ON SEPARATING SETS OF WORDS V

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

Abstract

A locally final result concerning transitive closures of special replacement relations in free monoids is proved.

1. Introduction

This article is an immediate continuation of [1], [2], [3] and [4]. References like I.3.3 (II.3.3, III.3.3, IV.3.3, resp.) lead to the corresponding section and result of [1] ([2], [3], [4], resp.) and all definitions and preliminaries are taken from the same source.

2. Technical Results (a)

Troughout this note, let $Z \subseteq A^{+}$be a strongly separating set of words and let $\psi: Z \rightarrow A^{*}$ be a mapping.

Lemma 2.1. Let $r, s, t \in A^{*}$ be reduced words such that neither rt nor ts is reduced. Then:
(i) $r t=r_{1} z_{1} s_{1}$ and $t s=r_{2} z_{2} s_{2}$, where $z_{1}, z_{2} \in Z$ and $r_{1}, r_{2}, s_{1}, s_{2} \in$ A^{*} are reduced.
(ii) $r=r_{1} r_{3}, s=s_{3} s_{2}, z_{1}=r_{3} r_{2}, z_{2}=s_{1} s_{3}$ and $t=r_{2} t_{1} s_{1}$, $t_{1} \in A^{*}, t_{1}$ is reduced.
(iii) $r_{2}, s_{1}, r_{3}, s_{3} \in A^{+},\left|z_{1}\right| \geq 2,\left|z_{2}\right| \geq 2$ and $|t| \geq 2$.
(iv) $r t s=r_{1} z_{1} t_{1} z_{2} s_{2}$ and $\operatorname{tr}(r t s)=2$.
(v) If $t=\psi\left(z_{0}\right)$ for some $z_{0} \in Z$, then the ordered triple $\left(z_{1}, z_{0}, z_{2}\right)$ is disturbing (see II.7).

Proof. See I.6.2 and II.7.
Corollary 2.2. Let $r, s, t \in A^{*}$ be reduced. Then either rt is reduced or ts is reduced, provided that at least one of the following three cases holds:
(1) $|t| \leq 1$;
(2) rts is meagre;
(3) $\operatorname{alph}(r t s) \subseteq A \cup\{\varepsilon\}$.

[^0]Lemma 2.3. Assume that, for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Furthermore, assume that the equivalent conditions of II.7.3 are satisfied (e. g., if $\psi(Z) \subseteq A \cup\{\varepsilon\}$ or $Z \subseteq A$). If $z_{1} \in Z$ and $r, s \in A^{*}$ are reduced, then either $r \psi\left(z_{1}\right)$ or $\psi\left(z_{1}\right) s$ is reduced.
Proof. Combine 2.1(v) and II.7.3.

3. Technical results (B)

In this section, let $x, y \in A^{*}, z_{1}, \ldots, z_{m} \in Z, m \geq 1, z_{1}^{\prime}, \ldots, z_{n}^{\prime} \in Z$, $n \geq 1, z_{i}=p_{i} s_{i}, i=1,2, \ldots, m, z_{j}^{\prime}=r_{j} q_{j}, j=1,2, \ldots, n, r=$ $r_{1} r_{2} \cdots r_{n}$ and $s=s_{m} \cdots s_{2} s_{1}$. We will assume that $s x=y r$.
Lemma 3.1. The following conditions are equivalent:
(i) $|r| \leq|x|$.
(ii) $|s| \leq|y|$.
(iii) $x=t r$ and $y=s t$ for some $t \in A^{*}$.

Proof. Obvious.
In the following six lemmas, assume that $|x|<|r|$ (or, equivalently, $|y|<|s|)$.

Lemma 3.2. $r=t x$ and $s=y t$ for some $t \in A^{+}$
Proof. Obvious.
Lemma 3.3. Assume that $\left|s_{m}\right| \leq|y|$. Then:
(i) $m \geq 2$.
(ii) There is uniquely determined k such that $1 \leq k<m$ and $\left|s_{m} \cdots s_{k+1}\right| \leq|y|<\left|s_{m} \cdots s_{k}\right|$.
(iii) There is uniquely determined l such that $1 \leq l \leq n$ and $\left|y r_{1} \cdots r_{l-1}\right|<\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1} \cdots r_{l}\right|$ (here, $y r_{1} \cdots r_{l-1}=y$ for $l=1$).
(iv) $p s_{k-1} \cdots s_{1} x=q r_{l} \cdots r_{n}$, where $p=s_{m} \cdots s_{k}$ and $q=y r_{1} \cdots r_{l-1}$ ($p=s$ and $p x=q r_{l} \cdots r_{n}$ for $k=1 ; q=y$ for $l=1$).
(v) $|q|<|p|$ and $p=q u, u \in A^{+}$.
(vi) $u s_{k-1} \cdots s_{1} x=r_{l} \cdots r_{n}\left(u x=r_{l} \cdots r_{n}\right.$ for $\left.k=1\right)$.

