ON SEPARATING SETS OF WORDS V

V. FLAŠKA, T. KEPKA AND J. KORTELAINEN

ABSTRACT. A locally final result concerning transitive closures of special replacement relations in free monoids is proved.

1. INTRODUCTION

This article is an immediate continuation of [1], [2], [3] and [4]. References like I.3.3 (II.3.3, III.3.3, IV.3.3, resp.) lead to the corresponding section and result of [1] ([2], [3], [4], resp.) and all definitions and preliminaries are taken from the same source.

2. TECHNICAL RESULTS (A)

Troughout this note, let $Z \subseteq A^+$ be a strongly separating set of words and let $\psi: Z \to A^*$ be a mapping.

Lemma 2.1. Let $r, s, t \in A^*$ be reduced words such that neither rt nor ts is reduced. Then:

- (i) $rt = r_1 z_1 s_1$ and $ts = r_2 z_2 s_2$, where $z_1, z_2 \in Z$ and $r_1, r_2, s_1, s_2 \in A^*$ are reduced.
- (ii) $r = r_1 r_3$, $s = s_3 s_2$, $z_1 = r_3 r_2$, $z_2 = s_1 s_3$ and $t = r_2 t_1 s_1$, $t_1 \in A^*$, t_1 is reduced.
- (iii) $r_2, s_1, r_3, s_3 \in A^+, |z_1| \ge 2, |z_2| \ge 2 \text{ and } |t| \ge 2.$
- (iv) $rts = r_1 z_1 t_1 z_2 s_2$ and tr(rts) = 2.
- (v) If $t = \psi(z_0)$ for some $z_0 \in Z$, then the ordered triple (z_1, z_0, z_2) is disturbing (see II.7).

Proof. See I.6.2 and II.7.

Corollary 2.2. Let $r, s, t \in A^*$ be reduced. Then either rt is reduced or ts is reduced, provided that at least one of the following three cases holds:

- (1) $|t| \leq 1;$
- (2) rts is meagre;
- (3) $\operatorname{alph}(rts) \subseteq A \cup \{\varepsilon\}.$

The work is a part of the research project MSM0021620839 financed by MŠMT and the second author was supported by the Grant Agency of Czech Republic, No. 201/09/0296.

Lemma 2.3. Assume that, for every $z \in Z$, either $|\psi(z)| \leq 1$ or $\psi(z)$ is reduced. Furthermore, assume that the equivalent conditions of II.7.3 are satisfied (e. g., if $\psi(Z) \subseteq A \cup \{\varepsilon\}$ or $Z \subseteq A$). If $z_1 \in Z$ and $r, s \in A^*$ are reduced, then either $r\psi(z_1)$ or $\psi(z_1)s$ is reduced.

Proof. Combine 2.1(v) and II.7.3.

3. TECHNICAL RESULTS (B)

In this section, let $x, y \in A^*$, $z_1, \ldots, z_m \in Z$, $m \ge 1, z'_1, \ldots, z'_n \in Z$, $n \ge 1, z_i = p_i s_i, i = 1, 2, \ldots, m, z'_j = r_j q_j, j = 1, 2, \ldots, n, r = r_1 r_2 \cdots r_n$ and $s = s_m \cdots s_2 s_1$. We will assume that sx = yr.

Lemma 3.1. The following conditions are equivalent:

(i) $|r| \leq |x|$. (ii) $|s| \leq |y|$. (iii) x = tr and y = st for some $t \in A^*$.

Proof. Obvious.

In the following six lemmas, assume that |x| < |r| (or, equivalently, |y| < |s|).

Lemma 3.2. r = tx and s = yt for some $t \in A^+$

Proof. Obvious.

Lemma 3.3. Assume that $|s_m| \leq |y|$. Then:

- (i) $m \ge 2$.
- (ii) There is uniquely determined k such that $1 \leq k < m$ and $|s_m \cdots s_{k+1}| \leq |y| < |s_m \cdots s_k|$.
- (iii) There is uniquely determined l such that $1 \leq l \leq n$ and $|yr_1 \cdots r_{l-1}| < |s_m \cdots s_k| \leq |yr_1 \cdots r_l|$ (here, $yr_1 \cdots r_{l-1} = y$ for l = 1).
- (iv) $ps_{k-1}\cdots s_1x = qr_l\cdots r_n$, where $p = s_m\cdots s_k$ and $q = yr_1\cdots r_{l-1}$ $(p = s and px = qr_l\cdots r_n \text{ for } k = 1; q = y \text{ for } l = 1).$
- (v) |q| < |p| and $p = qu, u \in A^+$.
- (vi) $us_{k-1}\cdots s_1x = r_l\cdots r_n$ ($ux = r_l\cdots r_n$ for k = 1).

