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Abstract. The structure of almost projective modules can be better under-

stood in case the following Condition (P) holds: ‘The union of each countable
pure chain of projective modules is projective.’ We prove this condition, and

its generalization to pure–projective modules, for all countable rings using

the new notion of a strong submodule of the union.
However, we also show that Condition (P) fails for all Prüfer domains of

finite character with uncountable spectrum; in particular, for the polynomial

ring K[x] where K is an uncountable field. Moreover, one can even prescribe
the Γ–invariant of the union. Our results generalize earlier work of Hill, and

complement recent papers by Maćıas–Dı́az, Fuchs, and Rangaswamy.

By a classic theorem of Kaplansky, the structure theory of projective modules
over an arbitrary ring reduces to the countably generated ones. In stark contrast,
almost projective modules (modules possessing a rich supply of small projective
submodules) have a very complex structure in general. Perhaps the most successful
invariant measuring their complexity is the Γ–invariant. Projective modules are
recognized by having trivial Γ–invariant, [2, 3].

There are additional conditions on almost projective modules that guarantee
projectivity. In his work on Whitehead groups, Hill discovered a remarkable con-
dition in the particular case of abelian groups: if A is the union of a countable
pure chain of (arbitrarily large) projective groups, then A is projective [8]. In the
present paper, we call the analogous property for modules over an arbitrary ring
Condition (P).

In the past decade, several authors attempted to extend Hill’s result and es-
tablish Condition (P) for large classes of rings, notably for commutative domains
and noetherian rings, [4, 5]. So far Maćıas–Dı́az [9] obtained the strongest result,
namely, Prüfer domains with countable spectrum have Condition (P).

Section 1 of our paper adds more motivation for considering Condition (P) by
showing its role in relating various notions of almost projectivity appearing in the
literature. In Section 2 we prove Condition (P), and some of its generalizations, for
all countable rings using the new notion of a strong submodule.

However, in Section 3 we show that Condition (P) fails completely for all Prüfer
domains of finite character with uncountable spectrum (thus, for example, for the
polynomial ring K[x] where K is any uncountable field). The term ‘completely’
refers to the fact that there are essentially no restrictions on the Γ–invariant of A.

In what follows, R will denote a ring (that is, an associative ring with 1), and
the term module will mean a right R–module.
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1. Almost projective modules

The following definition is the analogue of [3, IV.1.1] for general rings with ‘free’
replaced by ‘projective’.

Definition 1.1. Let R be a ring and κ a regular uncountable cardinal. A module
M is called κ–projective provided there exists a set S consisting of < κ–generated
projective submodules of M such that

(1) each subset of M of cardinality < κ is contained in an element of S, and
(2) S is closed under unions of well–ordered chains of length < κ.

There are other notions relevant for the study of almost projectivity (see [3,
IV.1], [14], et al.). We now recall three of them:

Definition 1.2. Let R be a ring and κ a regular uncountable cardinal. A module
M is called weakly κ–projective provided that each subset of M of cardinality < κ
is contained in a pure submodule N of M which is < κ–generated and projective.

Recall that a module M is flat provided that the functor M ⊗R − is exact, and
M is Mittag–Leffler if the canonical map

M ⊗R
∏
i∈I

Qi →
∏
i∈I

(M ⊗R Qi)

is monic for each family of left R–modules (Qi | i ∈ I).
Our starting point is the following result from [10] and [7]:

Lemma 1.3. Let R be a ring and M a module. Then the following conditions are
equivalent:

(i) M is ℵ1–projective.
(ii) M is weakly ℵ1–projective.
(iii) Each finite subset of M is contained in a projective countably generated and

pure submodule of M .
(iv) M is flat Mittag–Leffler.

Moreover, if κ is a regular uncountable cardinal and M is κ–projective, then M is
ℵ1–projective.

Proof. The equivalence of (i), (ii) and (iii) is proved in [10] (see also [1]), while (i)
and (iv) are equivalent by [7, Theorem 2.9(i)] (see also [11] and [12]). The moreover
part is [7, Theorem 2.9(ii)]. �

The implication (i) ⇒ (ii) extends to arbitrary regular uncountable cardinals κ:

Lemma 1.4. Let R be a ring, M be a module, and κ be an infinite cardinal.