Proof. We have $|s|=\left|s_{m}\right|+\cdots+\left|s_{1}\right|+|x|=|y|+\left|r_{1}\right|+\cdots+\left|r_{n}\right|$, $\left|s_{m}\right| \leq|y|$ and $|x|<\left|r_{1}\right|+\cdots+\left|r_{n}\right|$. Consequently, $\left|s_{m}\right|+|x|<$ $|y|+\left|r_{1}\right|+\cdots+\left|r_{n}\right|$ and $m \geq 2$. The existence of the uniquely determined number k follows from the inequalities $\left|s_{m}\right| \leq|y|$ and $|y|<|s|$. If $\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1}\right|$, we put $l=1$. If $\left|y r_{1}\right|<\left|s_{m} \cdots s_{k}\right|$, then the existence of the uniquely determined number l follows easily. The rest follows from the equality $s_{m} \cdots s_{2} s_{1} x=y r_{1} r_{2} \cdots r_{n}$.
Lemma 3.4. Assume that $\left|s_{m}\right| \leq|y|$ (see 3.3). Then:
(i) $z_{k}=z_{l}^{\prime}=s_{k}=r_{l}$ and $p_{k}=q_{l}=\varepsilon$.
(ii) If $k \geq 2$ and $l<n$, then $m \geq 3, n \geq 2, s_{k-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{l-1}(=y$ for $l=1)$.
(iii) If $k \geq 2$ and $l=n$, then $m \geq 3, s=y r, s_{k-1}=\cdots=s_{1}=$ $x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{n-1}(=y$ for $n=1)$.
(iv) If $k=1$ and $l<n$, then $n \geq 2, x=r_{l+1} \cdots r_{n}, s=y r_{1} \cdots r_{l}$ and $s_{m} \cdots s_{2}=y r_{1} \cdots r_{l-1}(=y$ for $l=1)$.
(v) If $k=1$ and $l=n$, then $s=y r, x=\varepsilon$ and $s_{m} \cdots s_{2}=$ $y r_{1} \cdots r_{n-1}(=y$ for $n=1)$.

Proof. If $\left|r_{l}\right|<|u|$ then $\left|y r_{1} \cdots r_{l}\right|=|q|+\left|r_{l}\right|<|q|+|u|=|p|=$ $\left|s_{m} \cdots s_{k}\right|$, a contradiction. Thus $|u| \leq\left|r_{l}\right|, r_{l}=u u_{1}, s_{k-1} \cdots s_{1} x=$ $u_{1} r_{l+1} \cdots r_{n}, z_{l}^{\prime}=r_{l} q_{l}=u u_{1} q_{l}$ and $s_{m} \cdots s_{k}=p=q u=y r_{1} \cdots r_{l-1} u$.
If $\left|s_{k}\right|<|u|$ then $|y|+|u| \leq|q|+|u|=|p|=\left|s_{m} \cdots s_{k+1}\right|+\left|s_{k}\right|<$ $\left|s_{m} \cdots s_{k+1}\right|+|u|$ and $|y|<\left|s_{m} \cdots s_{k+1}\right|$, a contradiction. Thus $|u| \leq$ $\left|s_{k}\right|, s_{k}=u_{2} u, s_{m} \cdots s_{k+1} u_{2}=y r_{1} \cdots r_{l-1}$ and $z_{k}=p_{k} s_{k}=p_{k} u_{2} u$.

We have proved that $z_{k}=p_{k} s_{k}=p_{k} u_{2} u$ and $z_{l}^{\prime}=u u_{1} q_{l}$. Since $u \neq \varepsilon$, it follows that $z_{k}=u=z_{l}^{\prime}$, and $p_{k}=q_{l}=u_{1}=u_{2}=\varepsilon$. Then $s_{k}=$ $z_{k}=z_{l}^{\prime}=r_{l}=u$. By 3.3 (vi), $u s_{k-1} \cdots s_{1} x=r_{l} \cdots r_{n}$. Consequently, $s_{k-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ for $k \geq 2$ and $l<n ; s_{k-1}=\cdots=s_{1}=x=\varepsilon$ for $k \geq 2, l=n ; x=r_{l+1} \cdots r_{n}$ for $k=1, l<n ; x=\varepsilon$ for $k=1, l=n$.

If $k \geq 2$ and $l<n$, then $p s_{k-1} \cdots s_{1} x=s_{m} \cdots s_{1} x=y r_{1} \cdots r_{l}$ implies $p=y r_{1} \cdots r_{l}$. But $p=s_{m} \cdots s_{k}$ and $s_{k}=r_{l}$. Thus $s_{m} \cdots s_{k+1}=$ $y r_{1} \cdots r_{l-1}$ in this case. The rest is similar.

