(PRE)ORDER PRESERVING ADDITIVE HOMOMORPHISMS OF (PRE)ORDERED COMMUTATIVE SEMIGROUPS INTO REAL NUMBERS I

Tomáš Kepka and Petr NĚmec

Abstract

Various necessary and/or sufficient conditions assuring the existence of various additive homomorphisms of commutative semigroups into real numbers are studied.

The aim of the present pseudo-expository note is to collect and order many scattered results concerning additive homomorphisms of commutative semigroups into real numbers. Similar topics were investigated e.g. in [1] - [20]. A kind reader should keep in mind that all the formulated results are fairly basic, and henceforth not attributed to any particular source.

1. Introduction

First, by a preordering (or quasiordering) we mean any reflexive and transitive relation defined on a set S. Thus $\operatorname{id}_{S}=\{(a, a) \mid a \in S\}$ is the smallest and $S \times S$ the largest preordering on S. An equivalence is a symmetric preordering and if ϱ is a preordering then the symmetric core (or kernel) $\operatorname{ker}(\varrho)$ of ϱ (we have $(a, b) \in \operatorname{ker}(\varrho)$ iff $(a, b) \in \varrho$ and $(b, a) \in \varrho)$ is an equivalence. It is the largest equivalence contained in ϱ. If $\operatorname{ker}(\varrho)=\operatorname{id}_{S}$ then the preordering ϱ is antisymmetric and it is called ordering.

Let ϱ be a preordering defined on a set S. A subset T of S is said to be right (left, resp.) cofinal in S if for every $a \in S$ there is at least one $v \in T$ such that $(a, v) \in \varrho((v, a) \in \varrho$, resp. $)$.
1.1 Remark. Let ϱ be a preordering defined on a set S. Then $\sigma=(\varrho \backslash \operatorname{ker}(\varrho)) \cup \operatorname{id}_{S}$ is an ordering and $\sigma \subseteq \varrho$ (of course, $\sigma=\varrho$ iff ϱ is an ordering). Notice that $\sigma=\mathrm{id}_{S}$ iff ϱ is an equivalence.

In the remaining part of this section, let $A=A(+)$ be a commutative semigroup and ϱ be a preordering defined on A. Further, $0_{A} \in A$ means that the semigroup A has the neutral element 0_{A}.

[^0]1.2 Lemma. The following conditions are equivalent:
(i) $(a+c, b+c) \in \varrho$ for all $(a, b) \in \varrho$ and $c \in A$ (i.e., ϱ is stable).
(ii) $(a+c, b+d) \in \varrho$ for all $(a, b) \in \varrho$ and $(b, d) \in \varrho$ (i.e., ϱ is it compatible).

Proof. It is easy.
The preordering ϱ is called cancellative if $(a, b) \in \varrho$ whenever $a, b, c \in A$ and $(a+c, b+c) \in \varrho$. Thus ϱ is both stable and cancellative if and only if $(a, b) \in \varrho \Leftrightarrow$ $(a+c, b+c) \in \varrho$.
1.3 Lemma. (i) If ϱ is stable then $\operatorname{ker}(\varrho)$ is a congruence of the semigroup A.
(ii) If ϱ is stable and cancellative then $\operatorname{ker}(\varrho)$ is a cancellative congruence of A.

Proof. It is easy.
1.4 Lemma. Assume that ϱ is cancellative. If $a, b, c \in A$ are such that $a+c=b+c$ then $(a, b) \in \operatorname{ker}(\varrho)$.

Proof. It is easy.
1.5 Lemma. If ϱ is a cancellative ordering then the semigroup A is cancellative.

Proof. Use 1.4
1.6 Remark. Assume that ϱ is stable and cancellative. Then $\sigma=(\varrho \backslash \operatorname{ker}(\varrho)) \cup \operatorname{id}_{A}$ (see 1.1) is a stable ordering on the semigroup A. If A is cancellative (cf. 1.5) then σ is cancellative as well.

An element $a \in A$ will be called almost (ϱ)-positive (negative, resp.) if $(x, x+a) \in$ $\varrho((x+a, x) \in \varrho$, resp.) for every $x \in A$.
1.7 Lemma. (i) The set of almost positive (negative, resp.) elements is either empty or a subsemigroup of A.
(ii) If $0_{A} \in A$ then 0_{A} is both almost positive and almost negative.
(iii) If $a \in A$ is both almost positive and almost negative then $(x+a, x) \in \operatorname{ker}(\varrho)$ for every $x \in A$. If, moreover ϱ is an ordering then $a=0_{A}$.
(iv) If ϱ is cancellative, $u \in A$ is almost negative and $v \in A$ is almost positive then $(u, v) \in \varrho$.

Proof. It is easy.
An element $a \in A$ will be called right (left, resp.) ($\varrho-$)archimedean if the onegenerated (or cyclic) subsemigroup $\mathbb{N} a$ of A generated by the element a (here, \mathbb{N} denotes the semiring of positive integers) is right (left, resp.) cofinal in A. This means that for every $b \in A$ there is $m \in \mathbb{N}$ such that $(b, m a) \in \varrho((m a, b) \in \varrho$, resp.).
1.8 Lemma. If $a \in A$ and $m \in \mathbb{N}$ are such that $m a$ is right (left, resp.) archimedean then a is such.

Proof. It is obvious.
1.9 Lemma. Assume that @ is stable. Let $a \in A$ be right (left, resp.) archimedean and let $(a, b) \in \varrho((b, a) \in \varrho$, resp.). Then b is right (left, resp.) archimedean.

Proof. It is easy.
1.10 Lemma. Assume that ϱ is stable and A contains at least one almost positive negative, resp.) element. If $a \in A$ is right (left, resp.) archimedean then ma is almost positive (negative, resp.) for at least one $m \in \mathbb{N}$.

Proof. Let $v \in A$ be almost positive. Then $(x, x+v) \in \varrho$ for every $x \in A$ and there is $m \in \mathbb{N}$ such that $(v, m a) \in \varrho$. Now, $(x+v, x+m a) \in \varrho,(x, x+m a) \in \varrho$ and we see that $m a$ is almost positive.
1.11 Lemma. Assume that ϱ is stable and cancellative. Let $a \in A$ be left (right, resp.) archimedean and almost positive (negative, resp.). Then:
(i) Every element from A is almost positive (negative, resp.).
(ii) $(a, x) \in \varrho((x, a) \in \varrho$, resp.) for every $x \in A$.
(iii) If ϱ is an ordering then a is the smallest (largest, resp.) element in A.

Proof. Given $x \in A$, we have $(x, x+a) \in \varrho$ and there is $m \in \mathbb{N}$ that is the smallest one with the property that $(m a, x) \in \varrho$. Now, $(m a, x+a) \in \varrho$ and, since ϱ is cancellative, we get $m=1$. Thus $(a, x+a) \in \varrho$ for every $x \in A$. Consequently, $(y+a, y+x+a) \in \varrho$ and $(y, z+x) \in \varrho$ for every $y \in A$. The rest is clear.

An element $a \in A$ will be called right (left, resp.) (ϱ-)regular if $m, n \in \mathbb{N}$ and $(m a, n a) \in \varrho$ implies $m \leq n(n \leq m$, resp).
1.12 Lemma. If $a \in A$ and $\mathbb{N} a$ is finite then a is neither left nor right regular.

Proof. It is easy.
1.13 Lemma. An element $a \in A$ is both right and left regular if an only if $\mathbb{N} a$ is infinite (equivalently, $\mathbb{N} a \cong \mathbb{N}$) and $\varrho \mid \mathbb{N} a=\mathrm{id}$.

Proof. It is easy.
1.14 Lemma. Assume that every element from A is either right or left regular. Then the semigroup A is pretorsionfree (i.e., $\mathbb{N} a \cong \mathbb{N}$ is infinite for every $a \in A$).

Proof. Use 1.12.
1.15 Lemma. Let $a \in A$ be right (left, resp.) regular. Then, for every $m \in \mathbb{N}$, the element ma is not almost negative (positive, resp.).

Proof. If $m a$ is almost negative then $((m+1) a, a) \in \varrho$ and $m+1>1$. Thus a is not right regular.
1.16 Lemma. Assume that ϱ is stable. Let $a \in A$ be right (left, resp.) archimedean and let $m \in \mathbb{N}$ be such that ma is almost negative (positive, resp.). Then no element from A is right (left, resp.) regular.

Proof. Given $b \in A$, we have $(b, m a) \in \varrho$ for some $m \in \mathbb{N}$. Since $m a$ is almost negative, we have $(m a+b, b) \in \varrho$. Now, $(m b, m n a) \in \varrho,(m n a+n b, n b) \in \varrho$, $((m+n) b, m n a+n b) \in \varrho,((m+n) b, n b) \in \varrho$ and $m+n>n$.
1.17 Lemma. Assume that ϱ is stable and cancellative. If $a \in A$ is not right (left, resp.) regular then $m a$ is almost negative (positive, resp.) for some $m \in \mathbb{N}$.

Proof. We have $(k a, l a) \in \varrho$, where $k>l$. Then $(k a+x, l a+x) \in \varrho$ and $((k-l) a+$ $x, x) \in \varrho$ for every $x \in A$ and it suffices to put $m=k-l$.
1.18 Lemma. Assume that ϱ is stable and cancellative. Let $a \in A$ be right (left, resp.) archimedean and not right (left, resp.) regular. Then no element from A is right (left, resp.) regular.
Proof. Combine 1.17 and 1.16.
1.19 Lemma. Assume that ϱ is stable and cancellative. Let $a \in A$ be right (left, resp.) archimedean and not right (left, resp.) regular. Then there is $m \in \mathbb{N}$ such that $m x$ is almost negative (positive, resp.) for every $x \in A$.

Proof. By 1.18, no element from A is right regular. By 1.17, for every $x \in A$ there is $m_{x} \in \mathbb{N}$ such that $m_{x} x$ is almost negative. Put $m=m_{a}$. Since a is right archimedean, we have $\left(x, n_{x} a\right) \in \varrho$ for some $n_{x} \in \mathbb{N}$. Now, $\left(m x, m n_{x} a\right) \in \varrho$, $\left(m x+m n_{x} a, m x\right) \in \varrho$, since $m n_{x} a$ is almost negative, and $\left(m x+m n_{x} a, m n_{x} a\right) \in \varrho$. Then $\left(m x+y=m n_{x} a, m n_{x} a+y\right) \in \varrho$ and $(m x+y, y) \in \varrho$ for every $y \in A$. Thus $m x$ is almost negative.
1.20 Lemma. Assume that ϱ is stable and cancellative. Let $a \in A$ be neither left nor right regular. Then there is $m \in \mathbb{N}$ such that $m a$ is both almost positive and almost negative (i.e., $(m a+x, x) \in \operatorname{ker}(\varrho)$ for every $x \in A)$.
Proof. The result follows easily from 1.17.
1.21 Lemma. Assume that ϱ is stable and cancellative and that no element from A is right or left regular. Then the factorsemigroup $A / \operatorname{ker}(\varrho)$ is a torsion group.

Proof. By 1.20 , for every $a \in A$ there is $m_{a} \in \mathbb{N}$ such that $\left(m_{a} a+x, x\right) \in \operatorname{ker}(\varrho)$ for every $x \in A$. It follows that $0_{\bar{A}} \in \bar{A}$ and $m_{a} \bar{a}=0_{\bar{A}}$. Then, of course, \bar{A} is a torsion group.
1.22 Proposition. Assume that ϱ is stable and cancellative and that the factorsemigroup $A / \operatorname{ker}(\varrho)$ is not a torsion group. Then every right (left, resp.) archimedean element from A is right (left, resp.) regular, provided that at least one of the following six conditions is satisfied:
(1) For every $m \in \mathbb{N}$ there is $v \in A$ such that $m v$ is not almost negative (positive, resp.);
(2) At least one element from A is right (left, resp.) regular;
(3) At least one element from A is not left (right, resp.) regular;
(4) There are $k \in \mathbb{N}$ and $a \in A$ such that $k \geq 2$ and $(a, k a) \in \varrho((k a, a) \in \varrho$, resp.);
(5) At least one element from A is almost positive (negative, resp.);
(6) There are $l \in \mathbb{N}$ and $a \in A$ such that $l \geq 2$ and la is right (left, resp.) archimedean.

Proof. If (1) is true then the result follows from 1.19. If (2) is true then 1.18 yields our result. $\mathrm{f}(3)$ is true then, by 1.21 , at least one element from A is right regular and (2) is satisfied. The condition (4) is equivalent to (3) and (5) implies (4). Finally, (6) implies (4).
1.23 Lemma. Let $a \in A$ and $m \in \mathbb{N}$ be such that ma is right (left, resp.) ϱ-regular. Then a is right (left, resp.) ϱ-regular.

Proof. It is easy.

2. Extensions of homomorphisms - introduction

Throughout this section, let $A=A(+)$ be a commutative semigroup and let ϱ be a cancellative and stable preordering defined on A (i.e., for all $a, b, c \in A$ we have $(a, b) \in \varrho$ if and only if $(a+c, b+c) \in \varrho)$. Furthermore, let B be a subsemigroup of A and let $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h(a) \leq h(b)$ whenever $(a, b) \in \varrho$.

For every $w \in A$ put
(2.1) $(\underline{p}(w, A, B, h)=) \underline{p}(w)=\sup \left\{\left.\frac{h(a)-h(b)}{m} \right\rvert\, a, b \in B, m \in \mathbb{N},(a, b+m w) \in \varrho\right\}$ and
(2.2) $\quad(\underline{q}(w, A, B, h)=) \underline{q}(w)=\inf \left\{\left.\frac{h(c)-h(d)}{n} \right\rvert\, c, d \in B, n \in \mathbb{N},(d+n w, c) \in \varrho\right\}$.
2.1 Lemma. (i) $-\infty \leq \underline{p}(w) \leq \underline{q}(w) \leq+\infty$.
(ii) $\underline{p}(v)=h(v)=\underline{q}(v)$ for every $\bar{v} \in B$.

