ONE-ELEMENT EXTENSIONS OF

COMMUTATIVE SEMIGROUPS

Jaroslav Ježek, Tomáš Kepka, and Petr Němec

Abstract

A classification of one-element extensions of commutative semigroups is presented.

In the investigation of various classes of commutative semigroups, it often happens that $A=B \cup\{w\}$, where B is a subsemigroup of A and $w \notin B$ (see e.g. [1], [2]). In this short note, we present a classification of such one-element extensions.

1. Regular transformations

Throughout the paper, let $A=A(+)$ be a commutative semigroup. Further, \mathbb{N} denotes the set of positive integers and \mathbb{N}_{0} is the set of non-negative integers. As usual, $0=0_{A}$ ($o=o_{A}$, resp.) will denote the neutral (absorbing, resp.) element of A and $0_{A} \in A(o \in A$, resp.) means that A has the neutral (absorbing, resp.) element. An element $a \in A$ is idempotent if $a=a+a$ and $\operatorname{Id}(A)$ denotes the set of all idempotent elements. A is a semilattice if $A=\operatorname{Id}(A)$. A subset I of A is an ideal if $I \neq \emptyset$ and $A+I \subseteq I$. A transformation $f: A \rightarrow A$ is said to be regular if $f(a+b)=a+f(b)$ for all $a, b \in A$. Regular transformations form a submonoid of the transformation monoid $T(A)$. The following observations are straightforward:
(1) If $a \in \operatorname{Id}(A)$ and f is regular then $f(a)=a+f(a)$.
(2) For each $a \in A$, the translation $\alpha_{a}: x \mapsto x+a$ is regular. Further, $\alpha_{a} \alpha_{b}=$ $\alpha_{a+b}=\alpha_{b} \alpha_{a}$ for all $a, b \in A, \psi=\left\{\left(a, \alpha_{a}\right) \mid a \in A\right\}$ is a homomorphism of A into $T(A)$ and $\operatorname{ker} \psi=\left\{(a, b) \in A^{2} \mid \alpha_{a}=\alpha_{b}\right\}$ is a congruence of A.
(3) If $0 \in A$ then $f=\alpha_{f(0)}$ for each regular transformation f of A.
(4) If f is regular and $a \in A$ then $f^{2}(2 a)=2 f(a)$.
(5) If A is a semilattice then $f^{2}=f$ for each regular transformation f of A.
(6) If f is regular and φ is an automorphism of A then $\varphi^{-1} f \varphi$ is a regular transformation of A.
(7) If B is an ideal of A then, for each $a \in B$, the restriction $\beta_{a}=\alpha_{a} \mid B$ is a regular transformation of B.
(8) if $o \in A$ then $f(o)=o$ for each regular transformation f of A.

Further, a regular transformation f is called strongly regular if $f^{2}=\alpha_{a}$ for some $a=a_{f} \in A$. Now, we have the following:

[^0](9) For each $a \in A, \alpha_{a}$ is strongly regular $A_{\alpha_{a}}=2 a$.
(10) If f is strogly regular and A is uniquely 2 -divisible (i.e., for each $a \in A$ there is exactly one $b=a / 2 \in A$ with $a=2 b$) then $f=\alpha_{a_{f} / 2}$.

2. Classification of one-element extension

From now on, let \bar{A} be a commutative semigroup such that $\bar{A}=A \cup\{w\}, w \notin A$ and A is a subsemigroup of \bar{A}. Put $v=2 w$ and