(i) Assume that M is ℵ1–projective. Then each subset of M of cardinality ≤ κ
is contained in a ≤ κ–generated pure submodule of M .

(ii) Assume that κ is regular uncountable and M is κ–projective. Then M is
weakly κ–projective.

Proof. (i) We will prove the claim by induction on κ. The case of κ = ℵ0 follows
by Lemma 1.3.

Assume κ ≥ ℵ1 and let X = {xα | α < κ} be a subset of M of cardinality κ. For
each α < κ, let Xα = {xβ | β < α}. By induction on α, we define an increasing
chain (Pα | α < κ) of < κ–generated pure submodules of M as follows: P0 = 0,
Pα+1 is a < κ–generated pure submodule of M containing Xα ∪ Pα (which exists
by the inductive premise), and Pα =

⋃
β<α Pβ when α < κ is a limit ordinal. Then

P =
⋃
α<κ Pα is a ≤ κ–generated pure submodule of M containing X.

(ii) Let S be as in Definition 1.1, and X be a subset of M of cardinality < κ.
By condition (1) of Definition 1.1, X is contained in a < κ–generated projective
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submodule P0 ∈ S. By the moreover part of Lemma 1.3 and by part (i), P0 is
contained in a < κ–generated pure submodule Q0 of M . Proceeding similarly, we
obtain a countable chain

P0 ⊆ Q0 ⊆ P1 ⊆ Q1 ⊆ · · · ⊆ Pn ⊆ Qn ⊆ . . .

where Pn ∈ S, so Pn is < κ–generated and projective, and Qn is < κ–generated
and pure in M , for all n < ω. Let P =

⋃
n<ω Pn =

⋃
n<ω Qn. Then P ∈ S by

condition (2) of Definition 1.1, and P is pure in M . �

Note that whatever the cardinality of the ring R, Lemma 1.4(i) makes it pos-
sible to purify a submodule without increasing the number of generators. So in
the particular case when R is a right hereditary ring, κ–projectivity and weak κ-
projectivity are equivalent (to the property that each < κ–generated submodule is
projective). However, the converse of Lemma 1.4(ii) fails in general:

Example 1.5. Let κ > ℵ1 be a regular cardinal, K be a field, and let R denote
the endomorphism ring of a κ–dimensional K–linear space modulo its maximal
ideal. Then there exists a κ–generated right ideal I in R such that I is weakly
κ–projective, but not κ–projective (see [14, Theorem 8]).

Another relevant property is the following (where a chain (Pn | n < ω) is a pure
chain in case Pn is a pure submodule of Pn+1 for each n < ω):

Definition 1.6. Let R be a ring. Then R satisfies Condition (P) provided that
for each pure chain (Pn | n < ω) consisting of projective modules, the module
P =

⋃
n<ω Pn is projective.

Condition (P) yields a characterization of the weak κ–projectivity:

Proposition 1.7. Let R be a ring satisfying Condition (P). Let M be a module,
and κ be a regular infinite cardinal. Then M is weakly κ–projective, if and only if
there exists a set S consisting of < κ–generated projective submodules of M such
that

(1) each subset of M of cardinality < κ is contained in an element of S, and
(2) S is closed under unions of countable chains.

Proof. In view of [7, Corollary 2.3], assumptions (1) and (2) assure ℵ1–projectivity
of M , so the if–part is proved as in Lemma 1.4. For the only if part, let S be the
set of all < κ–generated projective and pure submodules of M . Then (1) holds by
the assumption. If M0 ⊆ · · · ⊆Mn ⊆Mn+1 ⊆ · · · is a countable chain of elements
of S, then Mω =

⋃
n<ωMn is projective by Condition (P), so Mω ∈ S. �

Condition (P) holds for R = Z. This was shown by Hill [8], who proved thus the
singular compactness for almost free abelian groups of cardinality ℵα where α has
cofinality ω.

More generally, Condition (P) is known to hold for all Prüfer domains with
countably many maximal ideals [9, Corollary 15], hence for all valuation domains.
In Theorem 2.5 below, we will prove it for all countable rings.