Proof. (i) If either $\underline{p}(w)=-\infty$ or $\underline{q}(w)=+\infty$ then there is nothing to prove. On the other hand, if $\bar{a}, b+m w) \in \varrho$ and $(d+n w, c) \in \varrho$ for some $a, b, c, d \in B$ and $m, n \in \mathbb{N}$ then $(n a, n b+n m w) \in \varrho,(m d+m n w, m c) \in \varrho,(n a+m d+m n w, n b+$ $m c+m n w) \in \varrho$ and, since ϱ is cancellative, we get $(n a+m d, n b+m c) \in \varrho$. Then $n h(a)+m h(d) \leq n h(b)+m h(c)$ and $\frac{h(a)-h(b)}{m} \leq \frac{h(c)-h(d)}{n}$. The rest is clear.
(ii) We have $(2 v, v+1 v)=(2 v, 2 v) \in \varrho$ and $(v+1 v, 2 v) \in \varrho$. Consequently, using (i), we get $h(v)=\frac{h(2 v)-h(v)}{1} \leq \underline{p}(v) \leq \underline{q}(v) \leq h(v)$. Thus $h(v)=\underline{p}(v)=\underline{q}(v)$.
2.2 Lemma. (i) If B is right (left, resp.) ϱ-cofinal in A then $\underline{q}(w)<+\infty \quad(-\infty<$ $\underline{q}(w)$, resp.) for every $w \in A$.
(ii) If at least one element from B is right (left, resp.) ϱ-archimedean in A then $\underline{q}(w)<+\infty(-\infty<\underline{p}(w)$, resp. $)$ for every $w \in A$.
Proof. (i) For every $a \in B$ there is $b \in B$ with $(a+w, b) \in \varrho((b, a+w) \in \varrho$, resp.). Now, $\underline{q}(w) \leq h) b)-h(a)(h(b)-h(a) \leq \underline{p}(w)$, resp. $)$.
(ii) This follows immediately from (i).
2.3 Lemma. Assume that for all $u, v \in A$ such that $(u, v) \notin \varrho$ there are $a, b \in B$ with $(u+a, v+b) \in \varrho$. Then $-\infty<\underline{p}(w) \leq \underline{q}(w)<+\infty$ for every $w \in A$.
Proof. Take any $c \in B$. Then there are $a_{1}, a_{2}, b_{1}, b_{2} \in B$ such that $\left(c+a_{1}, w+b_{1}\right) \in \varrho$ and $\left(w+a_{2}, c+b_{2}\right) \in \varrho$. Now, we have $-\infty<h(c)+h\left(a_{1}\right)-h\left(b_{1}\right) \leq \underline{p}(w) \leq \underline{q}(w) \leq$ $h(c)+h\left(b_{2}\right)-h\left(a_{2}\right)<+\infty$ (use 2.1(i)).
2.4 Remark. Assume that B is both left and right ϱ-cofinal in A. Then, choosing $u, v \in A$, we can find $a, b \in B$ such that $(u, b) \in \varrho$ and $(a, v) \in \varrho$. Thus $(u+a, v+b) \in$ ϱ and 2.3 takes place (cf. 2.2(i)).
2.5 Lemma. Let $w \in A$ be right (left, resp.) ϱ-archimedean. Then:
(i) $-\infty<\underline{p}(w)(\underline{q}(w)<+\infty$, resp.).
(ii) If $h(a)^{-} \geq 0 \overline{(h}(a) \leq 0$, resp.) for at least one $a \in B$ then $\underline{p}(w) \geq 0(\underline{q}(w) \leq 0$, resp.).
(iii) If $h(a)>0(h(a)<0$, resp.) for at least one $a \in B$ then $\underline{p}(w)>0(\underline{q}(w)<0$, resp.).
Proof. For every $a \in A$ there is $m \in \mathbb{N}$ such that $(a, m w) \in \varrho$. Then $(2 a, a+m w) \in \varrho$ and $\frac{h(a)}{m} \leq \underline{p}(w)$ due to (2.1). Thus $-\infty<\underline{p}(w)$ and, if $h(a) \geq 0$ or $h(a)>0$ then $\underline{p}(w) \geq 0$ or $\underline{p}(w)>0$. The other case is dual.
2.6 Lemma. Let $w \in A$ be such that $k w$ is almost ϱ-positive (almost ϱ-negative, resp.) for some $k \in \mathbb{N}$. Then $\underline{p}(w) \geq 0(\underline{q}(w) \leq 0$, resp.)
Proof. We have $(a, a+k w) \in \varrho$ for every $a \in A$, and hence $0=\frac{h(a)-h(a)}{k} \leq \underline{p}(w)$ by 2.1. The other case is dual.

In the sequel, we put

$$
\begin{equation*}
(\underline{W}(A, B, h)=) \underline{W}=\{w \in A \mid-\infty<\underline{q}(w) \text { and } \underline{p}(w)<+\infty\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(\underline{V}(A, B, h)=) \underline{V}=\{w \in A \mid-\infty<\underline{p}(w) \text { and } \underline{q}(w)<+\infty\} . \tag{2.4}
\end{equation*}
$$

2.7 Lemma. $w \in \underline{W}$ if and only if $\underline{p}(w) \leq r \leq \underline{q}(w)$ for at least one $r \in \mathbb{R}$.

Proof. We have $\underline{p}(w) \leq \underline{q}(w)$ by 2.1(i) and our assertion follows from (2.3).
2.8 Remark. The semigroup A is the disjoint union $A=\underline{W} \cup W_{1} \cup W_{2}$, where $W_{1}=\{w \in A \mid \underline{p}(w)=+\infty\}$ and $W_{2}=\{w \in A \mid \underline{q}(w)=-\infty\}$. Of course, if $w \in W_{1}$ then $\underline{q}(w)=+\infty$ and $(d+n w, c) \notin \varrho$ for all $c, d \in B$ and $n \in \mathbb{N}$. Similarly, if $w \in W_{2}$ then $\underline{p}(w)=-\infty$ and $(a, b+m w) \notin \varrho$ for all $a, b \in B$ and $m \in \mathbb{N}$ (see (2.1) and (2.2)).
2.9 Lemma. $\underline{V}=\{w \in W \mid \underline{p}(w) \in \mathbb{R}$ and $\underline{q}(w) \in \mathbb{R}\}$.

Proof. The result follows by an easy combination of (2.4) and 2.1(i).
2.10 Lemma. $B \subseteq \underline{V} \subseteq \underline{W}$.

Proof. First, $B \subseteq \underline{V}$ follows from 2.9 and 2.1(i). Next, $\underline{V} \subseteq \underline{W}$ follows from 2.7 and 2.1(i).
2.11 Lemma. Let C be a subsemigroup of A such that $B \subseteq C$ and h extends to an additive homomorphism $g: C \rightarrow \mathbb{R}$ such that $g(a) \leq g(b)$ whenever $a, b \in C$ and $(a, b) \in \varrho$. Then $C \subseteq \underline{W}$ and $\underline{p}(c) \leq g(c) \leq \underline{q}(c)$ for every $c \in C$.

Proof. If $a, b \in A, c \in C$ and $m \in \mathbb{N}$ are such that $(a, b+m c) \in \varrho$ then $h(a)=g(a) \leq$ $g(b)+m g(c)=h(b)+m g(c)$, and therefore $\frac{h(a)-h(b)}{m} \leq g(c)$. Thus $p(c) \leq g(c)$ and, dually, $g(c) \leq \underline{q}(c)$. By 2.7, $c \in \underline{W}$.
2.12 Corollary. Assume that h extends to an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(u) \leq f(v)$ for all $(u, v) \in \varrho$. Then $\underline{W}=A$.
2.13 Lemma. Assume that B is right (left, resp.) ϱ-cofinal in A (see 2.2). Then:
(i) $\underline{W}=\{w \in A \mid \underline{q}(w)>-\infty\}(\underline{W}-\{w \in A \mid \underline{p}(w)<+\infty\}$, resp. $)$.
(ii) $\underline{V}=\{w \in A \mid \underline{p}(w)>-\infty\} \quad(\underline{V}=\{w \in A \mid \underline{\bar{q}}(w)<+\infty\}$, resp.).
(iii) If $w \in A$ is right (left, resp.) ϱ-archimedean then $w \in \underline{V}$
(iv) If $w \in A$ is such that $k w$ is almost ϱ-positive (almost ϱ-negative, resp.) for some $k \in \mathbb{N}$ then $w \in \underline{V}$.
Proof. (i) By 2.2 (i), $\underline{q}(W)<+\infty$ for every $w \in A$. Since $\underline{p}(w) \leq \underline{q}(w)$, we get $\underline{p}(w)<+\infty$ as well and the result follows from (2.3).
(ii) Again, $\underline{p}(w) \leq \underline{q}(w)<+\infty$ and the result follows from (2.4).
(iii) Combine (ii) and 2.5 .
(iv) Combine (ii) and 2.6.
2.14 Lemma. Let $w \in A$ be right (left, resp.) @-archimedean. Then:
(i) $w \in \underline{W}$ if and only if $\underline{p}(w)<+\infty(-\infty<\underline{q}(w)$, resp.).
(ii) $w \in \underline{V}$ if and only if $\underline{\bar{q}}(w)<+\infty(-\infty<\underline{p}(w)$, resp. $)$.

Proof. We have $-\infty<\underline{p}(w)(\underline{q}(w)<+\infty$, resp.) by $2.5(\mathrm{i})$ and it remains to take into account (2.3) and ($\overline{2} .4$).
2.15 Lemma. Let $w \in A$ be such that $k w$ is almost ϱ-positive (almost ϱ-negative, resp.) for some $k \in \mathbb{N}$. Then:
(i) $w \in \underline{W}$ if and only if $\underline{p}(w)<+\infty(-\infty<\underline{q}(w)$, resp.).
(ii) $w \in \underline{V}$ if and only if $\bar{p}(w)<+\infty(-\infty<\underline{\bar{q}}(w)$, resp.).
(ii) $w \in \underline{V}$ if and only if $\underline{\bar{q}}(w)<+\infty(-\infty<\underline{p}(w)$, resp. $)$.

Proof. We have $p(w) \geq 0(\underline{q}(w) \leq 0$, resp. $)$ by 2.6 and it remains to take into account (2.3) and (2.4).
2.16 Proposition. $\underline{W}=A$ in each of the following five cases:
(1) B is right ϱ-cofinal in A and $\underline{q}(w)>-\infty$ for every $w \in A$;
(2) B is left ϱ-cofinal in A and $\underline{p}(w)<+\infty$ for every $w \in A$;
(3) If $w \in A \backslash B$ then $\underline{p}(w)<+\infty$ and either w is right ϱ-archimedean or $k w$ is almost ϱ-positive for at least one $k \in \mathbb{N}$;
(4) If $w \in A \backslash B$ then $-\infty<q(w)$ and either w is left ϱ-archimedean or $k w$ is almost ϱ-negative for at least one $k \in \mathbb{N}$;
(5) If $w \in A \backslash B$ then at least one of the following four subcases takes place:
(5a) $\underline{p}(w)<+\infty$ and w is right ϱ-archimedean;
(5b) $-\infty<\underline{q}(w)$ and w is left ϱ-archimedean;
(5c) $\underline{p}(w)<+\infty$ and $k w$ is almost ϱ-positive for some $k \in \mathbb{N}$;
(5d) $-\infty<q(w)$ and $k w$ is almost ϱ-negative for some $k \in \mathbb{N}$.
Proof. Combine 2.13, 2.14 and 2.15.
2.17 Proposition. $\underline{V}=A$ in each of the following six cases:
(1) B is both left and right ϱ-cofinal in A;
(2) For all $u, v \in A$ such that $(u, v) \notin \varrho$ there are $a, b \in B$ with $(u+a, v+b) \in \varrho$;
(3) B is right ϱ-cofinal in A and for every $w \in A \backslash B$ at least one of the following three subcases takes place:
(3a) $(a, b+m w) \in \varrho$ for some $a, b \in B$ and $m \in \mathbb{N}$;
(3b) w is right ϱ-archimedean;
(3c) $k w$ is almost ϱ-positive for some $k \in \mathbb{N}$;
(4) B is left ϱ-cofinal in A and for every $w \in A \backslash B$ at least one of the following three subcases takes place:
(4a) $(d+n w, c) \in \varrho$ for some $c, d \in B$ and $n \in \mathbb{N}$;
(4b) w is left ϱ-archimedean;
(4c) $k w$ is almost ϱ-negative for some $k \in \mathbb{N}$;
(5) Every element from A is right ϱ-archimedean;
(6) Every element from A is left ϱ-archimedean.

Proof. Combine 2.3, 2.13, 2.14 and 2.15.
2.18 Remark. Let $w \in A$. If $\varrho \mid \mathbb{N}=$ id then w is apparently both left and right ϱ regular. Now, assume that $\varrho \mid \mathbb{N} \neq$ id. If w is not right ϱ-regular then $(n w, m w) \in \varrho$ for $n>m,((n-m) w+a, a) \in \varrho$ for every $a \in B$ and $\underline{q}(w) \leq 0$. Consequently, if
$q(w)>0$ then w is right ϱ-regular. Similarly, if $p(w)<0$ then w is left ϱ-regular. Finally, if w is neither left nor right ϱ-regular then $\underline{p}(w)=0=\underline{q}(w)$.
2.19 Lemma. Let $w \in A$ be an idempotent (i.e., $2 w=w$). Then $\underline{p}(w)=0=\underline{q}(w)$.

Proof. We have $(v+w, v+2 w) \in \varrho$ for every $v \in A$. Then $(v, v+w) \in \varrho$, since ϱ is cancellative. Similarly, $(v+w, v) \in \varrho$ and we have $9 v+w, v) \in \operatorname{ker}(\varrho)$. The equalities $\underline{p}(w)=0=\underline{q}(w)$ are now clear from (2.1) and (2.2).
2.20 Lemma. Let $w \in A$ be such that $m w=w$ for some $m \in \mathbb{N}, m \geq 2$. Then $\underline{p}(w)=0=\underline{q}(w)$.

Proof. We proceed similarly as in the proof of 2.19.
2.21 Lemma. Let $w \in A$ be such that $m w=n w$ for some $m, n \in \mathbb{N}, m>n$. Then $\underline{p}(w)=0=\underline{q}(w)$.

Proof. Proceeding similarly as in the proof of 2.19, we show that $(v+(m-n) w, v) \in$ $\operatorname{ker}(\varrho)$ for every $v \in A$. The rest is clear from (2.1) and (2.2).
2.22 Lemma. Let $w_{1}, w_{2} \in A$ be such that $-\infty<\underline{p}\left(w_{1}\right)$ and $-\infty<\underline{p}\left(w_{2}\right)$. Then $\underline{p}\left(w_{1}+w_{2}\right) \geq \underline{p}\left(w_{1}\right)+\underline{p}\left(w_{2}\right)$.

Proof. Let $\left(a_{1}, b_{1}+m_{1} w_{1}\right) \in \varrho$ and $\left(a_{2}, b_{2}+m_{2} w_{2}\right) \in \varrho$, where $a_{1}, a_{2}, b_{1}, b_{2} \in B$ and $m_{1}, m_{2} \in \mathbb{N}$. Then $\left.\left.\left(m_{2} a_{1}, m_{2} b_{1}+m_{1} m_{2} w_{1}\right) \in \varrho\right), m_{1} a_{2}, m_{1} b_{2}+m_{1} m_{2} w_{2}\right) \in \varrho$ and $\left(m_{2} a_{1}+m_{1} a_{2}, m_{2} b_{1}+m_{1} b_{2}+m_{1} m_{2}\left(w_{1}+w_{2}\right)\right) \in \varrho$. Consequently, $\underline{p}\left(w_{1}+w_{2}\right) \geq$ $\frac{h\left(m_{2} a_{1}+m_{1} a_{2}\right)-h\left(m_{2} b_{1}+m_{1} b_{2}\right)}{m_{1} m_{2}}=\frac{h\left(a_{1}\right)-h\left(b_{1}\right)}{m_{1}}+\frac{h\left(a_{2}\right)-h\left(b_{2}\right)}{m_{2}}$ and the rest is clear.
2.23 Lemma. Let $w_{1}, w_{2} \in A$ be such $\underline{p}\left(w_{1}\right)<+\infty$ and $\underline{p}\left(w_{2}\right)<+\infty$. Then $\underline{p}\left(w_{1}+w_{2}\right) \geq \underline{p}\left(w_{1}\right)+\underline{p}\left(w_{2}\right)$.
Proof. The result follows from 2.22. If, say, $\underline{p}\left(w_{1}\right)=-\infty$ then $\underline{p}\left(w_{1}\right)+\underline{p}\left(w_{2}\right)=-\infty$ and there is noothing to prove.
2.24 Lemma. Let $w_{1}, w_{2} \in A$ be such that $\underline{q}\left(w_{1}\right)<+\infty$ and $\underline{q}\left(w_{2}\right)<+\infty$. Then $\underline{q}\left(w_{1}+w_{2}\right) \leq \underline{q}\left(w_{1}\right)+\underline{q}\left(w_{2}\right)$.
Proof. This is dual to 2.22 .
2.25 Lemma. Let $w_{1}, w_{2} \in A$ be such that $-\infty<\underline{q}\left(w_{1}\right)$ and $-\infty<\underline{q}\left(w_{2}\right)$. Then $\underline{q}\left(w_{1}+w_{2}\right) \leq \underline{q}\left(w_{1}\right)+\underline{q}\left(w_{2}\right)$.

Proof. This is dual to 2.23 .
2.26 Proposition. Let $w_{1}, w_{2} \in \underline{W}$. Then $\underline{p}\left(w_{1}\right)+\underline{p}\left(w_{2}\right) \leq \underline{p}\left(w_{1}+w_{2}\right) \leq \underline{q}\left(w_{1}+\right.$ $\left.w_{2}\right) \leq \underline{q}\left(w_{1}\right)+\underline{q}\left(w_{2}\right)$.

Proof. By (2.3), we have $\underline{p}\left(w_{1}\right)<+\infty, \underline{p}\left(w_{2}\right)<+\infty,-\infty<\underline{q}\left(w_{1}\right),-\infty<\underline{q}\left(w_{2}\right)$ and it remains to use 2.23 and 2.25 .
2.27 Proposition. \underline{V} is a subsemigroup of A.

