at least one r ∈ R.

Proof. We have p(w) ≤ q(w) by 2.1(i) and our assertion follows from (2.3). ¤
2.8 Remark. The semigroup A is the disjoint union A = W ∪ W1 ∪ W2, where
W1 = {w ∈ A | p(w) = +∞} and W2 = {w ∈ A | q(w) = −∞}. Of course, if
w ∈ W1 then q(w) = +∞ and (d + nw, c) /∈ % for all c, d ∈ B and n ∈ N. Similarly,
if w ∈ W2 then p(w) = −∞ and (a, b + mw) /∈ % for all a, b ∈ B and m ∈ N (see
(2.1) and (2.2)).

2.9 Lemma. V = {w ∈ W | p(w) ∈ R and q(w) ∈ R }.
Proof. The result follows by an easy combination of (2.4) and 2.1(i). ¤
2.10 Lemma. B ⊆ V ⊆ W .

Proof. First, B ⊆ V follows from 2.9 and 2.1(i). Next, V ⊆ W follows from 2.7
and 2.1(i). ¤
2.11 Lemma. Let C be a subsemigroup of A such that B ⊆ C and h extends to
an additive homomorphism g : C → R such that g(a) ≤ g(b) whenever a, b ∈ C and
(a, b) ∈ %. Then C ⊆ W and p(c) ≤ g(c) ≤ q(c) for every c ∈ C.

Proof. If a, b ∈ A, c ∈ C and m ∈ N are such that (a, b+mc) ∈ % then h(a) = g(a) ≤
g(b)+mg(c) = h(b)+mg(c), and therefore h(a)−h(b)

m ≤ g(c). Thus p(c) ≤ g(c) and,
dually, g(c) ≤ q(c). By 2.7, c ∈ W . ¤
2.12 Corollary. Assume that h extends to an additive homomorphism f : A → R
such that f(u) ≤ f(v) for all (u, v) ∈ %. Then W = A. ¤
2.13 Lemma. Assume that B is right (left, resp.) %-cofinal in A (see 2.2). Then:
(i) W = {w ∈ A | q(w) > −∞} (W − {w ∈ A | p(w) < +∞}, resp.).
(ii) V = {w ∈ A | p(w) > −∞} (V = {w ∈ A | q(w) < +∞}, resp.).
(iii) If w ∈ A is right (left, resp.) %-archimedean then w ∈ V
(iv) If w ∈ A is such that kw is almost %-positive (almost %-negative, resp.) for
some k ∈ N then w ∈ V .

Proof. (i) By 2.2(i), q(W ) < +∞ for every w ∈ A. Since p(w) ≤ q(w), we get
p(w) < +∞ as well and the result follows from (2.3).
(ii) Again, p(w) ≤ q(w) < +∞ and the result follows from (2.4).
(iii) Combine (ii) and 2.5.
(iv) Combine (ii) and 2.6. ¤
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2.14 Lemma. Let w ∈ A be right (left, resp.) %-archimedean. Then:
(i) w ∈ W if and only if p(w) < +∞ (−∞ < q(w), resp.).
(ii) w ∈ V if and only if q(w) < +∞ (−∞ < p(w), resp.).

Proof. We have −∞ < p(w) (q(w) < +∞, resp.) by 2.5(i) and it remains to take
into account (2.3) and (2.4). ¤
2.15 Lemma. Let w ∈ A be such that kw is almost %-positive (almost %-negative,
resp.) for some k ∈ N. Then:
(i) w ∈ W if and only if p(w) < +∞ (−∞ < q(w), resp.).
(ii) w ∈ V if and only if p(w) < +∞ (−∞ < q(w), resp.).
(ii) w ∈ V if and only if q(w) < +∞ (−∞ < p(w), resp.).

Proof. We have p(w) ≥ 0 (q(w) ≤ 0, resp.) by 2.6 and it remains to take into
account (2.3) and (2.4). ¤
2.16 Proposition. W = A in each of the following five cases:

(1) B is right %-cofinal in A and q(w) > −∞ for every w ∈ A;
(2) B is left %-cofinal in A and p(w) < +∞ for every w ∈ A;
(3) If w ∈ A \ B then p(w) < +∞ and either w is right %-archimedean or kw

is almost %-positive for at least one k ∈ N;
(4) If w ∈ A \ B then −∞ < q(w) and either w is left %-archimedean or kw is

almost %-negative for at least one k ∈ N;
(5) If w ∈ A \B then at least one of the following four subcases takes place:

(5a) p(w) < +∞ and w is right %-archimedean;
(5b) −∞ < q(w) and w is left %-archimedean;
(5c) p(w) < +∞ and kw is almost %-positive for some k ∈ N;
(5d) −∞ < q(w) and kw is almost %-negative for some k ∈ N.

Proof. Combine 2.13, 2.14 and 2.15. ¤
2.17 Proposition. V = A in each of the following six cases:

(1) B is both left and right %-cofinal in A;
(2) For all u, v ∈ A such that (u, v) /∈ % there are a, b ∈ B with (u+a, v+b) ∈ %;
(3) B is right %-cofinal in A and for every w ∈ A\B at least one of the following

three subcases takes place:
(3a) (a, b + mw) ∈ % for some a, b ∈ B and m ∈ N;
(3b) w is right %-archimedean;
(3c) kw is almost %-positive for some k ∈ N;

(4) B is left %-cofinal in A and for every w ∈ A\B at least one of the following
three subcases takes place:

(4a) (d + nw, c) ∈ % for some c, d ∈ B and n ∈ N;
(4b) w is left %-archimedean;
(4c) kw is almost %-negative for some k ∈ N;

(5) Every element from A is right %-archimedean;
(6) Every element from A is left %-archimedean.

Proof. Combine 2.3, 2.13, 2.14 and 2.15. ¤
2.18 Remark. Let w ∈ A. If %|N = id then w is apparently both left and right %-
regular. Now, assume that %|N 6= id. If w is not right %-regular then (nw,mw) ∈ %
for n > m, ((n −m)w + a, a) ∈ % for every a ∈ B and q(w) ≤ 0. Consequently, if
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q(w) > 0 then w is right %-regular. Similarly, if p(w) < 0 then w is left %-regular.
Finally, if w is neither left nor right %-regular then p(w) = 0 = q(w).

2.19 Lemma. Let w ∈ A be an idempotent (i.e., 2w = w). Then p(w) = 0 = q(w).

Proof. We have (v + w, v + 2w) ∈ % for every v ∈ A. Then (v, v + w) ∈ %, since
% is cancellative. Similarly, (v + w, v) ∈ % and we have 9v + w, v) ∈ ker(%). The
equalities p(w) = 0 = q(w) are now clear from (2.1) and (2.2). ¤

2.20 Lemma. Let w ∈ A be such that mw = w for some m ∈ N, m ≥ 2. Then
p(w) = 0 = q(w).

Proof. We proceed similarly as in the proof of 2.19. ¤

2.21 Lemma. Let w ∈ A be such that mw = nw for some m,n ∈ N, m > n. Then
p(w) = 0 = q(w).

Proof. Proceeding similarly as in the proof of 2.19, we show that (v+(m−n)w, v) ∈
ker(%) for every v ∈ A. The rest is clear from (2.1) and (2.2). ¤

2.22 Lemma. Let w1, w2 ∈ A be such that −∞ < p(w1) and −∞ < p(w2). Then
p(w1 + w2) ≥ p(w1) + p(w2).

Proof. Let (a1, b1 +m1w1) ∈ % and (a2, b2 +m2w2) ∈ %, where a1, a2, b1, b2 ∈ B and
m1,m2 ∈ N. Then (m2a1,m2b1 + m1m2w1) ∈ %), m1a2,m1b2 + m1m2w2) ∈ % and
(m2a1 + m1a2,m2b1 + m1b2 + m1m2(w1 + w2)) ∈ %. Consequently, p(w1 + w2) ≥
h(m2a1+m1a2)−h(m2b1+m1b2)

m1m2
= h(a1)−h(b1)

m1
+ h(a2)−h(b2)

m2
and the rest is clear. ¤

2.23 Lemma. Let w1, w2 ∈ A be such p(w1) < +∞ and p(w2) < +∞. Then
p(w1 + w2) ≥ p(w1) + p(w2).

Proof. The result follows from 2.22. If, say, p(w1) = −∞ then p(w1)+p(w2) = −∞
and there is noothing to prove. ¤

2.24 Lemma. Let w1, w2 ∈ A be such that q(w1) < +∞ and q(w2) < +∞. Then
q(w1 + w2) ≤ q(w1) + q(w2).

Proof. This is dual to 2.22. ¤

2.25 Lemma. Let w1, w2 ∈ A be such that −∞ < q(w1) and −∞ < q(w2). Then
q(w1 + w2) ≤ q(w1) + q(w2).

Proof. This is dual to 2.23. ¤

2.26 Proposition. Let w1, w2 ∈ W . Then p(w1) + p(w2) ≤ p(w1 + w2) ≤ q(w1 +
w2) ≤ q(w1) + q(w2).

Proof. By (2.3), we have p(w1) < +∞, p(w2) < +∞, −∞ < q(w1), −∞ < q(w2)
and it remains to use 2.23 and 2.25. ¤

2.27 Proposition. V is a subsemigroup of A.

Proof. Combine 2.22 and 2.24. ¤
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3. Extensions of homomorphisms – continued

This section immediately continues the preceding one. All the notation is fully
kept.

3.1 Lemma. Let w ∈ A, a, b ∈ B, k ∈ N and r ∈ R be such that p(w) ≤ r
(r ≤ q(w), resp.) and (b, a+kw) ∈ % ((b+kw, a) ∈ %, resp.). Then h(b) ≤ h(a)+kr
(h(b) + kr ≤ h(a), resp.).