Proof. We have $|s| = |s_m| + \cdots + |s_1| + |x| = |y| + |r_1| + \cdots + |r_n|$, $|s_m| \leq |y|$ and $|x| < |r_1| + \cdots + |r_n|$. Consequently, $|s_m| + |x| < |y| + |r_1| + \cdots + |r_n|$ and $m \geq 2$. The existence of the uniquely determined number k follows from the inequalities $|s_m| \leq |y|$ and |y| < |s|. If $|s_m \cdots s_k| \leq |yr_1|$, we put l = 1. If $|yr_1| < |s_m \cdots s_k|$, then the existence of the uniquely determined number l follows easily. The rest follows from the equality $s_m \cdots s_2 s_1 x = yr_1 r_2 \cdots r_n$.

Lemma 3.4. Assume that $|s_m| \leq |y|$ (see 3.3). Then:

(i) $z_k = z'_l = s_k = r_l$ and $p_k = q_l = \varepsilon$.

- (ii) If $k \ge 2$ and l < n, then $m \ge 3$, $n \ge 2$, $s_{k-1} \cdots s_1 x = r_{l+1} \cdots r_n$ and $s_m \cdots s_{k+1} = yr_1 \cdots r_{l-1} \ (= y \text{ for } l = 1).$
- (iii) If $k \ge 2$ and l = n, then $m \ge 3$, s = yr, $s_{k-1} = \cdots = s_1 = x = \varepsilon$ and $s_m \cdots s_{k+1} = yr_1 \cdots r_{n-1}$ (= y for n = 1).
- (iv) If k = 1 and l < n, then $n \ge 2$, $x = r_{l+1} \cdots r_n$, $s = yr_1 \cdots r_l$ and $s_m \cdots s_2 = yr_1 \cdots r_{l-1}$ (= y for l = 1).
- (v) If k = 1 and l = n, then s = yr, $x = \varepsilon$ and $s_m \cdots s_2 = yr_1 \cdots r_{n-1}$ (= y for n = 1).

Proof. If $|r_l| < |u|$ then $|yr_1 \cdots r_l| = |q| + |r_l| < |q| + |u| = |p| = |s_m \cdots s_k|$, a contradiction. Thus $|u| \le |r_l|$, $r_l = uu_1$, $s_{k-1} \cdots s_1 x = u_1r_{l+1} \cdots r_n$, $z'_l = r_lq_l = uu_1q_l$ and $s_m \cdots s_k = p = qu = yr_1 \cdots r_{l-1}u$.

If $|s_k| < |u|$ then $|y| + |u| \le |q| + |u| = |p| = |s_m \cdots s_{k+1}| + |s_k| < |s_m \cdots s_{k+1}| + |u|$ and $|y| < |s_m \cdots s_{k+1}|$, a contradiction. Thus $|u| \le |s_k|$, $s_k = u_2 u$, $s_m \cdots s_{k+1} u_2 = yr_1 \cdots r_{l-1}$ and $z_k = p_k s_k = p_k u_2 u$.

We have proved that $z_k = p_k s_k = p_k u_2 u$ and $z'_l = u u_1 q_l$. Since $u \neq \varepsilon$, it follows that $z_k = u = z'_l$, and $p_k = q_l = u_1 = u_2 = \varepsilon$. Then $s_k = z_k = z'_l = r_l = u$. By 3.3 (vi), $us_{k-1} \cdots s_1 x = r_l \cdots r_n$. Consequently, $s_{k-1} \cdots s_1 x = r_{l+1} \cdots r_n$ for $k \ge 2$ and l < n; $s_{k-1} = \cdots = s_1 = x = \varepsilon$ for $k \ge 2$, l = n; $x = r_{l+1} \cdots r_n$ for k = 1, l < n; $x = \varepsilon$ for k = 1, l = n.