Proof. Combine 2.22 and 2.24.

3. Extensions of homomorphisms - Continued

This section immediately continues the preceding one. All the notation is fully kept.
3.1 Lemma. Let $w \in A, a, b \in B, k \in \mathbb{N}$ and $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r$ $(r \leq \underline{q}(w)$, resp. $)$ and $(b, a+k w) \in \varrho((b+k w, a) \in \varrho$, resp. $)$. Then $h(b) \leq h(a)+k r$ $(h(b)+k r \leq h(a), r e s p).$.
Proof. Since $(b, a+k w) \in \varrho$, by (2.1) we have $\frac{h(b)-h(a)}{k} \leq \underline{p}(w) \leq r$. Thus $h(b) \leq$ $h(a)+k r$. The other case is dual.
3.2 Lemma. Let $w \in A, a, b \in B, k, l \in \mathbb{N}$ and $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r \leq \underline{q}(w)$ and $(b+l w, a+k w) \in \varrho$. Then $l r+h(b) \leq k r+h(a)$.

Proof. First, if $l<k$ then $(v, a+(k-l) w) \in \varrho$, since the preordering ϱ is cancellative, and $l r+h(b) \leq k r+h(a)$ by 3.1. Next, if $k<l$ then $(b+(l-k) w, a) \in \varrho$ and our result follows from 3.1 again. Finally, if $k=l$ then $(b, a) \in \varrho$ and $h(b) \leq h(a)$.
3.3 Lemma. Let $w \in A, a \in B, k \in \mathbb{N}$ and $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r(r \leq \underline{q}(w)$, resp.) and $(a, k w) \in \varrho((k w, a) \in \varrho$, resp. $)$. Then $h(a) \leq k r(k r \leq h(a)$. resp. $)$.

Proof. Since $(a, k w) \in \varrho$, we hace $(2 a, a+k w) \in \varrho$ and $2 h(a)=h(2 a) \leq h(a)+k r$ by 3.1. Thus $h(a) \leq k r$. The other case is dual.
3.4 Lemma. Let $w \in A, a \in B, k l \in \mathbb{N}$ and $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r \leq \underline{q}(w)$ and $(l w, a+k w) \in \varrho((l w+a, k w) \in \varrho$, resp. $)$. then $l r \leq h(a)+k r(l r+h(a) \leq k r$, resp.).
Proof. We have $(l w+a, 2 a+k w) \in \varrho$ and 3.3 applies. The other case is dual.
3.5 Lemma. Let $w \in A, k, l \in \mathbb{N}$ and $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r \leq \underline{q}(w)$ and $(l w, k w) \in \varrho$. Then $l r \leq k r$.

Proof. Taking any $a \in B$, we get $(a+l w, a+k w) \in \varrho$ and the result follows from 3.2.
3.6 Proposition. Let $w \in A$ and let $B\langle w\rangle$ be the subsemigroup of A generated by $B \cup\{w\}$. The following conditions are equivalent:
(i) $w \in \underline{W}(\operatorname{see}(2.3))$.
(ii) There is at least one $r \in \mathbb{R}$ with $\underline{p}(w) \leq r \leq \underline{q}(w)$ and for any such r there exists (just one) additive homomorphism $h_{w, r}: B\langle w\rangle \rightarrow \mathbb{R}$ such that $h_{w, r}$ extends $h, h_{w, r}(w)=r$ and $h_{w, r}(u) \leq h_{w, r}(v)$ whenever $u, v \in B\langle w\rangle$ and $(u, v) \in \varrho$.
(iii) There is at least one subsemigroup C of A such that $B \subseteq C, w \in C$ (then $B\langle w\rangle \subseteq C$) and h extends to an additive homomorphism $g: C \rightarrow \mathbb{R}$ such that $g(u) \leq g(v)$ whenever $u, v \in C$ and $(u, v) \in \varrho$.

Proof. (i) implies (ii). Let $r \in \mathbb{R}$ be such that $\underline{p}(w) \leq r \leq \underline{q}(w)$ (see 2.7). If $v \in B\langle w\rangle$ then either $v=a+k w$ for some $a \in B$ and $k \in \mathbb{N}$, and we put $h_{w, r}(v)=$ $h(a)+k r$, or $v \in B$ and we put $h_{w, r}(v)=h(v)$, or, finally $v=k w$ for some $k \in \mathbb{N}$ and we put $h_{w, r}(v)=k r$. It follows from 3.1, 3.2, 3.3, 3.4 and 3.5 that the definition is correct and if $u, v \in B\langle w\rangle$ are such that $(u, v) \in \varrho$ then $h_{w, r}(u) \leq h_{w, r}(v)$.
(ii) implies (iii). This implication is trivial.
(iii) implies (i). By 2.11, $C \subseteq \underline{W}$. Consequently, $w \in \underline{W}$.

In what follows, let $(\underline{\mathcal{W}}(A, B, h)=) \underline{\mathcal{W}}$ denote the set of ordered pairs (C, g), where C is a subsemigroup of A with $B \subseteq C$ and $g: C \rightarrow \mathbb{R}$ is an additive homomorphism extending h such that $g(u) \leq g(v)$ whenever $u, v \in C$ and $(u, v) \in \varrho$. The set $\underline{\mathcal{W}}$ is ordered by inclusion and we denote by $\underline{\mathcal{W}}_{\max }\left(=\underline{\mathcal{W}}_{\max }(A, B, h)\right)$ the set of maximal pairs from $\underline{\mathcal{W}}$.
3.7 Proposition. Let $(C, g) \in \underline{\mathcal{W}}_{\text {max }}(A, B, h)$. Then:
(i) $B \subseteq \underline{V}(A, B, h) \subseteq C \subseteq \underline{W}(A, B, h)$.
(ii) $C=\underline{W}(A, C, g)=\underline{V}(A, C, g)$.
(iii) If $w \in A \backslash C$ then either $\underline{p}(w, A, C, g)=\underline{q}(w, A, C, g)=+\infty$ or $\underline{p}(w, A, C, g)=$ $\underline{q}(w, A, C, g)=-\infty$.

Proof. (i) By $2.10, B \subseteq \underline{V}(A, B, h)$ and, by $2.11, C \subseteq \underline{W}(A, B, h)$. On the other hand, if $w \in \underline{V}(A, B, h)$ then $-\infty<\underline{p}(w, A, B, h) \leq \underline{p}(w, A, C, g) \leq \underline{q}(w, A, C, g) \leq$ $\underline{q}(w, A, B, h)<+\infty($ see (2.1), (2.2) and 2.1(i)). Consequently, $w \in \underline{V}(A, C, g)$. But $\underline{V}(A, C, g)=C$ by 3.6.
(ii) This assertion follows from 3.6 (where B is replaced by C).
(iii) This follows from the equality $C=\underline{W}(A, C, g)$.
3.8 Proposition. For every $w \in \underline{W}(A, B, h)$ there is at at least one pair $(C, g) \in$ $\underline{\mathcal{W}}_{\max }(A, B, h)$ such that $w \in C$.

Proof. The assertion follows from 3.6.
3.9 Proposition. Assume that $\underline{V}(A, B, h)=A$. Then h can be extended to an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(u) \leq f(v)$ whenever $(u, v) \in \varrho$. Furthermore, $(A, f) \in \underline{\mathcal{W}}_{\max }(A, B, h)$, and if $(C, g) \in \underline{\mathcal{W}}_{\max }(A, B, h)$ then $C=A$.

Proof. The result follows easily from 3.7.
3.10 Remark. Various conditions that are sufficient for the equality $\underline{V}(A, B, h)=$ A are formulated in 2.17.
3.11 Proposition. Assume that B is right (left, resp.) ϱ-cofinal in A and that for every $w \in A \backslash B$ there are $a, b \in B$ and $m \in \mathbb{N}$ such that $(a, b+m w) \in \varrho$ $((b+m w, a) \in \varrho$, resp.). Then h extends to an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.

Proof. By 2.17, $\underline{V}(A, B, h)=A$ and 3.9 applies.
3.12 Proposition. Assume that every element from A is right (left, resp.) ϱ archimedean and that $h(B) \neq 0$. Then $h(B) \subseteq \mathbb{R}^{+}\left(h(B) \subseteq \mathbb{R}^{-}\right.$, resp.) and h extends to an additive homomorphism $f: A \rightarrow \mathbb{R}^{+}\left(f: A \rightarrow \mathbb{R}^{-}\right.$, resp.) such that $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.

Proof. First, for every $a \in B$ there is $m \in \mathbb{N}$ with $(a, 2 m a) \in \varrho$, hence $h(a) \leq$ $2 m h(a),(2 m-1) h(a) \geq 0$ and $h(a) \geq 0$. Thus $h(B) \subseteq \mathbb{R}_{0}^{+}$. Since $h(B) \neq 0$, we have $h\left(a_{0}\right.$ for at least one $a_{0} \in B$. Given $b \in B$, there is $n \in \mathbb{N}$ with $\left(a_{0}, n b\right) \in \varrho$. Then $0<h\left(a_{0}\right) \leq n h(b)$ and $h(b)>0$. Thus $h(B) \subseteq \mathbb{R}^{+}$. Furthermore, by 2.17, $\underline{V}(A, B, h)=A$ and, by $3.9, h$ extends to an additive homomorphism $f: A \rightarrow \mathbb{R}$. Proceeding similarly as above, we show that $f(A) \subseteq \mathbb{R}^{+}$.
3.13 Proposition. Assume that B is right (left, resp.) ϱ-cofinal in A and that for every $w \in B \backslash A$ (that is not right ϱ-archimedean) there is at least one $m_{w} \in \mathbb{N}$ such that $m_{w} w$ is almost ϱ-positive (almost ϱ-negative, resp.). Then h extends to an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(A \backslash B) \subseteq \mathbb{R}_{0}^{+}\left(f\left(A \backslash B \subseteq \mathbb{R}_{0}^{-}\right.\right.$, resp.) and $f(u) \leq f(v)$ for all $(u, v) \in \varrho$. If $h(B) \subseteq \mathbb{R}_{0}^{+}\left(h(B) \subseteq \mathbb{R}_{0}^{-}\right.$, resp.) then $f(A) \subseteq \mathbb{R}_{0}^{+} \quad\left(f(A) \subseteq \mathbb{R}_{0}^{-}\right.$, resp. $)$.
Proof. It follows easily from 3.11 that h extends to an additive homomorphism $f: A \rightarrow \mathbb{R}$ preserving the preordering. If $w \in A \backslash B$ and $a \in B$ then $\left(a, a+m_{w} w\right) \in \varrho$, so that $f(a) \leq f(a)+m_{w} f(w)$ and $0 \leq f(w)$.

4. Extensions of homomorphisms of ONE-GENERATED SUBSEMIGROUPS - INTRODUCTION

Throughout this section, let A be a commutative semigroup, ϱ be a cancellative and stable preordering defined on A and $z \in A$ be right ϱ-regular. Then $B=$ $\mathbb{N} z \cong \mathbb{N}$ and $\left(h_{z}=\right) h: B \rightarrow \mathbb{R}^{+}$, where $h(n z)=n$ for every $n \in \mathbb{N}$, is an injective additive homomorphism such that $h(z)=1$ and $h(a) \leq h(b)$ whenever $a, b \in B$ and $(a, b) \in \varrho$.
4.1 Lemma. Let $w \in$ A. Then:
(i) $\underline{p}(w)=\sup \left\{\left.\frac{k-l}{m} \right\rvert\, k, l, m \in \mathbb{N},(k z, l z+m w) \in \varrho\right\}$.
(ii) $\underline{q}(w)=\inf \left\{\left.\frac{k-l}{n} \right\rvert\, k . l . n \in \mathbb{N},(n w+l z, k z) \in \varrho\right\}$.
(iii) $-\infty \leq \underline{p}(w) \leq \underline{q}(w) \leq+\infty$.
(iv) $\underline{p}(m z)=\underline{q}(m z)=m$ for every $m \in \mathbb{N}$.

Proof. We have $B=\mathbb{N} z$ and the reast is clear from (2.1), (2.2) and 2.1.
4.2 Lemma. Assume that at least one of the following three conditions is satisfied for $w \in A$:
(1) w is right ϱ-archimedean in A;
(2) $\left(k_{0} z, l_{0} z+m_{0} w\right) \in \varrho$ for some $k_{0}, l_{0}, m_{0} \in \mathbb{N}, k_{0}>l_{0}$;
(3) $\underline{p}(w)>0$.

Then $\underline{p}(w)=\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N},(k z, m w) \in \varrho\right\}>0$.
Proof. Clearly, (1) implies (2) and (2) is equivalent to (3). Now, if (2) is true then $\bar{p}(w)=\sup \left\{\left.\frac{k-l}{m} \right\rvert\, k, l, m \in \mathbb{N}, k>l,(k z, l z+m w) \in \varrho\right\}$ and our assertion follows $\overline{\text { from the fact that } \varrho \text { is cancellative. }}$
4.3 Lemma. Assume that $\underline{p}(w) \geq 0$ (e.g. if $m_{0} w$ is almost ϱ-positive for some $\left.m_{0} \in \mathbb{N}\right)$. Then $\underline{p}(w)=\sup \left(\{0\} \cup\left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N},(k z, m w) \in \varrho\right\}\right) \geq 0$.
Proof. Clearly, $\underline{p}(w)=\sup \left\{\left.\frac{k-l}{m} \right\rvert\, k, l, m \in \mathbb{N}, k \geq l,(k z, l z+m w) \in \varrho\right\}$ and the rest is clear.
4.4 Lemma. Assume that $\underline{q}(w)>0$. Then $\underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.

Proof. Since $\underline{q}(w)>0$, we have $k>l$ whenever $k, l, n \in \mathbb{N}$ are such that $(n w+$ $l z, k z) \in \varrho$. Then $(n w,(k-l) z) \in \varrho$ and our result follows.
4.5 Proposition. If $\underline{p}(w)>0$ then $\underline{p}(w)=\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N},(k z, m w) \in \varrho\right\}$ and $\underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.
Prtoof. We have $\underline{q}(w) \geq \underline{p}(w)$ and it suffices to use 4.2 and 4.4.
4.6 Proposition. Assume that $\underline{p}(w)=0$. Then:
(i) $k \geq l$ whenever $k, l, m \in \mathbb{N}$ are such that $(l z, l z+m w) \in \varrho$.
(ii) There are $k_{0}, l_{0}, m_{0} \in \mathbb{N}$ such that $k_{0} \leq l_{0}$ and $\left(k_{0} z, l_{0} z+m_{0} w\right) \in \varrho$. If $k_{0}=l_{0}$ then $m_{0} w$ is almost ϱ-positive.
(iii) Suppose that $m_{1} w$ is not almost ϱ-positive for any $m_{1} \in \mathbb{N}$. Then $0=\underline{p}(w)=$ $\sup \left\{\left.\frac{1-t}{m} \right\rvert\, t, m \in \mathbb{N}, t \geq 2,(z, t z+m w) \in \varrho\right\}$ and $(t-1) z+m w$ is almost ϱ-positive.
Proof. (i) This follows from 4.1(i).
(ii) The existence of the numbers k_{0}, l_{0}, m_{0} follows from $4.1(1)$ and the fact that $\underline{p}(w)=0$. Furthermore, if $k_{0}=l_{0}$ then $\left(v+k_{0} z, v+l_{0} z+m_{0} w\right) \in \varrho$ for every $v \in A$. Since ϱ is cancellative, we get $\left(v, v+m_{0} w\right) \in \varrho$ and this means that $m_{0} w$ is almost ϱ-positive.
(iii) If $k, l, m \in \mathbb{N}$ are such that $(k z, l z+m w) \in \varrho$ then from (i) and (ii) follows that $k<l$ and we get $(z,(l-k+1) z+m w) \in \varrho, t=l-k+1 \geq 2$. The rest is clear from 4.1(i).
4.7 Proposition. (cf. 4.5 and 4.6) Assume that $\underline{q}(w)=0$. Then at least one of the following two cases holds:
(1) $\underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w . l z) \in \varrho\right\} ;$
(2) $\bar{k}=l$ whenever $k, l, n \in \mathbb{N}$ are such that $(m w+l z, k z) \in \varrho$, and there are $n_{0}, k_{0} \in \mathbb{N}$ such that $\left(n_{0} w+k_{0} z, k_{0} z\right) \in \varrho$ and $n_{0} w$ is almost ϱ-positive (then $\left.\left(n_{0} w+z, z\right) \in \varrho\right)$.