Proof. Since (b, a + kw) ∈ %, by (2.1) we have h(b)−h(a)
k ≤ p(w) ≤ r. Thus h(b) ≤

h(a) + kr. The other case is dual. ¤
3.2 Lemma. Let w ∈ A, a, b ∈ B, k, l ∈ N and r ∈ R be such that p(w) ≤ r ≤ q(w)
and (b + lw, a + kw) ∈ %. Then lr + h(b) ≤ kr + h(a).

Proof. First, if l < k then (v, a+(k−l)w) ∈ %, since the preordering % is cancellative,
and lr + h(b) ≤ kr + h(a) by 3.1. Next, if k < l then (b + (l − k)w, a) ∈ % and our
result follows from 3.1 again. Finally, if k = l then (b, a) ∈ % and h(b) ≤ h(a). ¤
3.3 Lemma. Let w ∈ A, a ∈ B, k ∈ N and r ∈ R be such that p(w) ≤ r (r ≤ q(w),
resp.) and (a, kw) ∈ % ((kw, a) ∈ %, resp.). Then h(a) ≤ kr (kr ≤ h(a). resp.).

Proof. Since (a, kw) ∈ %, we hace (2a, a + kw) ∈ % and 2h(a) = h(2a) ≤ h(a) + kr
by 3.1. Thus h(a) ≤ kr. The other case is dual. ¤
3.4 Lemma. Let w ∈ A, a ∈ B, k l ∈ N and r ∈ R be such that p(w) ≤ r ≤ q(w)
and (lw, a + kw) ∈ % ((lw + a, kw) ∈ %, resp.). then lr ≤ h(a)+ kr (lr + h(a) ≤ kr,
resp.).

Proof. We have (lw + a, 2a + kw) ∈ % and 3.3 applies. The other case is dual. ¤
3.5 Lemma. Let w ∈ A, k, l ∈ N and r ∈ R be such that p(w) ≤ r ≤ q(w) and
(lw, kw) ∈ %. Then lr ≤ kr.

Proof. Taking any a ∈ B, we get (a + lw, a + kw) ∈ % and the result follows from
3.2. ¤
3.6 Proposition. Let w ∈ A and let B〈w〉 be the subsemigroup of A generated by
B ∪ {w}. The following conditions are equivalent:

(i) w ∈ W (see(2.3)).
(ii) There is at least one r ∈ R with p(w) ≤ r ≤ q(w) and for any such r there

exists (just one) additive homomorphism hw,r : B〈w〉 → R such that hw,r

extends h, hw,r(w) = r and hw,r(u) ≤ hw,r(v) whenever u, v ∈ B〈w〉 and
(u, v) ∈ %.

(iii) There is at least one subsemigroup C of A such that B ⊆ C, w ∈ C (then
B〈w〉 ⊆ C) and h extends to an additive homomorphism g : C → R such
that g(u) ≤ g(v) whenever u, v ∈ C and (u, v) ∈ %.

Proof. (i) implies (ii). Let r ∈ R be such that p(w) ≤ r ≤ q(w) (see 2.7). If
v ∈ B〈w〉 then either v = a + kw for some a ∈ B and k ∈ N, and we put hw,r(v) =
h(a) + kr, or v ∈ B and we put hw,r(v) = h(v), or, finally v = kw for some k ∈ N
and we put hw,r(v) = kr. It follows from 3.1, 3.2, 3.3, 3.4 and 3.5 that the definition
is correct and if u, v ∈ B〈w〉 are such that (u, v) ∈ % then hw,r(u) ≤ hw,r(v).
(ii) implies (iii). This implication is trivial.
(iii) implies (i). By 2.11, C ⊆ W . Consequently, w ∈ W . ¤
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In what follows, let (W(A,B, h) =) W denote the set of ordered pairs (C, g),
where C is a subsemigroup of A with B ⊆ C and g : C → R is an additive
homomorphism extending h such that g(u) ≤ g(v) whenever u, v ∈ C and (u, v) ∈ %.
The set W is ordered by inclusion and we denote by Wmax (= Wmax(A,B, h)) the
set of maximal pairs from W.

3.7 Proposition. Let (C, g) ∈ Wmax(A,B, h). Then:
(i) B ⊆ V (A,B, h) ⊆ C ⊆ W (A,B, h).
(ii) C = W (A,C, g) = V (A,C, g).
(iii) If w ∈ A \C then either p(w, A, C, g) = q(w,A, C, g) = +∞ or p(w, A,C, g) =
q(w, A,C, g) = −∞.

Proof. (i) By 2.10, B ⊆ V (A, B, h) and, by 2.11, C ⊆ W (A, B, h). On the other
hand, if w ∈ V (A,B, h) then −∞ < p(w, A, B, h) ≤ p(w, A, C, g) ≤ q(w, A,C, g) ≤
q(w, A,B, h) < +∞ (see (2.1), (2.2) and 2.1(i)). Consequently, w ∈ V (A,C, g).
But V (A,C, g) = C by 3.6.
(ii) This assertion follows from 3.6 (where B is replaced by C).
(iii) This follows from the equality C = W (A, C, g). ¤

3.8 Proposition. For every w ∈ W (A,B, h) there is at at least one pair (C, g) ∈
Wmax(A,B, h) such that w ∈ C.

Proof. The assertion follows from 3.6. ¤

3.9 Proposition. Assume that V (A, B, h) = A. Then h can be extended to an ad-
ditive homomorphism f : A → R such that f(u) ≤ f(v) whenever (u, v) ∈ %.
Furthermore, (A, f) ∈ Wmax(A,B, h), and if (C, g) ∈ Wmax(A,B, h) then C = A.

Proof. The result follows easily from 3.7. ¤

3.10 Remark. Various conditions that are sufficient for the equality V (A, B, h) =
A are formulated in 2.17.

3.11 Proposition. Assume that B is right (left, resp.) %-cofinal in A and that
for every w ∈ A \ B there are a, b ∈ B and m ∈ N such that (a, b + mw) ∈ %
((b + mw, a) ∈ %, resp.). Then h extends to an additive homomorphism f : A → R
such that f(u) ≤ f(v) for all (u, v) ∈ %.

Proof. By 2.17, V (A,B, h) = A and 3.9 applies. ¤

3.12 Proposition. Assume that every element from A is right (left, resp.) %-
archimedean and that h(B) 6= 0. Then h(B) ⊆ R+ (h(B) ⊆ R−, resp.) and h
extends to an additive homomorphism f : A → R+ (f : A → R−, resp.) such that
f(u) ≤ f(v) for all (u, v) ∈ %.

Proof. First, for every a ∈ B there is m ∈ N with (a, 2ma) ∈ %, hence h(a) ≤
2mh(a), (2m − 1)h(a) ≥ 0 and h(a) ≥ 0. Thus h(B) ⊆ R+

0 . Since h(B) 6= 0, we
have h(a0 for at least one a0 ∈ B. Given b ∈ B, there is n ∈ N with (a0, nb) ∈ %.
Then 0 < h(a0) ≤ nh(b) and h(b) > 0. Thus h(B) ⊆ R+. Furthermore, by 2.17,
V (A,B, h) = A and, by 3.9, h extends to an additive homomorphism f : A → R.
Proceeding similarly as above, we show that f(A) ⊆ R+. ¤
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3.13 Proposition. Assume that B is right (left, resp.) %-cofinal in A and that
for every w ∈ B \A (that is not right %-archimedean) there is at least one mw ∈ N
such that mww is almost %-positive (almost %-negative, resp.). Then h extends to
an additive homomorphism f : A → R such that f(A \ B) ⊆ R+

0 (f(A \ B ⊆ R−0 ,
resp.) and f(u) ≤ f(v) for all (u, v) ∈ %. If h(B) ⊆ R+

0 (h(B) ⊆ R−0 , resp.) then
f(A) ⊆ R+

0 (f(A) ⊆ R−0 , resp.).

Proof. It follows easily from 3.11 that h extends to an additive homomorphism
f : A → R preserving the preordering. If w ∈ A\B and a ∈ B then (a, a+mww) ∈ %,
so that f(a) ≤ f(a) + mwf(w) and 0 ≤ f(w). ¤

4. Extensions of homomorphisms of
one-generated subsemigroups – introduction

Throughout this section, let A be a commutative semigroup, % be a cancellative
and stable preordering defined on A and z ∈ A be right %-regular. Then B =
Nz ∼= N and (hz =) h : B → R+, where h(nz) = n for every n ∈ N, is an injective
additive homomorphism such that h(z) = 1 and h(a) ≤ h(b) whenever a, b ∈ B and
(a, b) ∈ %.

4.1 Lemma. Let w ∈ A. Then:
(i) p(w) = sup { k−l

m | k, l, m ∈ N, (kz, lz + mw) ∈ % }.
(ii) q(w) = inf { k−l

n | k.l.n ∈ N, (nw + lz, kz) ∈ % }.
(iii) −∞ ≤ p(w) ≤ q(w) ≤ +∞.
(iv) p(mz) = q(mz) = m for every m ∈ N.

Proof. We have B = Nz and the reast is clear from (2.1), (2.2) and 2.1. ¤
4.2 Lemma. Assume that at least one of the following three conditions is satisfied
for w ∈ A:

(1) w is right %-archimedean in A;
(2) (k0z, l0z + m0w) ∈ % for some k0, l0,m0 ∈ N, k0 > l0;
(3) p(w) > 0.

Then p(w) = sup { k
m | k,m ∈ N, (kz, mw) ∈ % } > 0.