However, attempts to prove Condition (P) for arbitrary domains in [5, XVI.1.4]
and [4, Theorem 1.3] have gaps; in fact, as we will see in Theorem 3.1, Condition (P)
fails even for R = K[x] where K is an uncountable field.

The main goal of the next section will be to prove Condition (P), and hence the
equivalence in Proposition 1.7, for all countable rings. Before proceeding to that
point, let us note that under additional assumptions on R and M , the equivalence
holds even without assuming Condition (P):
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Proposition 1.8. Let κ be an infinite cardinal, R be a ring, which is either a
domain or is right < κ–noetherian (i.e., every right ideal is < κ-generated). Let M
be a module of projective dimension ≤ 1. Then M is weakly κ–projective, if and
only if there exists a set S consisting of < κ–generated projective submodules of M
such that

(1) each subset of M of cardinality < κ is contained in an element of S, and
(2) S is closed under unions of countable chains.

The following lemma will help in finding projective submodules:

Lemma 1.9. Let M be a module of projective dimension at most 1. Let N be
a tight submodule, i.e., M/N has also projective dimension at most 1. If N is
contained in a projective submodule of M , then N is projective.

Proof. Let P be a projective module such that N ⊆ P ⊆M . We can estimate the
projective dimensions of various modules built from N , P and M using the long
exact sequence for Ext as follows:

proj.dimM/P ≤ max{proj.dimM,proj.dimP + 1} ≤ 2,(1)

proj.dimP/N ≤ max{proj.dimM/N, proj.dimM/P − 1} ≤ 1,(2)

proj.dimN ≤ max{proj.dimP,proj.dimP/N − 1} ≤ 0.(3)

The last line shows that N is projective. �

Proof of Proposition 1.8. As in the proof of Proposition 1.7, the conditions (1) and
(2) of Proposition 1.8 imply that M is κ-projective (because neither Condition (P)
nor any of our additional assumptions are needed there).

For the other direction, we first note that by the assumptions on R, there is a
Hill family consisting of tight submodules of M : in the case when R is a domain,
this follows by [5, Proposition VI.5.1] and [6, 4.2.6]; when R is < κ–noetherian, we
apply [6, 4.1.11 and 4.2.6].

Let S be the subfamily of the < κ-generated members of this family. Conditions
(1) and (2) automatically hold. Finally, the assumption of weak κ–projectivity and
Lemma 1.9 imply that S consist of projective modules. �

2. Hill families of strong submodules

We start this section by considering a general version of Condition (P), where the
chain (Pn | n < ω) is not necessarily pure, and the modules Pn (n < ω) are direct
sums of modules from a given class C consisting of countably presented modules, or
modules of countable rank. The relevant notion here is that of a strong submodule.
It is introduced in the following definition where, for a class of modules C, we denote
by Sum (C) the class of all direct sums of copies of modules from C.

Definition 2.1. Let R be a ring and C be a class of modules.
Let (Pn | n < ω) be a countable increasing chain of modules, and P =

⋃
n<ω Pn.

Assume that Pn ∈ Sum (C) for each n < ω, that is, there exists a decomposition
Pn =

⊕
α<κn

Pn,α where Pn,α is isomorphic to an element of C for each α < κn.
We will fix these decompositions, and for each n < ω and each subset S ⊆ κn,

define P (n, S) =
⊕

α∈S Pn,α. So in particular, Pn = P (n, κn).
A submodule N of P is called strong provided there exist (An | n < ω) such

that An ⊆ κn and N ∩ Pn = P (n,An) for each n < ω. The sequence (An | n < ω)
is then uniquely determined by N ; it is the witnessing sequence for N .

In this section, P will denote the union
⋃
n<ω Pn where (Pn | n < ω) is a

countable increasing chain of modules as in Definition 2.1.
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In the case when C is the class of all countably presented projective modules,
Definition 2.1 covers the setting of Condition (P), because by a classic theorem of
Kaplansky, each projective module is a direct sum of modules in C.

Note that 0 and P are strong submodules of P . Also, unions of chains of strong
submodules are strong, and so are arbitrary intersections of strong submodules.
Indeed, in Theorem 2.9, we will prove that strong submodules are abundant.

