ONE-ELEMENT EXTENSIONS OF COMMUTATIVE SEMIGROUPS

JAROSLAV JEŽEK, TOMÁŠ KEPKA, AND PETR NĚMEC

ABSTRACT. A classification of one-element extensions of commutative semigroups is presented.

In the investigation of various classes of commutative semigroups, it often happens that $A = B \cup \{w\}$, where B is a subsemigroup of A and $w \notin B$ (see e.g. [1], [2]). In this short note, we present a classification of such one-element extensions.

1. Regular transformations

Throughout the paper, let A = A(+) be a commutative semigroup. Further, \mathbb{N} denotes the set of positive integers and \mathbb{N}_0 is the set of non-negative integers. As usual, $0 = 0_A$ ($o = o_A$, resp.) will denote the neutral (absorbing, resp.) element of A and $0_A \in A$ ($o \in A$, resp.) means that A has the neutral (absorbing, resp.) element. An element $a \in A$ is *idempotent* if a = a + a and $\mathrm{Id}(A)$ denotes the set of all idempotent elements. A is a *semilattice* if $A = \mathrm{Id}(A)$. A subset I of A is an *ideal* if $I \neq \emptyset$ and $A + I \subseteq I$. A transformation $f : A \to A$ is said to be *regular* if f(a + b) = a + f(b) for all $a, b \in A$. Regular transformations form a submonoid of the transformation monoid T(A). The following observations are straightforward: (1) If $a \in \mathrm{Id}(A)$ and f is regular then f(a) = a + f(a).

(2) For each $a \in A$, the translation $\alpha_a : x \mapsto x + a$ is regular. Further, $\alpha_a \alpha_b = \alpha_{a+b} = \alpha_b \alpha_a$ for all $a, b \in A$, $\psi = \{ (a, \alpha_a) | a \in A \}$ is a homomorphism of A into T(A) and ker $\psi = \{ (a, b) \in A^2 | \alpha_a = \alpha_b \}$ is a congruence of A.

(3) If $0 \in A$ then $f = \alpha_{f(0)}$ for each regular transformation f of A.

(4) If f is regular and $a \in A$ then $f^2(2a) = 2f(a)$.

(5) If A is a semilattice then $f^2 = f$ for each regular transformation f of A.

(6) If f is regular and φ is an automorphism of A then $\varphi^{-1}f\varphi$ is a regular transformation of A.

(7) If B is an ideal of A then, for each $a \in B$, the restriction $\beta_a = \alpha_a | B$ is a regular transformation of B.

(8) if $o \in A$ then f(o) = o for each regular transformation f of A.

Further, a regular transformation f is called *strongly regular* if $f^2 = \alpha_a$ for some $a = a_f \in A$. Now, we have the following:

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

¹⁹⁹¹ Mathematics Subject Classification. 20M14.

Key words and phrases. Commutative semigroup, ideal, regular transformation.

The work is a part of the research project MSM 0021620839 financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant #201/09/0296.

(9) For each $a \in A$, α_a is strongly regular $A_{\alpha_a} = 2a$.

(10) If f is strongly regular and A is uniquely 2-divisible (i.e., for each $a \in A$ there is exactly one $b = a/2 \in A$ with a = 2b) then $f = \alpha_{a_f/2}$.

2. Classification of one-element extension

From now on, let \overline{A} be a commutative semigroup such that $\overline{A} = A \cup \{w\}, w \notin A$ and A is a subsemigroup of \overline{A} . Put v = 2w and

$$B = \{ a \in A \, | \, a + w \in A \}, \, C = A \setminus B = \{ a \in A \, | \, a + w = w \}.$$

Obviously, either $B = \emptyset$ or B is an ideal of A. Similarly, either $C = \emptyset$ or C is a subsemigroup of A. In the following classification, the only trick is to find an appropriate description. Once a suitable formulation is found, the proofs are already straightforward.

2.1 Lemma. Let $B = \emptyset$. Then a + w = w, a + v = v for all $a \in A$ and $\overline{A} + \overline{A} = (A + A) \cup \{w\}$. Moreover, just one of the following two cases takes place:

- (1) v = w and $w = o_{\overline{A}}$.
- (2) $v \in A$, $v = o_A$ and $\{v, w\}$ is a 2-element subgroup of \overline{A} . \Box

2.2 CONSTRUCTION. Let A be a commutative semigroup, $w \notin A$ and $\bar{A} = A \cup \{w\}$. For all $x, y \in A$, put x * y = x + y and x * w = w * x = w. Putting w * w = w, we obtain a semigroup $\bar{A}(*)$ of type 2.1(1). If $o_A \in A$ and we put $w * w = o_A$, we obtain a semigroup $\bar{A}(*)$ of type 2.1(2).