Proof. Assume that (1) is not true. We have $\underline{q}(w)=0$ and it follows that $k \geq l$ whenever $k, l, n \in \mathbb{N}$ are such that $(n w+l z, k z) \in \varrho$. If $k>l$ then $(n w,(k-l) z) \in \varrho$. Now, since (1) is not true, there are $n_{0}, k_{0} \in \mathbb{N}$ with $\left(n_{0} w+k_{0} z, k_{0} z\right) \in \varrho$. Then $n_{0} w$ is almost ϱ-negative and $\left(n_{0} w+z, z\right) \in \varrho$. Put $\alpha=\inf \left\{\left.\frac{k-l}{n} \right\rvert\, k, l, n \in \mathbb{N}, k>l,(n w+\right.$ $l z, k z) \in \varrho\} \subseteq \mathbb{R}_{0}^{+} \cup\{+\infty\}$. Since (1) is not true, we have $\alpha>0$. If $\alpha=+\infty$ then (2) is true. Consequently, assume finally that $\alpha<+\infty$. Since $\alpha>0$, there is $t \in \mathbb{N}$ such that $t k \geq n+t l$ whenever $k, l, n \in \mathbb{N}$ are such that $k>l$ and $(n w+l z, k z) \in \varrho$. Furthermore, since $\alpha<+\infty,\left(n_{1} w+l_{z}, k_{1} z\right) \in \varrho$ for some $k_{1}, l_{1}, n_{1} \in \mathbb{N}, k_{1}>l_{1}$. We have $p=t k_{1}-t l_{1}-n_{1} \geq 0$ and there is $q \in \mathbb{N}$ with $q n_{0}>p$. However, $q n_{0} w$ is almost ϱ-negative, and hence $\left(\left(n_{1}+q n_{0}\right) w+\left(l_{1}+1\right) z,\left(k_{1}+1\right) z\right) \in \varrho$. Now, $t\left(k_{1}+1\right) \geq n_{1}+q n_{0}+t(l+1+1)$ and then $p=t k_{1}-t l_{1}-n_{1} \geq q n_{0}$, a contradiction.
4.8 Proposition. Assume that $\underline{q}(w)>0$ and that $m w$ is not almost ϱ-negative for any $m \in \mathbb{N}$. Then $q(w)=\inf \left\{\frac{l}{n} \overline{\mid} l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.

Proof. Combine 4.4 and 4.7.
4.9 Remark. Assume that $\underline{p}(w)=0$ (see 4.6) and $4.7(2)$ is true. Then $n_{0} w$ is almost ϱ-negative for some $n_{0}^{-} \in \mathbb{N}$. Furthermore, $\left(k_{0} z, l_{0} z+m_{0} w\right) \in \varrho$ for some $k_{0}, l_{0}, m_{0} \in \mathbb{N}, k_{0} \leq l_{0}$. If $k_{0}=l_{0}$ then $m_{0} w$ is almost ϱ-positive. In such a case, the element $t w$, where $t=n_{0} m_{0}$, is both almost ϱ-positive and almost ϱ negative. Consequently, $(v, v+t w) \in \operatorname{ker}(\varrho)$ for every $v \in A$ (if ϱ is an ordering then $t w=0_{A} \in A$).
4.10 Proposition. (i) If z is right ϱ-archimedean then $\underline{q}(w)<+\infty$ for every $w \in A$.
(ii) If z is left ϱ-archimedean then $1 \leq \underline{p}(w)$ for every $w \in A$.
(iii) If $w \in A$ is right ϱ-archimedean then $p(w)>0$.
(iv) If $w \in A$ is left ϱ-archimedean then $\underline{q}(w) \leq 1$.
(v) If $m w$ is almost ϱ-positive for some $m \in \mathbb{N}$ then $\underline{p}(w) \geq 0$.
(vi) If $n w$ is almost ϱ-negative for some $n \in \mathbb{N}$ then $\underline{q}(w) \leq 0$.

Proof. (i) There is $m \in \mathbb{N}$ with $(w, m z) \in \varrho$. Then $(w+z,(m+1) z) \in \varrho$ and $q(w) \leq m$ by 4.1(ii).
(ii) There is $n \in \mathbb{N}$ with $(n z, w) \in \varrho$. Then $((n+1) z, z+w) \in \varrho$ and $\underline{p}\left(w_{\geq} n\right.$ by 4.1(i).
(iii) There is $m \in \mathbb{N}$ with $(z, m w) \in \varrho$. Then $(2 z, z+m w) \in \varrho$ and $\underline{p}(w) \geq \frac{1}{m}>0$ by 4.1(i).
(iv) There is $n \in \mathbb{N}$ with $(n w, z) \in \varrho$. Then $(n w+z, 2 z) \in \varrho$ and $\underline{q}(w) \leq \frac{1}{n} \leq 1$ by 4.1(ii).
(v) We have $(z, z+m w) \in \varrho$, and hence $p(w) \geq 0$ by 4.1(i).
(vi) We have $(n z+z, z) \in \varrho$, and gence $\underline{q}(w) \leq 0$ by 4.1(ii).
4.11 Proposition. (i) If $w \in A$ is right ϱ-archimedean then $0<\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in\right.$ $\mathbb{N},(k z, m w) \in \varrho\}=\underline{p}(w) \leq \underline{q}(w)=\inf \left\{\left.\frac{j}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$. If, moreover, z is right ϱ-archimedean then $\underline{q}(w)<+\infty$. If z is left ϱ-archimedean then $1 \leq \underline{p}(w)$.
(ii) If both z and w are left ϱ-archimedean then $\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N},(k z, m w) \in \varrho\right\}=$ $\underline{p}(w)=1=\underline{q}(w)-\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.
Proof. (i) By 4.10(iii), we have $\underline{p}(w)>0$ and the rest follows from 4.2, 4.4, 4.10(i) and 4.10 (iv).
(ii) We have $1 \leq \underline{p}(w) \leq \underline{q}(w) \leq 1$ by 4.10 (ii),(iv). Thus $\underline{p}(w)=1=\underline{q}(w)$ and the rest follows from $\overline{4} .2$ and 4.4 .
4.12 Proposition. Let $w \in A$ be such that $m_{0} w$ is almost ϱ-positive for some $m_{0} \in \mathbb{N}$. Then at least one of the following four cases holds:
(1) $0<\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N}(k z, m w) \in \varrho\right\}=\underline{p}(w) \leq \underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in\right.$ $\mathbb{N},(n w, l z) \in \varrho\}$.
(2) $0=\underline{p}(w)<\underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.
(3) $0=\underline{p}(w)=\underline{q}(w)=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(n w, l z) \in \varrho\right\}$.
(4) $\underline{p}(w)^{-}=0=\underline{q}(w)$ and there is $t \in \mathbb{N}$ such that $t w$ is both almost ϱ-positive \bar{a} and almost ϱ-negative (i.e., $(t w+v, v) \in \operatorname{ker}(\varrho)$ for every $v \in A)$.

Proof. We have $\underline{p}(w) \geq 0$ by $4.10(\mathrm{v})$. The rest follows from 4.2, 4.4 and 4.8.
4.13 Remark. Let $z_{1} \in A$ be right ϱ-regular. Put $p_{1}=p\left(z_{1}, A, \mathbb{N} z, h\right), q_{1}=$ $\underline{q}\left(z_{1}, A, \mathbb{N} z, h\right), p_{2}=\underline{p}\left(z, A, \mathbb{N} z_{1}, h_{z_{1}}\right), q_{2}=\underline{q}\left(z, A, \mathbb{N} z_{1}, h_{z_{1}}\right)$ (see (2.1) and (2.2)).
(i) Now, assume that $0<p_{1}$ and $0<q_{2}$. Then $p_{1}=\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in \mathbb{N},\left(k z, m z_{1}\right) \in\right.$ $\varrho\}$ and $q_{2}=\inf \left\{\left.\frac{m}{k} \right\rvert\, k, m \in \mathbb{N},\left(k z, m z_{1}\right) \in \varrho\right\}$. Since $p_{1}>0$, we have $q_{2}<+\infty$ and, since $q_{2}>0$, we have $p_{1}<+\infty$. Using this, we calculate easily that $p_{1} q_{2}=1$. Similarly, if $0<p_{2}$ and $0<q_{1}$ then $p_{2} q_{1}=1$. (Notice that $0<p_{1}$ implies $0<q_{1}$ and $0<p_{2}$ implies $0<q_{2}$. Thus $0<p_{1}$ and $0<p_{2}$ implies $q_{2}=\frac{1}{p_{1}}$ and $q_{1}=\frac{1}{p_{2}}$.)
(ii) If $p_{1}=1$ and $0<q_{2}$ then $q_{2}=1$. If $q_{2}=1$ and $0<p_{1}$ then $p_{1}=1$. If $p_{2}=1$ and $0<q_{1}$ then $q_{1}=1$. If $q_{1}=1$ and $0<p_{2}$ then $p_{2}=1$. If $p_{1}=1=q_{1}$ and $0<p_{2}$ then $p_{2}=1=q_{2}$. If $p_{2}=1=q_{2}$ and $0<p_{1}$ then $p_{1}=1=q_{1}$.
4.14 Remark. Let $w \in A$ be such that $\underline{p}(w)=1=\underline{q}(w)$. Then $\sup \left\{\left.\frac{k}{m} \right\rvert\, k, m \in\right.$ $\mathbb{N},(k z, m w) \in \varrho\}=1=\inf \left\{\left.\frac{l}{n} \right\rvert\, l, n \in \mathbb{N},(\bar{n} w, l z) \in \varrho\right\}$. Furthermore, suppose that
$f: A \rightarrow \mathbb{R}$ is an additive homomorphism such that $f(u) \leq f(v)$ for all $(u, v) \in \varrho$. Then $\frac{k f(z)}{m} \leq f(w) \leq \frac{l f(z)}{n}$ and we conclude that $f(z)=f(w)$.
4.15 Proposition. Let $w \in A$ Then:
(i) If $q(w)>0$ then w is right ϱ-regular.
(ii) If $p(w)<0$ then w is left ϱ-regular.
(iii) If w is neither right nor left ϱ-regular then $\varrho \mid \mathbb{N} w \neq \mathrm{id}$ and $\underline{p}(w)=0=\underline{q}(w)$.

Proof. See 2.18.

5. Local summary

As usual in this paper, let ϱ be a stable and cancellative preordering defined on a commutative semigroup A.
5.1 Theorem. Let $z \in A$ be right ϱ-archimedean and right ϱ-regular (cf. 1.22, 5.4). Suppose that for every $w \in A$ there are positive integers m, n such that $n z+m w$ or $m w$ is almost ϱ-positive. Then there is an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(z)=1$ and $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.

Proof. Put $B=\mathbb{N} z$ and $h(k z)=k$ for every $k \in \mathbb{N}$. Since z is right ϱ-regular, $B \cong \mathbb{N}$ and h is an injective additive homomorphism of B into \mathbb{R} such that $h(z)=1$ and $h(a) \leq h(b)$ for all $a, b \in B$ such that $(a, b) \in \varrho$. If $n z+m w$ is almost ϱ-positive then $(z,(n+1) z+m w) \in \varrho$ and $-\frac{n}{m} \leq p(w)$ by 4.1(i). If $m w$ is almost ϱ-positive then $(z, z+m w) \in \varrho$ and $0 \leq p(w)$ by $\overline{4} 1(\mathrm{i})$. Since z is right ϱ-archimedean, we have $q(w)<+\infty$ by 4.10 (i). Thus $-\infty<p(w) \leq q(w)<+\infty$ for every $w \in A \backslash B$ and it follows from 2.9 and 2.10 that $A=\underline{V}(A, B, h)$. Now it remains to use 3.9.
5.2 Theorem. Let $z \in A$ be right ϱ-archimedean and right ϱ-regular (cf. 1.22, 5.4). Suppose that for every $w \in B \backslash A$ (such that w is not right ϱ-archimedean) there is a positive integer m such that $m w$ is almost ϱ-positive. Then there is an additive homomorphism $f: A \rightarrow \mathbb{R}_{0}^{+}$such that $f(z)=1$ and $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.

Proof. Put $B=\mathbb{N} z$ and $h(k z)=k$ for every $k \in \mathbb{N}$. Since z is right ϱ-regular, $B \cong \mathbb{N}$ and h is an injective additive homomorphism such that $h(z)=1$ and $h(a) \leq h(b)$ for all $a, b \in B,(a, b) \in \varrho$. If $m w$ is almost ϱ-positive then $(z, z+m w) \in \varrho$ and $p(w) \geq 0$ by 4.1 (i). If w is right ϱ-archimedean then $p(w)>0$ by 4.10 (iii). Furthermore, since z is right ϱ-archimedean, we have $\underline{q}(w)<+\infty$ by 4.10(i). Thus $0 \leq \underline{p}(w) \leq \underline{q}(w)<+\infty$ for every $w \in A \backslash B$ and it remains to use 3.13.
5.3 Theorem. (cf. 5.4) Assume that every element from A is right ϱ-archimedean. Then, for every right ϱ-regular element $z \in A$, there is an additive homomorphism $f: A \rightarrow \mathbb{R}^{+}$such that $f(z)=1$ and $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.