Lemma 3.5. Assume that $|y|<\left|s_{m}\right|$. Then:
(i) There is uniquely determined l such that $1 \leq l \leq n$ and $\left|y r_{1} \cdots r_{l-1}\right|<\left|s_{m}\right| \leq\left|y r_{1} \cdots r_{l}\right|$ (here, $y r_{1} \cdots r_{l-1}=y$ for $l=1$).
(ii) $p s_{m-1} \cdots s_{1} x=q r_{l} \cdots r_{n}$, where $p=s_{m}$ and $q=y r_{1} \cdots r_{l-1}$ ($p=s$ and $p x=q r_{l} \cdots r_{n}$ for $m=1 ; q=y$ for $l=1$).
(iii) $|q|<|p|$ and $p=q u, u \in A^{+}$.
(iv) $u s_{m-1} \cdots s_{1} x=r_{l} \cdots r_{n}\left(u x=r_{l} \cdots r_{n}\right.$ for $\left.m=1\right)$.

Proof. Similar to that of 3.3.
Lemma 3.6. Assume that $|y|<\left|s_{m}\right|$ (see 3.5). Then:
(i) $z_{m}=z_{l}^{\prime}=s_{m}=r_{l}$ and $p_{m}=q_{l}=\varepsilon$.
(ii) If $m \geq 2$ and $l<n$, then $n \geq 2, s_{m-1} \cdots s_{1} x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=r_{l-1}=\varepsilon(y=\varepsilon$ for $l=1)$.
(iii) If $m \geq 2$ and $l=n$, then $s_{m-1}=\cdots=s_{1}=x=y=r_{1}=$ $\cdots=r_{n-1}=\varepsilon\left(s_{m-1}=\cdots=s_{1}=x=y=\varepsilon\right.$ for $\left.n=1\right)$.
(iv) If $m=1$ and $l<n$, then $n \geq 2, x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=$ $\cdots=r_{l-1}=\varepsilon \quad(y=\varepsilon$ for $l=1)$.
(v) If $m=1$ and $l=n$, then $s=y r$ and $x=y=r_{1}=\cdots=$ $r_{n-1}=\varepsilon(x=y=\varepsilon$ for $n=1)$.
Proof. Similar to that of 3.4.

Lemma 3.7. There are uniquely determined k and l such that:
(i) $1 \leq k \leq m$ and $1 \leq l \leq n$.
(ii) $z_{k}=z_{l}^{\prime}=s_{k}=r_{l}$ and $p_{k}=q_{l}=\varepsilon$.
(iii) $\left|s_{m} \cdots s_{k+1}\right| \leq|y|<\left|s_{m} \cdots s_{k}\right|\left(s_{m} \cdots s_{k+1}=\varepsilon\right.$ for $\left.k=m\right)$.
(iv) $\left|y r_{1} \cdots r_{l-1}\right|<\left|s_{m} \cdots s_{k}\right| \leq\left|y r_{1} \cdots r_{l}\right|\left(y r_{1} \cdots r_{l-1}=y\right.$ for $l=$ 1).
(v) If $1<k<m$ and $1<l<n$, then $m \geq 3, n \geq 3$, $s_{k-1} \cdots s_{1} x=$ $r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{l-1}$.
(vi) If $1<k<m$ and $1<l=n$, then $m \geq 3, n \geq 2$, $s_{k-1}=\cdots=$ $s_{1}=x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y r_{1} \cdots r_{n-1}$.
(vii) If $1<k<m$ and $1=l<n$, then $m \geq 3, n \geq 2, s_{k-1} \cdots s_{1} x=$ $r_{2} \cdots r_{n}$ and $s_{m} \cdots s_{k+1}=y$.
(viii) If $1<k<m$ and $1=n(=l)$, then $m \geq 3, s_{k-1}=\cdots=s_{1}=$ $x=\varepsilon$ and $s_{m} \cdots s_{k+1}=y$.
(ix) If $1<k=m$ and $1<l<n$, then $m \geq 2, n \geq 3, s_{m-1} \cdots s_{1} x=$ $r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=r_{l-1}=\varepsilon$.
(x) If $1<k=m$ and $1<l=n$, then $m \geq 2, n \geq 2, s_{m-1}=\cdots=$ $s_{1}=x=y=r_{1}=\cdots=r_{n-1}=\varepsilon$.
(xi) If $1<k=m$ and $1=l<n$, then $m \geq 2, n \geq 2, s_{m-1} \cdots s_{1} x=$ $r_{2} \cdots r_{n}$ and $y=\varepsilon$.
(xii) If $1<k=m$ and $1=n(=l)$, then $m \geq 2, s_{m-1}=\cdots=s_{1}=$ $x=y=\varepsilon$.
(xiii) If $1=k<m$ and $1<l<n$, then $m \geq 2, n \geq 3, x=r_{l+1} \cdots r_{n}$ and $s_{m} \cdots s_{2}=y r_{1} \cdots r_{l-1}$.
(xiv) If $1=k<m$ and $1<l=n$, then $m \geq 2, n \geq 2, x=\varepsilon$ and $s_{m} \cdots s_{2}=y r_{1} \cdots r_{n-1}$.
(xv) If $1=k<m$ and $1=l<n$, then $m \geq 2, n \geq 2, x=r_{2} \cdots r_{n}$ and $s_{m} \cdots s_{2}=y$.
(xvi) If $1=k<m$ and $1=n(=l)$, then $m \geq 2, x=\varepsilon$ and $s_{m} \cdots s_{2}=y$.
(xvii) If $1=m(=k)$ and $1<l<n$, then $n \geq 3, x=r_{l+1} \cdots r_{n}$ and $y=r_{1}=\cdots=r_{l-1}=\varepsilon$.
(xviii) If $1=m(=k)$ and $1<l=n$, then $n \geq 2, x=y=r_{1}=\cdots=$ $r_{n-1}=\varepsilon$.
(xix) If $1=m(=k)$ and $1=l<n$, then $n \geq 2, x=r_{2} \cdots r_{n}$ and $y=\varepsilon$.
(xx) If $1=m(=k)$ and $1=n(=l)$, then $x=y=\varepsilon$.
Proof. Combine 3.4 and 3.6.
Proposition 3.8. $x=$ tr and $y=$ st for some $t \in A^{*}$ (see 3.1), provided that at least one of the following six conditions holds:
(1) $m=1$ and $\left|z_{1}\right| \leq|y|$;
(2) $n=1$ and $\left|z_{1}^{\prime}\right| \leq|x|$;
(3) All the words s_{1}, \ldots, s_{m} are reduced;
(4) All the words r_{1}, \ldots, r_{n} are reduced;
(5) $z_{i} \neq z_{j}^{\prime}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$;
(6) $s_{i} \neq r_{j}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$;