Proof. Clearly, (1) implies (2) and (2) is equivalent to (3). Now, if (2) is true then
p(w) = sup { k−l

m | k, l, m ∈ N, k > l, (kz, lz + mw) ∈ % } and our assertion follows
from the fact that % is cancellative. ¤
4.3 Lemma. Assume that p(w) ≥ 0 (e.g. if m0w is almost %-positive for some
m0 ∈ N). Then p(w) = sup ({0} ∪ { k

m | k, m ∈ N, (kz, mw) ∈ % }) ≥ 0 .

Proof. Clearly, p(w) = sup{ k−l
m | k, l, m ∈ N, k ≥ l, (kz, lz + mw) ∈ % } and the rest

is clear. ¤
4.4 Lemma. Assume that q(w) > 0. Then q(w) = inf { l

n | l, n ∈ N, (nw, lz) ∈ % }.
Proof. Since q(w) > 0, we have k > l whenever k, l, n ∈ N are such that (nw +
lz, kz) ∈ %. Then (nw, (k − l)z) ∈ % and our result follows. ¤
4.5 Proposition. If p(w) > 0 then p(w) = sup { k

m | k, m ∈ N, (kz,mw) ∈ % } and
q(w) = inf { l

n | l, n ∈ N, (nw, lz) ∈ % }.
Prtoof. We have q(w) ≥ p(w) and it suffices to use 4.2 and 4.4. ¤
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4.6 Proposition. Assume that p(w) = 0. Then:
(i)k ≥ l whenever k, l, m ∈ N are such that (lz, lz + mw) ∈ %.
(ii) There are k0, l0,m0 ∈ N such that k0 ≤ l0 and (k0z, l0z + m0w) ∈ %. If k0 = l0
then m0w is almost %-positive.
(iii) Suppose that m1w is not almost %-positive for any m1 ∈ N. Then 0 = p(w) =
sup { 1−t

m | t,m ∈ N, t ≥ 2, (z, tz +mw) ∈ % } and (t−1)z +mw is almost %-positive.

Proof. (i) This follows from 4.1(i).
(ii) The existence of the numbers k0, l0,m0 follows from 4.1(1) and the fact that
p(w) = 0. Furthermore, if k0 = l0 then (v+k0z, v+ l0z+m0w) ∈ % for every v ∈ A.
Since % is cancellative, we get (v, v + m0w) ∈ % and this means that m0w is almost
%-positive.
(iii) If k, l,m ∈ N are such that (kz, lz +mw) ∈ % then from (i) and (ii) follows that
k < l and we get (z, (l − k + 1)z + mw) ∈ %, t = l − k + 1 ≥ 2. The rest is clear
from 4.1(i). ¤

4.7 Proposition. (cf. 4.5 and 4.6) Assume that q(w) = 0. Then at least one of
the following two cases holds:

(1) q(w) = inf { l
n | l, n ∈ N, (nw.lz) ∈ % };

(2) k = l whenever k, l, n ∈ N are such that (mw + lz, kz) ∈ %, and there are
n0, k0 ∈ N such that (n0w+k0z, k0z) ∈ % and n0w is almost %-positive (then
(n0w + z, z) ∈ %).

Proof. Assume that (1) is not true. We have q(w) = 0 and it follows that k ≥ l
whenever k, l, n ∈ N are such that (nw+ lz, kz) ∈ %. If k > l then (nw, (k− l)z) ∈ %.
Now, since (1) is not true, there are n0, k0 ∈ N with (n0w+k0z, k0z) ∈ %. Then n0w
is almost %-negative and (n0w+z, z) ∈ %. Put α = inf { k−l

n | k, l, n ∈ N, k > l, (nw+
lz, kz) ∈ % } ⊆ R+

0 ∪ {+∞} . Since (1) is not true, we have α > 0. If α = +∞ then
(2) is true. Consequently, assume finally that α < +∞. Since α > 0, there is t ∈ N
such that tk ≥ n+ tl whenever k, l, n ∈ N are such that k > l and (nw+ lz, kz) ∈ %.
Furthermore, since α < +∞, (n1w + lz, k1z) ∈ % for some k1, l1, n1 ∈ N, k1 > l1.
We have p = tk1 − tl1 − n1 ≥ 0 and there is q ∈ N with qn0 > p. However,
qn0w is almost %-negative, and hence ((n1 + qn0)w + (l1 + 1)z, (k1 + 1)z) ∈ %.
Now, t(k1 + 1) ≥ n1 + qn0 + t(l + 1 + 1) and then p = tk1 − tl1 − n1 ≥ qn0,
a contradiction. ¤

4.8 Proposition. Assume that q(w) > 0 and that mw is not almost %-negative for
any m ∈ N. Then q(w) = inf{ l

n | l, n ∈ N, (nw, lz) ∈ % } .

Proof. Combine 4.4 and 4.7. ¤

4.9 Remark. Assume that p(w) = 0 (see 4.6) and 4.7(2) is true. Then n0w is
almost %-negative for some n0 ∈ N. Furthermore, (k0z, l0z + m0w) ∈ % for some
k0, l0,m0 ∈ N, k0 ≤ l0. If k0 = l0 then m0w is almost %-positive. In such a
case, the element tw, where t = n0m0, is both almost %-positive and almost %-
negative. Consequently, (v, v + tw) ∈ ker(%) for every v ∈ A (if % is an ordering
then tw = 0A ∈ A).

4.10 Proposition. (i) If z is right %-archimedean then q(w) < +∞ for every
w ∈ A.
(ii) If z is left %-archimedean then 1 ≤ p(w) for every w ∈ A.
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(iii) If w ∈ A is right %-archimedean then p(w) > 0.
(iv) If w ∈ A is left %-archimedean then q(w) ≤ 1.
(v) If mw is almost %-positive for some m ∈ N then p(w) ≥ 0.
(vi) If nw is almost %-negative for some n ∈ N then q(w) ≤ 0.

Proof. (i) There is m ∈ N with (w, mz) ∈ %. Then (w + z, (m + 1)z) ∈ % and
q(w) ≤ m by 4.1(ii).
(ii) There is n ∈ N with (nz, w) ∈ %. Then ((n + 1)z, z + w) ∈ % and p(w≥n by
4.1(i).
(iii) There is m ∈ N with (z, mw) ∈ %. Then (2z, z + mw) ∈ % and p(w) ≥ 1

m > 0
by 4.1(i).
(iv) There is n ∈ N with (nw, z) ∈ %. Then (nw + z, 2z) ∈ % and q(w) ≤ 1

n ≤ 1 by
4.1(ii).
(v) We have (z, z + mw) ∈ %, and hence p(w) ≥ 0 by 4.1(i).
(vi) We have (nz + z, z) ∈ %, and gence q(w) ≤ 0 by 4.1(ii). ¤

4.11 Proposition. (i) If w ∈ A is right %-archimedean then 0 < sup { k
m | k, m ∈

N, (kz, mw) ∈ % } = p(w) ≤ q(w) = inf { j
n | l, n ∈ N, (nw, lz) ∈ % } . If, moreover, z

is right %-archimedean then q(w) < +∞. If z is left %-archimedean then 1 ≤ p(w).
(ii) If both z and w are left %-archimedean then sup { k

m | k, m ∈ N, (kz,mw) ∈ % } =
p(w) = 1 = q(w)− inf { l

n | l, n ∈ N, (nw, lz) ∈ % } .

Proof. (i) By 4.10(iii), we have p(w) > 0 and the rest follows from 4.2, 4.4, 4.10(i)
and 4.10 (iv).
(ii) We have 1 ≤ p(w) ≤ q(w) ≤ 1 by 4.10(ii),(iv). Thus p(w) = 1 = q(w) and the
rest follows from 4.2 and 4.4. ¤
4.12 Proposition. Let w ∈ A be such that m0w is almost %-positive for some
m0 ∈ N. Then at least one of the following four cases holds:

(1) 0 < sup { k
m | k, m ∈ N(kz, mw) ∈ % } = p(w) ≤ q(w) = inf { l

n | l, n ∈
N, (nw, lz) ∈ % }.

(2) 0 = p(w) < q(w) = inf { l
n | l, n ∈ N, (nw, lz) ∈ % }.

(3) 0 = p(w) = q(w) = inf { l
n | l, n ∈ N, (nw, lz) ∈ % }.

(4) p(w) = 0 = q(w) and there is t ∈ N such that tw is both almost %-positive
and almost %-negative (i.e., (tw + v, v) ∈ ker(%) for every v ∈ A).

Proof. We have p(w) ≥ 0 by 4.10(v). The rest follows from 4.2, 4.4 and 4.8. ¤
4.13 Remark. Let z1 ∈ A be right %-regular. Put p1 = p(z1, A,Nz, h), q1 =
q(z1, A,Nz, h), p2 = p(z,A,Nz1, hz1), q2 = q(z, A,Nz1, hz1) (see (2.1) and (2.2)).
(i) Now, assume that 0 < p1 and 0 < q2. Then p1 = sup{ k

m | k, m ∈ N, (kz, mz1) ∈
% } and q2 = inf{ m

k | k, m ∈ N, (kz,mz1) ∈ % }. Since p1 > 0, we have q2 < +∞
and, since q2 > 0, we have p1 < +∞. Using this, we calculate easily that p1q2 = 1.
Similarly, if 0 < p2 and 0 < q1 then p2q1 = 1. (Notice that 0 < p1 implies 0 < q1

and 0 < p2 implies 0 < q2. Thus 0 < p1 and 0 < p2 implies q2 = 1
p1

and q1 = 1
p2

.)
(ii) If p1 = 1 and 0 < q2 then q2 = 1. If q2 = 1 and 0 < p1 then p1 = 1. If p2 = 1
and 0 < q1 then q1 = 1. If q1 = 1 and 0 < p2 then p2 = 1. If p1 = 1 = q1 and
0 < p2 then p2 = 1 = q2. If p2 = 1 = q2 and 0 < p1 then p1 = 1 = q1.