2.3 Lemma. Let $C = \emptyset$ and f(a) = a + w for all $a \in A$. Then f is a regular transformation of A and just one of the following two cases takes place:

- (1) v = w, $f^2 = f$ and $\bar{A} + \bar{A} = (A + A) \cup f(A) \cup \{w\}$.
- (2) $v \in A$, f is strongly regular, $a_f = v$, $w \notin \overline{A} + \overline{A}$ and $\overline{A} + \overline{A} = (A + A) \cup f(A) \cup \{v\}$. \Box

2.4 CONSTRUCTION. Let A be a commutative semigroup, $w \notin A$, $\overline{A} = A \cup \{w\}$ and f be a regular transformation of A. For all $x, y \in A$, put x * y = x + y and x * w = w * x = f(x). If $f^2 = f$ (e.g., $f = \alpha_a$ for some $a \in \mathrm{Id}(A)$) and we put w * w = w, we obtain a semigroup $\overline{A}(*)$ of type 2.3(1). If f is strongly regular (e.g., $f = \alpha_a$ for some $a \in A$) and we put $w * w = a_f$, we obtain a semigroup $\overline{A}(*)$ of type 2.3(2).

2.5 Lemma. Let $B \neq \emptyset$, $C \neq \emptyset$ and put f(b) = b + w for all $b \in B$. Then c+v = v, f(b+c) = f(b), $b+w \in B$ for all $b \in B$ and $c \in C$, f is a regular transformation of B and $v \in \overline{A} + \overline{A}$. Moreover, just one of the following three cases takes place:

- (1) v = w, $f^2 = f$ and $\bar{A} + \bar{A} = (A + A) \cup f(B) \cup \{w\}$.
- (2) $v \in B$, f is strongly regular, $a_f = v$ and $\overline{A} + \overline{A} = (A + A) \cup f(B) \cup \{w\}$.
- (3) $v \in C$, $v = o_C$, f is strongly regular, $a_f = v$ and $\bar{A} + \bar{A} = (A+A) \cup f(B) \cup \{w\}$ and $\{v, w\}$ is a 2-element subgroup of A. \Box

2.6 CONSTRUCTION. Let A be a commutative semigroup, B be a proper ideal of A such that $C = A \setminus B$ is a subsemigroup, $w \notin A$, $\overline{A} = A \cup \{w\}$ and f be a regular transformation of B such that f(b+c) = f(b) for all $b \in B$, $c \in C$. For all $x, y \in A$,

put x * y = x + y, x * w = w * x = f(x) whenever $x \in B$ and x * w = w * x otherwise. If $f^2 = f$ and we put w * w = w, we obtain a semigroup $\overline{A}(*)$ of type 2.5(1). If f is strongly regular and $c + a_f = a_f$ for all $c \in C$ then, putting $w * w = a_f$, we obtain a semigroup $\overline{A}(*)$ of type 2.5(2). Finally, if the subsemigroup C has the absorbing element and $f^2(b) = b + o_c$ for all $b \in B$ then, putting $w * w = o_c$, we obtain a semigroup $\overline{A}(*)$ of type 2.5(3). As an easy example, we can take $A = \mathbb{N}_0(+)$, $B = \mathbb{N}, C = \{0\}$ and $f = id_B$ ($f = \alpha_1$, resp.).

2.7 REMARK. (i) Suppose that \overline{A} is a semilattice. Then only the cases 2.1(1), 2.3(1) and 2.5(1) can occur.

(ii) Suppose that \bar{A} is cancellative. If $B = \emptyset$ then $v = o_A$, hence $A = \{v\}$ and \bar{A} is a 2-element group. If $C = \emptyset$ and v = w then $w = 0_{\bar{A}}$. If $c \in C$ then c+c+w = c+w, hence $c \in \mathrm{Id}(\bar{A}) = \{0_{\bar{A}}\}$ and the case 2.5(1) cannot occur.

(iii) Suppose that \overline{A} is a nil-semigroup. i.e., $o = o_A \in A$ and for every $x \in \overline{A}$ there is $m \in \mathbb{N}$ with ma = o. If o = w then \overline{A} is of type 2.1(1). Now, let $o \in A$. Then $o + w = o \in A$ and $o \in B$. If $c \in C$ then $v = c + v = 2c + v = \cdots = o + v = o$ and \overline{A} is of type 2.5(2). If $C = \emptyset$ then \overline{A} is of type 2.3(2) (indeed, if w = v = w + w then w = o, a contradiction).

References

- 1. Ježek, J., Kepka, T. and Němec, P., Commutative semigroups that are simple over their endomorphism semirings, (preprint).
- 2. _____, Commutative semigroups with almost transitive endomorphism semirings, (preprint).

DEPARTMENT OF ALGEBRA, MFF UK, SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECH REPUBLIC *E-mail address*: jezek@karlin.mff.cuni.cz

DEPARTMENT OF ALGEBRA, MFF UK, SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECH REPUBLIC *E-mail address*: kepka@karlin.mff.cuni.cz

Department of Mathematics, ČZU, Kamýcká 129, 165 21 Prah
a6– Suchdol, Czech Republic

E-mail address: nemec@tf.czu.cz