Proof. The result follows easily from 3.7.

4. Technical Results (c)

In this section, let $r, s, t \in A^{*}$ be reduced words such that ($\left.r s, t\right) \in \tau$. We have $r s=r_{0} z_{0} s_{0}$, $z_{0} \in Z, r_{0}, s_{0}$ reduced. By I.6.2, $r=r_{0} p_{0}$, $s=q_{0} s_{0}$ and $z_{0}=p_{0} q_{0}$, where $p_{0}, q_{0} \in A^{+}$are reduced (then $\left|z_{0}\right| \geq 2$).

Since $(r s, t) \in \tau$, there is a ρ-sequence $w_{0}, w_{1}, \ldots, w_{m}, m \geq 1$, such that $w_{0}=r s$ and $w_{m}=t$. Clearly, $\operatorname{tr}\left(w_{0}\right)=1, \operatorname{tr}\left(w_{1}\right) \geq 1, \ldots$, $\operatorname{tr}\left(w_{m-1}\right) \geq 1$ and $\operatorname{tr}\left(w_{m}\right)=0$. Now, we will assume that $\operatorname{tr}\left(w_{i}\right)=1$ for $i=2, \ldots, m-1$ (cf. II. 6 and III.4). Consequently, $w_{i}=r_{i} z_{i} s_{i}, z_{i} \in Z$, r_{i}, s_{i} reduced, $i=0,1, \ldots, m-1$.

Lemma 4.1.

(i) $r s=r \varepsilon s=w_{0}=r_{0} z_{0} s_{0}$.
(ii) $r_{i} \psi\left(z_{i}\right) s_{i}=w_{i+1}=r_{i+1} z_{i+1} s_{i+1}$ for every $i, 0 \leq i \leq m-2$.
(iii) $t=w_{m}=r_{m-1} \psi\left(z_{m-1}\right) s_{m-1}$.