4.14 Remark. Let w ∈ A be such that p(w) = 1 = q(w). Then sup { k
m | k,m ∈

N, (kz, mw) ∈ % } = 1 = inf { l
n | l, n ∈ N, (nw, lz) ∈ % } . Furthermore, suppose that
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f : A → R is an additive homomorphism such that f(u) ≤ f(v) for all (u, v) ∈ %.
Then kf(z)

m ≤ f(w) ≤ lf(z)
n and we conclude that f(z) = f(w).

4.15 Proposition. Let w ∈ A Then:
(i) If q(w) > 0 then w is right %-regular.
(ii) If p(w) < 0 then w is left %-regular.
(iii) If w is neither right nor left %-regular then %|Nw 6= id and p(w) = 0 = q(w).

Proof. See 2.18. ¤

5. Local summary

As usual in this paper, let % be a stable and cancellative preordering defined on
a commutative semigroup A.

5.1 Theorem. Let z ∈ A be right %-archimedean and right %-regular (cf. 1.22, 5.4).
Suppose that for every w ∈ A there are positive integers m,n such that nz +mw or
mw is almost %-positive. Then there is an additive homomorphism f : A → R such
that f(z) = 1 and f(u) ≤ f(v) for all (u, v) ∈ %.

Proof. Put B = Nz and h(kz) = k for every k ∈ N. Since z is right %-regular, B ∼= N
and h is an injective additive homomorphism of B into R such that h(z) = 1 and
h(a) ≤ h(b) for all a, b ∈ B such that (a, b) ∈ %. If nz+mw is almost %-positive then
(z, (n + 1)z + mw) ∈ % and − n

m ≤ p(w) by 4.1(i). If mw is almost %-positive then
(z, z + mw) ∈ % and 0 ≤ p(w) by 4.1(i). Since z is right %-archimedean, we have
q(w) < +∞ by 4.10(i). Thus −∞ < p(w) ≤ q(w) < +∞ for every w ∈ A \ B and
it follows from 2.9 and 2.10 that A = V (A,B, h). Now it remains to use 3.9. ¤

5.2 Theorem. Let z ∈ A be right %-archimedean and right %-regular (cf. 1.22 ,
5.4). Suppose that for every w ∈ B \ A (such that w is not right %-archimedean)
there is a positive integer m such that mw is almost %-positive. Then there is an
additive homomorphism f : A → R+

0 such that f(z) = 1 and f(u) ≤ f(v) for all
(u, v) ∈ %.

Proof. Put B = Nz and h(kz) = k for every k ∈ N. Since z is right %-regular, B ∼= N
and h is an injective additive homomorphism such that h(z) = 1 and h(a) ≤ h(b)
for all a, b ∈ B, (a, b) ∈ %. If mw is almost %-positive then (z, z + mw) ∈ %
and p(w) ≥ 0 by 4.1(i). If w is right %-archimedean then p(w) > 0 by 4.10(iii).
Furthermore, since z is right %-archimedean, we have q(w) < +∞ by 4.10(i). Thus
0 ≤ p(w) ≤ q(w) < +∞ for every w ∈ A \B and it remains to use 3.13. ¤

5.3 Theorem. (cf. 5.4) Assume that every element from A is right %-archimedean.
Then, for every right %-regular element z ∈ A, there is an additive homomorphism
f : A → R+ such that f(z) = 1 and f(u) ≤ f(v) for all (u, v) ∈ %.

Proof. Again, put B = Nz, h(nz) = z and use 3.12. ¤

5.4 Remark. Assume that A/ker(%) is not a torsion group. Let z ∈ A be such
that z is right %-archimedean, but not right %-regular. By 1.22, every element from
A is neither right %-regular nor almost %-positive. Besides, for all a ∈ A and m ∈ N,
m ≥ 2, the element ma is not right %-archimedean.
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5.5 Theorem. Let z ∈ A be right %-regular. Suppose that for all u1, v1 ∈ A such
that (u1, v1) /∈ % there is a positive integer m such that either (u1 + mz, v1) ∈ % or
(u1, v1 + mz) ∈ %. Then there is an additive homomorphism f : A → R such that
f(z) = 1 and f(u) ≤ f(v) for all (u, v) ∈ %.

Proof. Put B = Nz and h(nz) = n for every n ∈ N. If u1, v1 ∈ A are such that
(u1, v1) /∈ % then (u1 + mz, v1) ∈ % ((u1, v1+, z) ∈ %, resp.) for some m ∈ N and we
get (u1 + (m + 1)z, v1 + z) ∈ % ((u1 + z, v1 + (m + 1)z) ∈ %, resp.). Consequently,
the condition 2.17(2) is satisfied and it remains to use 3.9. ¤
5.6 Proposition. Let z ∈ A be right %-regular, B = Nz and h(mz) = m for every
m ∈ N. Then V (A, B, h) = A if and only if every element w ∈ A (w ∈ A \ B)
satisfies at least one of the following four conditions:

(1) (n1z, m1w) ∈ % and (m2w, n2z) ∈ % for some n1, n2,m1,m2 ∈ N (then
(n1m2z,m1m2w) ∈ %, (m1m2w, n2m1z) ∈ %, (n1m2z, n2m2z) ∈ %, n1m2 ≤
n2m1, (n1m2w, n1n2z) ∈ %, (n1n2z, n2m1w) ∈ %, (n1m2w, n2m1w) ∈ % and
0 < p(w) ≤ q(w) < +∞);

(2) There are n1, n2,m1,m2 ∈ N such that m1w + n1z is almost %-positive and
(m2w, n2z) ∈ % (then (m1m2w, n2m1z) ∈ %, m1m2w + n1m2z is almost
%-positive, (m1m2w +n1m2z, (n1m2 +n2m1)z) ∈ % and (n1m2 +n2m1)z is
almost %-positive);

(3) mw is both almost %-positive and almost %-negative for some m ∈ N (then
(x, x + mv) ∈ ker(ρ) for every x ∈ A and p(w) = 0 = q(w));

(4) mw +nz is both almost %-positive and almost %-negative for some n,m ∈ N
(then p(w) = − n

m = q(w) < 0).

Proof. (i) Let w ∈ V (A,B, h). Then we have −∞ < p(w) ≤ q(w) < +∞ and,
according to 4.1(i),(ii), there are k1, k2, l1, l2,m1,m2 ∈ N such that (k1z, lz+m1w) ∈
% and (m2w + l2z, k2z) ∈ %. Now, we have to distinguish the following eight cases:
(i1) Let k1 > l1 and k2 > l2. Since % is cancellative, we get (n1z, m1w) ∈ % and
(m2w, n2z) ∈ %, where n1 = k1 − l1 ∈ N and n2 = k2 − l2 ∈ N. Thus (1) is true.
(i2) Let k1 > l2 and k2 ≤ l2. Then (n1z, m1w) ∈ % and (m2w + n2z, z) ∈ %, where
n1 = k1 − l1 ∈ N and n2 = l2 − k2 + 1 ∈ N. Consequently, (n1m2z, m1m2w) ∈ %,
(m1m2w + m1n2z, m1z) ∈ %, ((n1m2 + m1n2)z, m1m2w + m1n2z) ∈ %, ((n1m2 +
m1n2)z,m1z) ∈ % and n1m2 + m1n2 ≤ m1, since z is right %-regular. But his is a
contradiction.
(i3) Let k1 = l1 and k2 > l2. Then (z, z + m1w) ∈ % and (m2w, n)2z) ∈ %, where
n2 = k2 − l + 2 ∈ N. Now, m1w is almost %-positive, m1m2w is almost %-positive,
n2m1z is almost %-positive and, finally, m1w + n2m1z is almost %-positive. Thus
(2) is true.
(i4) Let k1 = l1 and k2 = l + 2. Then (z, z + m1w) ∈ %, (m)2w + z, z) ∈ %, m1w
is almost %-positive and m2w is almost %-negative. Now, m1m2w is both almost
%-positive and almost %-negative and (4) is true.
(i5) Let k1 = l1 and k2 < l2. Then (z, z + m1w) ∈ % and (m2w + n2z, z) ∈ %, where
n2 = l2 − k2 + 1 ∈ N, n2 ≥ 2. Now, m1w is almost %-positive, m1m2w is almost
%-positive, (m1z,m1z + m1m2w) ∈ %, (m1m2w + m1n2z, m1z) ∈ %, (m1m2w + w +
m+1n2z, m1m2w+m1z) ∈ %, (m1n2z, m1z) ∈ %, m1n2 ≤ m1 and and n2 ≤ 1 since
z is right %-regular, but this is a contradiction.
(i6) Let k1 < l1 and k2 > l2. Then (z, k1z + m1w) ∈ % and (m2w, n2z) ∈ %, where
n2 = k2 − l2 ∈ N. Put k3 = l1 − k1 + 1 ∈ N. Then k3 ≥ 2 and n1z + m1w is almost
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%-positive, where n1 = k3 − 1 ∈ N. Thus (2) is true.
(i7) Let k1 < l1 and k2 = l2. Then (z, k3z + m1w) ∈ %, where k3 = l1 − k1 + 1 ∈ N,
k3 ≥ 2, and (z + m2w, z) ∈ %. Now, n1z + m1w is almost %-positive, where
n1 = k3 − 1 ∈ N, and m2w is almost %-negative. Consequently, n1m2z + m1m2w
is almost %-positive and m1m2w is almost %-negative. It follows easily that n1m2z
is almost %-positive. Now, (m1m2w + z, z) ∈ %, (z, (n1m2+)z) ∈ %, and hence
(m1m2w, m1m2z) ∈ %. Thus (2) is true.
(i8) Let k1 < l1 and k2 < l2. Then (z, k3z + m1w) ∈ %, where k3 = l1 − k1 + 1 ∈ N,
k3 ≥ 2 and (m2w + k4z, z) ∈ %, where k4 = l2 − k2 + 1 ∈ N, k4 ≥ 2. Now,
n1z + m1w is almost %-positive and m2w + n2z is almost %-negative, where n1 =
k3 − 1 ∈ N and n2 = k4 − 1 ∈ N. Consequently, n1m2z + m1m2w is almost
%-positive, n2m1z + m1m2w is almost %-negative, (z, (n1m2 + 1)z + m1m2w) ∈ %,
((n2m1+1)z+m1m2w, z) ∈ %, ((n2m1+1)z, (n1m2+1)z) ∈ %, (n2m1z, n1m2z) ∈ %
and n2m1 ≤ n1m2 since z is right %-regular.