If N is strong in P and the chain (Pn | n < ω) is pure, then N is a pure
submodule of P because N =

⋃
n<ω N ∩Pn and N ∩Pn is a direct summand in the

pure submodule Pn of P for each n < ω.
For the next lemma, we recall that a ring R is right ℵ0–noetherian provided

that each right ideal of R is countably generated. For example, all right noetherian
rings, and all countable rings, are right ℵ0–noetherian. It is easy to see that a ring
R is right ℵ0–noetherian, if and only if each submodule of a countably generated
module is countably generated.

Lemma 2.2. Assume that R is right ℵ0–noetherian and C consists of countably
presented modules or R is a commutative domain and C consists of torsion-free
modules of countable rank, respectively. Let N be a strong submodule of P with
witnessing sequence (An | n < ω). Let C be a countable subset of P or a subset of
P such that 〈C〉 has countable rank, respectively.

Then there is a strong submodule N ′ of P such that N ∪ C ⊆ N ′, and the
witnessing sequence (A′n | n < ω) for N ′ satisfies An ⊆ A′n and A′n\An is countable
for each n < ω.

Proof. We will simultaneously and recursively construct chains (Cn,i : i < ω) of
subsets of κn.

As a start, for each n < ω, let An ⊆ Cn,0 ⊆ κn with Cn,0 \ An countable and
C ∩ Pn ⊆ P (n,Cn,0).

For i ≥ 0, let Cn,i ⊆ Cn,i+1 ⊆ κn with Cn,i+1 \Cn,i countable and P (m,Cm,i)∩
Pn ⊆ P (n,Cn,i+1) for all m.

Finally, we define A′n =
⋃
i<ω Cn,i for each n < ω. Then An ⊆ A′n ⊆ κn, and

A′n \An is countable for each n < ω. Let N ′ =
⋃
n<ω P (n,A′n) =

⋃
n,i<ω P (n,Cn,i).

Note that the P (n,Cn,i) form an upper directed system of submodules, so their
union is a submodule.

Recall that P (m,Cm,i)∩Pn ⊆ P (n+1, Cn+1,i) for all m,n, i < ω, henceN ′∩Pn =
P (n,A′n). All in all, N ′ is a strong submodule of P with witnessing sequence
(A′n | n < ω).

Since C ∩ Pn ⊆ P (n,A′n) for each n < ω, we conclude that N ∪ C ⊆ N ′. �

Lemma 2.2 serves as inductive step for proving

Proposition 2.3. Assume that either R is right ℵ0–noetherian and C consists
of countably presented modules or R is a commutative domain and C consists of
torsion-free modules of countable rank, respectively.

Then P is the union of a continuous increasing chain M = (Mα | α < λ) of
strong submodules of P such that for each α < λ there is a countably generated or
countable rank submodule Nα of P , respectively, with Mα+1 = Mα +Nα.

Proof. Let {pα | α < λ} be an R–generating subset of P . Since M0 = 0 is strong,
and the union of a chain of strong submodules is strong, we are left to perform the
non–limit step of the construction. However, applying Lemma 2.2 for N = Mα and
C = {pα}, we can take Nα =

∑
n<ω P (n,A′n \An) and Mα+1 = N ′. �

We can prove more in the particular case of countable rings. We will say that a
class of modules C has Property (C) provided that for each increasing pure chain of
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modules, (Qn | n < ω), such that Qn ∈ Sum (C) for all n < ω, and each countably
presented pure submodule C of

⋃
n<ω Qn, the module C is C–filtered. Moreover,

C has Property (C+) if the same assumptions yield the stronger conclusion of
C ∈ Sum (C).

For example, the class of all countably presented modules and the class of all pro-
jective modules have Property (C+), because the union of a pure chain of projective
modules is always ℵ1–projective (see Lemma 1.3(iii)).

Lemma 2.4. Let R be a countable ring. Let C be a class of countably presented
modules which has Property (C). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn. Then P is

C–filtered.
Moreover, if C has Property (C+), then P is the union of a continuous increas-

ing chain M = (Mα | α < λ) consisting of strong submodules of P such that
Mα+1/Mα ∈ Sum (C).