Proof. Again, put $B=\mathbb{N} z, h(n z)=z$ and use 3.12.
5.4 Remark. Assume that $A / \operatorname{ker}(\varrho)$ is not a torsion group. Let $z \in A$ be such that z is right ϱ-archimedean, but not right ϱ-regular. By 1.22 , every element from A is neither right ϱ-regular nor almost ϱ-positive. Besides, for all $a \in A$ and $m \in \mathbb{N}$, $m \geq 2$, the element $m a$ is not right ϱ-archimedean.
5.5 Theorem. Let $z \in A$ be right ϱ-regular. Suppose that for all $u_{1}, v_{1} \in A$ such that $\left(u_{1}, v_{1}\right) \notin \varrho$ there is a positive integer m such that either $\left(u_{1}+m z, v_{1}\right) \in \varrho$ or $\left(u_{1}, v_{1}+m z\right) \in \varrho$. Then there is an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(z)=1$ and $f(u) \leq f(v)$ for all $(u, v) \in \varrho$.
Proof. Put $B=\mathbb{N} z$ and $h(n z)=n$ for every $n \in \mathbb{N}$. If $u_{1}, v_{1} \in A$ are such that $\left(u_{1}, v_{1}\right) \notin \varrho$ then $\left(u_{1}+m z, v_{1}\right) \in \varrho\left(\left(u_{1}, v_{1}+, z\right) \in \varrho\right.$, resp.) for some $m \in \mathbb{N}$ and we get $\left(u_{1}+(m+1) z, v_{1}+z\right) \in \varrho\left(\left(u_{1}+z, v_{1}+(m+1) z\right) \in \varrho\right.$, resp.). Consequently, the condition $2.17(2)$ is satisfied and it remains to use 3.9.
5.6 Proposition. Let $z \in A$ be right ϱ-regular, $B=\mathbb{N} z$ and $h(m z)=m$ for every $m \in \mathbb{N}$. Then $\underline{V}(A, B, h)=A$ if and only if every element $w \in A(w \in A \backslash B)$ satisfies at least one of the following four conditions:
(1) $\left(n_{1} z, m_{1} w\right) \in \varrho$ and $\left(m_{2} w, n_{2} z\right) \in \varrho$ for some $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ (then $\left(n_{1} m_{2} z, m_{1} m_{2} w\right) \in \varrho,\left(m_{1} m_{2} w, n_{2} m_{1} z\right) \in \varrho,\left(n_{1} m_{2} z, n_{2} m_{2} z\right) \in \varrho, n_{1} m_{2} \leq$ $n_{2} m_{1},\left(n_{1} m_{2} w, n_{1} n_{2} z\right) \in \varrho,\left(n_{1} n_{2} z, n_{2} m_{1} w\right) \in \varrho,\left(n_{1} m_{2} w, n_{2} m_{1} w\right) \in \varrho$ and $0<\underline{p}(w) \leq \underline{q}(w)<+\infty) ;$
(2) There are $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ such that $m_{1} w+n_{1} z$ is almost ϱ-positive and $\left(m_{2} w, n_{2} z\right) \in \varrho$ (then $\left(m_{1} m_{2} w, n_{2} m_{1} z\right) \in \varrho, m_{1} m_{2} w+n_{1} m_{2} z$ is almost ϱ-positive, $\left(m_{1} m_{2} w+n_{1} m_{2} z,\left(n_{1} m_{2}+n_{2} m_{1}\right) z\right) \in \varrho$ and $\left(n_{1} m_{2}+n_{2} m_{1}\right) z$ is almost ϱ-positive);
(3) $m w$ is both almost ϱ-positive and almost ϱ-negative for some $m \in \mathbb{N}$ (then $(x, x+m v) \in \operatorname{ker}(\rho)$ for every $x \in A$ and $\underline{p}(w)=0=\underline{q}(w)) ;$
(4) $m w+n z$ is both almost ϱ-positive and almost ϱ-negative for some $n, m \in \mathbb{N}$ (then $\left.\underline{p}(w)=-\frac{n}{m}=\underline{q}(w)<0\right)$.
Proof. (i) Let $w \in \underline{V}(A, B, h)$. Then we have $-\infty<\underline{p}(w) \leq \underline{q}(w)<+\infty$ and, according to $4.1(\mathrm{i}),(\mathrm{ii})$, there are $k_{1}, k_{2}, l_{1}, l_{2}, m_{1}, m_{2} \in \mathbb{N}$ such that $\left(k_{1} z, l_{z}+m_{1} w\right) \in$ ϱ and $\left(m_{2} w+l_{2} z, k_{2} z\right) \in \varrho$. Now, we have to distinguish the following eight cases: (i1) Let $k_{1}>l_{1}$ and $k_{2}>l_{2}$. Since ϱ is cancellative, we get $\left(n_{1} z, m_{1} w\right) \in \varrho$ and $\left(m_{2} w, n_{2} z\right) \in \varrho$, where $n_{1}=k_{1}-l_{1} \in \mathbb{N}$ and $n_{2}=k_{2}-l_{2} \in \mathbb{N}$. Thus (1) is true.
(i2) Let $k_{1}>l_{2}$ and $k_{2} \leq l_{2}$. Then $\left(n_{1} z, m_{1} w\right) \in \varrho$ and $\left(m_{2} w+n_{2} z, z\right) \in \varrho$, where $n_{1}=k_{1}-l_{1} \in \mathbb{N}$ and $n_{2}=l_{2}-k_{2}+1 \in \mathbb{N}$. Consequently, $\left(n_{1} m_{2} z, m_{1} m_{2} w\right) \in \varrho$, $\left(m_{1} m_{2} w+m_{1} n_{2} z, m_{1} z\right) \in \varrho,\left(\left(n_{1} m_{2}+m_{1} n_{2}\right) z, m_{1} m_{2} w+m_{1} n_{2} z\right) \in \varrho,\left(\left(n_{1} m_{2}+\right.\right.$ $\left.\left.m_{1} n_{2}\right) z, m_{1} z\right) \in \varrho$ and $n_{1} m_{2}+m_{1} n_{2} \leq m_{1}$, since z is right ϱ-regular. But his is a contradiction.
(i3) Let $k_{1}=l_{1}$ and $k_{2}>l_{2}$. Then $\left(z, z+m_{1} w\right) \in \varrho$ and $\left.\left(m_{2} w, n\right) 2 z\right) \in \varrho$, where $n_{2}=k_{2}-l+2 \in \mathbb{N}$. Now, $m_{1} w$ is almost ϱ-positive, $m_{1} m_{2} w$ is almost ϱ-positive, $n_{2} m_{1} z$ is almost ϱ-positive and, finally, $m_{1} w+n_{2} m_{1} z$ is almost ϱ-positive. Thus (2) is true.
(i4) Let $k_{1}=l_{1}$ and $k_{2}=l+2$. Then $\left.\left(z, z+m_{1} w\right) \in \varrho,(m) 2 w+z, z\right) \in \varrho, m_{1} w$ is almost ϱ-positive and $m_{2} w$ is almost ϱ-negative. Now, $m_{1} m_{2} w$ is both almost ϱ-positive and almost ϱ-negative and (4) is true.
(i5) Let $k_{1}=l_{1}$ and $k_{2}<l_{2}$. Then $\left(z, z+m_{1} w\right) \in \varrho$ and $\left(m_{2} w+n_{2} z, z\right) \in \varrho$, where $n_{2}=l_{2}-k_{2}+1 \in \mathbb{N}, n_{2} \geq 2$. Now, $m_{1} w$ is almost ϱ-positive, $m_{1} m_{2} w$ is almost ϱ-positive, $\left(m_{1} z, m_{1} z+m_{1} m_{2} w\right) \in \varrho,\left(m_{1} m_{2} w+m_{1} n_{2} z, m_{1} z\right) \in \varrho,\left(m_{1} m_{2} w+w+\right.$ $\left.m+1 n_{2} z, m_{1} m_{2} w+m_{1} z\right) \in \varrho,\left(m_{1} n_{2} z, m_{1} z\right) \in \varrho, m_{1} n_{2} \leq m_{1}$ and and $n_{2} \leq 1$ since z is right ϱ-regular, but this is a contradiction.
(i6) Let $k_{1}<l_{1}$ and $k_{2}>l_{2}$. Then $\left(z, k_{1} z+m_{1} w\right) \in \varrho$ and $\left(m_{2} w, n_{2} z\right) \in \varrho$, where $n_{2}=k_{2}-l_{2} \in \mathbb{N}$. Put $k_{3}=l_{1}-k_{1}+1 \in \mathbb{N}$. Then $k_{3} \geq 2$ and $n_{1} z+m_{1} w$ is almost
ϱ-positive, where $n_{1}=k_{3}-1 \in \mathbb{N}$. Thus (2) is true.
(i7) Let $k_{1}<l_{1}$ and $k_{2}=l_{2}$. Then $\left(z, k_{3} z+m_{1} w\right) \in \varrho$, where $k_{3}=l_{1}-k_{1}+1 \in \mathbb{N}$, $k_{3} \geq 2$, and $\left(z+m_{2} w, z\right) \in \varrho$. Now, $n_{1} z+m_{1} w$ is almost ϱ-positive, where $n_{1}=k_{3}-1 \in \mathbb{N}$, and $m_{2} w$ is almost ϱ-negative. Consequently, $n_{1} m_{2} z+m_{1} m_{2} w$ is almost ϱ-positive and $m_{1} m_{2} w$ is almost ϱ-negative. It follows easily that $n_{1} m_{2} z$ is almost ϱ-positive. Now, $\left(m_{1} m_{2} w+z, z\right) \in \varrho,\left(z,\left(n_{1} m_{2}+\right) z\right) \in \varrho$, and hence $\left(m_{1} m_{2} w, m_{1} m_{2} z\right) \in \varrho$. Thus (2) is true.
(i8) Let $k_{1}<l_{1}$ and $k_{2}<l_{2}$. Then $\left(z, k_{3} z+m_{1} w\right) \in \varrho$, where $k_{3}=l_{1}-k_{1}+1 \in \mathbb{N}$, $k_{3} \geq 2$ and $\left(m_{2} w+k_{4} z, z\right) \in \varrho$, where $k_{4}=l_{2}-k_{2}+1 \in \mathbb{N}, k_{4} \geq 2$. Now, $n_{1} z+m_{1} w$ is almost ϱ-positive and $m_{2} w+n_{2} z$ is almost ϱ-negative, where $n_{1}=$ $k_{3}-1 \in \mathbb{N}$ and $n_{2}=k_{4}-1 \in \mathbb{N}$. Consequently, $n_{1} m_{2} z+m_{1} m_{2} w$ is almost ϱ-positive, $n_{2} m_{1} z+m_{1} m_{2} w$ is almost ϱ-negative, $\left(z,\left(n_{1} m_{2}+1\right) z+m_{1} m_{2} w\right) \in \varrho$, $\left(\left(n_{2} m_{1}+1\right) z+m_{1} m_{2} w, z\right) \in \varrho,\left(\left(n_{2} m_{1}+1\right) z,\left(n_{1} m_{2}+1\right) z\right) \in \varrho,\left(n_{2} m_{1} z, n_{1} m_{2} z\right) \in \varrho$ and $n_{2} m_{1} \leq n_{1} m_{2}$ since z is right ϱ-regular.

If $n_{2} m_{1}<n_{1} m_{2}$ then $\left(n_{1} m_{2}-n_{2} m_{1}\right) z$ is almost ϱ-positive. On the other hand, $\left(n_{1} m_{2}-n_{2} m_{1}\right) n_{2} m_{1} z+\left(n_{1} m_{2}-n_{2} m_{1}\right) m_{1} m_{2} w$ is almost ϱ-negative and ($n_{1} m_{2}-$ $\left.n_{2} m_{1}\right) n_{2} m_{1} z$ is almost ϱ-positive. Now, it follows easily that the element ($n_{1} m_{2}-$ $\left.n_{2} m_{1}\right) m_{1} m_{2} w$ is almost ϱ-negative. Thus (3) is true.

Finally, if $n_{2} m_{1}=n_{1} m_{2}$ then $m w+n z$ is both almost ϱ-positive and almost ϱ-negative, where $m=m_{1} m_{2}$ and $n=n_{1} m_{2}=n_{2} m_{1}$. Thus (4) is true.
(ii) Let $w \in A$ satisfy at least one of the four conditions (1), .., (4). One checks easily that $-\infty<\underline{p}(w)$ and $\underline{q}(w)<+\infty$.
5.7 Proposition. Assume that no element from A is both almost ϱ-positive and almost ϱ-negative (equivalently, $0 \notin A / \operatorname{ker}(\varrho)$). Let $z \in A$ be right ϱ-regular, $B=$ $\mathbb{N} z$ and $h(m z)=m$ for every $m \in \mathbb{N}$. Then $\underline{V}(A, B, h)=A$ if and only if every element $w \in A(w \in A \backslash B)$ satisfies at least one of the following two conditions:
(1) $\left(n_{1} z, m_{1} w\right) \in \varrho$ and $\left(m_{2} w, n_{2} z\right) \in \varrho$ for some $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$;
(2) There are $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ such that $m_{1} w+n_{1} z$ is almost ϱ-positive and $\left(m_{2} w, n_{2} z\right) \in \varrho$.

Proof. Use 5.6.
5.8 Proposition. Let $z \in A$ be right ϱ-regular and $B=\mathbb{N} z$. Assume that every element from $A \backslash B$ is almost ϱ-positive. Then $\underline{V}(A, B, h)=A$ if and only if every element $w \in A(w \in A \backslash B)$ satisfies at least one of the following two conditions:
(1) $(m w, n z) \in \varrho$ for some $m, n \in \mathbb{N}$ (then $n z$ is almost ϱ-positive);
(2) $m w$ is both almost ϱ-positive and almost ϱ-negative for some $m \in \mathbb{N}$ (then $m w \notin B$ and $(x, x+m w) \in \operatorname{ker}(\varrho)$ for every $x \in A)$.

Proof. Since every element from $A \backslash B$ is almost ϱ-positive, we have $\underline{p}(w) \geq 0$ for every $w \in A$. Now, $w \in \underline{V}$ if and only if $\underline{q}(w)<+\infty$, i.e., $(m w+l z, k z) \in \varrho$ for some $k, l, m \in \mathbb{N}$. Suppose that this is true. If $w \in B$ then (1) is true. If $w \notin B$ then w is almost ϱ-positive, and hence $(l z, m w+l z) \in \varrho$. Then $(l z, k z) \in \varrho$ and $l \leq k$, since z is right ϱ-regular. If $l<k$ then $(m w, n z) \in \varrho$, where $n+k-l \in \mathbb{N}$. If $k=l$ then $m w$ is both almost ϱ-positive and almost ϱ-negative. The converse is obvious.
5.9 Proposition. Let $z \in A$ be right ϱ-regular and $B=\mathbb{N} z$. Assume that every element from $A \backslash B$ is almost ϱ-positive but not almost ϱ-negative. Then $\underline{V}(A, B, h)=A$ if and only if z is right ϱ-archimedean.

Proof. If $\underline{V}(A, B, h)=A$ and $w \in A$ then $(m w, n z) \in \varrho$ for some $m, n \in \mathbb{N}$ by 5.8. If $w \notin B$ then w is almost ϱ-positive, $(w, m w) \in \varrho$ amd $(w, n z) \in \varrho$. If $w \in B$ then $w=k z$ for some $k \in \mathbb{N}$. The rest is obvious.

6. The cancellative cover

Let ϱ be a stable preordering defined on a commutative semigroup A. Define a relation $\sigma=\underline{\mathrm{cn}}(\varrho)$ on A by $(a, b) \in \sigma$ if and only if $(a+c, b+c) \in \varrho$ for at least one $c \in A$.
6.1 Proposition. σ is a stable and cancellative preordering. It is the smallest cancellative relation containing ϱ (the cancellative cover or envelope of ϱ).

Proof. Since $(2 a, 2 a) \in \varrho$, we have $(a, a) \in \sigma$ and σ is reflexive. If $(a, b) \in \sigma$ and $(b, c) \in \sigma$ and $\left(a+c_{1}, b+c_{1}\right) \in \varrho,\left(b+c_{2}, c+c_{2}\right) \in \varrho$ for suitable $c_{1}, c_{2} \in A$ and we get $\left(a+c_{1}+c_{2}, b+c_{1}+c_{2}\right) \in \varrho,\left(b+c_{1}+c+2, c+c+1+c+2\right) \in \varrho$ and $\left(a+c_{1}+c_{2}, c+c_{1}+c_{2}\right) \in \varrho$. Thus $(a, c) \in \sigma$ and we see that σ is transitive. It means that σ is a preordering.

If $(a, c) \in \sigma,(a+c, b+c) \in \varrho$ and $d \in A$ then $(a+d+c, b+d+c) \in \varrho$ and $(a+d, b+d) \in \sigma$ and $(a+d, b+d) \in \sigma$. It follows that σ is stable.

If $(a+d, b+d) \in \sigma$ then $(a+d+c, b+d+c) \in \varrho$ for some $c \in A$, and hence $(a, b) \in \sigma$. It follows that σ is cancellative.

If $(a, b) \in \varrho$ then $(a+c, b+c) \in \varrho$ for every $c \in A$ and we have $(a . b) \in \sigma$. Thus $\varrho \subseteq \sigma$.

Finally, if λ is a cancellative relation defined on A such that $\varrho \subseteq \lambda$ and if $(a+c, b+c) \in \varrho$ then $(a, b) \in \lambda$. Consequently, $\sigma \subseteq \lambda$ and σ is just the smallest cancellative relation containing ϱ.
6.2 Corollary. $\varrho=\sigma$ if and only if ϱ is cancellative.
6.3 Lemma. $\operatorname{ker}(\sigma)=\underline{\mathrm{cn}}(\operatorname{ker}(\varrho))$ is a cancellative congruence of the semigroup A.

Proof. If $(a, b) \in \operatorname{ker}(\operatorname{sigma})$ then $(a+c, b+c) \in \varrho$ and $(b+d, c+d) \in \varrho$ for some $c, d \in A$. Then $(a+c+d, b+c+d) \in \operatorname{ker}(\varrho)$ and $(a, b) \in \underline{\operatorname{cn}}(\operatorname{ker}(\varrho))$. The rest is clear.
6.4 Proposition. $\underline{\mathrm{cn}}\left(\mathrm{id}_{A}\right)$ is the smallest cancellative congruence of the semigroup A.

Proof. It is obvious.
6.5 Lemma. σ is an ordering if and only if ϱ is and ordering and the semigroup A is cancellative.