If $k \ge 2$ and l < n, then $ps_{k-1} \cdots s_1 x = s_m \cdots s_1 x = yr_1 \cdots r_l$ implies $p = yr_1 \cdots r_l$. But $p = s_m \cdots s_k$ and $s_k = r_l$. Thus $s_m \cdots s_{k+1} = yr_1 \cdots r_{l-1}$ in this case. The rest is similar.

Lemma 3.5. Assume that $|y| < |s_m|$. Then:

- (i) There is uniquely determined l such that $1 \leq l \leq n$ and $|yr_1 \cdots r_{l-1}| < |s_m| \leq |yr_1 \cdots r_l|$ (here, $yr_1 \cdots r_{l-1} = y$ for l = 1).
- (ii) $ps_{m-1}\cdots s_1x = qr_l\cdots r_n$, where $p = s_m$ and $q = yr_1\cdots r_{l-1}$ (p = s and $px = qr_l\cdots r_n$ for m = 1; q = y for l = 1).
- (iii) |q| < |p| and $p = qu, u \in A^+$.

(iv)
$$us_{m-1}\cdots s_1x = r_l\cdots r_n$$
 ($ux = r_l\cdots r_n$ for $m = 1$).

Proof. Similar to that of 3.3.

Lemma 3.6. Assume that $|y| < |s_m|$ (see 3.5). Then:

- (i) $z_m = z'_l = s_m = r_l$ and $p_m = q_l = \varepsilon$.
- (ii) If $m \ge 2$ and l < n, then $n \ge 2$, $s_{m-1} \cdots s_1 x = r_{l+1} \cdots r_n$ and $y = r_1 = \cdots = r_{l-1} = \varepsilon$ ($y = \varepsilon$ for l = 1).
- (iii) If $m \ge 2$ and l = n, then $s_{m-1} = \cdots = s_1 = x = y = r_1 = \cdots = r_{n-1} = \varepsilon$ ($s_{m-1} = \cdots = s_1 = x = y = \varepsilon$ for n = 1).
- (iv) If m = 1 and l < n, then $n \ge 2$, $x = r_{l+1} \cdots r_n$ and $y = r_1 = \cdots = r_{l-1} = \varepsilon$ ($y = \varepsilon$ for l = 1).
- (v) If m = 1 and l = n, then s = yr and $x = y = r_1 = \cdots = r_{n-1} = \varepsilon$ ($x = y = \varepsilon$ for n = 1).

Proof. Similar to that of 3.4.

Lemma 3.7. There are uniquely determined k and l such that:

- (i) $1 \le k \le m$ and $1 \le l \le n$.
- (ii) $z_k = z'_l = s_k = r_l$ and $p_k = q_l = \varepsilon$.
- (iii) $|s_m \cdots s_{k+1}| \le |y| < |s_m \cdots s_k|$ $(s_m \cdots s_{k+1} = \varepsilon \text{ for } k = m).$
- (iv) $|yr_1 \cdots r_{l-1}| < |s_m \cdots s_k| \le |yr_1 \cdots r_l|$ $(yr_1 \cdots r_{l-1} = y \text{ for } l = 1).$
- (v) If 1 < k < m and 1 < l < n, then $m \ge 3$, $n \ge 3$, $s_{k-1} \cdots s_1 x = r_{l+1} \cdots r_n$ and $s_m \cdots s_{k+1} = yr_1 \cdots r_{l-1}$.
- (vi) If 1 < k < m and 1 < l = n, then $m \ge 3$, $n \ge 2$, $s_{k-1} = \cdots = s_1 = x = \varepsilon$ and $s_m \cdots s_{k+1} = yr_1 \cdots r_{n-1}$.
- (vii) If 1 < k < m and 1 = l < n, then $m \ge 3$, $n \ge 2$, $s_{k-1} \cdots s_1 x = r_2 \cdots r_n$ and $s_m \cdots s_{k+1} = y$.
- (viii) If 1 < k < m and 1 = n (= l), then $m \ge 3$, $s_{k-1} = \cdots = s_1 = x = \varepsilon$ and $s_m \cdots s_{k+1} = y$.
- (ix) If 1 < k = m and 1 < l < n, then $m \ge 2$, $n \ge 3$, $s_{m-1} \cdots s_1 x = r_{l+1} \cdots r_n$ and $y = r_1 = \cdots = r_{l-1} = \varepsilon$.
- (x) If 1 < k = m and 1 < l = n, then $m \ge 2$, $n \ge 2$, $s_{m-1} = \cdots = s_1 = x = y = r_1 = \cdots = r_{n-1} = \varepsilon$.
- (xi) If 1 < k = m and 1 = l < n, then $m \ge 2$, $n \ge 2$, $s_{m-1} \cdots s_1 x = r_2 \cdots r_n$ and $y = \varepsilon$.
- (xii) If 1 < k = m and $1 = n \ (= l)$, then $m \ge 2$, $s_{m-1} = \dots = s_1 = x = y = \varepsilon$.
- (xiii) If 1 = k < m and 1 < l < n, then $m \ge 2$, $n \ge 3$, $x = r_{l+1} \cdots r_n$ and $s_m \cdots s_2 = yr_1 \cdots r_{l-1}$.
- (xiv) If 1 = k < m and 1 < l = n, then $m \ge 2$, $n \ge 2$, $x = \varepsilon$ and $s_m \cdots s_2 = yr_1 \cdots r_{n-1}$.
- (xv) If 1 = k < m and 1 = l < n, then $m \ge 2$, $n \ge 2$, $x = r_2 \cdots r_n$ and $s_m \cdots s_2 = y$.
- (xvi) If 1 = k < m and 1 = n (= l), then $m \ge 2$, $x = \varepsilon$ and $s_m \cdots s_2 = y$.
- (xvii) If $1 = m \ (=k)$ and 1 < l < n, then $n \ge 3$, $x = r_{l+1} \cdots r_n$ and $y = r_1 = \cdots = r_{l-1} = \varepsilon$.
- (xviii) If 1 = m (= k) and 1 < l = n, then $n \ge 2$, $x = y = r_1 = \cdots = r_{n-1} = \varepsilon$.
- (xix) If 1 = m (= k) and 1 = l < n, then $n \ge 2$, $x = r_2 \cdots r_n$ and $y = \varepsilon$.
- (xx) If $1 = m \ (=k)$ and $1 = n \ (=l)$, then $x = y = \varepsilon$.

Proof. Combine 3.4 and 3.6.

Proposition 3.8. x = tr and y = st for some $t \in A^*$ (see 3.1), provided that at least one of the following six conditions holds:

- (1) m = 1 and $|z_1| \le |y|$;
- (2) n = 1 and $|z'_1| \le |x|;$
- (3) All the words s_1, \ldots, s_m are reduced;
- (4) All the words r_1, \ldots, r_n are reduced;

(5)
$$z_i \neq z'_j$$
 for all $1 \le i \le m$ and $1 \le j \le n$;
(6) $s_i \neq r_j$ for all $1 \le i \le m$ and $1 \le j \le n$;

Proof. The result follows easily from 3.7.

4. TECHNICAL RESULTS (C)

In this section, let $r, s, t \in A^*$ be reduced words such that $(rs, t) \in \tau$. We have $rs = r_0 z_0 s_0$, $z_0 \in Z$, r_0 , s_0 reduced. By I.6.2, $r = r_0 p_0$, $s = q_0 s_0$ and $z_0 = p_0 q_0$, where $p_0, q_0 \in A^+$ are reduced (then $|z_0| \ge 2$). Since $(rs, t) \in \tau$, there is a ρ -sequence $w_0, w_1, \ldots, w_m, m \ge 1$, such that $w_0 = rs$ and $w_m = t$. Clearly, $\operatorname{tr}(w_0) = 1$, $\operatorname{tr}(w_1) \ge 1$, \ldots , $\operatorname{tr}(w_{m-1}) \ge 1$ and $\operatorname{tr}(w_m) = 0$. Now, we will assume that $\operatorname{tr}(w_i) = 1$ for $i = 2, \ldots, m - 1$ (cf. II.6 and III.4). Consequently, $w_i = r_i z_i s_i, z_i \in Z$, r_i, s_i reduced, $i = 0, 1, \ldots, m - 1$.

Lemma 4.1.

- (i) $rs = r\varepsilon s = w_0 = r_0 z_0 s_0$.
- (ii) $r_i \psi(z_i) s_i = w_{i+1} = r_{i+1} z_{i+1} s_{i+1}$ for every $i, 0 \le i \le m-2$.
- (iii) $t = w_m = r_{m-1}\psi(z_{m-1})s_{m-1}$.