Proof. Let (Pn | n < ω) be an increasing pure chain of modules with Pn ∈ Sum (C)
for all n < ω. Since R is countable, the continuous chain M from Proposition 2.3
can be taken with the additional property of Mα+Pn being pure in P for all n < ω
and α < κ. This is arranged by improving Lemma 2.2 for countable R: when for
the strong submodule N , all the submodules N + Pn are pure, then N ′ can be
chosen with the N ′ + Pn also pure.

It follows that for each α < κ, the factor Q = P/Mα is the union of the pure
chain (Qn | n < ω) where Qn = (Mα + Pn)/Mα. Moreover, Qn ∼= Pn/(Pn ∩Mα) ∈
Sum (C) because Mα is strong. Similarly, the countably presented submodule C =
Mα+1/Mα is pure in Q, so C is C–filtered by Property (C). Then P =

⋃
α<κMα is

C–filtered as well.
Moreover, if C has Property (C+), then C = Mα+1/Mα ∈ Sum (C). �

The assumptions of Lemma 2.4 are satisfied for R countable and C the class of
all countably generated projective modules. Since in this case C–filtered is the same
as projective, we get

Theorem 2.5. Let R be a countable ring. Then R satisfies Condition (P).

As another consequence, we obtain the general version of Condition (P) for the
case when R is countable, C has Property (C+), and C consists of finitely presented
modules:

Corollary 2.6. Let R be a countable ring, and C be a class of finitely presented
modules which has Property (C+). Let (Pn | n < ω) be an increasing pure chain
of modules such that Pn ∈ Sum (C) for all n < ω, and P =

⋃
n<ω Pn. Then

P ∈ Sum (C).

Proof. By Lemma 2.4, P is the union of a continuous increasing chain M = (Mα |
α < λ) consisting of strong submodules of P such that Mα+1/Mα ∈ Sum (C). In
particular, Mα is pure in Mα+1 for each n < ω. As C consists of finitely presented
modules, Mα+1/Mα is pure–projective, and the embedding Mα ↪→ Mα+1 splits.
This proves that P ∈ Sum (C). �

A variation of Corollary 2.6 gives the version of Condition (P) for pure–projective
modules over countable rings.

Theorem 2.7. Let R be a countable ring, (Pn | n < ω) be an increasing pure chain
of pure–projective modules, and P =

⋃
n<ω Pn. Then P is pure–projective.

Proof. By [10, Seconde partie, Corollaire 2.2.2], a countably presented module is
pure–projective, if and only if it is Mittag–Leffler, and the latter property is clearly
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inherited by pure submodules. As in Lemma 2.4, we infer that P is the union of a
continuous chain,M, consisting of strong submodules of P such that all consecutive
factors in M are pure–projective, hence P is pure–projective as well. �

Alternatively, we can deduce Theorem 2.5 from Theorem 2.7, because projective
= flat + pure–projective.

Of course, the union of a non–pure countable chain of projective modules need
not be projective even for countable rings: just consider R = Z and Q as the union
of the chain of free groups (1/n! · Z | n < ω).

Moreover, the general version of Condition (P) for pure chains consisting of
modules from Sum (C) may fail even for countable rings and C having Property
(C). That is, even though P is C–filtered by Lemma 2.4, P /∈ Sum (C) in general:

Example 2.8. Let R be a simple countable von Neumann regular ring which is
not artinian — for example, let R be the directed union of the full matrix rings
M2n(Q) (n < ω) with the block diagonal embeddings

Q ⊆M2(Q) ⊆M4(Q) ⊆ · · · ⊆M2n(Q) ⊆M2n+1(Q) ⊆ · · · .

Consider a simple non–projective module S, and let C be the class of all finitely
{S}–filtered modules. Then C is a class of countable modules, and it has Property
(C).

Define a chain of finite length modules (Pn | n < ω) so that P0 = S, and Pn+1 fits
in a non–split short exact sequence 0→ Pn ⊆ Pn+1 → S → 0 for each n < ω. This
is possible by [15, Proposition 3.3]. This chain is pure because R is von Neumann
regular, so all R–modules are flat.

Let P =
⋃
n<ω Pn. Then Pn ∈ C for all n < ω, and P is C–filtered, but

P /∈ Sum (C). Indeed, S = P0 is an essential submodule of P , so P is uniform,
hence indecomposable.