Proof. Obvious.
Lemma 4.2. Let $0 \leq i \leq m-2$. Then just one of the following three cases takes place:
(1) $r_{i} \psi\left(z_{i}\right)$ is reduced, $\psi\left(z_{i}\right) s_{i}$ is not reduced, $r_{i+1}=r_{i} p_{i+1}^{\prime}, \psi\left(z_{i}\right)=$ $p_{i+1}^{\prime} p_{i+1}, s_{i}=q_{i+1} s_{i+1}, z_{i+1}=p_{i+1} q_{i+1}, r_{i} \psi\left(z_{i}\right)=r_{i} p_{i+1}^{\prime} p_{i+1}=$ $r_{i+1} p_{i+1}$ and $\psi\left(z_{i}\right) s_{i}=p_{i+1}^{\prime} z_{i+1} s_{i+1}, p_{i+1}^{\prime} \in A^{*}$ and $p_{i+1}, q_{i+1} \in$ $A^{+}\left(p_{i+1}^{\prime}, p_{i+1}, q_{i+1}\right.$ reduced);
(2) $r_{i} \psi\left(z_{i}\right)$ is not reduced, $\psi\left(z_{i}\right) s_{i}$ is reduced, $r_{i}=r_{i+1} p_{i+1}, \psi\left(z_{i}\right)=$ $q_{i+1} q_{i+1}^{\prime}, s_{i+1}=q_{i+1}^{\prime} s_{i}, z_{i+1}=p_{i+1} q_{i+1}, r_{i} \psi\left(z_{i}\right)=r_{i+1} z_{i+1} q_{i+1}^{\prime}$ and $\psi\left(z_{i}\right) s_{i}=q_{i+1} q_{i+1}^{\prime} s_{i}=q_{i+1} s_{i+1}, q_{i+1}^{\prime} \in A^{*}$ and $p_{i+1}, q_{i+1} \in$ $A^{+}\left(q_{i+1}^{\prime}, p_{i+1}, q_{i+1}\right.$ reduced);
(3) Both $r_{i} \psi\left(z_{i}\right)$ and $\psi\left(z_{i}\right) s_{i}$ are reduced, $r_{i}=r_{i+1} p_{i+1}, s_{i}=q_{i+1} s_{i+1}$ and $z_{i+1}=p_{i+1} \psi\left(z_{i}\right) q_{i+1}$.

Proof. The word $r_{i} \psi\left(z_{i}\right) s_{i}=r_{i+1} z_{i+1} s_{i+1}$ is meagre, and hence it follows from 2.2 that at least one of the words $r_{i} \psi\left(z_{i}\right)$ and $\psi\left(z_{i}\right) s_{i}$ is reduced. The rest is easy.

Lemma 4.3. Let $0 \leq i \leq m-2$.
(i) If 4.2(1) holds and $\left|\psi\left(z_{i}\right)\right| \leq 1$, then $\psi\left(z_{i}\right)=p_{i+1} \in A$ and $p_{i+1}^{\prime}=\varepsilon$.
(ii) If 4.2(2) holds and $\left|\psi\left(z_{i}\right)\right| \leq 1$, then $\psi\left(z_{i}\right)=q_{i+1} \in A$ and $q_{i+1}^{\prime}=\varepsilon$.

Proof. Obvious.

In the remaining part of this section, we will assume that $p_{i+1}^{\prime}=\varepsilon$ ($q_{i+1}^{\prime}=\varepsilon$, resp.) whenever $0 \leq i \leq m-2$ and 4.2(1) (4.2(2), resp.) is true.

If 4.2(1) is satisfied, then $\psi\left(z_{i}\right)=p_{i+1}, r_{i}=r_{i+1}, s_{i}=q_{i+1} s_{i+1}$, $z_{i+1}=\psi\left(z_{i}\right) q_{i+1}$ and we put $g_{i+1}=\varepsilon$ and $h_{i+1}=q_{i+1}$. Then $z_{i+1}=$ $g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

If 4.2(2) is satisfied, then $\psi\left(z_{i}\right)=q_{i+1}, r_{i}=r_{i+1} p_{i+1}, s_{i}=s_{i+1}$, $z_{i+1}=p_{i+1} \psi\left(z_{i}\right)$ and we put $g_{i+1}=p_{i+1}$ and $h_{i+1}=\varepsilon$. Again, $z_{i+1}=$ $g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

If 4.2(3) is satisfied, then $r_{i}=r_{i+1} p_{i+1}, s_{i}=q_{i+1} s_{i+1}$ and $z_{i+1}=$ $p_{i+1} \psi\left(z_{i}\right) q_{i+1}$ and we put $g_{i+1}=p_{i+1}$ and $h_{i+1}=q_{i+1}$. As usual, $z_{i+1}=$ $g_{i+1} \psi\left(z_{i}\right) h_{i+1}, r_{i}=r_{i+1} g_{i+1}$ and $s_{i}=h_{i+1} s_{i+1}$.

Furthermore, we put $g_{0}=p_{0}$ and $h_{0}=q_{0}$, so that $z_{0}=g_{0} h_{0}=g_{0} \varepsilon h_{0}$. Finally, we put $g_{m}=r_{m-1}$ and $h_{m}=s_{m-1}$, so that $t=g_{m} \psi\left(z_{m-1}\right) h_{m}$.

Notice that all the words g_{0}, \ldots, g_{m} and h_{0}, \ldots, h_{m} are reduced.
The following three lemmas are easy.

Lemma 4.4.