If n2m1 < n1m2 then (n1m2 − n2m1)z is almost %-positive. On the other hand,
(n1m2 − n2m1)n2m1z + (n1m2 − n2m1)m1m2w is almost %-negative and (n1m2 −
n2m1)n2m1z is almost %-positive. Now, it follows easily that the element (n1m2 −
n2m1)m1m2w is almost %-negative. Thus (3) is true.

Finally, if n2m1 = n1m2 then mw + nz is both almost %-positive and almost
%-negative, where m = m1m2 and n = n1m2 = n2m1. Thus (4) is true.
(ii) Let w ∈ A satisfy at least one of the four conditions (1), . . . ,(4). One checks
easily that −∞ < p(w) and q(w) < +∞. ¤
5.7 Proposition. Assume that no element from A is both almost %-positive and
almost %-negative (equivalently, 0 /∈ A/ker(%)). Let z ∈ A be right %-regular, B =
Nz and h(mz) = m for every m ∈ N. Then V (A,B, h) = A if and only if every
element w ∈ A (w ∈ A \B) satisfies at least one of the following two conditions:

(1) (n1z, m1w) ∈ % and (m2w, n2z) ∈ % for some n1, n2,m1,m2 ∈ N;
(2) There are n1, n2,m1,m2 ∈ N such that m1w + n1z is almost %-positive and

(m2w, n2z) ∈ %.

Proof. Use 5.6. ¤
5.8 Proposition. Let z ∈ A be right %-regular and B = Nz. Assume that every
element from A \B is almost %-positive. Then V (A,B, h) = A if and only if every
element w ∈ A (w ∈ A \B) satisfies at least one of the following two conditions:

(1) (mw,nz) ∈ % for some m,n ∈ N (then nz is almost %-positive);
(2) mw is both almost %-positive and almost %-negative for some m ∈ N (then

mw /∈ B and (x, x + mw) ∈ ker(%) for every x ∈ A).

Proof. Since every element from A \ B is almost %-positive, we have p(w) ≥ 0 for
every w ∈ A. Now, w ∈ V if and only if q(w) < +∞, i.e., (mw + lz, kz) ∈ % for
some k, l, m ∈ N. Suppose that this is true. If w ∈ B then (1) is true. If w /∈ B
then w is almost %-positive, and hence (lz, mw + lz) ∈ %. Then (lz, kz) ∈ % and
l ≤ k, since z is right %-regular. If l < k then (mw, nz) ∈ %, where n + k − l ∈ N.
If k = l then mw is both almost %-positive and almost %-negative. The converse is
obvious. ¤
5.9 Proposition. Let z ∈ A be right %-regular and B = Nz. Assume that ev-
ery element from A \ B is almost %-positive but not almost %-negative. Then
V (A,B, h) = A if and only if z is right %-archimedean.
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Proof. If V (A,B, h) = A and w ∈ A then (mw, nz) ∈ % for some m, n ∈ N by 5.8.
If w /∈ B then w is almost %-positive, (w,mw) ∈ % amd (w, nz) ∈ %. If w ∈ B then
w = kz for some k ∈ N. The rest is obvious. ¤

6. The cancellative cover

Let % be a stable preordering defined on a commutative semigroup A. Define
a relation σ = cn(%) on A by (a, b) ∈ σ if and only if (a + c, b + c) ∈ % for at least
one c ∈ A.

6.1 Proposition. σ is a stable and cancellative preordering. It is the smallest
cancellative relation containing % (the cancellative cover or envelope of %).

Proof. Since (2a, 2a) ∈ %, we have (a, a) ∈ σ and σ is reflexive. If (a, b) ∈ σ and
(b, c) ∈ σ and (a + c1, b + c1) ∈ %, (b + c2, c + c2) ∈ % for suitable c1, c2 ∈ A and
we get (a + c1 + c2, b + c1 + c2) ∈ %, (b + c1 + c + 2, c + c + 1 + c + 2) ∈ % and
(a + c1 + c2, c + c1 + c2) ∈ %. Thus (a, c) ∈ σ and we see that σis transitive. It
means that σ is a preordering.

If (a, c) ∈ σ, (a + c, b + c) ∈ % and d ∈ A then (a + d + c, b + d + c) ∈ % and
(a + d, b + d) ∈ σ and (a + d, b + d) ∈ σ. It follows that σ is stable.

If (a + d, b + d) ∈ σ then (a + d + c, b + d + c) ∈ % for some c ∈ A, and hence
(a, b) ∈ σ. It follows that σ is cancellative.

If (a, b) ∈ % then (a + c, b + c) ∈ % for every c ∈ A and we have (a.b) ∈ σ. Thus
% ⊆ σ.

Finally, if λ is a cancellative relation defined on A such that % ⊆ λ and if
(a + c, b + c) ∈ % then (a, b) ∈ λ. Consequently, σ ⊆ λ and σ is just the smallest
cancellative relation containing %. ¤
6.2 Corollary. % = σ if and only if % is cancellative. ¤
6.3 Lemma. ker(σ) = cn(ker(%)) is a cancellative congruence of the semigroup A.

Proof. If (a, b) ∈ ker(sigma) then (a + c, b + c) ∈ % and (b + d, c + d) ∈ % for some
c, d ∈ A. Then (a + c + d, b + c + d) ∈ ker(%) and (a, b) ∈ cn(ker(%)). The rest is
clear. ¤
6.4 Proposition. cn(idA) is the smallest cancellative congruence of the semigroup
A.

Proof. It is obvious. ¤
6.5 Lemma. σ is an ordering if and only if % is and ordering and the semigroup
A is cancellative.

Proof. If σ is an ordering then cn(ker(%)) = idA by 6.3. Then ker(% = idA, %
is an ordering, cn(idA) = idA and A is cancellative. The converse implication is
similar. ¤
6.6 Lemma. (i) Every almost %-positive (almost %-negative, resp.) element is
almost σ-positive (almost σ-negative, resp.).
(ii) Every right (left, resp.) %-archimedean element is right (left, resp.) σ-archi-
medean.
(iii) Every right (left, resp.) σ-regular element is right (left, resp.) %-regular.

Proof. It is obvious. ¤
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6.7 Remark. Notice that A/ker(σ) is not a torsion groups if and only if the
following condition is satisfied:
(6.1) There is at least one element w ∈ A such that for every m ∈ N there is
vm ∈ A such that for every u ∈ A we have either (mw + vm + u, vm + u) /∈ % or
(vm + u,mw + vm + u) /∈ %.

If % is an ordering (i.e., ker(%) = idA) then (6.1) is equivalent to
(6.2) There is at least one element w ∈ A such that for every m ∈ N there is vm ∈ A
such that for every u ∈ A we have mw + vm + u 6= vm + u.

6.8 Lemma. An element a ∈ A is right (left, resp.) σ-regular if and only if m ≤ n
whenever (m, n ∈ N and b ∈ A are such that (ma+b, na+b) ∈ % ((na+b,ma+b) ∈ %,
resp.).

Proof. It is obvious. ¤

6.9 Remark. Let B be a subsemigroup of A and h : B → R be an additive
homomorphism such that h(a) ≤ h(b) whenever a, b ∈ B, v ∈ A and (a+v, b+v) ∈ %.
This means that h(a) ≤ h(b) whenever a, b ∈ B and (a, b) ∈ σ. Now, we can make
use of all the results from the foregoing four sections. In particular, when B = Nz,
z ∈ A being right σ-regular.

6.10 Theorem. Let z ∈ A be right cn(%)-regular (i.e. l ≤ k whenever k, l ∈ N
and u ∈ A are such that (lz + u, kz + u) ∈ %). Assume that every element w ∈ A
(w ∈ A \ Nz) satisfies at least one of the following three conditions:

(1) There are n1, n2, m1, m2 ∈ N and u, v ∈ A such that (n1z +u,m1w +u) ∈ %
and (m2w + v, n2z + v) ∈ %;

(2) There are n1, n2,m1,m2 ∈ N and u, v ∈ A such that (z+u,m1w+n1z+u) ∈
% and (m2w + v, n2z + v) ∈ %;

(3) (z + u,mw + nz + u) ∈ % and (mw + nz + u, z + u) ∈ % for some n,m ∈ N
and u ∈ A.

Then there is an additive homomorphism f : A → R such that f)z) = 1 and
f(x) ≤ f(y) for all (x, y) ∈ %.