Proof. Obvious.

Lemma 4.2. Let $0 \le i \le m - 2$. Then just one of the following three cases takes place:

- (1) $r_i\psi(z_i)$ is reduced, $\psi(z_i)s_i$ is not reduced, $r_{i+1} = r_ip'_{i+1}, \psi(z_i) = p'_{i+1}p_{i+1}, s_i = q_{i+1}s_{i+1}, z_{i+1} = p_{i+1}q_{i+1}, r_i\psi(z_i) = r_ip'_{i+1}p_{i+1} = r_{i+1}p_{i+1}$ and $\psi(z_i)s_i = p'_{i+1}z_{i+1}s_{i+1}, p'_{i+1} \in A^*$ and $p_{i+1}, q_{i+1} \in A^+$ $(p'_{i+1}, p_{i+1}, q_{i+1} reduced);$
- (2) $r_i\psi(z_i)$ is not reduced, $\psi(z_i)s_i$ is reduced, $r_i = r_{i+1}p_{i+1}$, $\psi(z_i) = q_{i+1}q'_{i+1}$, $s_{i+1} = q'_{i+1}s_i$, $z_{i+1} = p_{i+1}q_{i+1}$, $r_i\psi(z_i) = r_{i+1}z_{i+1}q'_{i+1}$ and $\psi(z_i)s_i = q_{i+1}q'_{i+1}s_i = q_{i+1}s_{i+1}$, $q'_{i+1} \in A^*$ and $p_{i+1}, q_{i+1} \in A^+$ $(q'_{i+1}, p_{i+1}, q_{i+1} \text{ reduced})$;
- (3) Both $r_i\psi(z_i)$ and $\psi(z_i)s_i$ are reduced, $r_i = r_{i+1}p_{i+1}$, $s_i = q_{i+1}s_{i+1}$ and $z_{i+1} = p_{i+1}\psi(z_i)q_{i+1}$.

Proof. The word $r_i\psi(z_i)s_i = r_{i+1}z_{i+1}s_{i+1}$ is meagre, and hence it follows from 2.2 that at least one of the words $r_i\psi(z_i)$ and $\psi(z_i)s_i$ is reduced. The rest is easy.

Lemma 4.3. Let $0 \le i \le m - 2$.

- (i) If 4.2(1) holds and $|\psi(z_i)| \leq 1$, then $\psi(z_i) = p_{i+1} \in A$ and $p'_{i+1} = \varepsilon$.
- (ii) If 4.2(2) holds and $|\psi(z_i)| \leq 1$, then $\psi(z_i) = q_{i+1} \in A$ and $q'_{i+1} = \varepsilon$.

Proof. Obvious.

5

In the remaining part of this section, we will assume that $p'_{i+1} = \varepsilon$ $(q'_{i+1} = \varepsilon, \text{ resp.})$ whenever $0 \le i \le m - 2$ and 4.2(1) (4.2(2), resp.) is true.

If 4.2(1) is satisfied, then $\psi(z_i) = p_{i+1}$, $r_i = r_{i+1}$, $s_i = q_{i+1}s_{i+1}$, $z_{i+1} = \psi(z_i)q_{i+1}$ and we put $g_{i+1} = \varepsilon$ and $h_{i+1} = q_{i+1}$. Then $z_{i+1} = g_{i+1}\psi(z_i)h_{i+1}$, $r_i = r_{i+1}g_{i+1}$ and $s_i = h_{i+1}s_{i+1}$.

If 4.2(2) is satisfied, then $\psi(z_i) = q_{i+1}$, $r_i = r_{i+1}p_{i+1}$, $s_i = s_{i+1}$, $z_{i+1} = p_{i+1}\psi(z_i)$ and we put $g_{i+1} = p_{i+1}$ and $h_{i+1} = \varepsilon$. Again, $z_{i+1} = g_{i+1}\psi(z_i)h_{i+1}$, $r_i = r_{i+1}g_{i+1}$ and $s_i = h_{i+1}s_{i+1}$.

If 4.2(3) is satisfied, then $r_i = r_{i+1}p_{i+1}$, $s_i = q_{i+1}s_{i+1}$ and $z_{i+1} = p_{i+1}\psi(z_i)q_{i+1}$ and we put $g_{i+1} = p_{i+1}$ and $h_{i+1} = q_{i+1}$. As usual, $z_{i+1} = g_{i+1}\psi(z_i)h_{i+1}$, $r_i = r_{i+1}g_{i+1}$ and $s_i = h_{i+1}s_{i+1}$.