(i) $z_{0}=g_{0} h_{0}=g_{0} \varepsilon h_{0}, r=r_{0} g_{0}$ and $s=h_{0} s_{0}$.
(ii) If $1 \leq i \leq m-1$, then $z_{i}=g_{i} \psi\left(z_{i-1}\right) h_{i}, r_{i-1}=r_{i} g_{i}$ and $s_{i-1}=h_{i} s_{i}$.
(iii) $t=g_{m} \psi\left(z_{m-1}\right) h_{m}$.
(iv) All the words g_{0}, \ldots, g_{m} and h_{0}, \ldots, h_{m} are reduced.
(v) $r=g_{m} \cdots g_{1} g_{0}$ and $s=h_{0} h_{1} \cdots h_{m}$.

Lemma 4.5. Put $r^{\prime}=g_{m-1} \cdots g_{1} g_{0}, s^{\prime}=h_{0} h_{1} \cdots h_{m-1}, r^{\prime \prime}=g_{m-1} \cdots g_{1}$, $s^{\prime \prime}=h_{1} \cdots h_{m-1}\left(r^{\prime \prime}=\varepsilon=s^{\prime \prime}\right.$ if $\left.m=1\right)$. Then:
(i) $r=g_{m} r^{\prime}$ and $s=s^{\prime} h_{m}$.
(ii) $r s=g_{m} r^{\prime} s^{\prime} h_{m}$.
(iii) $r^{\prime} s^{\prime}=r^{\prime \prime} z_{0} s^{\prime \prime}$.
(iv) $\left(r^{\prime} s^{\prime}, \psi\left(z_{m-1}\right)\right) \in \tau$.
(v) $\left(r s^{\prime}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(vi) $\left(r^{\prime} s, \psi\left(z_{m-1} h_{m}\right)\right) \in \tau$.

Lemma 4.6.

(i) Ift $=r$, then $r=g_{m} \psi\left(z_{m-1}\right) h_{m}$ and $\left(g_{m} \psi\left(z_{m-1}\right) h_{m} h_{0} h_{1} \cdots h_{m-1}, g_{m} \psi\left(z_{m-1}\right)\right)=$ $\left(r s^{\prime}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(ii) If $t=s$, then $s=g_{m} \psi\left(z_{m-1}\right) h_{m}$ and $\left(g_{m-1} \cdots g_{1} g_{0} g_{m} \psi\left(z_{m-1}\right) h_{m}, \psi\left(z_{m-1}\right) h_{m}\right)=$ $\left(r^{\prime} s, \psi\left(z_{m-1}\right) h_{m}\right) \in \tau$.

5. Technical results (D)

In this section, we will assume that $\psi(Z) \subseteq A \cup\{\varepsilon\}$.
Let $r, s, t, p, q \in A^{*}$ be reduced words such that $(r t, p) \in \tau$ and $(t s, q) \in \tau$. Then, of course, neither $r t$ nor $t s$ is reduced and $r, s, t \in A^{+}$.
Lemma 5.1. There are $m \geq 1, z_{0}, \ldots, z_{m-1} \in Z$ and reduced words $g_{0}, \ldots, g_{m}, h_{0}, \ldots, h_{m} \in A^{*}$ such that:
(i) $z_{0}=g_{0} h_{0}$.
(ii) If $1 \leq i \leq m-1$, then $z_{i}=g_{i} \psi\left(z_{i-1}\right) h_{i}$.
(iii) $p=g_{m} \psi\left(z_{m-1}\right) h_{m}$.
(iv) $r=g_{m} \cdots g_{1} g_{0}$.
(v) $t=h_{0} h_{1} \cdots h_{m}$.
(vi) $\left(r h_{0} h_{1} \cdots h_{m-1}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.

Proof. Use 4.4 and 4.5(v).
Lemma 5.2. There are $m^{\prime} \geq 1, z_{0}^{\prime}, \ldots, z_{m^{\prime}-1}^{\prime} \in Z$ and reduced words $g_{0}^{\prime}, \ldots, g_{m^{\prime}}^{\prime}, h_{0}^{\prime}, \ldots, h_{m^{\prime}}^{\prime} \in A^{*}$ such that:
(i) $z_{0}^{\prime}=g_{0}^{\prime} h_{0}^{\prime}$.
(ii) If $1 \leq i \leq m^{\prime}-1$, then $z_{i}^{\prime}=g_{i}^{\prime} \psi\left(z_{i-1}^{\prime}\right) h_{i}^{\prime}$.
(iii) $q=g_{m^{\prime}}^{\prime} \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}$.
(iv) $s=h_{0}^{\prime} h_{1}^{\prime} \cdots h_{m^{\prime}}^{\prime}$.
(v) $t=g_{m^{\prime}}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.
(vi) $\left(g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime} s, \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}\right) \in \tau$.

Proof. Use 4.4 and 4.5(vi).

Lemma 5.3.

(i) $h_{0} h_{1} \cdots h_{m}=t=g_{m^{\prime}}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.
(ii) There is $f \in A^{*}$ such that $g_{m^{\prime}}^{\prime}=h_{0} h_{1} \cdots h_{m-1} f$ and $h_{m}=$ $f g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$.
Proof.
(i) See 5.1(v) and 5.2(v).
(ii) Combine (i), 3.1 and 3.8 .