Proof. As we know, σ = cn(%) is a cancellative stable preordering and, since z
is right σ-regular, we have B = Nz ∼= N and h : B → R, where h(mz) = m
for every m ∈ N, is an additive homomorphism such that h(a) ≤ h(b) for all
a, b ∈ B, (a, b) ∈ σ. In view of 3.9, we have to check that V (A,B, h) = A (where
% is replaced by σ). Of course, B ⊆ V . Let w ∈ A \ B. If (1) is true then
((n1 + 1)z, m1w) ∈ σ, n1

m1
≤ p(w), (m2w + z, (n2 + 1)z) ∈ σ, q(w) ≤ n2

m2
. If (2) is

true then (z, m1w + n1z) ∈ σ, 1−n1
m1

≤ p(w), (m2w + z, (n2 + 1)z) ∈ σ, q(w) ≤ n2
m2

.
If (3) is true then (z, mw+nz) ∈ σ, 1−n

m ≤ p(w), (mu+nz, z) ∈ σ, q(w) ≤ 1−n
m . ¤

6.11 Theorem. Let z ∈ A be cn(%)-regular (i.e., l ≤ k whenever k, l ∈ N and
u ∈ A are such that (lz + u, kz + u) ∈ %). Assume that every element w ∈ A
(w ∈ A \ Nz) satisfies the following two conditions:

(1) (mw + u, nz + u) ∈ % for some n,m ∈ N and u ∈ A;
(2) For every k ∈ N there are nk,mk ∈ N and uk ∈ A such that (z +uk,mkw +

nkz + uk) ∈ % and mk ≥ k(nk − 1).

There there is an additive homomorphism f : A → R+
0 such that f(z) = 1 and

f(x) ≤ f(y) for all (x, y) ∈ %.
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Proof. By 6.10, there is an additive homomorphismf : A → R such that f(z) = 1
and f(x) ≤ f(y) for all (x, y) ∈ %. Of course, f(Nz) ⊆ R+. On the other hand, if
(z +u,mkw +nkz +uk) ∈ % then 1 ≤ mkf(w)+nk, and hence −f(w) ≤ nk−1

mk
≤ 1

k .
Thus −f(w) ≤ 0 and 0 ≤ f(w). ¤

6.12 Theorem. Let z ∈ A be cn(%)-regular (i.e., l ≤ k whenever k, l ∈ N and u ∈ A
are such that (lz + u, kz + u) ∈ %). Assume that for every w ∈ A (w ∈ A \ Nz)
there are n1, n2,m1,m2 ∈ N and uv,∈ A such that (n1zu,m1w + u) ∈ % and
(m2w+v, n2z +v) ∈ %. Then there is an additive homomorphism f : A → R+ such
that f(z) = 1 and f(x) ≤ f(y) for all (x, y) ∈ %.

Proof. By 6.10, there is an additive homomorphismf : A → R such that f(z) = 1
and f(x) ≤ f(y) for all (x, y) ∈ %. Of course, f(Nz) ⊆ R+. On the other hand,
if (n1z + u,m1w + u) ∈ % then n1 ≤ m1f(w) and 0 < n1

m1
≤ f(w). Thus f(A) ⊆

R+. ¤

7. The cancellative factor

In this section, let % be a stable and cancellative preordering defined on a com-
mutative semigroup A. As we know, αA = cn(idA) is just the smallest cancellative
congruence of A; we have αA ⊆ ker(%) and (a, b) ∈ αA if and only if a + c = b + c
for at least one c ∈ A. Now, let ϕ : A → A = A/αA denote the natural projection.
Then A is a cancellative semigroup and, for every a ∈ A, we put a = ϕ(a).

7.1 Lemma. Let a, b, c, d ∈ A be such that (a, b) ∈ %, a = c and b = d. Then
(c, d) ∈ %.

Proof. We have a+u = c+u and b+v = d+v for some u, v ∈ A. Now, a+w = c+w
and b + w = d + w, where w = u + v, and (c + w, d + w) = (a + w, b + w) ∈ %. Since
% is cancellative, we get (c, d) ∈ %. ¤

In view of the preceding lemma, we see that % induces a relation % = ϕ(%) = %/αA

defined on A such that (a, b) = (ϕ(a), ϕ(b)) ∈ % for all (a, b) ∈ % (in fact, (a, b) ∈ %
if and only if (a, b) ∈ %.

7.2 Lemma. % is a stable and cancellative preordering defined on the cancellative
semigroup A.

Proof. It is easy. ¤

7.4 Lemma. % is an ordering if and only if ker(%) = αA (i.e., for every (a, b) ∈
ker(%) there is c ∈ A with a + c, b + c).

Proof. It is easy. ¤

7.5 Remark. Of course, if % is an ordering then αA = idA and A is cancellative.

7.6 Lemma. (i) If a ∈ A is almost %-positive (almost %-negative, resp.) then a ∈ A
is almost %-positive (almost %-negative, resp.).
(ii) If a ∈ A is right (left, resp.) %-archimedean then a is right (left, resp.) %-
archimedean.
(iii) If a ∈ A is right (left, resp.) %-regular then a ∈ A is right (left, resp.) %-regular.

Proof. It is obvious. ¤
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7.7 Remark. Let B be a subsemigroup of A and h : B → R be an additive homo-
morphism such that h(a) ≤ h(b) for all a, b ∈ B, (a, b) ∈ %. Assume, furthermore,
that h(a1) = h(b1) whenever a1, b1 ∈ B and u ∈ A are such that a1 + u = b1 + u
(i.e., (a1, b1) ∈ αA). Then h induces an additive homomorphism h : A → R such
that h(a) = h(a) for every a ∈ A and h((a2) ≤ h(b2 for all a2, b2 ∈ B, (a2, b2) ∈ %.

8. The antisymmetric factor

Let % be a stable preordering defined on a commutative semigroup A. Then
ker(%) is a congruence of A and we put Ã = A/ker(%). Let ψ : A → Ã be the
natural projection. Now, % induces a relation τ = %̃ = ψ(%) = %/ker(%) on Ã, where
(ã, b̃) ∈ %̃ if and only if (a, b) ∈ %.

8.1 Proposition. τ is a stable ordering defined on the factorsemigroup Ã.

Proof. It is easy. ¤

8.2 Lemma. τ is cancellative if and only if % is such (then ker(%) is cancellative
and Ã is a cancellative semigroup).

Proof. It is easy. ¤

8.3 Lemma. (i) If a ∈ A is almost %-positive (almost %-negative, resp.) then ã ∈ Ã
is almost τ -positive (almost τ -negative, resp.)
(ii) If a ∈ A is right (left, resp.) %-archimedean then ã ∈ Ã is right (left, resp.)
τ -archimedean.
(iii) If a ∈ A is right (left, resp.) %-regular then ã ∈ Ã is right (left, resp.) τ -regular.

Proof. It is obvious. ¤

8.5 Remark. Let B be a subsemigroup of A and let h : B → R be an additive
homomorphism such that h(a) ≤ h(b) for all a, b ∈ B with (a, b) ∈ %. If a1, b1 ∈ B
are such that (a1, b1) ∈ ker(%) then h(a1) = h(b1), and so ker(%)|B ⊆ ker(h). Then,
of course, h induces an additive homomorphism h̃ : B̃ → R such that h̃(ã) ≤ (̃̃b)
for all ã, b̃ ∈ B̃ with (ã, b̃) ∈ τ . We have h = h̃ψ.

8.6 Assume that % is cancellative and put σ = (% \ ker(%)) ∪ idA (see 1.1). Then σ
is an ordering and σ ⊆ %. If (a, b) ∈ σ and a 6= b then (a, b) ∈ % and (b, a) /∈ %.Now,
(a + c, b + c) ∈ % and (b + c, a + c) /∈ % for every c ∈ A, since % is stable and
cancellative. It means that σ is a stable ordering. Similarly, if (a+ c, b+ c) ∈ % and
a + c 6= b + c then (b + c, a + c) /∈ %, (b, a /∈ % and (a, b) ∈ σ. Thus σ is cancellative,
provided that the semigroup A is cancellative.

Let a ∈ A be almost %-positive. If a is not almost σ-positive then (u, a + u) /∈ σ
for some u ∈ A and we have a+u 6= u, (a+u, u) ∈ % and (u, a+u) ∈ ker(%). Since %
is cancellative, we see that a is almost %-negative as well. Thus a/ker(%) = 0A/ker(%).

Let a ∈ A be right %-archimedean. If a is not right σ-archimedean then there is
u ∈ A such that (u,ma) /∈ σ for every m ∈ N. It means that u 6= ma and either
(u,ma) /∈ % or (u, ma) ∈ ker(%). Since a is right %-archimedean, there is n ∈ N
such that (u, na) ∈ %. Consequently, u 6= na) and (u, na) ∈ ker(%). Now, assume
that a is almost %-positive. Then (na, 2na) ∈ %, (u, 2na) ∈ %, (u, 2na) ∈ ker(%),
(na, 2na) ∈ ker(%) and na/ker(%) = 0A/ker(%). If a/ker(%) = 0A/ker(%) then a is
almost %-negative.
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9. The unperforated cover

As always, let % be a stable preordering defined on a commutative semigroup A.
The preordering % is called unperforated if (a, b) ∈ % whenever a, b ∈ A and m ∈ N
are such that (ma,mb) ∈ %.

9.1 Lemma. If % is unperforated then the factor-semigroup A/ker(%) is torsionfree
and ker(%) is unperforated.

Proof. If ma/ker(%) = mb/ker(%) for some a, b ∈ A and m ∈ N then (ma,mb) ∈
ker(%). Since % is unperforated, we have (a, b) ∈ ker(%) and a/ker(%) = b/ker(%). ¤

9.2 Lemma. (cf. 1.8 and 1.23) Assume that % is unperforated. If a ∈ A and m ∈ N
are such that ma is almost %-positive (almost %-negative, resp.) then a is almost
%-positive (almost %-negative, resp.).

Proof. We have (mx, mx + ma) ∈ % for every x ∈ A. Since % is unperforated, it
follows that x, x + a) ∈ %. Thus a is almost %-positive. ¤

Now, define a relation τ = up(%) on A by (a, b) ∈ τ if and only if (ma,mb) ∈ %
for some m ∈ N.

9.3 Lemma. (i) τ is a stable preordering.
(ii) % ⊆ τ and τ is unperforated.
(iii) τ is just the smallest unperforated relation containing % (the unperforated cover
of %).