Proof. If σ is an ordering then $\underline{\operatorname{cn}}(\operatorname{ker}(\varrho))=\operatorname{id}_{A}$ by 6.3. Then $\operatorname{ker}\left(\varrho=\operatorname{id}_{A}, \varrho\right.$ is an ordering, $\underline{\mathrm{cn}}\left(\mathrm{id}_{A}\right)=\operatorname{id}_{A}$ and A is cancellative. The converse implication is similar.
6.6 Lemma. (i) Every almost @-positive (almost @-negative, resp.) element is almost σ-positive (almost σ-negative, resp.).
(ii) Every right (left, resp.) @-archimedean element is right (left, resp.) σ-archimedean.
(iii) Every right (left, resp.) σ-regular element is right (left, resp.) ϱ-regular.

Proof. It is obvious.
6.7 Remark. Notice that $A / \operatorname{ker}(\sigma)$ is not a torsion groups if and only if the following condition is satisfied:
(6.1) There is at least one element $w \in A$ such that for every $m \in \mathbb{N}$ there is $v_{m} \in A$ such that for every $u \in A$ we have either $\left(m w+v_{m}+u, v_{m}+u\right) \notin \varrho$ or $\left(v_{m}+u, m w+v_{m}+u\right) \notin \varrho$.

If ϱ is an ordering (i.e., $\operatorname{ker}(\varrho)=\operatorname{id}_{A}$) then (6.1) is equivalent to
(6.2) There is at least one element $w \in A$ such that for every $m \in \mathbb{N}$ there is $v_{m} \in A$ such that for every $u \in A$ we have $m w+v_{m}+u \neq v_{m}+u$.
6.8 Lemma. An element $a \in A$ is right (left, resp.) σ-regular if and only if $m \leq n$ whenever $(m, n \in \mathbb{N}$ and $b \in A$ are such that $(m a+b, n a+b) \in \varrho((n a+b, m a+b) \in \varrho$, resp.).

Proof. It is obvious.
6.9 Remark. Let B be a subsemigroup of A and $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h(a) \leq h(b)$ whenever $a, b \in B, v \in A$ and $(a+v, b+v) \in \varrho$. This means that $h(a) \leq h(b)$ whenever $a, b \in B$ and $(a, b) \in \sigma$. Now, we can make use of all the results from the foregoing four sections. In particular, when $B=\mathbb{N} z$, $z \in A$ being right σ-regular.
6.10 Theorem. Let $z \in A$ be right $\underline{\mathrm{cn}(\varrho) \text {-regular (i.e. } l \leq k \text { whenever } k, l \in \mathbb{N}, ~(\varrho)}$ and $u \in A$ are such that $(l z+u, k z+u) \in \varrho)$. Assume that every element $w \in A$ $(w \in A \backslash \mathbb{N} z)$ satisfies at least one of the following three conditions:
(1) There are $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ and $u, v \in A$ such that $\left(n_{1} z+u, m_{1} w+u\right) \in \varrho$ and $\left(m_{2} w+v, n_{2} z+v\right) \in \varrho$;
(2) There are $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ and $u, v \in A$ such that $\left(z+u, m_{1} w+n_{1} z+u\right) \in$ ϱ and $\left(m_{2} w+v, n_{2} z+v\right) \in \varrho$;
(3) $(z+u, m w+n z+u) \in \varrho$ and $(m w+n z+u, z+u) \in \varrho$ for some $n, m \in \mathbb{N}$ and $u \in A$.

Then there is an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f) z)=1$ and $f(x) \leq f(y)$ for all $(x, y) \in \varrho$.

Proof. As we know, $\sigma=\underline{\mathrm{cn}(\varrho)}$ is a cancellative stable preordering and, since z is right σ-regular, we have $B=\mathbb{N} z \cong \mathbb{N}$ and $h: B \rightarrow \mathbb{R}$, where $h(m z)=m$ for every $m \in \mathbb{N}$, is an additive homomorphism such that $h(a) \leq h(b)$ for all $a, b \in B,(a, b) \in \sigma$. In view of 3.9 , we have to check that $\underline{V}(A, B, h)=A$ (where ϱ is replaced by σ). Of course, $B \subseteq \underline{V}$. Let $w \in A \backslash B$. If (1) is true then $\left(\left(n_{1}+1\right) z, m_{1} w\right) \in \sigma, \frac{n_{1}}{m_{1}} \leq \underline{p}(w),\left(m_{2} w+z,\left(n_{2}+1\right) z\right) \in \sigma, \underline{q}(w) \leq \frac{n_{2}}{m_{2}}$. If (2) is true then $\left(z, m_{1} w+n_{1} z\right) \in \sigma, \frac{1-n_{1}}{m_{1}} \leq \underline{p}(w),\left(m_{2} w+z,\left(n_{2}+1\right) z\right) \in \sigma, \underline{q}(w) \leq \frac{n_{2}}{m_{2}}$. If (3) is true then $(z, m w+n z) \in \sigma, \frac{1-n}{m} \leq \underline{p}(w),(m u+n z, z) \in \sigma, \underline{q}(w) \leq \frac{1-n}{m}$.
 $u \in A$ are such that $(l z+u, k z+u) \in \varrho)$. Assume that every element $w \in A$ $(w \in A \backslash \mathbb{N} z)$ satisfies the following two conditions:
(1) $(m w+u, n z+u) \in \varrho$ for some $n, m \in \mathbb{N}$ and $u \in A$;
(2) For every $k \in \mathbb{N}$ there are $n_{k}, m_{k} \in \mathbb{N}$ and $u_{k} \in A$ such that $\left(z+u_{k}, m_{k} w+\right.$ $\left.n_{k} z+u_{k}\right) \in \varrho$ and $m_{k} \geq k\left(n_{k}-1\right)$.
There there is an additive homomorphism $f: A \rightarrow \mathbb{R}_{0}^{+}$such that $f(z)=1$ and $f(x) \leq f(y)$ for all $(x, y) \in \varrho$.

Proof. By 6.10, there is an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(z)=1$ and $f(x) \leq f(y)$ for all $(x, y) \in \varrho$. Of course, $f(\mathbb{N} z) \subseteq \mathbb{R}^{+}$. On the other hand, if $\left(z+u, m_{k} w+n_{k} z+u_{k}\right) \in \varrho$ then $1 \leq m_{k} f(w)+n_{k}$, and hence $-f(w) \leq \frac{n_{k}-1}{m_{k}} \leq \frac{1}{k}$. Thus $-f(w) \leq 0$ and $0 \leq f(w)$.
6.12 Theorem. Let $z \in A$ be $\underline{\mathrm{cn}}(\varrho)$-regular (i.e., $l \leq k$ whenever $k, l \in \mathbb{N}$ and $u \in A$ are such that $(l z+u, k z+u) \in \varrho)$. Assume that for every $w \in A(w \in A \backslash \mathbb{N} z)$ there are $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ and $u v, \in A$ such that $\left(n_{1} z_{u}, m_{1} w+u\right) \in \varrho$ and $\left(m_{2} w+v, n_{2} z+v\right) \in \varrho$. Then there is an additive homomorphism $f: A \rightarrow \mathbb{R}^{+}$such that $f(z)=1$ and $f(x) \leq f(y)$ for all $(x, y) \in \varrho$.

Proof. By 6.10, there is an additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $f(z)=1$ and $f(x) \leq f(y)$ for all $(x, y) \in \varrho$. Of course, $f(\mathbb{N} z) \subseteq \mathbb{R}^{+}$. On the other hand, if $\left(n_{1} z+u, m_{1} w+u\right) \in \varrho$ then $n_{1} \leq m_{1} f(w)$ and $0<\frac{n_{1}}{m_{1}} \leq f(w)$. Thus $f(A) \subseteq$ \mathbb{R}^{+}.

7. The cancellative factor

In this section, let ϱ be a stable and cancellative preordering defined on a commutative semigroup A. As we know, $\underline{\alpha}_{A}=\underline{\mathrm{cn}}\left(\mathrm{id}_{A}\right)$ is just the smallest cancellative congruence of A; we have $\underline{\alpha}_{A} \subseteq \operatorname{ker}(\varrho)$ and $(a, b) \in \underline{\alpha}_{A}$ if and only if $a+c=b+c$ for at least one $c \in A$. Now, let $\varphi: A \rightarrow \bar{A}=A / \underline{\alpha}_{A}$ denote the natural projection. Then \bar{A} is a cancellative semigroup and, for every $a \in A$, we put $\bar{a}=\varphi(a)$.
7.1 Lemma. Let $a, b, c, d \in A$ be such that $(a, b) \in \varrho, \bar{a}=\bar{c}$ and $\bar{b}=\bar{d}$. Then $(c, d) \in \varrho$.

Proof. We have $a+u=c+u$ and $b+v=d+v$ for some $u, v \in A$. Now, $a+w=c+w$ and $b+w=d+w$, where $w=u+v$, and $(c+w, d+w)=(a+w, b+w) \in \varrho$. Since ϱ is cancellative, we get $(c, d) \in \varrho$.

In view of the preceding lemma, we see that ϱ induces a relation $\bar{\varrho}=\varphi(\varrho)=\varrho / \underline{\alpha}_{A}$ defined on \bar{A} such that $(\bar{a}, \bar{b})=(\varphi(a), \varphi(b)) \in \bar{\varrho}$ for all $(a, b) \in \varrho$ (in fact, $(\bar{a}, \bar{b}) \in \bar{\varrho}$ if and only if $(a, b) \in \varrho$.
7.2 Lemma. $\bar{\varrho}$ is a stable and cancellative preordering defined on the cancellative semigroup \bar{A}.

Proof. It is easy.
7.4 Lemma. $\bar{\varrho}$ is an ordering if and only if $\operatorname{ker}(\varrho)=\underline{\alpha}_{A}$ (i.e., for every $(a, b) \in$ $\operatorname{ker}(\varrho)$ there is $c \in A$ with $a+c, b+c)$.
Proof. It is easy.
7.5 REMARK. Of course, if ϱ is an ordering then $\underline{\alpha}_{A}=\operatorname{id}_{A}$ and A is cancellative.
7.6 Lemma. (i) If $a \in A$ is almost ϱ-positive (almost ϱ-negative, resp.) then $\bar{a} \in \bar{A}$ is almost $\bar{\varrho}$-positive (almost $\bar{\varrho}$-negative, resp.).
(ii) If $a \in A$ is right (left, resp.) ϱ-archimedean then \bar{a} is right (left, resp.) $\bar{\varrho}$ archimedean.
(iii) If $a \in A$ is right (left, resp.) ϱ-regular then $\bar{a} \in \bar{A}$ is right (left, resp.) ϱ-regular.

Proof. It is obvious.
7.7 Remark. Let B be a subsemigroup of A and $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h(a) \leq h(b)$ for all $a, b \in B,(a, b) \in \varrho$. Assume, furthermore, that $h\left(a_{1}\right)=h\left(b_{1}\right)$ whenever $a_{1}, b_{1} \in B$ and $u \in A$ are such that $a_{1}+u=b_{1}+u$ (i.e., $\left.\left(a_{1}, b_{1}\right) \in \underline{\alpha}_{A}\right)$. Then h induces an additive homomorphism $\bar{h}: \bar{A} \rightarrow \mathbb{R}$ such that $\bar{h}(\bar{a})=h(a)$ for every $a \in A$ and $\bar{h}\left(\overline{\left(a_{2}\right.}\right) \leq \bar{h}\left(\overline{b_{2}}\right.$ for all $\overline{a_{2}}, \overline{b_{2}} \in \bar{B},\left(\overline{a_{2}}, \overline{b_{2}}\right) \in \bar{\varrho}$.

8. The antisymmetric factor

Let ϱ be a stable preordering defined on a commutative semigroup A. Then $\operatorname{ker}(\varrho)$ is a congruence of A and we put $\widetilde{A}=A / \operatorname{ker}(\varrho)$. Let $\psi: A \rightarrow \widetilde{A}$ be the natural projection. Now, ϱ induces a relation $\tau=\widetilde{\varrho}=\psi(\varrho)=\varrho / \operatorname{ker}(\varrho)$ on \widetilde{A}, where $(\widetilde{a}, \widetilde{b}) \in \widetilde{\varrho}$ if and only if $(a, b) \in \varrho$.
8.1 Proposition. τ is a stable ordering defined on the factorsemigroup \widetilde{A}.

Proof. It is easy.
8.2 Lemma. τ is cancellative if and only if ϱ is such (then $\operatorname{ker}(\varrho)$ is cancellative and \widetilde{A} is a cancellative semigroup).
Proof. It is easy.
8.3 Lemma. (i) If $a \in A$ is almost ϱ-positive (almost ϱ-negative, resp.) then $\widetilde{a} \in \widetilde{A}$ is almost τ-positive (almost τ-negative, resp.)
(ii) If $a \in A$ is right (left, resp.) ϱ-archimedean then $\widetilde{a} \in \widetilde{A}$ is right (left, resp.) τ-archimedean.
(iii) If $a \in A$ is right (left, resp.) ϱ-regular then $\widetilde{a} \in \widetilde{A}$ is right (left, resp.) τ-regular.

Proof. It is obvious.
8.5 Remark. Let B be a subsemigroup of A and let $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h(a) \leq h(b)$ for all $a, b \in B$ with $(a, b) \in \varrho$. If $a_{1}, b_{1} \in B$ are such that $\left(a_{1}, b_{1}\right) \in \operatorname{ker}(\varrho)$ then $h\left(a_{1}\right)=h\left(b_{1}\right)$, and so $\operatorname{ker}(\varrho) \mid B \subseteq \operatorname{ker}(h)$. Then, of course, h induces an additive homomorphism $\widetilde{h}: \widetilde{B} \rightarrow \mathbb{R}$ such that $\widetilde{h}(\widetilde{a}) \leq \widetilde{(b)}$ for all $\widetilde{a}, \widetilde{b} \in \widetilde{B}$ with $(\widetilde{a}, \widetilde{b}) \in \tau$. We have $h=\widetilde{h} \psi$.
8.6 Assume that ϱ is cancellative and put $\sigma=(\varrho \backslash \operatorname{ker}(\varrho)) \cup \operatorname{id}_{A}$ (see 1.1). Then σ is an ordering and $\sigma \subseteq \varrho$. If $(a, b) \in \sigma$ and $a \neq b$ then $(a, b) \in \varrho$ and $(b, a) \notin \varrho$.Now, $(a+c, b+c) \in \varrho$ and $(b+c, a+c) \notin \varrho$ for every $c \in A$, since ϱ is stable and cancellative. It means that σ is a stable ordering. Similarly, if $(a+c, b+c) \in \varrho$ and $a+c \neq b+c$ then $(b+c, a+c) \notin \varrho,(b, a \notin \varrho$ and $(a, b) \in \sigma$. Thus σ is cancellative, provided that the semigroup A is cancellative.

Let $a \in A$ be almost ϱ-positive. If a is not almost σ-positive then $(u, a+u) \notin \sigma$ for some $u \in A$ and we have $a+u \neq u,(a+u, u) \in \varrho$ and $(u, a+u) \in \operatorname{ker}(\varrho)$. Since ϱ is cancellative, we see that a is almost ϱ-negative as well. Thus $a / \operatorname{ker}(\varrho)=0_{A / \operatorname{ker}(\varrho)}$.

Let $a \in A$ be right ϱ-archimedean. If a is not right σ-archimedean then there is $u \in A$ such that $(u, m a) \notin \sigma$ for every $m \in \mathbb{N}$. It means that $u \neq m a$ and either $(u, m a) \notin \varrho$ or $(u, m a) \in \operatorname{ker}(\varrho)$. Since a is right ϱ-archimedean, there is $n \in \mathbb{N}$ such that $(u, n a) \in \varrho$. Consequently, $u \neq n a)$ and $(u, n a) \in \operatorname{ker}(\varrho)$. Now, assume that a is almost ϱ-positive. Then $(n a, 2 n a) \in \varrho,(u, 2 n a) \in \varrho,(u, 2 n a) \in \operatorname{ker}(\varrho)$, $(n a, 2 n a) \in \operatorname{ker}(\varrho)$ and $n a / \operatorname{ker}(\varrho)=0_{A / \operatorname{ker}(\varrho)}$. If $a / \operatorname{ker}(\varrho)=0_{A / \operatorname{ker}(\varrho)}$ then a is almost ϱ-negative.