Furthermore, we put $g_0 = p_0$ and $h_0 = q_0$, so that $z_0 = g_0 h_0 = g_0 \varepsilon h_0$. Finally, we put $g_m = r_{m-1}$ and $h_m = s_{m-1}$, so that $t = g_m \psi(z_{m-1}) h_m$.

Notice that all the words g_0, \ldots, g_m and h_0, \ldots, h_m are reduced. The following three lemmas are easy.

Lemma 4.4.

- (i) $z_0 = g_0 h_0 = g_0 \varepsilon h_0$, $r = r_0 g_0$ and $s = h_0 s_0$.
- (ii) If $1 \le i \le m 1$, then $z_i = g_i \psi(z_{i-1}) h_i$, $r_{i-1} = r_i g_i$ and $s_{i-1} = h_i s_i$.
- (iii) $t = g_m \psi(z_{m-1}) h_m$.
- (iv) All the words g_0, \ldots, g_m and h_0, \ldots, h_m are reduced.
- (v) $r = g_m \cdots g_1 g_0$ and $s = h_0 h_1 \cdots h_m$.

Lemma 4.5. Put $r' = g_{m-1} \cdots g_1 g_0$, $s' = h_0 h_1 \cdots h_{m-1}$, $r'' = g_{m-1} \cdots g_1$, $s'' = h_1 \cdots h_{m-1}$ $(r'' = \varepsilon = s'' \text{ if } m = 1)$. Then:

- (i) $r = g_m r'$ and $s = s' h_m$.
- (ii) $rs = g_m r's' h_m$.
- (iii) $r's' = r''z_0s''$.
- (iv) $(r's', \psi(z_{m-1})) \in \tau$.
- (v) $(rs', g_m\psi(z_{m-1})) \in \tau$.
- (vi) $(r's, \psi(z_{m-1}h_m)) \in \tau$.

Lemma 4.6.

- (i) If t = r, then $r = g_m \psi(z_{m-1}) h_m$ and $(g_m \psi(z_{m-1}) h_m h_0 h_1 \cdots h_{m-1}, g_m \psi(z_{m-1})) = (rs', g_m \psi(z_{m-1})) \in \tau$.
- (ii) If t = s, then $s = g_m \psi(z_{m-1})h_m$ and $(g_{m-1} \cdots g_1 g_0 g_m \psi(z_{m-1})h_m, \psi(z_{m-1})h_m) = (r's, \psi(z_{m-1})h_m) \in \tau$.

5. TECHNICAL RESULTS (D)

In this section, we will assume that $\psi(Z) \subseteq A \cup \{\varepsilon\}$.

Let $r, s, t, p, q \in A^*$ be reduced words such that $(rt, p) \in \tau$ and $(ts, q) \in \tau$. Then, of course, neither rt nor ts is reduced and $r, s, t \in A^+$.

Lemma 5.1. There are $m \ge 1, z_0, \ldots, z_{m-1} \in Z$ and reduced words $g_0, \ldots, g_m, h_0, \ldots, h_m \in A^*$ such that:

(i)
$$z_0 = g_0 h_0$$
.
(ii) If $1 \le i \le m - 1$, then $z_i = g_i \psi(z_{i-1}) h_i$.
(iii) $p = g_m \psi(z_{m-1}) h_m$.
(iv) $r = g_m \cdots g_1 g_0$.
(v) $t = h_0 h_1 \cdots h_m$.
(vi) $(rh_0 h_1 \cdots h_{m-1}, g_m \psi(z_{m-1})) \in \tau$.

Proof. Use 4.4 and 4.5(v).

Lemma 5.2. There are $m' \ge 1, z'_0, \ldots, z'_{m'-1} \in Z$ and reduced words $g'_0, \ldots, g'_{m'}, h'_0, \ldots, h'_{m'} \in A^*$ such that:

(i)
$$z'_0 = g'_0 h'_0.$$

(ii) If $1 \le i \le m' - 1$, then $z'_i = g'_i \psi(z'_{i-1}) h'_i.$
(iii) $q = g'_{m'} \psi(z'_{m'-1}) h'_{m'}.$
(iv) $s = h'_0 h'_1 \cdots h'_{m'}.$
(v) $t = g'_{m'} \cdots g'_1 g'_0.$
(vi) $(g'_{m'-1} \cdots g'_1 g'_0 s, \psi(z'_{m'-1}) h'_{m'}) \in \tau.$

Proof. Use 4.4 and 4.5(vi).