Proof. It is easy. ¤

9.4 Lemma. (i) ker(τ) = up(ker(%).
(ii) τ is an ordering if and only if % is and ordering and the semigroup A is tor-
sionfree.

Proof. It is easy. ¤

9.5 Lemma. If % is cancellative then τ is cancellative.

Proof. It is easy. ¤

9.6 Lemma. (i) λ = cn(up(%)) = up(cn(%)) is a stable cancellative unperforated
preordering.
(ii) λ is just the smallest cancellative unperforated relation containing %.

Proof. First, let (a, b) ∈ cn(up(%)). Then (a + c, b + c) ∈ up(ρ) for some c ∈ A and
there is m ∈ N with (ma + mc, mb + mc) ∈ %. Consequently, (ma,mb) ∈ cn(%) and
(a, b) ∈ up(cn(%)). Thus cn(up(%)) ⊆ up(cn(%)).

Conversely, let (a, b) ∈ up(cn(%)). Then there is n ∈ N with (na, nb) ∈ cn(%)
and (na + d, nb + d) ∈ % for some d ∈ A. Consequently, (na + nd, nb + nd) ∈ %,
(a + d, b + d) ∈ up(%) and (a, b) ∈ cn(up(%)). Thus up(cn(%)) ⊆ cn(up(%)). ¤

9.7 Lemma. (i) ker(λ) = cn(up(ker(%))) = up(cn(ker(%))).
(ii) λ is an ordering if and only if % is an ordering and A is a cancellative torsionfree
semigroup.

Proof. Use 9.6(i). ¤
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Put β
A

= up(idA). As we know, β
A

is the smallest congruence of A such that
the corresponding factor-semigroup is torsionfree; we have (a, b) ∈ β

A
if and only

if ma = mb for some m ∈ N. Clearly, β
A

= A×A if and only if A is torsion.
Put γ

A
= cn(up(idA)) (= up(cn(idA))). As we know, γ

A
is the smallest con-

gruence of A such that the corresponding factor-semigroup is cancellatine and tor-
sionfree; we have (a, b) ∈ γ

A
if and only if ma + c = mb + c for some m ∈ N and

c ∈ A.

9.8 Remark. Let B be a subsemigroup of A and let h : B → R be an additive
homomorphism such that h(a) ≤ h(b) for all a, b ∈ B with (a, b) ∈ %. If a1, b1 ∈ B
are such that (a1, b1) ∈ up(%)) then (ma1,mb1) ∈ ρ for some m ∈ N, mh(a1) ≤
mh(b1) and h(a1) ≤ h(b1).

Now, assume that h(a2) ≤ h(b2) for all a2, b2 ∈ B such that (a2, b2) ⊂ cn(%) (cf.
6.9). Then h(a3) ≤ h(b3) for all a3, b3 ∈ B with (a3, b3) ∈ up(cn(%)).

9.9 Remark. Assume that % is unperforated (unperforated and cancellative, resp.)
Then % induces and unperforated preordering %/β

A
(%/γ

A
, resp.) on the torsionfree

(torsionfree and cancellative, resp.) semigroup A/β
A

(A/γ
A
, resp.).

9.10 Remark. Assume that % is unperforated (unperforated and cancellative,
resp.) (see 9.9). Let h : B → R be an additive homomorphism such that h(a1) =
h(b1) whenever a1, b1 ∈ B are such that (a1, b1) ∈ αA. Then h induces an additive
homomorphism h/β

A
: B/β

A
→ R (h/γ

A
: B/γ

A
→ R, resp.) and this induced

homomorphism preserves the induced preordering (see 9.9). In this situation, notice
that β

B
= β

A
|B ×B.

10. Homomorphisms into R

In 10.1 – 10.7, let % be a stable preordering defined on a commutative semigroup
A and let f : A → R be an additive homomorphism such that f(a) ≤ f(b) for all
(a, b) ∈ %.

10.1 Lemma. ker(%) ∪ αA ∪ β
A
⊆ ker(%) ∪ γ

A
⊆ ker(cn(un(%)) ⊆ ker(%) and

A/ker(%) ∼= f(A) is a cancellative torsionfree semigroup.

Proof. If (a, b) ∈ ker(cn(un(%))) then ma + c = mb + c for some m ∈ N and c ∈ A.
It follows immediately that f(a) = f(b). The rest is clear. ¤
10.2 Lemma. If (a, b) ∈ cn(un(%)) then f(a) ≤ f(b).

Proof. It is easy. ¤
10.3 Lemma. If a ∈ A is almost %-positive (almost %-negative, resp.) then f(a) ≥
0 (f(a) ≤ 0, resp.).

Proof. We have (a, 2a) ∈ %, and so 0 ≤ f(a). ¤
10.4 Lemma. Let a ∈ A be right (left, resp.) %-archimedean.
(i) If f(u) > 0 (f(u) < 0, resp.) for at least one u ∈ A then f(a) > 0 (f(a) < 0,
resp.).
(ii) If f(v) ≥ 0 (f(v) ≤ 0, resp.) for at least one v ∈ A then f(a) ≥ 0 (f(a) ≤ 0,
resp.).
(iii) If f(a) ∈ R− (f(a) ∈ R+, resp.) then f(a) is the greatest (the smallest, resp.)
number in f(A).
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Proof. For every w ∈ A there is m ∈ N with f(w)
m ≤ f(a). The rest is clear. ¤

10.5 Lemma. Let a ∈ A be such that f(a) > 0 (f(a) < 0, resp.). Then a is right
(left, resp.) %-regular.

Proof. It is easy. ¤

10.6 Define a relation µ on A by (a, b) ∈ µ if and only if f(a) ≤ f(b). Then
% ⊆ cn(un(%)) ⊆ µ and µ is a stable, cancellative and unperforated preordering
defined on the semigroup A. Clearly, ker(µ) = ker(f), and hence µ is an ordering
if and only if the homomorphism f is injective.

An element a ∈ A is almost µ-positive (almost µ-negative, resp.) if and only if
f(a) ≥ 0 (f(a) ≤ 0, resp.).

If f(u) > 0 (f(u) < 0, resp.) for at least one u ∈ A then an element a ∈ A is
right (left, resp.) µ-archimedean if and only if f(a) > 0 (f(a) < 0, resp.).

If f(A) ≤ 0 (0 ≤ f(A), resp.) and f(v) = 0 for at least one v ∈ A then an
element a ∈ A is right (left, resp.) µ-archimedean if and only if f(a) = 0.

If f(A) < 0 (0 < f(A), resp.) then an element a ∈ A is right (left, resp.)
µ-archimedean if and only if f(a) is the greatest (the smallest, resp.) number in
F (A).

If f(a) > 0 (f(a) < 0, resp.) then a is right (left, resp.) µ-regular. In fact, we
have (ma, na) ∈ µ for all m,n ∈ N such that m ≤ n (n ≤ m, resp.). If f(a) = 0
then a is neither right nor left µ-regular.

Finally, notice that µ = idA if and only if |A| = 1 and that µ = A × A if and
only if f = 0.

10.7 Define a relation ν on A by (a, b) ∈ ν if and only if either (a, b) ∈ ker(%) or
f(a) < f(b). Then ν is a stable preordering on A and ν ⊆ µ (see 10.6). Clearly,
ker(ν) = ker(%), and hence ν is an ordering if and only if % is so. If ker(%) is
cancellative then ν is cancellative. If ker(%) is unperforated then ν is unperforated.
If (a, b) ∈ ν then f(a) ≤ f(b).

If a ∈ A is such that f(a) > 0 (f(a) < 0, resp.) then a is almost ν-positive
(almost ν-negative, resp.), right (left, resp.) ν-archimedean and right (left, resp.)
ν-regular.

Finally, notice that ν = idA if and only if % is and ordering and f = 0, and that
ν = A×A if and only if % = A×A (and then f = 0).

10.8 Let f : A → R be a non-zero additive homomorphism. If z ∈ A is such that
r = f(z) 6= 0 then the mapping g = r−1f is again an additive homomorphism from
A to R. Of course, we have g(z) = 1.

Define a relation ν on A by (a, b) ∈ ν if and only if f(a) < f(b) or a = b (see
10.7). Then ν is a stable ordering on the semigroup A. If A is cancellative then ν is
so (in fact, (a+ c, b+ c) ∈ ν \ idA always implies (a, b) ∈ ν \ idA). If A is torsionfree
then ν is unperforated (in fact, (ma,mb) ∈ ν \ idA always implies (a, b) ∈ ν \ idA).

Put ν1 = cn(ν), ν2 = un(ν) and ν3 = cn(un(ν)). Now, (a, b) ∈ ν1 iff either
(a, b) ∈ ν or a+ c = b+ c for some c ∈ A. Thus ν1 = ν ∪αA. Similarly, ν2 = ν ∪β

A
and ν3 = ν ∪ γ

A
.

Now, choose z ∈ A with f(z) > 0. Then z is almost ν-positive, right ν-
archimedean and right ν-regular (in fact, (mz, nz) ∈ ν iff m ≤ n). Moreover, z
is right νi-regular for i = 1, 2, 3 and for every w ∈ A there are n1, n2 ∈ N such that
w + n1z is almost ν-positive and (w, n2z) ∈ ν (see 5.6).
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10.9 Theorem. The following conditions are equivalent for a commutative semi-
group A:

(i) There is at least one non-zero additive homomorphism f : A → R.
(ii) There is at least one additive homomorphism f : A → R such that 1 ∈ f(A).
(iii) There is a stable ordering ≤ on A such that the following conditions are

true:
(iii1) If a, b, c ∈ A are such that a+c ≤ b+c then either a ≤ b or a+c = b+c;
(iii2) If a, b ∈ A and m ∈ N are such that ma ≤ mb then either a ≤ b or

ma = mb;
(iii3) There is at least one right ≤-archimedean and almost ≤-positive ele-

ment z ∈ A such that m ≤ n whenever mz + u ≤ nz + u, m,n ∈ N,
u ∈ A, and for every w ∈ A there is at least one k ∈ N with w = kz
being almost ≤-positive (we can also assume that m1z ≤ n1z for all
m1, n1 ∈ N, m1 ≤ n1).