Lemma 5.4. Put $t_{1}=h_{0} h_{1} \cdots h_{m-1}, t_{2}=f$ and $t_{3}=g_{m^{\prime}-1}^{\prime} \cdots g_{1}^{\prime} g_{0}^{\prime}$. Then:
(i) $t=t_{1} t_{2} t_{3}$.
(ii) $\left(r t_{1}, g_{m} \psi\left(z_{m-1}\right)\right) \in \tau$.
(iii) $\left(t_{3} s, \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}\right) \in \tau$.
(iv) $p=g_{m} \psi\left(z_{m-1}\right) t_{2} t_{3}$.
(v) $q=t_{1} t_{2} \psi\left(z_{m^{\prime}-1}^{\prime}\right) h_{m^{\prime}}^{\prime}$.

Proof. Combine 5.1(iii), 5.2(iii) and 5.3.

6. Technical Results (E)

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing (equivalently, $Z \cap A=\emptyset$). By III.6.5, for every $w \in A^{*}$ there exists a uniquely determined reduced word r such that $(w, r) \in \xi$.

Proposition 6.1. Let $r, s \in A^{*}$ be reduced and let $p, q \in A^{*}$ be such that $p q \neq \varepsilon$. Then either $(r p q, r) \notin \xi$ or $(q p s, s) \notin \xi$.

Proof. Since $p q \neq \varepsilon$, we have $r p q \neq r$ and $q p s \neq s$. Now, proceeding by contradiction, assume that $(r p q, r) \in \tau,(q p s, s) \in \tau$ and $|r s|$ is minimal. Of course (III.6.4, III.6.5), we can assume that both p and q are reduced. The rest of the proof is divided into five parts:
(i) Let $q=\varepsilon$. Then $p \neq \varepsilon,(r p, r) \in \tau$ and $(p s, s) \in \tau$. According to $5.4, p=p_{1} p_{2} p_{3},(r, u) \in \tau,\left(p_{3} s, v\right) \in \tau, r=u p_{2} p_{3}, s=p_{1} p_{2} v, u, v$ reduced. We get $\left(u p_{2} p_{3} p_{1}, u\right) \in \tau,\left(p_{3} p_{1} p_{2} v, v\right) \in \tau$ and, if $\left(p_{3} p_{1}, p_{4}\right) \in \xi$, where p_{4} is reduced, then $\left(u p_{2} p_{4}, u\right) \in \xi,\left(p_{4} p_{2} v, v\right) \in \xi$. If $p_{2}=\varepsilon=$ p_{4}, then $p_{3} p_{1} \neq \varepsilon($ since $p \neq \varepsilon)$ and $p_{4} \neq \varepsilon($ since $\varepsilon \notin \psi(Z))$, a contradiction. Thus $p_{2} p_{4} \neq \varepsilon$ and $\left(u p_{2} p_{4}, u\right) \in \tau,\left(p_{4} p_{2} v, v\right) \in \tau$. But $|u|+|v|<|r|+|s|$, a contradiction with the minimality of $|r s|$.
(ii) Let $q=\varepsilon$. This case is analogous to (i).
(iii) Let $p \neq \varepsilon \neq q$ and $r=r^{\prime} q$, where ($\left.r p, r^{\prime}\right) \in \xi$ and r^{\prime} is reduced. Furthermore, let $(q p, t) \in \xi$, where t is reduced. Then $\left(r^{\prime} q p, r^{\prime}\right)=$ $\left(r p, r^{\prime}\right) \in \xi,\left(r^{\prime} q p, r^{\prime} t\right) \in \xi$ (since $(q p, t) \in \xi$), and hence $\left(r^{\prime} t, r^{\prime}\right) \in \xi$. Similarly, $(q p s, t s) \in \xi$ (since $(q p, t) \in \xi)$, and hence $(t s, s) \in \xi$ (since $(q p s, s) \in \tau)$. Since $q p \neq \varepsilon$, we have $t \neq \varepsilon$ and $\left(r^{\prime} t, r^{\prime}\right) \in \tau,(t s, s) \in \tau$. But this is a contradiction since $\left|r^{\prime}\right|+|s|<|r|+|s|$.
(iv) Let $p \neq \varepsilon \neq q$ and $s=q s^{\prime}$, where $\left(p s, s^{\prime}\right) \in \xi$ and s^{\prime} is reduced. This case is analogous to (iii).
(v) Let $p \neq \varepsilon \neq q$ and $r^{\prime} q \neq r, q s^{\prime} \neq s$, where r^{\prime}, s^{\prime} are reduced and such that $\left(r p, r^{\prime}\right) \in \xi$ and $\left(p s, s^{\prime}\right) \in \xi$. We have $\left(r^{\prime} q, r\right) \in \tau$ and $\left(q s^{\prime}, s\right) \in \tau$. According to $5.4, q=q_{1} q_{2} q_{3},\left(r^{\prime} q_{1}, u\right) \in \tau,\left(q_{3} s^{\prime}, v\right) \in \tau$, $r=u q_{2} q_{3}$ and $s=q_{1} q_{2} v, u, v$ reduced. Now, $\left(r p, r^{\prime}\right) \in \xi$ implies $\left(u q_{2} q_{3} p q_{1}, r^{\prime} q_{1}\right)=\left(r p q_{1}, r^{\prime} q_{1}\right) \in \xi$, and hence $\left(u q_{2} q_{3} p q_{1}, u\right) \in \tau$. Quite similarly, $\left(q_{3} p q_{1} q_{2} v, v\right) \in \tau$. Finally, if $\left(q_{3} p q_{1}, t\right) \in \xi$, where t is reduced, then $\left(u q_{2} t, u\right) \in \xi$ and $\left(t q_{2} v, v\right) \in \xi$. Of course, $t \neq \varepsilon,\left(u q_{2} t, u\right) \in \tau$, $\left(t q_{2} v, v\right) \in \tau$ and $|u|+|v|<|r|+|s|$ (since $q \neq \varepsilon$), a contradiction.