Returning to the general setting and using an idea by Hill, we can extend the
chain M from Lemma 2.3 further, to a large family of strong submodules:

Theorem 2.9. Assume that R is right ℵ0–noetherian and C consists of countably
presented modules or R is a commutative domain and C consists of torsion-free
modules of countable rank, respectively. Let M be a chain of strong submodules of
P with countably generated or countable rank factors, respectively.

Then there is a family H of strong submodules of P such that

(H1) M⊆ H.
(H2) H is closed under arbitrary sums and intersections; in fact, H is a complete

distributive sublattice of the modular lattice of all submodules of P .
(H3) Let N,N ′ ∈ H be such that N ⊆ N ′. Then there exists a continuous

increasing chain (Nβ | β ≤ τ) consisting of elements of H such that τ ≤ λ,
N0 = N , Nτ = N ′, and for each β < τ there is α < κ such that Nβ+1/Nβ
isomorphic to Mα+1/Mα.

(H4) Let N ∈ H and X be a countable subset of P (a subset of P such that 〈X〉
has countable rank, respectively). Then there are N ′ ∈ H and a submodule
Y ⊆ P such that Y is countably generated (of countable rank, respectively)
and N ∪X ⊆ N ′ = N + Y .

Proof. First, for all α < λ and n < ω, let Dα,n = Aα+1,n\Aα,n where (Aα,n | n < ω)
and (Aα+1,n | n < ω) are the witnessing sequences for Mα and Mα+1, respectively.
By the construction of the chain M, all the sets Dα,n are countable. Let ∆α =∑
n<ω P (n,Dα,n). Then ∆α is countably generated, and Mα+1 = Mα+∆α foreach

α < λ.
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As in [6, §4.2], we call a subset S of σ closed in case ∆α ∩Mα ⊆
∑
β<α,β∈S ∆β

for each α ∈ S. We define H = {
∑
α∈S ∆α | S is closed in λ}.

Since each ordinal σ ≤ λ is closed, M ⊆ H, and (H1) holds. Properties (H2)
and (H3) are proved in [6, 4.2.6]. If R is ℵ0–noetherian, then (H4) is proved in [6,
4.2.6] while in the domain case, (H4) follows by [6, 4.2.8].

It remains to show that all modules inH are strong. Let S be a closed subset of λ,
N =

∑
α∈S ∆α, and Bn =

⋃
α∈S Dα,n. It suffices to prove that N ∩Pn = P (n,Bn)

for each n < ω. The inclusion ⊇ is clear from the definitions above.
Assume there exists x ∈ (N ∩ Pn) \ P (n,Bn). Then there is one of the form

x = xα1
+· · ·+xαi

where α1 < · · · < αi are elements of S, and xαk
∈ ∆αk

\P (n,Bn)
for all 1 ≤ k ≤ i. W.l.o.g., we can assume that α = αi is minimal. Since x ∈
Mα+1 ∩ Pn = P (n,Aα+1,n), we also have x = yβ1 + · · · + yβj where β1 < · · · < βj
are elements of Aα+1,n and yβl

∈ Pn,βl
for each 1 ≤ l ≤ j. If βl ∈ Dα,n for some

1 ≤ l ≤ j, then 0 6= xα−yβl
∈ ∆α\P (n,Bn). Possibly replacing x by x−yβl

, we can
assume that βl ∈ Aα,n for all 1 ≤ l ≤ j. But then xα ∈ ∆α ∩Mα ⊆

∑
β<α,β∈S ∆β ,

in contradiction with the minimality of α.
This proves that N is strong in P . �

We can now improve the second part of Lemma 2.4:

Corollary 2.10. Let R be a countable ring. Let C be a class of countably presented
modules which has Property (C+). Let (Pn | n < ω) be an increasing pure chain of
modules such that Pn ∈ Sum (C) for all n < ω, and let P =

⋃
n<ω Pn.

Then P is the union of a continuous increasing pure chain N = (Nα | α < ℵ1)
consisting of strong submodules of P such that Nα+1/Nα ∈ Sum (C) for all α < ℵ1.