9. The unperforated cover

As always, let ϱ be a stable preordering defined on a commutative semigroup A. The preordering ϱ is called unperforated if $(a, b) \in \varrho$ whenever $a, b \in A$ and $m \in \mathbb{N}$ are such that $(m a, m b) \in \varrho$.
9.1 Lemma. If ϱ is unperforated then the factor-semigroup $A / \operatorname{ker}(\varrho)$ is torsionfree and $\operatorname{ker}(\varrho)$ is unperforated.

Proof. If $m a / \operatorname{ker}(\varrho)=m b / \operatorname{ker}(\varrho)$ for some $a, b \in A$ and $m \in \mathbb{N}$ then $(m a, m b) \in$ $\operatorname{ker}(\varrho)$. Since ϱ is unperforated, we have $(a, b) \in \operatorname{ker}(\varrho)$ and $a / \operatorname{ker}(\varrho)=b / \operatorname{ker}(\varrho)$.
9.2 Lemma. (cf. 1.8 and 1.23) Assume that ϱ is unperforated. If $a \in A$ and $m \in \mathbb{N}$ are such that ma is almost ϱ-positive (almost ϱ-negative, resp.) then a is almost @-positive (almost @-negative, resp.).

Proof. We have $(m x, m x+m a) \in \varrho$ for every $x \in A$. Since ϱ is unperforated, it follows that $x, x+a) \in \varrho$. Thus a is almost ϱ-positive.

Now, define a relation $\tau=\underline{\operatorname{up}}(\varrho)$ on A by $(a, b) \in \tau$ if and only if $(m a, m b) \in \varrho$ for some $m \in \mathbb{N}$.
9.3 Lemma. (i) τ is a stable preordering.
(ii) $\varrho \subseteq \tau$ and τ is unperforated.
(iii) τ is just the smallest unperforated relation containing ϱ (the unperforated cover of ϱ).

Proof. It is easy.
9.4 Lemma. (i) $\operatorname{ker}(\tau)=\underline{u p}(\operatorname{ker}(\varrho)$.
(ii) τ is an ordering if and only if ϱ is and ordering and the semigroup A is torsionfree.

Proof. It is easy.
9.5 Lemma. If @ is cancellative then τ is cancellative.

Proof. It is easy.
9.6 Lemma. (i) $\lambda=\underline{\mathrm{cn}}(\underline{\mathrm{up}}(\varrho))=\underline{\mathrm{up}}(\underline{\mathrm{cn}}(\varrho))$ is a stable cancellative unperforated preordering.
(ii) λ is just the smallest cancellative unperforated relation containing ϱ.

Proof. First, let $(a, b) \in \underline{\operatorname{cn}}(\underline{\operatorname{up}}(\varrho))$. Then $(a+c, b+c) \in \underline{\operatorname{up}}(\rho)$ for some $c \in A$ and there is $m \in \mathbb{N}$ with $(m a+\overline{m c}, m b+m c) \in \varrho$. Consequently, $(m a, m b) \in \underline{\mathrm{cn}}(\varrho)$ and $(a, b) \in \underline{\operatorname{up}}(\underline{\mathrm{cn}}(\varrho))$. Thus $\underline{\mathrm{cn}}(\underline{\operatorname{up}}(\varrho)) \subseteq \underline{\operatorname{up}}(\underline{\mathrm{cn}}(\varrho))$.

Conversely, let $(a, b) \in \underline{\operatorname{up}}(\underline{\mathrm{cn}}(\varrho))$. Then there is $n \in \mathbb{N}$ with $(n a, n b) \in \underline{\mathrm{cn}}(\varrho)$ and $(n a+d, n b+d) \in \varrho$ for some $d \in A$. Consequently, $(n a+n d, n b+n d) \in \varrho$, $(a+d, b+d) \in \underline{\operatorname{up}}(\varrho)$ and $(a, b) \in \underline{\operatorname{cn}}(\underline{\operatorname{up}}(\varrho))$. Thus $\underline{\operatorname{up}}(\underline{\operatorname{cn}}(\varrho)) \subseteq \underline{\mathrm{cn}}(\underline{\mathrm{up}}(\varrho))$.
9.7 Lemma. (i) $\operatorname{ker}(\lambda)=\underline{\operatorname{cn}}(\underline{\operatorname{up}}(\operatorname{ker}(\varrho)))=\underline{\operatorname{up}}(\underline{\operatorname{cn}}(\operatorname{ker}(\varrho)))$.
(ii) λ is an ordering if and only if ϱ is an ordering and A is a cancellative torsionfree semigroup.

Proof. Use 9.6(i).

Put $\underline{\beta}_{A}=\underline{\operatorname{up}}\left(\mathrm{id}_{A}\right)$. As we know, $\underline{\beta}_{A}$ is the smallest congruence of A such that the corresponding factor-semigroup is torsionfree; we have $(a, b) \in \underline{\beta}_{A}$ if and only if $m a=m b$ for some $m \in \mathbb{N}$. Clearly, $\underline{\beta}_{A}=A \times A$ if and only if A is torsion.

Put $\underline{\gamma}_{A}=\underline{\operatorname{cn}}\left(\underline{\operatorname{up}}\left(\mathrm{id}_{A}\right)\right)\left(=\underline{\mathrm{up}}\left(\underline{\operatorname{cn}}\left(\mathrm{id}_{A}\right)\right)\right)$. As we know, $\underline{\gamma}_{A}$ is the smallest congruence of A such that the corresponding factor-semigroup is cancellatine and torsionfree; we have $(a, b) \in \underline{\gamma}_{A}$ if and only if $m a+c=m b+c$ for some $m \in \mathbb{N}$ and $c \in A$.
9.8 Remark. Let B be a subsemigroup of A and let $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h(a) \leq h(b)$ for all $a, b \in B$ with $(a, b) \in \varrho$. If $a_{1}, b_{1} \in B$ are such that $\left.\left(a_{1}, b_{1}\right) \in \underline{\mathrm{up}}(\varrho)\right)$ then $\left(m a_{1}, m b_{1}\right) \in \rho$ for some $m \in \mathbb{N}, m h\left(a_{1}\right) \leq$ $m h\left(b_{1}\right)$ and $h\left(a_{1}\right) \leq h\left(b_{1}\right)$.

Now, assume that $h\left(a_{2}\right) \leq h\left(b_{2}\right)$ for all $a_{2}, b_{2} \in B$ such that $\left(a_{2}, b_{2}\right) \subset \underline{\mathrm{cn}}(\varrho)$ (cf. 6.9). Then $h\left(a_{3}\right) \leq h\left(b_{3}\right)$ for all $a_{3}, b_{3} \in B$ with $\left(a_{3}, b_{3}\right) \in \underline{\operatorname{up}}(\underline{\operatorname{cn}}(\varrho))$.
9.9 Remark. Assume that ϱ is unperforated (unperforated and cancellative, resp.) Then ϱ induces and unperforated preordering $\varrho / \underline{\beta}_{A}\left(\varrho / \underline{\gamma}_{A}\right.$, resp.) on the torsionfree (torsionfree and cancellative, resp.) semigroup $\bar{A} / \underline{\beta}_{A}\left(\bar{A}_{A} / \underline{\gamma}_{A}\right.$, resp.).
9.10 Remark. Assume that ϱ is unperforated (unperforated and cancellative, resp.) (see 9.9). Let $h: B \rightarrow \mathbb{R}$ be an additive homomorphism such that $h\left(a_{1}\right)=$ $h\left(b_{1}\right)$ whenever $a_{1}, b_{1} \in B$ are such that $\left(a_{1}, b_{1}\right) \in \underline{\alpha}_{A}$. Then h induces an additive homomorphism $h / \underline{\beta}_{A}: B / \underline{\beta}_{A} \rightarrow \mathbb{R}\left(h / \underline{\gamma}_{A}: B / \underline{\gamma}_{A} \rightarrow \mathbb{R}\right.$, resp.) and this induced homomorphism preserves the induced preordering (see 9.9). In this situation, notice that $\underline{\beta}_{B}=\underline{\beta}_{A} \mid B \times B$.

10. Homomorphisms into \mathbb{R}

In $10.1-10.7$, let ϱ be a stable preordering defined on a commutative semigroup A and let $f: A \rightarrow \mathbb{R}$ be an additive homomorphism such that $f(a) \leq f(b)$ for all $(a, b) \in \varrho$.
10.1 Lemma. $\operatorname{ker}(\varrho) \cup \underline{\alpha}_{A} \cup \underline{\beta}_{A} \subseteq \operatorname{ker}(\varrho) \cup \underline{\gamma}_{A} \subseteq \operatorname{ker}(\underline{\operatorname{cn}}(\underline{\mathrm{un}}(\varrho)) \subseteq \operatorname{ker}(\varrho)$ and $A / \operatorname{ker}(\varrho) \cong f(A)$ is a cancellative torsionfree semigroup.
 It follows immediately that $f(a)=f(b)$. The rest is clear.
10.2 Lemma. If $(a, b) \in \underline{\mathrm{cn}}(\underline{\mathrm{un}}(\varrho))$ then $f(a) \leq f(b)$.

Proof. It is easy.
10.3 Lemma. If $a \in A$ is almost ϱ-positive (almost ϱ-negative, resp.) then $f(a) \geq$ $0(f(a) \leq 0$, resp.).

Proof. We have $(a, 2 a) \in \varrho$, and so $0 \leq f(a)$.
10.4 Lemma. Let $a \in A$ be right (left, resp.) ϱ-archimedean.
(i) If $f(u)>0(f(u)<0$, resp.) for at least one $u \in A$ then $f(a)>0(f(a)<0$, resp.).
(ii) If $f(v) \geq 0(f(v) \leq 0$, resp.) for at least one $v \in A$ then $f(a) \geq 0(f(a) \leq 0$, resp.).
(iii) If $f(a) \in \mathbb{R}^{-}\left(f(a) \in \mathbb{R}^{+}\right.$, resp.) then $f(a)$ is the greatest (the smallest, resp.) number in $f(A)$.

Proof. For every $w \in A$ there is $m \in \mathbb{N}$ with $\frac{f(w)}{m} \leq f(a)$. The rest is clear.
10.5 Lemma. Let $a \in A$ be such that $f(a)>0(f(a)<0$, resp.). Then a is right (left, resp.) @-regular.
Proof. It is easy.
10.6 Define a relation μ on A by $(a, b) \in \mu$ if and only if $f(a) \leq f(b)$. Then $\varrho \subseteq \underline{\mathrm{cn}}(\underline{\mathrm{un}}(\varrho)) \subseteq \mu$ and μ is a stable, cancellative and unperforated preordering defined on the semigroup A. Clearly, $\operatorname{ker}(\mu)=\operatorname{ker}(f)$, and hence μ is an ordering if and only if the homomorphism f is injective.

An element $a \in A$ is almost μ-positive (almost μ-negative, resp.) if and only if $f(a) \geq 0(f(a) \leq 0$, resp. $)$.

If $f(u)>0(f(u)<0$, resp.) for at least one $u \in A$ then an element $a \in A$ is right (left, resp.) μ-archimedean if and only if $f(a)>0(f(a)<0$, resp.).

If $f(A) \leq 0(0 \leq f(A)$, resp. $)$ and $f(v)=0$ for at least one $v \in A$ then an element $a \in A$ is right (left, resp.) μ-archimedean if and only if $f(a)=0$.

If $f(A)<0(0<f(A)$, resp.) then an element $a \in A$ is right (left, resp.) μ-archimedean if and only if $f(a)$ is the greatest (the smallest, resp.) number in $F(A)$.

If $f(a)>0(f(a)<0$, resp.) then a is right (left, resp.) μ-regular. In fact, we have $(m a, n a) \in \mu$ for all $m, n \in \mathbb{N}$ such that $m \leq n(n \leq m$, resp.). If $f(a)=0$ then a is neither right nor left μ-regular.

Finally, notice that $\mu=\operatorname{id}_{A}$ if and only if $|A|=1$ and that $\mu=A \times A$ if and only if $f=0$.
10.7 Define a relation ν on A by $(a, b) \in \nu$ if and only if either $(a, b) \in \operatorname{ker}(\varrho)$ or $f(a)<f(b)$. Then ν is a stable preordering on A and $\nu \subseteq \mu$ (see 10.6). Clearly, $\operatorname{ker}(\nu)=\operatorname{ker}(\varrho)$, and hence ν is an ordering if and only if ϱ is so. If $\operatorname{ker}(\varrho)$ is cancellative then ν is cancellative. If $\operatorname{ker}(\varrho)$ is unperforated then ν is unperforated. If $(a, b) \in \nu$ then $f(a) \leq f(b)$.

If $a \in A$ is such that $f(a)>0(f(a)<0$, resp. $)$ then a is almost ν-positive (almost ν-negative, resp.), right (left, resp.) ν-archimedean and right (left, resp.) ν-regular.

Finally, notice that $\nu=\operatorname{id}_{A}$ if and only if ϱ is and ordering and $f=0$, and that $\nu=A \times A$ if and only if $\varrho=A \times A$ (and then $f=0$).
10.8 Let $f: A \rightarrow \mathbb{R}$ be a non-zero additive homomorphism. If $z \in A$ is such that $r=f(z) \neq 0$ then the mapping $g=r^{-1} f$ is again an additive homomorphism from A to \mathbb{R}. Of course, we have $g(z)=1$.

Define a relation ν on A by $(a, b) \in \nu$ if and only if $f(a)<f(b)$ or $a=b$ (see 10.7). Then ν is a stable ordering on the semigroup A. If A is cancellative then ν is so (in fact, $(a+c, b+c) \in \nu \backslash \operatorname{id}_{A}$ always implies $\left.(a, b) \in \nu \backslash \operatorname{id}_{A}\right)$. If A is torsionfree then ν is unperforated (in fact, $(m a, m b) \in \nu \backslash \mathrm{id}_{A}$ always implies $\left.(a, b) \in \nu \backslash \mathrm{id}_{A}\right)$.

Put $\nu_{1}=\underline{\mathrm{cn}}(\nu), \nu_{2}=\underline{\mathrm{un}}(\nu)$ and $\nu_{3}=\underline{\mathrm{cn}}(\underline{\mathrm{un}}(\nu))$. Now, $(a, b) \in \nu_{1}$ iff either $(a, b) \in \nu$ or $a+c=b+c$ for some $c \in A$. Thus $\nu_{1}=\nu \cup \underline{\alpha}_{A}$. Similarly, $\nu_{2}=\nu \cup \underline{\beta}_{A}$ and $\nu_{3}=\nu \cup \underline{\gamma}_{A}$.

Now, choose $z \in A$ with $f(z)>0$. Then z is almost ν-positive, right ν archimedean and right ν-regular (in fact, $(m z, n z) \in \nu$ iff $m \leq n$). Moreover, z is right ν_{i}-regular for $i=1,2,3$ and for every $w \in A$ there are $n_{1}, n_{2} \in \mathbb{N}$ such that $w+n_{1} z$ is almost ν-positive and $\left(w, n_{2} z\right) \in \nu$ (see 5.6).
10.9 Theorem. The following conditions are equivalent for a commutative semigroup A :
(i) There is at least one non-zero additive homomorphism $f: A \rightarrow \mathbb{R}$.
(ii) There is at least one additive homomorphism $f: A \rightarrow \mathbb{R}$ such that $1 \in f(A)$.
(iii) There is a stable ordering \leq on A such that the following conditions are true:
(iii1) If $a, b, c \in A$ are such that $a+c \leq b+c$ then either $a \leq b$ or $a+c=b+c$;
(iii2) If $a, b \in A$ and $m \in \mathbb{N}$ are such that $m a \leq m b$ then either $a \leq b$ or $m a=m b ;$
(iii3) There is at least one right \leq-archimedean and almost \leq-positive element $z \in A$ such that $m \leq n$ whenever $m z+u \leq n z+u, m, n \in \mathbb{N}$, $u \in A$, and for every $w \in A$ there is at least one $k \in \mathbb{N}$ with $w=k z$ being almost \leq-positive (we can also assume that $m_{1} z \leq n_{1} z$ for all $\left.m_{1}, n_{1} \in \mathbb{N}, m_{1} \leq n_{1}\right)$.
(iv) There is a stable preordering ϱ on A such that at least one element $z \in A$ satisfies the following conditions:
(iv1) $l \leq k$ whenever $k, l \in \mathbb{N}$ and $u \in A$ are such that $(l z+u, k z+u) \in \varrho$;
(iv2) For every $w \in A \backslash \mathbb{N} z$ there are $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{N}$ and $u \in A$ such that either $\left(n_{1} z+u, m_{1} w+u\right) \in \varrho$ and $\left(m_{w}+u, n_{z}+u\right) \in \varrho$, or $\left(z+u, m_{1} w+n_{1} z+u\right) \in \varrho$ and $\left(n_{2} w+u, n_{2} z+u\right) \in \varrho$, or $(z+$ $\left.u, m_{1} w+n_{1} z+u\right) \in \varrho$ and $\left(m_{1} w+n_{1} z+u, z+u\right) \in \varrho$.