Lemma 5.3.

(i) $h_0h_1 \cdots h_m = t = g'_{m'} \cdots g'_1g'_0.$ (ii) There is $f \in A^*$ such that $g'_{m'} = h_0h_1 \cdots h_{m-1}f$ and $h_m = fg'_{m'-1} \cdots g'_1g'_0.$

Proof.

- (i) See 5.1(v) and 5.2(v).
- (ii) Combine (i), 3.1 and 3.8.

Lemma 5.4. Put $t_1 = h_0 h_1 \cdots h_{m-1}$, $t_2 = f$ and $t_3 = g'_{m'-1} \cdots g'_1 g'_0$. Then:

(i) $t = t_1 t_2 t_3$. (ii) $(rt_1, g_m \psi(z_{m-1})) \in \tau$. (iii) $(t_3 s, \psi(z'_{m'-1}) h'_{m'}) \in \tau$. (iv) $p = g_m \psi(z_{m-1}) t_2 t_3$. (v) $q = t_1 t_2 \psi(z'_{m'-1}) h'_{m'}$.

Proof. Combine 5.1(iii), 5.2(iii) and 5.3.

6. TECHNICAL RESULTS (E)

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing (equivalently, $Z \cap A = \emptyset$). By III.6.5, for every $w \in A^*$ there exists a uniquely determined reduced word r such that $(w, r) \in \xi$.

Proposition 6.1. Let $r, s \in A^*$ be reduced and let $p, q \in A^*$ be such that $pq \neq \varepsilon$. Then either $(rpq, r) \notin \xi$ or $(qps, s) \notin \xi$.

Proof. Since $pq \neq \varepsilon$, we have $rpq \neq r$ and $qps \neq s$. Now, proceeding by contradiction, assume that $(rpq, r) \in \tau$, $(qps, s) \in \tau$ and |rs| is minimal. Of course (III.6.4, III.6.5), we can assume that both p and q are reduced. The rest of the proof is divided into five parts:

(i) Let $q = \varepsilon$. Then $p \neq \varepsilon$, $(rp, r) \in \tau$ and $(ps, s) \in \tau$. According to 5.4, $p = p_1 p_2 p_3$, $(r, u) \in \tau$, $(p_3 s, v) \in \tau$, $r = u p_2 p_3$, $s = p_1 p_2 v$, u, vreduced. We get $(u p_2 p_3 p_1, u) \in \tau$, $(p_3 p_1 p_2 v, v) \in \tau$ and, if $(p_3 p_1, p_4) \in \xi$, where p_4 is reduced, then $(u p_2 p_4, u) \in \xi$, $(p_4 p_2 v, v) \in \xi$. If $p_2 = \varepsilon =$ p_4 , then $p_3 p_1 \neq \varepsilon$ (since $p \neq \varepsilon$) and $p_4 \neq \varepsilon$ (since $\varepsilon \notin \psi(Z)$), a contradiction. Thus $p_2 p_4 \neq \varepsilon$ and $(u p_2 p_4, u) \in \tau$, $(p_4 p_2 v, v) \in \tau$. But |u| + |v| < |r| + |s|, a contradiction with the minimality of |rs|.

(ii) Let $q = \varepsilon$. This case is analogous to (i).

(iii) Let $p \neq \varepsilon \neq q$ and r = r'q, where $(rp, r') \in \xi$ and r' is reduced. Furthermore, let $(qp, t) \in \xi$, where t is reduced. Then $(r'qp, r') = (rp, r') \in \xi$, $(r'qp, r't) \in \xi$ (since $(qp, t) \in \xi$), and hence $(r't, r') \in \xi$. Similarly, $(qps, ts) \in \xi$ (since $(qp, t) \in \xi$), and hence $(ts, s) \in \xi$ (since $(qps, s) \in \tau$). Since $qp \neq \varepsilon$, we have $t \neq \varepsilon$ and $(r't, r') \in \tau$, $(ts, s) \in \tau$. But this is a contradiction since |r'| + |s| < |r| + |s|.