Proof. Let M be the chain constructed in the second part of Lemma 2.4, and
consider the corresponding family H as in Theorem 2.9. By [13], one can select
from H an increasing continuous chain N = (Nα | α < ℵ1) of length ≤ ℵ1, such
that Nα+1/Nα is isomorphic to a direct sum of some of the successive factors of the
original chain M for all α < ℵ1. By Lemma 2.4, all these factors are in Sum (C).
Since H consists of strong (and hence pure) submodules of P , so does N . �

3. The failure of Condition (P)

In this section, we will prove that Condition (P) fails for Prüfer domains of finite
character with uncountable spectrum, notably for every PID with an uncountable
spectrum. We adopt [3, Theorem VII.1.4] to illustrate that failure of Condition (P)
has little if any restriction on the Γ-invariant of even large almost-projective mod-
ules.

Recall from [5, Chapter III, Lemma 2.7] that in a Prüfer domain of finite charac-
ter, every maximal ideal contains a finitely generated ideal, which is not contained
in any other maximal ideal. Selecting one for every maximal ideal, we obtain a
system of pairwise coprime proper invertible ideals. In fact, all we need is such a
system of ideals:

Theorem 3.1. Let R be a commutative domain with uncountably many pairwise
coprime invertible proper ideals. Let κ be a regular uncountable cardinal, and E
be a non-reflecting stationary subset of κ all of whose elements have cofinality ω.

Then there is a κ-projective κ-generated R-module M with Γ-invariant Ẽ which is
a union of a countable pure chain of projective submodules.

Before proving Theorem 3.1, we follow the suggestion of the referee and present
a simple particular case of the construction.
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Example 3.2. Let R be a PID with uncountably many maximal ideals (pα) for
0 < α < ℵ1.

We define our module via generators and relations:

(4) P := 〈eα,n : α < ω1, n < ω | pαeα,n+1 = eα,n + e0,n+1 : α > 0〉 .
(This is an example for the theorem with κ = ℵ1, and E = {α < ℵ1 | cf(α) = ℵ0}.)

We leave it to the reader to verify that for every 0 < α ≤ ℵ1 and i < ω the
submodule

(5) Nα,i = 〈eβ,j : j ≤ i, β < α〉
is actually free with a basis formed by the e0,j for j ≤ i and the eβ,i for 0 < β < α.

Since Nα,i+1/Nα,i ∼=
〈
R, p−1

β : 0 < β < α
〉

(with e0,i+1 corresponding to 1 and

eβ,i+1 corresponding to p−1
β ) is torsion-free, Nα,i is a pure submodule of Nα,i+1.

Hence P is a union of a pure chain Pi = Nℵ1,i of projective submodules.
On the other hand, P is a union of a continuous chain

(6) Nα =
⋃
i<ω

Nα,i = 〈eβ,i : β < α, i < ω〉 , 0 < α < ℵ1

of (strong) submodules with non-projective factors Nα+1/Nα ∼= R[p−1
α ] (with eα,i

corresponding to p−iα ), and hence is not projective.

The proof of Theorem 3.1 is mostly the same as in [3, Theorems VII.1.3—4],
so we present only the differences. To include the sequence of submodules in
the structure, we work in the category of ω-filtered modules, i.e., modules M
together with an increasing sequence (M(n) : n < ω) of submodules satisfying⋃∞
n=0M(n) = M . A filtered submodule of M is a submodule N together with the

filtration N(n) := M(n) ∩ N . Note that M/N is also a filtered module with the
filtration (M(n)/N(n) ∼= (M(n) +N)/N : n < ω).

For the free module R(λ×ω), we will always use the filtration (R(λ×n) : n < ω).
For a module N , let N [n] denote the filtered module

(7) N [n](m) :=

{
0, m < n,

N, m ≥ n.

For example,

R(λ×ω) =

∞⊕
n=0

R(λ)[n+ 1]

as filtered modules.

Proof of Theorem 3.1. We distinguish the cases κ > ℵ1 and κ = ℵ1. To avoid
repetition, first, we provide the common part of both cases, and then fill out the
missing parts separately.

We build a continuous increasing chain of ω-filtered modules (Mµ : µ < κ) whose
filtrations consist of pure and projective submodules. By increasing we mean that
Mν is a filtered submodule of Mµ for µ < ν.