$$
B=\{a \in A \mid a+w \in A\}, C=A \backslash B=\{a \in A \mid a+w=w\}
$$

Obviously, either $B=\emptyset$ or B is an ideal of A. Similarly, either $C=\emptyset$ or C is a subsemigroup of A. In the following classification, the only trick is to find an appropriate description. Once a suitable formulation is found, the proofs are already straightforward.
2.1 Lemma. Let $B=\emptyset$. Then $a+w=w, a+v=v$ for all $a \in A$ and $\bar{A}+\bar{A}=$ $(A+A) \cup\{w\}$. Moreover, just one of the following two cases takes place:
(1) $v=w$ and $w=o_{\bar{A}}$.
(2) $v \in A, v=o_{A}$ and $\{v, w\}$ is a 2-element subgroup of \bar{A}.
2.2 Construction. Let A be a commutative semigroup, $w \notin A$ and $\bar{A}=A \cup\{w\}$. For all $x, y \in A$, put $x * y=x+y$ and $x * w=w * x=w$. Putting $w * w=w$, we obtain a semigroup $\bar{A}(*)$ of type 2.1(1). If $o_{A} \in A$ and we put $w * w=o_{A}$, we obtain a semigroup $\bar{A}(*)$ of type 2.1(2).
2.3 Lemma. Let $C=\emptyset$ and $f(a)=a+w$ for all $a \in A$. Then f is a regular transformation of A and just one of the following two cases takes place:
(1) $v=w, f^{2}=f$ and $\bar{A}+\bar{A}=(A+A) \cup f(A) \cup\{w\}$.
(2) $v \in A$, f is strongly regular, $a_{f}=v, w \notin \bar{A}+\bar{A}$ and $\bar{A}+\bar{A}=(A+A) \cup$ $f(A) \cup\{v\}$.
2.4 Construction. Let A be a commutative semigroup, $w \notin A, \bar{A}=A \cup\{w\}$ and f be a regular transformation of A. For all $x, y \in A$, put $x * y=x+y$ and $x * w=w * x=f(x)$. If $f^{2}=f$ (e.g., $f=\alpha_{a}$ for some $\left.a \in \operatorname{Id}(A)\right)$ and we put $w * w=w$, we obtain a semigroup $\bar{A}(*)$ of type 2.3(1). If f is strongly regular (e.g., $f=\alpha_{a}$ for some $a \in A$) and we put $w * w=a_{f}$, we obtain a semigroup $\bar{A}(*)$ of type 2.3(2).
2.5 Lemma. Let $B \neq \emptyset, C \neq \emptyset$ and put $f(b)=b+w$ for all $b \in B$. Then $c+v=v$, $f(b+c)=f(b), b+w \in B$ for all $b \in B$ and $c \in C, f$ is a regular transformation of B and $v \in \bar{A}+\bar{A}$. Moreover, just one of the following three cases takes place:
(1) $v=w, f^{2}=f$ and $\bar{A}+\bar{A}=(A+A) \cup f(B) \cup\{w\}$.
(2) $v \in B, f$ is strongly regular, $a_{f}=v$ and $\bar{A}+\bar{A}=(A+A) \cup f(B) \cup\{w\}$.
(3) $v \in C, v=o_{C}$, f is strongly regular, $a_{f}=v$ and $\bar{A}+\bar{A}=(A+A) \cup f(B) \cup\{w\}$ and $\{v, w\}$ is a 2-element subgroup of A.
2.6 Construction. Let A be a commutative semigroup, B be a proper ideal of A such that $C=A \backslash B$ is a subsemigroup, $w \notin A, \bar{A}=A \cup\{w\}$ and f be a regular transformation of B such that $f(b+c)=f(b)$ for all $b \in B, c \in C$. For all $x, y \in A$,
put $x * y=x+y, x * w=w * x=f(x)$ whenever $x \in B$ and $x * w=w * x$ otherwise. If $f^{2}=f$ and we put $w * w=w$, we obtain a semigroup $\bar{A}(*)$ of type 2.5(1). If f is strongly regular and $c+a_{f}=a_{f}$ for all $c \in C$ then, putting $w * w=a_{f}$, we obtain a semigroup $\bar{A}(*)$ of type 2.5(2). Finally, if the subsemigroup C has the absorbing element and $f^{2}(b)=b+o_{c}$ for all $b \in B$ then, putting $w * w=o_{c}$, we obtain a semigroup $\bar{A}(*)$ of type $2.5(3)$. As an easy example, we can take $A=\mathbb{N}_{0}(+)$, $B=\mathbb{N}, C=\{0\}$ and $f=i d_{B}\left(f=\alpha_{1}\right.$, resp. $)$.
2.7 Remark. (i) Suppose that \bar{A} is a semilattice. Then only the cases 2.1(1), 2.3(1) and 2.5(1) can occur.
(ii) Suppose that \bar{A} is cancellative. If $B=\emptyset$ then $v=o_{A}$, hence $A=\{v\}$ and \bar{A} is a 2-element group. If $C=\emptyset$ and $v=w$ then $w=0_{\bar{A}}$. If $c \in C$ then $c+c+w=c+w$, hence $c \in \operatorname{Id}(\bar{A})=\left\{0_{\bar{A}}\right\}$ and the case $2.5(1)$ cannot occur.
(iii) Suppose that \bar{A} is a nil-semigroup. i.e., $o=o_{A} \in A$ and for every $x \in \bar{A}$ there is $m \in \mathbb{N}$ with $m a=o$. If $o=w$ then \bar{A} is of type 2.1(1). Now, let $o \in A$. Then $o+w=o \in A$ and $o \in B$. If $c \in C$ then $v=c+v=2 c+v=\cdots=o+v=o$ and \bar{A} is of type 2.5(2). If $C=\emptyset$ then \bar{A} is of type 2.3(2) (indeed, if $w=v=w+w$ then $w=o$, a contradiction).

References

1. Ježek, J., Kepka, T. and Němec, P., Commutative semigroups that are simple over their endomorphism semirings, (preprint).
2. \qquad , Commutative semigroups with almost transitive endomorphism semirings, (preprint).

Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic E-mail address: jezek@karlin.mff.cuni.cz

Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic E-mail address: kepka@karlin.mff.cuni.cz

Department of Mathematics, ČZU, Kamýcká 129, 16521 Praha 6 - Suchdol, Czech Republic

E-mail address: nemec@tf.czu.cz

[^0]: 1991 Mathematics Subject Classification. 20M14.
 Key words and phrases. Commutative semigroup, ideal, regular transformation.
 The work is a part of the research project MSM 0021620839 financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant \#201/09/0296.