(iv) Let $p \neq \varepsilon \neq q$ and s = qs', where $(ps, s') \in \xi$ and s' is reduced. This case is analogous to (iii).

(v) Let $p \neq \varepsilon \neq q$ and $r'q \neq r$, $qs' \neq s$, where r', s' are reduced and such that $(rp, r') \in \xi$ and $(ps, s') \in \xi$. We have $(r'q, r) \in \tau$ and $(qs', s) \in \tau$. According to 5.4, $q = q_1q_2q_3$, $(r'q_1, u) \in \tau$, $(q_3s', v) \in \tau$, $r = uq_2q_3$ and $s = q_1q_2v$, u, v reduced. Now, $(rp, r') \in \xi$ implies $(uq_2q_3pq_1, r'q_1) = (rpq_1, r'q_1) \in \xi$, and hence $(uq_2q_3pq_1, u) \in \tau$. Quite similarly, $(q_3pq_1q_2v, v) \in \tau$. Finally, if $(q_3pq_1, t) \in \xi$, where t is reduced, then $(uq_2t, u) \in \xi$ and $(tq_2v, v) \in \xi$. Of course, $t \neq \varepsilon$, $(uq_2t, u) \in \tau$, $(tq_2v, v) \in \tau$ and |u| + |v| < |r| + |s| (since $q \neq \varepsilon$), a contradiction. \Box

7. Main result

Assume that $\psi(Z) \subseteq A$ and ψ is strictly length decreasing.

Theorem 7.1. Let $z_1, z_2 \in Z$ be such that $z_1 \neq z_2$ and $\psi(z_1) = a = \psi(z_2)$ ($a \in A$). Furthermore, let $r, s \in A^*$ and $w \in A^*$. Then either $(w, rz_1 s) \notin \xi$ or $(w, rz_2 s) \notin \xi$ (of course, $(rz_1 s, ras) \in \rho$ and $(rz_2 s, ras) \in \rho$).

Proof. We can assume without loss of generality that both r and s are reduced. If $(w, rz_1s) \in \xi$ and $(w, rz_2s) \in \xi$, then $P(rz_1s, rz_2s) \neq \emptyset$ (see IV.5) and we can assume that $w \in Q(rz_1s, rz_2s)$ (use IV.5.3). According to IV.6.1, either $w = rz_1xz_2s$, $(rz_1x, r) \in \tau$, $(xz_2s, s) \in \tau$, x reduced or $w = rz_2xz_1s$, $(rz_2x, r) \in \tau$, $(xz_1s, s) \in \tau$, x reduced. In both cases, $(rax, r) \in \xi$ and $(xas, s) \in \xi$, a contradiction with 6.1. \Box

8. Examples

Example 8.1. Let $z_1 = a^2b^2$, $z_2 = a^2bab^2$, $r_1 = \varepsilon$, $r_2 = b^2$, $s_1 = a$, $s_2 = \varepsilon$, r = a, $s = bab^2$ and $t = b^2a$. Then all the words r_1 , r_2 , s_1 , s_2 , r, s, t are reduced and $rat = a^2b^2a = r_1z_1s_1$ and $tas = b^2a^2bab^2 = r_2z_2s_2$. Furthermore, $(rat, \psi(z_1)a) \in \rho$ and $(tas, b^2\psi(z_2)) \in \rho$.

If $\psi(z_1) = \varepsilon$, then $(rat, a) \in \rho$. If $\psi(z_1) = b^2$, then $(rat, t) \in \rho$. If $\psi(z_2) = a$, then $(tas, t) \in \rho$.

Notice also that $sat = bab^2ab^2a$ and $tar = b^2a^3$ are reduced.

References

- V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words I., Acta Univ. Carolinae Math. Phys., 49/1(2008), 33-51.
- [2] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words II., Acta Univ. Carolinae Math. Phys., 50/1(2009), 15-28.
- [3] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words III.,
- [4] V. Flaška, T. Kepka and J. Kortelainen, On separating sets of words IV.,

Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8

DEPARTMENT OF INFORMATION PROCESSING SCIENCE, UNIVERSITY OF OULU, P. O. BOX 3000 FIN-90014, OULU

E-mail address: flaska@matfyz.cz E-mail address: kepka@karlin.mff.cuni.cz E-mail address: juha.kortelainen@oulu.fi