The union M of the chain will be our κ-projective module with Γ-invariant Ẽ.
To ensure that all the Mµ(n) and M(n) are projective, we shall make the filtra-

tions of the Mµ+1/Mµ consist of projective modules.
We shall fix an infinite cardinal λ < κ. For µ /∈ E let

Mµ+1 := Mµ ⊕ Pµ, Pµ := R(λ×ω) =

∞⊕
n=0

R(λ)[n+ 1]eµ,n.

For the case µ ∈ E, we select a template as in [3, Corollary VII.1.2], i.e., a
non-projective λ-generated module Nµ with an ω-filtration by projective modules.
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By adding a projective module, we may assume that the filtration consist of λ-
generated free modules, i.e., Nµ(n) ∼= R(λ). The filtration induces a short exact
sequence 0→ Kµ → Fµ → Nµ → 0 of ω-filtered modules where

Fµ :=

∞⊕
n=0

Nµ(n)[n]en,(8)

Kµ :=

∞⊕
n=0

Nµ(n)[n+ 1]en ∼= R(λ×ω).(9)

The embedding of Kµ into Fµ maps xen into xen+1−xen, and the homomorphism
Fµ → Nµ maps xen into x for all x ∈ Nµ(n) and natural number n. In particular,
the filtrations of Kµ and Fµ consist of direct summands, hence pure and projective
submodules. We see that the modules Fµ/(Kµ(n)) =

⊕∞
m=nNµ(m) are projective

for all N .
We defineMµ+1 as the pushout of the inclusionKµ ⊆ Fµ by a suitable embedding

Kµ → Mµ identifying Kµ with the direct summand
⊕∞

n=0R
(λ)[n + 1]eµn,n of the

filtered submodule
⊕∞

n=0 Pµn for an increasing sequence of successor ordinals µn
with supremum µ. Then Mµ+1/Mµ

∼= Nµ as filtered modules, therefore Mµ+1/Mµ

is filtered by projective submodules.
The rest of [3, Theorems VII.1.3—4] applies to show that M is a κ-free mod-

ule of Γ-invariant Ẽ. The filtration of M consists of projective submodules by
construction.

All that is left is to find λ and the Nµ and to verify that the filtration of M
actually consists of pure submodules.

When κ > ℵ1, we choose λ = ℵ1, and let Nµ be an ℵ1-generated non-projective
module with an ω-filtration by pure and projective submodules. (We may choose
all the Nµ the same.) Such an Nµ exists by the κ = ℵ1 case. Since the filtration
of Nµ is by pure submodules, it follows that all the Mµ(n) and M(n) are pure
submodules.

When κ = ℵ1, we let λ = ℵ0. Let (Iα : α < ℵ1) be a collection of pairwise coprime
invertible proper ideals of R. We define the Nµ as submodules of the quotient field
of R:

Nµ(n) := I−nµ ,(10)

Nµ := I−∞µ .(11)

Clearly, Nµ is non-projective and its filtration is by projective submodules.
To show that the filtration of the Mµ are pure, we show that its localization by

any maximal ideal Q is pure. When Iµ * Q and µ ∈ E, then Nµ,Q = RQ[0], so
the short exact sequence Kµ,Q → Fµ,Q → Nµ,Q of filtered modules splits, hence
Mµ+1,Q = Mµ,Q ⊕Nµ,Q as filtered modules.

There is at most one µ ∈ E with Iµ ⊆ Q. Hence by the previous paragraph, if
there is such a µ, then Mν,Q is a direct summand of Mν+1,Q as filtered modules for
all ν < µ. So Mµ,Q

∼=
⊕

ν<µMν+1,Q/Mν,Q with arbitrary choice of split preimages

of the Mν+1,Q/Mν,Q. Recall that Kµ,Q is a direct summand of a sum of some of
these preimages, so it is actually a direct summand ofMµ,Q, i.e., Mµ,Q = Kµ,Q⊕Hµ.
It follows that Mµ+1,Q = Fµ,Q⊕Hµ. These decompositions of filtered modules show
that the filtrations of Hµ and Mµ+1,Q consist of pure submodules. �

We finish by

Problem 3.3. Characterize the rings R satisfying Condition (P).
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