Proof. (i) implies (ii). See 10.2.
(ii) implies (iii). See 10.3 .
(iii) implies (iv). This is clear.
(iv) implis (i). See 6.10.
10.10 Remark. (i) Let A be a non-trivial cancellative and torsionfree commutative semigroup. The group $G=A-A$ of differences is torsionfree, and hence for every $0 \neq u \in G$ there is an additive homomorphism $g: G \rightarrow \mathbb{Q}$ such that $g(u)=1$. In particular, for every $a \in A, a \neq 0_{A}$, there is an additive homomorphism $f: A \rightarrow \mathbb{Q}$ with $f(a)=1$.
(ii) Let A be a commutative semigroup. If $\underline{\gamma}_{A}=A \times A$ (i.e., no non-trivial homomorphic image of A is a cancellative and torsionfree semigroup) then there is no non-zero additive homomorphism of A into \mathbb{R}. On the other hand, if $\underline{\gamma}_{A} \neq A \times A$ then $\bar{A}=A / \underline{\gamma}_{A}$ is a non-trivial cancellative and toesionfree semigroup and it follows from (i) that there are non-zero additive homomorphisms of A into \mathbb{R}. In fact, if $a \in A$ is such that $(a, 2 a) \notin \underline{\gamma}_{A}$ (i.e., $m a+u \neq 2 m a+u$ for all $m \in \mathbb{N}$ and $u \in A$) then there is an additive homomorphism $f: A \rightarrow \mathbb{Q}$ with $f(a)=1$.
(iii) Let A be a commutative semigroup and $f: A \rightarrow \mathbb{Q}$ be an additive homomorphism such that $f(A) \cap \mathbb{Q}^{-} \neq \emptyset \neq f(A) \cap \mathbb{Q}^{+}$. Then $A / \operatorname{ker}(f) \cong f(A)$ is a non-zero torsionfree group.
(iv) Let A be a commutative semigroup such that $\underline{\gamma}_{A} \neq A \times A$ and no non-trivial homomorphic image of A is a torsionfree group. Then there is at least one nonzero additive homomorphism $f: A \rightarrow \mathbb{Q}_{0}^{+}$. Of course, $\underline{\gamma}_{A} \subseteq \operatorname{ker}(f) \neq A \times A$ and $A / \operatorname{ker}(f) \cong f(A)$ is a cancellative torsionfree semigroup.
(v) Let A be an additive subsemigroup of \mathbb{Q} and let r be a cancellative congruence of $A, r \neq \mathrm{id}_{A}$. We claim that A / r is a torsion group.

If $A=\{0\}$ then $r=A \times A=\mathrm{id}_{A}$, a contradiction. If $A \subseteq \mathbb{Q}_{0}^{-}$then $-A \subseteq \mathbb{Q}_{0}^{+}$
and $-A$ is an isomorphic copy of A. Thus we can assume that $A \cap \mathbb{Q}^{+} \neq \emptyset$. Since $r \neq \mathrm{id}_{A}$ and $A \cap \mathbb{Q}^{+} \neq \emptyset$, there are $p, q \in A \cap \mathbb{Q}^{+}$such that $(p, q) \in r$ and $p<q$. We have $p=\frac{m}{n}, q=\frac{k}{l}, m, n, k, l \in \mathbb{N}, m l<n k, t=n k-m l \in \mathbb{N}$ and $n k p / r=m l p / r$ in A / r. Since A / r is a cancellative semigroup, we get $t p / r=t q / r=0_{A / r}$. Now, given $s \in A$, there is $m_{1} \in \mathbb{N}$ with $0<m_{1} p+s$. Of course, $\left(m_{1} p+s, m_{1} q+s\right) \in r$, $m_{1} p+s<m_{1} q+s$ and there is $t_{1} \in \mathbb{N}$ such that $t_{1}\left(m_{1} p+s\right) / r=0_{A / r}$. Thus $0_{A / r}=t t_{1}\left(m_{1} p+s\right) / r=t t_{1} s / r$ and we see that A / r is a torsion group.
(vi) Let A be an additive subsemigroup of \mathbb{Z} and let r be a congruence of $A, r \neq \mathrm{id}_{A}$. We claim that A / r is a finite semigroup.

We can assume that $A \subseteq \mathbb{N}$. The semigroup A is finitely generated, and so the same is true for the factor-semigroup A / r. Now, it is enough to prove that every one-generated subsemigroup of A / r is finite. For, let $m \in A$ and $B=\mathbb{N} m$. Since $r \neq \mathrm{id}_{A}$, we get $s=R \mid B \times B \neq \operatorname{id}_{B}$. But $B \cong \mathbb{N}$ and the rest is clear.
(vii) Let A be an additive subsemigroup of \mathbb{Q} and let r be a congruence of A, $r \neq \mathrm{id}_{A}$. We claim that the factor-semigroup A / r is locally finite (i.e., every finitely generated subsemigroup of A / r is finite).

First, if $A \cap \mathbb{Q}^{-} \neq \emptyset \neq A \cap \mathbb{Q}^{+}$then A is a subgroup of \mathbb{Q} and A / r is a torsion group (see (v)). If $A \subseteq \mathbb{Q}_{0}^{-}$then $-A \subseteq \mathbb{Q}_{0}^{+}$and $-A \cong A$. Consequently, we can assume that $A \subseteq \mathbb{Q}_{0}^{+}$. We have $A \neq\{0\}$ and we put $B=A \cap \mathbb{Q}^{+}$and $s=r \mid B \times B$. Clearly, $s \neq \operatorname{id}_{B}$. Let C be a finitely generated subsemigroup of B. We can assume that $t=s \mid C \times C \neq \operatorname{id}_{C}$ (if $(p, q) \in s, p \neq q$ then $C+\mathbb{N}_{0} p+\mathbb{N}_{0} q$ is again finitely generated). Since C is finitely generated, $m C \subseteq \mathbb{N}$ for some $m \in \mathbb{N}$. Now, $C \cong m C$ and we use (vi) to show that C / t is finite.
(viii) Let A be an additive subsemigroup of \mathbb{Q}. Let r be a congruence of A. If $A \cap \mathbb{Q}^{+} \neq \emptyset \neq A \cap \mathbb{Q}^{-}$then A is a subgroup of \mathbb{Q}, and hence the factor-semigroup A / r has just one idempotent element, namely the zero element. If $A \subseteq \mathbb{Q}_{0}^{-}$then for all $a, b \in A$ there are $m, n \in \mathbb{N}$ with $m a=n b$, and hence the factor-semigroup A / r has at most one idempotent element (just one if $r \neq \mathrm{id}_{A}$). Assume, finally, that $A \subseteq \mathbb{Q}_{0}^{+}$and $0 \in A$. If $A=\{0\}$ or if $r=\operatorname{id}_{A}$ then A / r has just one idempotent element, namely $0_{A / r}$. If $(0, a) \in r$ for some $a \in A, a>0$ then A / r is a torsion group. If $A \neq\{0\}, r \neq \operatorname{id}_{A}$ and $(0, b) \notin r$ for every $b \in B=A \backslash\{0\}$ then $r \mid B \times B \neq \mathrm{id}_{B}$ and the factor-semigroup A / r has just two idempotent elements.
10.11 Proposition. The following conditions are equivalent for a commutative semigroup A :
(i) There is at least one non-zero additive homomorphismf : $A \rightarrow \mathbb{Q}$.
(ii) There is at least one non-zero additive homomorphism $g: A \rightarrow \mathbb{R}$.
(iii) There is at least one element $w \in A$ such that $m w+a \neq 2 m w+a$ for all $m \in \mathbb{N}$ and $a \in A$ (then f from (i) can be chosen such that $f(w)=1$).

Proof. (i) implies (ii). This implication is trivial.
(ii) implies (iii). Just choose any $w \in A$ with $g(w) \neq 0$.
(iii) implies (i). See 10.10(ii).
10.12 Remark. Consider the situation from 10.11. If A is cancellative then 10.11 (iii) means that $m w \neq 0_{A}$ for every $m \in \mathbb{N}$. Thus a cancellative semigroup A satisfies the equivalent conditions of 10.11 if and only if A is not a torsion group. A (possibly non-cancellative) semigroup A satisfies the conditions of 10.11 if and only if $A / \underline{\alpha}_{A}$ is not a torsion group. Notice that if $A / \underline{\alpha}_{A}$ is finite then it is a torsion group. On the other hand, if A is finitely generated and $A / \underline{\alpha}_{A}$ is a torsion group
then $A / \underline{\alpha}_{A}$ is finite. Consequently, a finitely generated commutative semigroup A satisfies the equivalent conditions of 10.11 if and only if the factor-semigroup $A / \underline{\alpha}_{A}$ is not finite.
10.13 Proposition. The following conditions are equivalent for a commutative semigroup A :
(i) A is isomorphic to an additive subsemigroup of \mathbb{Q}^{+}.
(ii) A is cancellative, torsionfree, uniform (i.e., for all $a, b \in A$ there are $m, n \in$ \mathbb{N} with $m a=n b$; it means that the intersection of any two or finitely many subsemigroups of A is non-empty) and $0_{A} \notin A$ (equivalently, A has no idempotent element).
(iii) A is cancellative, torsionfree, $0_{A} \notin A$ and if r is a congruence of A such that $r \neq \mathrm{id}_{A}$ then A / r is locally finite.
(iv) A is cancellative, torsionfree, $0_{A} \notin A$ and if r is a cancellative congruence of A such $\operatorname{id}_{A} \neq r \neq A \times A$ then A / r is not torsionfree (A / r is a torsion group).

Proof. (i) implies (ii). This is easy.
(ii) implies (i). The group $G=A-A$ of differences is a non-trivial torsionfree group. If $a_{1}, a_{2} \in A$ are such that $a_{1} \neq a_{2}$ and $b \in A$ is arbitrary then $m a_{1}=n_{1} b$ and $m a_{2}=n_{2} b$ for some $m, n_{1}, n_{2} \in \mathbb{N}$. Now, $m\left(a_{1}-a_{2}\right)=\left(n_{1}-n_{2}\right) b$ and $n_{1}-n_{2} \neq 0$, since $a_{1} \neq a_{2}$. It follows that every non-zero subgroup H of G contains a subsemigroup $B_{H} \subseteq H \cap A$. Since A is uniform and $0_{A} \notin A$, we conclude that G is a torsionfree group of $\operatorname{rank} 1$, and G is isomorphic to an additive subgroup of \mathbb{Q}. The rest is clear,
(i) implies (iii). See 10.10(vii).
(iii) implies (i). By 10.10(i), there is at least one non-zero additive homomorphism $f: A \rightarrow \mathbb{Q}$. Clearly, $\operatorname{ker}(f)=\operatorname{id}_{A}$, and hence A is isomorphic to a subsemigroup of \mathbb{Q}. Since $0_{A} \notin A, A$ is isomorphic to a subsemigroup of \mathbb{Q}^{+}.
(i) implies (iv). See 10.10(v).
(iv) implies (i). Use 10.10(i).
10.14 REmARK. Using 10.13, we can formulate various characterizations of additive subsemigroups of \mathbb{Q}^{+}and of \mathbb{Q}. Furthermore, taking into account that subsemigroups of \mathbb{Z} are finitely generated, we can obtain characterizations of additive subsemigroups of $\mathbb{Z}, \mathbb{N}_{0}$ and \mathbb{N}.

The additive group of real numbers is divisible of rank 2^{ω}. Consequently, a commutative semigroup A is isomorphic to a subsemigroup of \mathbb{R} if and only if A is cancellative, torsionfree and $|A| \leq 2^{\omega}$.

References

1. Aumann. G., Über die Erweiterung von additiven monotonen Funktionen auf regulär geordneten Halbgruppen, Arch. Math. 8 (1959), 422-427.
2. Bauer, H., Sur le prolongement des formes linéaires positifs dans un espace vectoriel ordonné, C. R. Acad. Sci. Paris 244 (1957), 289-292.
3. Christlock, J., The structure of archimedean semigroups, Thesis, Univ. of California, Davis (1966).
4. Cotlar, M., Sobre la teoria algebraica de la medida y el theorema de Hahn-Banach, Revista un. mat. Argentina 17 (1956), 9-24.
5. Hamilton, H.B., Nordahl, T.E. and Tamura, T., Commutative cancellative semigroups without idempotents, Pacific J. Math. 61 (1975), 441-456.
6. Kobayashi, Y., Homomorphisms on N-semigroups into \mathbb{R}_{+}and the structure of N-semigroups, J. Math. Tokushima Univ. 7 (1973), 1-20.
7. Kobayashi, Y., Conditions for commutative semigroups to have nontrivial homomorphisms into nonnegative (positive) reals, Proc. Amer. Math. Soc. 65 (1977), 199-203.
8. Namioka, I., Partially ordered linear topological spaces, Memoirs of the Amer. Math. Soc. 24 (1957).
9. Petrich, M., On the structure of a class of commutative semigroups, Czech. Math. J. 14 (1964), 147-153.
10. Plappert, P., A sandwich theorem for monotone additive functions, Semigroup Forum 51 (1995), 347-355.
11. Putcha, M. and Tamura, T., Homomorphisms of commutative cancellative semigroups into nonnegative real numbers, Trans Amer. Math. Soc. 221 (1976), 147-157.
12. Tamura, T., Commutative, nonpotent, archimedead semigroups with cancellation law 1, J. Gakugei Tokushima Univ. 8 (1957), 5-11.
13. Tamura, T., Notes on commutative archimedean semigroups I, Proc. Japan Academy 42 (1966), 35-40.
14. Tamura, T., Notes on commutative archimedean semigroups II, Proc. Japan Academy 42 (1966), 545-548.
15. Tamura, T., Construction of trees and commutative, archimedean semigroups, Math. Nachr. 36 (1968), 255-287.
16. Tamura, T., \mathfrak{N}-congruences of \mathfrak{N}-semigroups, J. Algebra 27 (1973), 11-30.
17. Tamura, T., Irreducible \mathfrak{N}-semigroups, Math. Nachr. 63 (1974), 71-88.
18. Tamura, T., Basic study of \mathfrak{N}-semigroups and their homomorphisms, Semigroup Forum 8 (1974), 21-50.
19. Tamura, T., \mathfrak{N}-semigroups and their translation semigroups, J. Austral. Math. Soc. 24 (1977), 184-202.
20. Tamura, T., Commutative cancellative semigroups with nontrivial homomorphisms into nonnegative real numbers, J. Algebra 76 (1982), 25-41.

Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic E-mail address: kepka@karlin.mff.cuni.cz

Department of Mathematics, Czech University of Life Sciences, Kamýcká 129, 165
21 Praha 6 - Suchdol, Czech Republic
E-mail address: nemec@tf.czu.cz

[^0]: 1991 Mathematics Subject Classification. 06F05, 20M14.
 Key words and phrases. Commutative semigroup, additive homomorphism, real numbers.
 Supported by the Grant Agency of the Czech Republic, grant GAČR 201/09/0296; the first author was also supported by the institutional grant MSM 0021620839.