7. Main result

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing.
Theorem 7.1. Let $z_{1}, z_{2} \in Z$ be such that $z_{1} \neq z_{2}$ and $\psi\left(z_{1}\right)=a=$ $\psi\left(z_{2}\right)(a \in A)$. Furthermore, let $r, s \in A^{*}$ and $w \in A^{*}$. Then either $\left(w, r z_{1} s\right) \notin \xi$ or $\left(w, r z_{2} s\right) \notin \xi$ (of course, $\left(r z_{1} s, r a s\right) \in \rho$ and $\left.\left(r z_{2} s, r a s\right) \in \rho\right)$.

Proof. We can assume without loss of generality that both r and s are reduced. If $\left(w, r z_{1} s\right) \in \xi$ and $\left(w, r z_{2} s\right) \in \xi$, then $P\left(r z_{1} s, r z_{2} s\right) \neq \emptyset$ (see IV.5) and we can assume that $w \in Q\left(r z_{1} s, r z_{2} s\right)$ (use IV.5.3). According to IV.6.1, either $w=r z_{1} x z_{2} s,\left(r z_{1} x, r\right) \in \tau,\left(x z_{2} s, s\right) \in \tau$, x reduced or $w=r z_{2} x z_{1} s,\left(r z_{2} x, r\right) \in \tau,\left(x z_{1} s, s\right) \in \tau, x$ reduced. In both cases, $(\operatorname{rax}, r) \in \xi$ and $(x a s, s) \in \xi$, a contradiction with 6.1.

8. Examples

Example 8.1. Let $z_{1}=a^{2} b^{2}, z_{2}=a^{2} b a b^{2}, r_{1}=\varepsilon, r_{2}=b^{2}, s_{1}=a$, $s_{2}=\varepsilon, r=a, s=b a b^{2}$ and $t=b^{2} a$. Then all the words $r_{1}, r_{2}, s_{1}, s_{2}, r$, s, t are reduced and rat $=a^{2} b^{2} a=r_{1} z_{1} s_{1}$ and $t a s=b^{2} a^{2} b a b^{2}=r_{2} z_{2} s_{2}$. Furthermore, $\left(\operatorname{rat}, \psi\left(z_{1}\right) a\right) \in \rho$ and $\left(\operatorname{tas}, b^{2} \psi\left(z_{2}\right)\right) \in \rho$.

If $\psi\left(z_{1}\right)=\varepsilon$, then $(r a t, a) \in \rho$. If $\psi\left(z_{1}\right)=b^{2}$, then $(r a t, t) \in \rho$. If $\psi\left(z_{2}\right)=a$, then $($ tas,$t) \in \rho$.

Notice also that sat $=b a b^{2} a b^{2} a$ and $t a r=b^{2} a^{3}$ are reduced.

References

[1] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words I., Acta Univ. Carolinae Math. Phys., 49/1(2008), 33-51.
[2] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words II., Acta Univ. Carolinae Math. Phys., 50/1(2009), 15-28.
[3] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words III.,
[4] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words IV.,
Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8
Department of Information Processing Science, University of Oulu, P. O. BOX 3000 FIN-90014, Oulu

E-mail address: flaska@matfyz.cz
E-mail address: kepka@karlin.mff.cuni.cz
E-mail address: juha.kortelainen@oulu.fi

[^0]: The work is a part of the research project MSM0021620839 financed by MŠMT and the second author was supported by the Grant Agency of Czech Republic, No. 201/09/0296.