(iv) There is a stable preordering % on A such that at least one element z ∈ A
satisfies the following conditions:
(iv1) l ≤ k whenever k, l ∈ N and u ∈ A are such that (lz + u, kz + u) ∈ %;
(iv2) For every w ∈ A \ Nz there are m1,m2, n1, n2 ∈ N and u ∈ A such

that either (n1z + u,m1w + u) ∈ % and (mw + u, nz + u) ∈ %, or
(z + u,m1w + n1z + u) ∈ % and (n2w + u, n2z + u) ∈ %, or (z +
u,m1w + n1z + u) ∈ % and (m1w + n1z + u, z + u) ∈ %.

Proof. (i) implies (ii). See 10.2.
(ii) implies (iii). See 10.3.
(iii) implies (iv). This is clear.
(iv) implis (i). See 6.10. ¤
10.10 Remark. (i) Let A be a non-trivial cancellative and torsionfree commu-
tative semigroup. The group G = A − A of differences is torsionfree, and hence
for every 0 6= u ∈ G there is an additive homomorphism g : G → Q such that
g(u) = 1. In particular, for every a ∈ A, a 6= 0A, there is an additive homomor-
phism f : A → Q with f(a) = 1.
(ii) Let A be a commutative semigroup. If γ

A
= A× A (i.e., no non-trivial homo-

morphic image of A is a cancellative and torsionfree semigroup) then there is no
non-zero additive homomorphism of A into R. On the other hand, if γ

A
6= A × A

then A = A/γ
A

is a non-trivial cancellative and toesionfree semigroup and it fol-
lows from (i) that there are non-zero additive homomorphisms of A into R. In fact,
if a ∈ A is such that (a, 2a) /∈ γ

A
(i.e., ma + u 6= 2ma + u for all m ∈ N and u ∈ A)

then there is an additive homomorphism f : A → Q with f(a) = 1.
(iii) Let A be a commutative semigroup and f : A → Q be an additive homomor-
phism such that f(A)∩Q− 6= ∅ 6= f(A)∩Q+. Then A/ker(f) ∼= f(A) is a non-zero
torsionfree group.
(iv) Let A be a commutative semigroup such that γ

A
6= A × A and no non-trivial

homomorphic image of A is a torsionfree group. Then there is at least one non-
zero additive homomorphism f : A → Q+

0 . Of course, γ
A
⊆ ker(f) 6= A × A and

A/ker(f) ∼= f(A) is a cancellative torsionfree semigroup.
(v) Let A be an additive subsemigroup of Q and let r be a cancellative congruence
of A, r 6= idA. We claim that A/r is a torsion group.

If A = {0} then r = A × A = idA, a contradiction. If A ⊆ Q−0 then −A ⊆ Q+
0
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and −A is an isomorphic copy of A. Thus we can assume that A ∩Q+ 6= ∅. Since
r 6= idA and A∩Q+ 6= ∅, there are p, q ∈ A∩Q+ such that (p, q) ∈ r and p < q. We
have p = m

n , q = k
l , m,n, k, l ∈ N, ml < nk, t = nk −ml ∈ N and nkp/r = mlp/r

in A/r. Since A/r is a cancellative semigroup, we get tp/r = tq/r = 0A/r. Now,
given s ∈ A, there is m1 ∈ N with 0 < m1p + s. Of course, (m1p + s,m1q + s) ∈ r,
m1p + s < m1q + s and there is t1 ∈ N such that t1(m1p + s)/r = 0A/r. Thus
0A/r = tt1(m1p + s)/r = tt1s/r and we see that A/r is a torsion group.
(vi) Let A be an additive subsemigroup of Z and let r be a congruence of A, r 6= idA.
We claim that A/r is a finite semigroup.

We can assume that A ⊆ N. The semigroup A is finitely generated, and so the
same is true for the factor-semigroup A/r. Now, it is enough to prove that every
one-generated subsemigroup of A/r is finite. For, let m ∈ A and B = Nm. Since
r 6= idA, we get s = R|B ×B 6= idB . But B ∼= N and the rest is clear.
(vii) Let A be an additive subsemigroup of Q and let r be a congruence of A,
r 6= idA. We claim that the factor-semigroup A/r is locally finite (i.e., every
finitely generated subsemigroup of A/r is finite).

First, if A ∩ Q− 6= ∅ 6= A ∩ Q+ then A is a subgroup of Q and A/r is a torsion
group (see (v)). If A ⊆ Q−0 then −A ⊆ Q+

0 and −A ∼= A. Consequently, we can
assume that A ⊆ Q+

0 . We have A 6= {0} and we put B = A∩Q+ and s = r|B×B.
Clearly, s 6= idB . Let C be a finitely generated subsemigroup of B. We can assume
that t = s|C × C 6= idC (if (p, q) ∈ s, p 6= q then C + N0p + N0q is again finitely
generated). Since C is finitely generated, mC ⊆ N for some m ∈ N. Now, C ∼= mC
and we use (vi) to show that C/t is finite.
(viii) Let A be an additive subsemigroup of Q. Let r be a congruence of A. If
A ∩Q+ 6= ∅ 6= A ∩Q− then A is a subgroup of Q, and hence the factor-semigroup
A/r has just one idempotent element, namely the zero element. If A ⊆ Q−0 then for
all a, b ∈ A there are m,n ∈ N with ma = nb, and hence the factor-semigroup A/r
has at most one idempotent element (just one if r 6= idA). Assume, finally, that
A ⊆ Q+

0 and 0 ∈ A. If A = {0} or if r = idA then A/r has just one idempotent
element, namely 0A/r. If (0, a) ∈ r for some a ∈ A, a > 0 then A/r is a torsion
group. If A 6= {0}, r 6= idA and (0, b) /∈ r for every b ∈ B = A \ {0} then
r|B ×B 6= idB and the factor-semigroup A/r has just two idempotent elements.

10.11 Proposition. The following conditions are equivalent for a commutative
semigroup A:

(i) There is at least one non-zero additive homomorphismf : A → Q.
(ii) There is at least one non-zero additive homomorphism g : A → R.
(iii) There is at least one element w ∈ A such that mw + a 6= 2mw + a for all

m ∈ N and a ∈ A (then f from (i) can be chosen such that f(w) = 1).

Proof. (i) implies (ii). This implication is trivial.
(ii) implies (iii). Just choose any w ∈ A with g(w) 6= 0.
(iii) implies (i). See 10.10(ii). ¤
10.12 Remark. Consider the situation from 10.11. If A is cancellative then
10.11(iii) means that mw 6= 0A for every m ∈ N. Thus a cancellative semigroup A
satisfies the equivalent conditions of 10.11 if and only if A is not a torsion group. A
(possibly non-cancellative) semigroup A satisfies the conditions of 10.11 if and only
if A/αA is not a torsion group. Notice that if A/αA is finite then it is a torsion
group. On the other hand, if A is finitely generated and A/αA is a torsion group
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then A/αA is finite. Consequently, a finitely generated commutative semigroup A
satisfies the equivalent conditions of 10.11 if and only if the factor-semigroup A/αA

is not finite.

10.13 Proposition. The following conditions are equivalent for a commutative
semigroup A:

(i) A is isomorphic to an additive subsemigroup of Q+.
(ii) A is cancellative, torsionfree, uniform (i.e., for all a, b ∈ A there are m,n ∈

N with ma = nb; it means that the intersection of any two or finitely many
subsemigroups of A is non-empty) and 0A /∈ A (equivalently, A has no
idempotent element).

(iii) A is cancellative, torsionfree, 0A /∈ A and if r is a congruence of A such
that r 6= idA then A/r is locally finite.

(iv) A is cancellative, torsionfree, 0A /∈ A and if r is a cancellative congruence
of A such idA 6= r 6= A × A then A/r is not torsionfree (A/r is a torsion
group).

Proof. (i) implies (ii). This is easy.
(ii) implies (i). The group G = A − A of differences is a non-trivial torsionfree
group. If a1, a2 ∈ A are such that a1 6= a2 and b ∈ A is arbitrary then ma1 = n1b
and ma2 = n2b for some m,n1, n2 ∈ N. Now, m(a1 − a2) = (n1 − n2)b and
n1 − n2 6= 0, since a1 6= a2. It follows that every non-zero subgroup H of G
contains a subsemigroup BH ⊆ H∩A. Since A is uniform and 0A /∈ A, we conclude
that G is a torsionfree group of rank 1, and G is isomorphic to an additive subgroup
of Q. The rest is clear,
(i) implies (iii). See 10.10(vii).
(iii) implies (i). By 10.10(i), there is at least one non-zero additive homomorphism
f : A → Q. Clearly, ker(f) = idA, and hence A is isomorphic to a subsemigroup of
Q. Since 0A /∈ A, A is isomorphic to a subsemigroup of Q+.
(i) implies (iv). See 10.10(v).
(iv) implies (i). Use 10.10(i). ¤

10.14 Remark. Using 10.13, we can formulate various characterizations of addi-
tive subsemigroups of Q+ and of Q. Furthermore, taking into account that sub-
semigroups of Z are finitely generated, we can obtain characterizations of additive
subsemigroups of Z, N0 and N.

The additive group of real numbers is divisible of rank 2ω. Consequently, a com-
mutative semigroup A is isomorphic to a subsemigroup of R if and only if A is
cancellative, torsionfree and |A| ≤ 2ω.
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